TII subcells for the Sp(3,2) x SO(6,5) block of Sp10 # cell#0 , |C| = 10 special orbit = [5, 5] special rep = [[2], [3]] , dim = 10 cell rep = phi[[2],[3]] TII depth = 2 TII multiplicity polynomial = 10*X TII subcells: tii[11,1] := {9} tii[11,2] := {6} tii[11,3] := {0} tii[11,4] := {7} tii[11,5] := {3} tii[11,6] := {8} tii[11,7] := {4} tii[11,8] := {5} tii[11,9] := {2} tii[11,10] := {1} cell#1 , |C| = 35 special orbit = [4, 4, 1, 1] special rep = [[2], [2, 1]] , dim = 20 cell rep = phi[[2],[2, 1]]+phi[[1],[3, 1]] TII depth = 2 TII multiplicity polynomial = 5*X+15*X^2 TII subcells: tii[9,1] := {27} tii[9,2] := {11, 30} tii[9,3] := {4, 34} tii[9,4] := {32} tii[9,5] := {28} tii[9,6] := {9, 24} tii[9,7] := {19, 33} tii[9,8] := {0, 31} tii[9,9] := {15, 16} tii[9,10] := {7, 26} tii[9,11] := {8, 25} tii[9,12] := {2, 17} tii[9,13] := {20} tii[9,14] := {12, 13} tii[9,15] := {21} tii[9,16] := {6, 23} tii[9,17] := {10, 29} tii[9,18] := {5, 22} tii[9,19] := {3, 14} tii[9,20] := {1, 18} cell#2 , |C| = 15 special orbit = [3, 3, 1, 1, 1, 1] special rep = [[1], [2, 1, 1]] , dim = 15 cell rep = phi[[1],[2, 1, 1]] TII depth = 3 TII multiplicity polynomial = 15*X TII subcells: tii[5,1] := {10} tii[5,2] := {13} tii[5,3] := {7} tii[5,4] := {4} tii[5,5] := {12} tii[5,6] := {14} tii[5,7] := {5} tii[5,8] := {3} tii[5,9] := {9} tii[5,10] := {1} tii[5,11] := {11} tii[5,12] := {8} tii[5,13] := {6} tii[5,14] := {2} tii[5,15] := {0} cell#3 , |C| = 30 special orbit = [3, 3, 2, 2] special rep = [[1, 1], [2, 1]] , dim = 20 cell rep = phi[[1, 1],[2, 1]]+phi[[1],[2, 2]] TII depth = 2 TII multiplicity polynomial = 10*X+10*X^2 TII subcells: tii[6,1] := {25} tii[6,2] := {20} tii[6,3] := {7, 24} tii[6,4] := {13, 28} tii[6,5] := {15} tii[6,6] := {10, 23} tii[6,7] := {12} tii[6,8] := {18} tii[6,9] := {14} tii[6,10] := {3, 19} tii[6,11] := {22} tii[6,12] := {8, 26} tii[6,13] := {1, 16} tii[6,14] := {4, 29} tii[6,15] := {9} tii[6,16] := {2, 21} tii[6,17] := {17} tii[6,18] := {5, 27} tii[6,19] := {6} tii[6,20] := {0, 11} cell#4 , |C| = 15 special orbit = [3, 3, 1, 1, 1, 1] special rep = [[1], [2, 1, 1]] , dim = 15 cell rep = phi[[1],[2, 1, 1]] TII depth = 3 TII multiplicity polynomial = 15*X TII subcells: tii[5,1] := {14} tii[5,2] := {12} tii[5,3] := {11} tii[5,4] := {10} tii[5,5] := {9} tii[5,6] := {6} tii[5,7] := {8} tii[5,8] := {5} tii[5,9] := {4} tii[5,10] := {3} tii[5,11] := {2} tii[5,12] := {0} tii[5,13] := {13} tii[5,14] := {7} tii[5,15] := {1} cell#5 , |C| = 15 special orbit = [2, 2, 2, 2, 1, 1] special rep = [[1, 1], [1, 1, 1]] , dim = 10 cell rep = phi[[1, 1],[1, 1, 1]]+phi[[],[2, 2, 1]] TII depth = 1 TII multiplicity polynomial = 5*X+5*X^2 TII subcells: tii[3,1] := {8} tii[3,2] := {9} tii[3,3] := {6, 13} tii[3,4] := {7} tii[3,5] := {3, 10} tii[3,6] := {2, 12} tii[3,7] := {1} tii[3,8] := {5} tii[3,9] := {4, 11} tii[3,10] := {0, 14} cell#6 , |C| = 9 special orbit = [2, 2, 1, 1, 1, 1, 1, 1] special rep = [[1], [1, 1, 1, 1]] , dim = 5 cell rep = phi[[1],[1, 1, 1, 1]]+phi[[],[2, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = X+4*X^2 TII subcells: tii[2,1] := {6} tii[2,2] := {4, 8} tii[2,3] := {3, 7} tii[2,4] := {1, 5} tii[2,5] := {0, 2} cell#7 , |C| = 1 special orbit = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [1, 1, 1, 1, 1]] , dim = 1 cell rep = phi[[],[1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = X TII subcells: tii[1,1] := {0}