TII subcells for the PSp(10,R) x Spin(8,3) block of PSp10 # cell#0 , |C| = 1 special orbit = [10] special rep = [[5], []] , dim = 1 cell rep = phi[[5],[]] TII depth = 1 TII multiplicity polynomial = X TII subcells: tii[16,1] := {0} cell#1 , |C| = 9 special orbit = [8, 2] special rep = [[4], [1]] , dim = 5 cell rep = phi[[4, 1],[]]+phi[[4],[1]] TII depth = 1 TII multiplicity polynomial = X+4*X^2 TII subcells: tii[15,1] := {1, 8} tii[15,2] := {0, 6} tii[15,3] := {2, 3} tii[15,4] := {4, 5} tii[15,5] := {7} cell#2 , |C| = 9 special orbit = [8, 2] special rep = [[4], [1]] , dim = 5 cell rep = phi[[4, 1],[]]+phi[[4],[1]] TII depth = 1 TII multiplicity polynomial = X+4*X^2 TII subcells: tii[15,1] := {0, 8} tii[15,2] := {1, 7} tii[15,3] := {2, 6} tii[15,4] := {3, 5} tii[15,5] := {4} cell#3 , |C| = 15 special orbit = [6, 2, 2] special rep = [[3, 1], [1]] , dim = 15 cell rep = phi[[3, 1],[1]] TII depth = 3 TII multiplicity polynomial = 15*X TII subcells: tii[13,1] := {5} tii[13,2] := {11} tii[13,3] := {14} tii[13,4] := {0} tii[13,5] := {1} tii[13,6] := {2} tii[13,7] := {3} tii[13,8] := {4} tii[13,9] := {7} tii[13,10] := {6} tii[13,11] := {9} tii[13,12] := {8} tii[13,13] := {10} tii[13,14] := {12} tii[13,15] := {13} cell#4 , |C| = 15 special orbit = [6, 4] special rep = [[3], [2]] , dim = 10 cell rep = phi[[3],[2]]+phi[[1],[4]] TII depth = 1 TII multiplicity polynomial = 5*X+5*X^2 TII subcells: tii[14,1] := {2} tii[14,2] := {8} tii[14,3] := {11, 12} tii[14,4] := {13, 14} tii[14,5] := {0} tii[14,6] := {1} tii[14,7] := {3, 4} tii[14,8] := {5} tii[14,9] := {6, 7} tii[14,10] := {9, 10} cell#5 , |C| = 15 special orbit = [6, 2, 2] special rep = [[3, 1], [1]] , dim = 15 cell rep = phi[[3, 1],[1]] TII depth = 3 TII multiplicity polynomial = 15*X TII subcells: tii[13,1] := {14} tii[13,2] := {13} tii[13,3] := {12} tii[13,4] := {0} tii[13,5] := {11} tii[13,6] := {1} tii[13,7] := {8} tii[13,8] := {2} tii[13,9] := {5} tii[13,10] := {3} tii[13,11] := {4} tii[13,12] := {10} tii[13,13] := {7} tii[13,14] := {6} tii[13,15] := {9} cell#6 , |C| = 15 special orbit = [6, 2, 2] special rep = [[3, 1], [1]] , dim = 15 cell rep = phi[[3, 1],[1]] TII depth = 3 TII multiplicity polynomial = 15*X TII subcells: tii[13,1] := {14} tii[13,2] := {6} tii[13,3] := {13} tii[13,4] := {4} tii[13,5] := {12} tii[13,6] := {3} tii[13,7] := {8} tii[13,8] := {9} tii[13,9] := {11} tii[13,10] := {0} tii[13,11] := {2} tii[13,12] := {1} tii[13,13] := {5} tii[13,14] := {7} tii[13,15] := {10} cell#7 , |C| = 16 special orbit = [6, 2, 1, 1] special rep = [[3], [1, 1]] , dim = 10 cell rep = phi[[3, 1, 1],[]]+phi[[3],[1, 1]] TII depth = 1 TII multiplicity polynomial = 4*X+6*X^2 TII subcells: tii[12,1] := {1, 15} tii[12,2] := {3, 14} tii[12,3] := {5, 13} tii[12,4] := {7} tii[12,5] := {0, 12} tii[12,6] := {2, 9} tii[12,7] := {6} tii[12,8] := {4, 11} tii[12,9] := {8} tii[12,10] := {10} cell#8 , |C| = 30 special orbit = [4, 4, 2] special rep = [[2, 1], [2]] , dim = 20 cell rep = phi[[2, 1],[2]]+phi[[1, 1],[3]] TII depth = 2 TII multiplicity polynomial = 10*X+10*X^2 TII subcells: tii[10,1] := {21} tii[10,2] := {28, 29} tii[10,3] := {4} tii[10,4] := {10} tii[10,5] := {12, 13} tii[10,6] := {19, 20} tii[10,7] := {9} tii[10,8] := {16} tii[10,9] := {6} tii[10,10] := {17, 18} tii[10,11] := {11} tii[10,12] := {24, 25} tii[10,13] := {22, 23} tii[10,14] := {26, 27} tii[10,15] := {0} tii[10,16] := {2, 3} tii[10,17] := {1} tii[10,18] := {7, 8} tii[10,19] := {5} tii[10,20] := {14, 15} cell#9 , |C| = 35 special orbit = [4, 2, 2, 2] special rep = [[2, 1], [1, 1]] , dim = 20 cell rep = phi[[2, 1, 1],[1]]+phi[[2, 1],[1, 1]] TII depth = 2 TII multiplicity polynomial = 5*X+15*X^2 TII subcells: tii[8,1] := {5, 29} tii[8,2] := {14, 28} tii[8,3] := {10, 32} tii[8,4] := {21, 33} tii[8,5] := {12, 26} tii[8,6] := {23} tii[8,7] := {27, 34} tii[8,8] := {31} tii[8,9] := {0, 3} tii[8,10] := {1, 24} tii[8,11] := {2, 8} tii[8,12] := {4, 16} tii[8,13] := {6, 13} tii[8,14] := {7, 19} tii[8,15] := {17} tii[8,16] := {9, 22} tii[8,17] := {18} tii[8,18] := {11, 20} tii[8,19] := {15, 30} tii[8,20] := {25} cell#10 , |C| = 14 special orbit = [6, 2, 1, 1] special rep = [[3], [1, 1]] , dim = 10 cell rep = phi[[3],[1, 1]]+phi[[],[4, 1]] TII depth = 1 TII multiplicity polynomial = 6*X+4*X^2 TII subcells: tii[12,1] := {0} tii[12,2] := {5} tii[12,3] := {9} tii[12,4] := {12, 13} tii[12,5] := {4} tii[12,6] := {8} tii[12,7] := {10, 11} tii[12,8] := {3} tii[12,9] := {6, 7} tii[12,10] := {1, 2} cell#11 , |C| = 16 special orbit = [4, 2, 1, 1, 1, 1] special rep = [[2], [1, 1, 1]] , dim = 10 cell rep = phi[[2],[1, 1, 1]]+phi[[],[3, 1, 1]] TII depth = 1 TII multiplicity polynomial = 4*X+6*X^2 TII subcells: tii[7,1] := {0} tii[7,2] := {5} tii[7,3] := {13, 15} tii[7,4] := {3} tii[7,5] := {8, 9} tii[7,6] := {1, 2} tii[7,7] := {4} tii[7,8] := {11, 14} tii[7,9] := {6, 7} tii[7,10] := {10, 12}