TII subcells for the Sp(10,R) x SO(8,3) block of Sp10 # cell#0 , |C| = 1 special orbit = [10] special rep = [[5], []] , dim = 1 cell rep = phi[[5],[]] TII depth = 1 TII multiplicity polynomial = X TII subcells: tii[16,1] := {0} cell#1 , |C| = 1 special orbit = [10] special rep = [[5], []] , dim = 1 cell rep = phi[[5],[]] TII depth = 1 TII multiplicity polynomial = X TII subcells: tii[16,1] := {0} cell#2 , |C| = 9 special orbit = [8, 2] special rep = [[4], [1]] , dim = 5 cell rep = phi[[4, 1],[]]+phi[[4],[1]] TII depth = 1 TII multiplicity polynomial = X+4*X^2 TII subcells: tii[15,1] := {1, 8} tii[15,2] := {0, 6} tii[15,3] := {2, 3} tii[15,4] := {4, 5} tii[15,5] := {7} cell#3 , |C| = 9 special orbit = [8, 2] special rep = [[4], [1]] , dim = 5 cell rep = phi[[4, 1],[]]+phi[[4],[1]] TII depth = 1 TII multiplicity polynomial = X+4*X^2 TII subcells: tii[15,1] := {0, 8} tii[15,2] := {1, 7} tii[15,3] := {2, 6} tii[15,4] := {3, 5} tii[15,5] := {4} cell#4 , |C| = 9 special orbit = [8, 2] special rep = [[4], [1]] , dim = 5 cell rep = phi[[4, 1],[]]+phi[[4],[1]] TII depth = 1 TII multiplicity polynomial = X+4*X^2 TII subcells: tii[15,1] := {1, 8} tii[15,2] := {0, 6} tii[15,3] := {2, 3} tii[15,4] := {4, 5} tii[15,5] := {7} cell#5 , |C| = 9 special orbit = [8, 2] special rep = [[4], [1]] , dim = 5 cell rep = phi[[4, 1],[]]+phi[[4],[1]] TII depth = 1 TII multiplicity polynomial = X+4*X^2 TII subcells: tii[15,1] := {0, 8} tii[15,2] := {1, 7} tii[15,3] := {2, 6} tii[15,4] := {3, 5} tii[15,5] := {4} cell#6 , |C| = 15 special orbit = [6, 2, 2] special rep = [[3, 1], [1]] , dim = 15 cell rep = phi[[3, 1],[1]] TII depth = 3 TII multiplicity polynomial = 15*X TII subcells: tii[13,1] := {5} tii[13,2] := {11} tii[13,3] := {14} tii[13,4] := {0} tii[13,5] := {1} tii[13,6] := {2} tii[13,7] := {3} tii[13,8] := {4} tii[13,9] := {7} tii[13,10] := {6} tii[13,11] := {9} tii[13,12] := {8} tii[13,13] := {10} tii[13,14] := {12} tii[13,15] := {13} cell#7 , |C| = 15 special orbit = [6, 2, 2] special rep = [[3, 1], [1]] , dim = 15 cell rep = phi[[3, 1],[1]] TII depth = 3 TII multiplicity polynomial = 15*X TII subcells: tii[13,1] := {5} tii[13,2] := {11} tii[13,3] := {14} tii[13,4] := {0} tii[13,5] := {1} tii[13,6] := {2} tii[13,7] := {3} tii[13,8] := {4} tii[13,9] := {7} tii[13,10] := {6} tii[13,11] := {9} tii[13,12] := {8} tii[13,13] := {10} tii[13,14] := {12} tii[13,15] := {13} cell#8 , |C| = 15 special orbit = [6, 4] special rep = [[3], [2]] , dim = 10 cell rep = phi[[3, 2],[]]+phi[[3],[2]] TII depth = 1 TII multiplicity polynomial = 5*X+5*X^2 TII subcells: tii[14,1] := {4, 5} tii[14,2] := {10, 11} tii[14,3] := {13} tii[14,4] := {14} tii[14,5] := {0, 1} tii[14,6] := {2, 3} tii[14,7] := {6} tii[14,8] := {7, 8} tii[14,9] := {9} tii[14,10] := {12} cell#9 , |C| = 15 special orbit = [6, 2, 2] special rep = [[3, 1], [1]] , dim = 15 cell rep = phi[[3, 1],[1]] TII depth = 3 TII multiplicity polynomial = 15*X TII subcells: tii[13,1] := {14} tii[13,2] := {13} tii[13,3] := {12} tii[13,4] := {0} tii[13,5] := {11} tii[13,6] := {1} tii[13,7] := {8} tii[13,8] := {2} tii[13,9] := {5} tii[13,10] := {3} tii[13,11] := {4} tii[13,12] := {10} tii[13,13] := {7} tii[13,14] := {6} tii[13,15] := {9} cell#10 , |C| = 15 special orbit = [6, 2, 2] special rep = [[3, 1], [1]] , dim = 15 cell rep = phi[[3, 1],[1]] TII depth = 3 TII multiplicity polynomial = 15*X TII subcells: tii[13,1] := {14} tii[13,2] := {13} tii[13,3] := {12} tii[13,4] := {0} tii[13,5] := {11} tii[13,6] := {1} tii[13,7] := {8} tii[13,8] := {2} tii[13,9] := {5} tii[13,10] := {3} tii[13,11] := {4} tii[13,12] := {10} tii[13,13] := {7} tii[13,14] := {6} tii[13,15] := {9} cell#11 , |C| = 15 special orbit = [6, 2, 2] special rep = [[3, 1], [1]] , dim = 15 cell rep = phi[[3, 1],[1]] TII depth = 3 TII multiplicity polynomial = 15*X TII subcells: tii[13,1] := {14} tii[13,2] := {7} tii[13,3] := {13} tii[13,4] := {4} tii[13,5] := {12} tii[13,6] := {3} tii[13,7] := {9} tii[13,8] := {8} tii[13,9] := {11} tii[13,10] := {0} tii[13,11] := {1} tii[13,12] := {2} tii[13,13] := {5} tii[13,14] := {6} tii[13,15] := {10} cell#12 , |C| = 15 special orbit = [6, 2, 2] special rep = [[3, 1], [1]] , dim = 15 cell rep = phi[[3, 1],[1]] TII depth = 3 TII multiplicity polynomial = 15*X TII subcells: tii[13,1] := {14} tii[13,2] := {6} tii[13,3] := {13} tii[13,4] := {4} tii[13,5] := {12} tii[13,6] := {3} tii[13,7] := {8} tii[13,8] := {9} tii[13,9] := {11} tii[13,10] := {0} tii[13,11] := {2} tii[13,12] := {1} tii[13,13] := {5} tii[13,14] := {7} tii[13,15] := {10} cell#13 , |C| = 16 special orbit = [6, 2, 1, 1] special rep = [[3], [1, 1]] , dim = 10 cell rep = phi[[3, 1, 1],[]]+phi[[3],[1, 1]] TII depth = 1 TII multiplicity polynomial = 4*X+6*X^2 TII subcells: tii[12,1] := {1, 15} tii[12,2] := {3, 14} tii[12,3] := {5, 13} tii[12,4] := {7} tii[12,5] := {0, 12} tii[12,6] := {2, 9} tii[12,7] := {6} tii[12,8] := {4, 11} tii[12,9] := {8} tii[12,10] := {10} cell#14 , |C| = 16 special orbit = [6, 2, 1, 1] special rep = [[3], [1, 1]] , dim = 10 cell rep = phi[[3, 1, 1],[]]+phi[[3],[1, 1]] TII depth = 1 TII multiplicity polynomial = 4*X+6*X^2 TII subcells: tii[12,1] := {1, 15} tii[12,2] := {3, 14} tii[12,3] := {5, 13} tii[12,4] := {7} tii[12,5] := {0, 12} tii[12,6] := {2, 9} tii[12,7] := {6} tii[12,8] := {4, 11} tii[12,9] := {8} tii[12,10] := {10} cell#15 , |C| = 30 special orbit = [4, 4, 2] special rep = [[2, 1], [2]] , dim = 20 cell rep = phi[[2, 2],[1]]+phi[[2, 1],[2]] TII depth = 2 TII multiplicity polynomial = 10*X+10*X^2 TII subcells: tii[10,1] := {24, 25} tii[10,2] := {29} tii[10,3] := {5, 6} tii[10,4] := {14, 15} tii[10,5] := {18} tii[10,6] := {23} tii[10,7] := {12, 13} tii[10,8] := {20, 21} tii[10,9] := {9, 10} tii[10,10] := {22} tii[10,11] := {16, 17} tii[10,12] := {27} tii[10,13] := {26} tii[10,14] := {28} tii[10,15] := {0, 1} tii[10,16] := {4} tii[10,17] := {2, 3} tii[10,18] := {11} tii[10,19] := {7, 8} tii[10,20] := {19} cell#16 , |C| = 35 special orbit = [4, 2, 2, 2] special rep = [[2, 1], [1, 1]] , dim = 20 cell rep = phi[[2, 1, 1],[1]]+phi[[2, 1],[1, 1]] TII depth = 2 TII multiplicity polynomial = 5*X+15*X^2 TII subcells: tii[8,1] := {5, 29} tii[8,2] := {14, 28} tii[8,3] := {10, 32} tii[8,4] := {21, 33} tii[8,5] := {12, 26} tii[8,6] := {23} tii[8,7] := {27, 34} tii[8,8] := {31} tii[8,9] := {0, 3} tii[8,10] := {1, 24} tii[8,11] := {2, 8} tii[8,12] := {4, 16} tii[8,13] := {6, 13} tii[8,14] := {7, 19} tii[8,15] := {17} tii[8,16] := {9, 22} tii[8,17] := {18} tii[8,18] := {11, 20} tii[8,19] := {15, 30} tii[8,20] := {25} cell#17 , |C| = 35 special orbit = [4, 2, 2, 2] special rep = [[2, 1], [1, 1]] , dim = 20 cell rep = phi[[2, 1, 1],[1]]+phi[[2, 1],[1, 1]] TII depth = 2 TII multiplicity polynomial = 5*X+15*X^2 TII subcells: tii[8,1] := {5, 29} tii[8,2] := {14, 28} tii[8,3] := {10, 32} tii[8,4] := {21, 33} tii[8,5] := {12, 26} tii[8,6] := {23} tii[8,7] := {27, 34} tii[8,8] := {31} tii[8,9] := {0, 3} tii[8,10] := {1, 24} tii[8,11] := {2, 8} tii[8,12] := {4, 16} tii[8,13] := {6, 13} tii[8,14] := {7, 19} tii[8,15] := {17} tii[8,16] := {9, 22} tii[8,17] := {18} tii[8,18] := {11, 20} tii[8,19] := {15, 30} tii[8,20] := {25} cell#18 , |C| = 16 special orbit = [6, 2, 1, 1] special rep = [[3], [1, 1]] , dim = 10 cell rep = phi[[3, 1, 1],[]]+phi[[3],[1, 1]] TII depth = 1 TII multiplicity polynomial = 4*X+6*X^2 TII subcells: tii[12,1] := {0, 1} tii[12,2] := {7, 8} tii[12,3] := {12, 13} tii[12,4] := {15} tii[12,5] := {5, 6} tii[12,6] := {10, 11} tii[12,7] := {14} tii[12,8] := {3, 4} tii[12,9] := {9} tii[12,10] := {2} cell#19 , |C| = 14 special orbit = [4, 2, 1, 1, 1, 1] special rep = [[2], [1, 1, 1]] , dim = 10 cell rep = phi[[2, 1, 1, 1],[]]+phi[[2],[1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 6*X+4*X^2 TII subcells: tii[7,1] := {0, 1} tii[7,2] := {6, 8} tii[7,3] := {13} tii[7,4] := {3, 4} tii[7,5] := {10} tii[7,6] := {2} tii[7,7] := {5, 7} tii[7,8] := {12} tii[7,9] := {9} tii[7,10] := {11}