TII subcells for the PSp(10,R) x Spin(9,2) block of PSp10 # cell#0 , |C| = 1 special orbit = [10] special rep = [[5], []] , dim = 1 cell rep = phi[[5],[]] TII depth = 1 TII multiplicity polynomial = X TII subcells: tii[16,1] := {0} cell#1 , |C| = 9 special orbit = [8, 2] special rep = [[4], [1]] , dim = 5 cell rep = phi[[4, 1],[]]+phi[[4],[1]] TII depth = 1 TII multiplicity polynomial = X+4*X^2 TII subcells: tii[15,1] := {0, 5} tii[15,2] := {1, 2} tii[15,3] := {3, 4} tii[15,4] := {6, 7} tii[15,5] := {8} cell#2 , |C| = 9 special orbit = [8, 2] special rep = [[4], [1]] , dim = 5 cell rep = phi[[4, 1],[]]+phi[[4],[1]] TII depth = 1 TII multiplicity polynomial = X+4*X^2 TII subcells: tii[15,1] := {0, 8} tii[15,2] := {1, 7} tii[15,3] := {2, 6} tii[15,4] := {3, 5} tii[15,5] := {4} cell#3 , |C| = 9 special orbit = [8, 2] special rep = [[4], [1]] , dim = 5 cell rep = phi[[4, 1],[]]+phi[[4],[1]] TII depth = 1 TII multiplicity polynomial = X+4*X^2 TII subcells: tii[15,1] := {0, 8} tii[15,2] := {1, 7} tii[15,3] := {2, 6} tii[15,4] := {3, 5} tii[15,5] := {4} cell#4 , |C| = 15 special orbit = [6, 2, 2] special rep = [[3, 1], [1]] , dim = 15 cell rep = phi[[3, 1],[1]] TII depth = 3 TII multiplicity polynomial = 15*X TII subcells: tii[13,1] := {5} tii[13,2] := {11} tii[13,3] := {14} tii[13,4] := {0} tii[13,5] := {1} tii[13,6] := {2} tii[13,7] := {3} tii[13,8] := {4} tii[13,9] := {7} tii[13,10] := {6} tii[13,11] := {9} tii[13,12] := {8} tii[13,13] := {10} tii[13,14] := {12} tii[13,15] := {13} cell#5 , |C| = 16 special orbit = [6, 2, 1, 1] special rep = [[3], [1, 1]] , dim = 10 cell rep = phi[[3, 1, 1],[]]+phi[[3],[1, 1]] TII depth = 1 TII multiplicity polynomial = 4*X+6*X^2 TII subcells: tii[12,1] := {0, 15} tii[12,2] := {1, 11} tii[12,3] := {2, 8} tii[12,4] := {5} tii[12,5] := {3, 14} tii[12,6] := {4, 10} tii[12,7] := {7} tii[12,8] := {6, 13} tii[12,9] := {9} tii[12,10] := {12} cell#6 , |C| = 16 special orbit = [6, 2, 1, 1] special rep = [[3], [1, 1]] , dim = 10 cell rep = phi[[3, 1, 1],[]]+phi[[3],[1, 1]] TII depth = 1 TII multiplicity polynomial = 4*X+6*X^2 TII subcells: tii[12,1] := {0, 15} tii[12,2] := {1, 11} tii[12,3] := {2, 8} tii[12,4] := {5} tii[12,5] := {3, 14} tii[12,6] := {4, 10} tii[12,7] := {7} tii[12,8] := {6, 13} tii[12,9] := {9} tii[12,10] := {12}