TII subcells for the PSp(12,R) x Spin(7,6) block of PSp12 # cell#0 , |C| = 1 special orbit = [12] special rep = [[6], []] , dim = 1 cell rep = phi[[6],[]] TII depth = 1 TII multiplicity polynomial = X TII subcells: tii[26,1] := {0} cell#1 , |C| = 11 special orbit = [10, 2] special rep = [[5], [1]] , dim = 6 cell rep = phi[[5, 1],[]]+phi[[5],[1]] TII depth = 1 TII multiplicity polynomial = 5*X^2+X TII subcells: tii[25,1] := {2, 10} tii[25,2] := {0, 9} tii[25,3] := {3, 8} tii[25,4] := {1, 7} tii[25,5] := {4, 6} tii[25,6] := {5} cell#2 , |C| = 11 special orbit = [10, 2] special rep = [[5], [1]] , dim = 6 cell rep = phi[[5, 1],[]]+phi[[5],[1]] TII depth = 1 TII multiplicity polynomial = 5*X^2+X TII subcells: tii[25,1] := {2, 10} tii[25,2] := {3, 9} tii[25,3] := {1, 8} tii[25,4] := {4, 7} tii[25,5] := {0, 6} tii[25,6] := {5} cell#3 , |C| = 24 special orbit = [8, 4] special rep = [[4], [2]] , dim = 15 cell rep = phi[[4, 2],[]]+phi[[4],[2]] TII depth = 1 TII multiplicity polynomial = 9*X^2+6*X TII subcells: tii[24,1] := {3, 23} tii[24,2] := {14, 22} tii[24,3] := {5, 17} tii[24,4] := {15} tii[24,5] := {20} tii[24,6] := {0, 21} tii[24,7] := {6, 18} tii[24,8] := {2, 13} tii[24,9] := {8} tii[24,10] := {9, 19} tii[24,11] := {4, 16} tii[24,12] := {10} tii[24,13] := {1, 12} tii[24,14] := {7} tii[24,15] := {11} cell#4 , |C| = 24 special orbit = [8, 4] special rep = [[4], [2]] , dim = 15 cell rep = phi[[4, 2],[]]+phi[[4],[2]] TII depth = 1 TII multiplicity polynomial = 9*X^2+6*X TII subcells: tii[24,1] := {8, 23} tii[24,2] := {2, 20} tii[24,3] := {9, 17} tii[24,4] := {19} tii[24,5] := {22} tii[24,6] := {4, 21} tii[24,7] := {1, 18} tii[24,8] := {5, 13} tii[24,9] := {10} tii[24,10] := {0, 16} tii[24,11] := {3, 12} tii[24,12] := {7} tii[24,13] := {6, 14} tii[24,14] := {11} tii[24,15] := {15} cell#5 , |C| = 24 special orbit = [8, 2, 2] special rep = [[4, 1], [1]] , dim = 24 cell rep = phi[[4, 1],[1]] TII depth = 4 TII multiplicity polynomial = 24*X TII subcells: tii[23,1] := {23} tii[23,2] := {20} tii[23,3] := {15} tii[23,4] := {10} tii[23,5] := {0} tii[23,6] := {22} tii[23,7] := {4} tii[23,8] := {21} tii[23,9] := {8} tii[23,10] := {19} tii[23,11] := {12} tii[23,12] := {17} tii[23,13] := {1} tii[23,14] := {5} tii[23,15] := {18} tii[23,16] := {9} tii[23,17] := {16} tii[23,18] := {14} tii[23,19] := {2} tii[23,20] := {6} tii[23,21] := {13} tii[23,22] := {11} tii[23,23] := {3} tii[23,24] := {7} cell#6 , |C| = 25 special orbit = [6, 6] special rep = [[3], [3]] , dim = 20 cell rep = phi[[3, 3],[]]+phi[[3],[3]] TII depth = 2 TII multiplicity polynomial = 5*X^2+15*X TII subcells: tii[21,1] := {10, 17} tii[21,2] := {20} tii[21,3] := {23} tii[21,4] := {24} tii[21,5] := {1, 8} tii[21,6] := {11} tii[21,7] := {16} tii[21,8] := {5, 13} tii[21,9] := {2, 9} tii[21,10] := {14} tii[21,11] := {7} tii[21,12] := {19} tii[21,13] := {18} tii[21,14] := {21} tii[21,15] := {15} tii[21,16] := {22} tii[21,17] := {0, 4} tii[21,18] := {3} tii[21,19] := {6} tii[21,20] := {12} cell#7 , |C| = 25 special orbit = [6, 6] special rep = [[3], [3]] , dim = 20 cell rep = phi[[3, 3],[]]+phi[[3],[3]] TII depth = 2 TII multiplicity polynomial = 5*X^2+15*X TII subcells: tii[21,1] := {10, 17} tii[21,2] := {20} tii[21,3] := {23} tii[21,4] := {24} tii[21,5] := {1, 8} tii[21,6] := {11} tii[21,7] := {16} tii[21,8] := {5, 13} tii[21,9] := {2, 9} tii[21,10] := {14} tii[21,11] := {7} tii[21,12] := {19} tii[21,13] := {18} tii[21,14] := {21} tii[21,15] := {15} tii[21,16] := {22} tii[21,17] := {0, 4} tii[21,18] := {3} tii[21,19] := {6} tii[21,20] := {12} cell#8 , |C| = 24 special orbit = [8, 2, 2] special rep = [[4, 1], [1]] , dim = 24 cell rep = phi[[4, 1],[1]] TII depth = 4 TII multiplicity polynomial = 24*X TII subcells: tii[23,1] := {23} tii[23,2] := {21} tii[23,3] := {19} tii[23,4] := {15} tii[23,5] := {12} tii[23,6] := {22} tii[23,7] := {4} tii[23,8] := {20} tii[23,9] := {9} tii[23,10] := {16} tii[23,11] := {3} tii[23,12] := {10} tii[23,13] := {2} tii[23,14] := {6} tii[23,15] := {18} tii[23,16] := {0} tii[23,17] := {14} tii[23,18] := {7} tii[23,19] := {13} tii[23,20] := {5} tii[23,21] := {17} tii[23,22] := {11} tii[23,23] := {1} tii[23,24] := {8} cell#9 , |C| = 24 special orbit = [8, 2, 2] special rep = [[4, 1], [1]] , dim = 24 cell rep = phi[[4, 1],[1]] TII depth = 4 TII multiplicity polynomial = 24*X TII subcells: tii[23,1] := {23} tii[23,2] := {20} tii[23,3] := {15} tii[23,4] := {5} tii[23,5] := {10} tii[23,6] := {22} tii[23,7] := {12} tii[23,8] := {21} tii[23,9] := {9} tii[23,10] := {19} tii[23,11] := {13} tii[23,12] := {17} tii[23,13] := {6} tii[23,14] := {4} tii[23,15] := {18} tii[23,16] := {7} tii[23,17] := {16} tii[23,18] := {14} tii[23,19] := {1} tii[23,20] := {2} tii[23,21] := {11} tii[23,22] := {8} tii[23,23] := {0} tii[23,24] := {3} cell#10 , |C| = 75 special orbit = [6, 4, 2] special rep = [[3, 1], [2]] , dim = 45 cell rep = phi[[3, 2],[1]]+phi[[3, 1],[2]] TII depth = 3 TII multiplicity polynomial = 30*X^2+15*X TII subcells: tii[20,1] := {72, 74} tii[20,2] := {57, 67} tii[20,3] := {65} tii[20,4] := {23, 52} tii[20,5] := {4, 25} tii[20,6] := {63, 70} tii[20,7] := {43, 58} tii[20,8] := {22} tii[20,9] := {36} tii[20,10] := {37, 62} tii[20,11] := {69, 73} tii[20,12] := {24, 51} tii[20,13] := {2, 19} tii[20,14] := {64, 71} tii[20,15] := {41, 59} tii[20,16] := {33, 50} tii[20,17] := {15} tii[20,18] := {54, 68} tii[20,19] := {31} tii[20,20] := {8, 32} tii[20,21] := {47, 61} tii[20,22] := {20, 40} tii[20,23] := {28} tii[20,24] := {34, 56} tii[20,25] := {45} tii[20,26] := {42} tii[20,27] := {55} tii[20,28] := {12, 39} tii[20,29] := {7, 29} tii[20,30] := {17} tii[20,31] := {13, 38} tii[20,32] := {26, 48} tii[20,33] := {53, 66} tii[20,34] := {1, 16} tii[20,35] := {44, 60} tii[20,36] := {5} tii[20,37] := {14, 35} tii[20,38] := {11} tii[20,39] := {30, 49} tii[20,40] := {0, 10} tii[20,41] := {3} tii[20,42] := {9, 27} tii[20,43] := {6} tii[20,44] := {21, 46} tii[20,45] := {18} cell#11 , |C| = 25 special orbit = [6, 6] special rep = [[3], [3]] , dim = 20 cell rep = phi[[3, 3],[]]+phi[[3],[3]] TII depth = 2 TII multiplicity polynomial = 5*X^2+15*X TII subcells: tii[21,1] := {9, 19} tii[21,2] := {20} tii[21,3] := {23} tii[21,4] := {24} tii[21,5] := {2, 12} tii[21,6] := {10} tii[21,7] := {16} tii[21,8] := {4, 15} tii[21,9] := {1, 11} tii[21,10] := {13} tii[21,11] := {5} tii[21,12] := {18} tii[21,13] := {17} tii[21,14] := {21} tii[21,15] := {14} tii[21,16] := {22} tii[21,17] := {0, 7} tii[21,18] := {3} tii[21,19] := {6} tii[21,20] := {8} cell#12 , |C| = 24 special orbit = [8, 2, 2] special rep = [[4, 1], [1]] , dim = 24 cell rep = phi[[4, 1],[1]] TII depth = 4 TII multiplicity polynomial = 24*X TII subcells: tii[23,1] := {23} tii[23,2] := {20} tii[23,3] := {15} tii[23,4] := {11} tii[23,5] := {8} tii[23,6] := {22} tii[23,7] := {6} tii[23,8] := {21} tii[23,9] := {9} tii[23,10] := {19} tii[23,11] := {12} tii[23,12] := {16} tii[23,13] := {2} tii[23,14] := {4} tii[23,15] := {18} tii[23,16] := {7} tii[23,17] := {17} tii[23,18] := {13} tii[23,19] := {1} tii[23,20] := {3} tii[23,21] := {14} tii[23,22] := {10} tii[23,23] := {0} tii[23,24] := {5} cell#13 , |C| = 75 special orbit = [6, 4, 2] special rep = [[3, 1], [2]] , dim = 45 cell rep = phi[[3, 2],[1]]+phi[[3, 1],[2]] TII depth = 3 TII multiplicity polynomial = 30*X^2+15*X TII subcells: tii[20,1] := {33, 74} tii[20,2] := {45, 68} tii[20,3] := {67} tii[20,4] := {13, 42} tii[20,5] := {27, 44} tii[20,6] := {19, 71} tii[20,7] := {23, 66} tii[20,8] := {47} tii[20,9] := {56} tii[20,10] := {5, 51} tii[20,11] := {24, 73} tii[20,12] := {1, 58} tii[20,13] := {16, 34} tii[20,14] := {15, 72} tii[20,15] := {3, 63} tii[20,16] := {29, 61} tii[20,17] := {37} tii[20,18] := {11, 69} tii[20,19] := {48} tii[20,20] := {28, 43} tii[20,21] := {38, 65} tii[20,22] := {18, 49} tii[20,23] := {46} tii[20,24] := {31, 59} tii[20,25] := {55} tii[20,26] := {54} tii[20,27] := {62} tii[20,28] := {4, 35} tii[20,29] := {8, 25} tii[20,30] := {21} tii[20,31] := {0, 52} tii[20,32] := {2, 57} tii[20,33] := {12, 70} tii[20,34] := {17, 36} tii[20,35] := {7, 64} tii[20,36] := {32} tii[20,37] := {6, 50} tii[20,38] := {40} tii[20,39] := {14, 60} tii[20,40] := {9, 26} tii[20,41] := {22} tii[20,42] := {10, 41} tii[20,43] := {30} tii[20,44] := {20, 53} tii[20,45] := {39} cell#14 , |C| = 75 special orbit = [6, 4, 2] special rep = [[3, 1], [2]] , dim = 45 cell rep = phi[[3, 2],[1]]+phi[[3, 1],[2]] TII depth = 3 TII multiplicity polynomial = 30*X^2+15*X TII subcells: tii[20,1] := {51, 74} tii[20,2] := {26, 68} tii[20,3] := {56} tii[20,4] := {24, 44} tii[20,5] := {32, 46} tii[20,6] := {33, 71} tii[20,7] := {15, 66} tii[20,8] := {48} tii[20,9] := {58} tii[20,10] := {35, 52} tii[20,11] := {43, 73} tii[20,12] := {25, 59} tii[20,13] := {21, 36} tii[20,14] := {34, 72} tii[20,15] := {12, 64} tii[20,16] := {10, 61} tii[20,17] := {39} tii[20,18] := {23, 70} tii[20,19] := {50} tii[20,20] := {9, 45} tii[20,21] := {16, 65} tii[20,22] := {2, 54} tii[20,23] := {27} tii[20,24] := {6, 62} tii[20,25] := {42} tii[20,26] := {38} tii[20,27] := {49} tii[20,28] := {13, 37} tii[20,29] := {7, 28} tii[20,30] := {17} tii[20,31] := {14, 53} tii[20,32] := {4, 60} tii[20,33] := {22, 69} tii[20,34] := {20, 40} tii[20,35] := {11, 67} tii[20,36] := {30} tii[20,37] := {1, 55} tii[20,38] := {41} tii[20,39] := {5, 63} tii[20,40] := {8, 29} tii[20,41] := {18} tii[20,42] := {0, 47} tii[20,43] := {31} tii[20,44] := {3, 57} tii[20,45] := {19} cell#15 , |C| = 24 special orbit = [8, 2, 2] special rep = [[4, 1], [1]] , dim = 24 cell rep = phi[[4, 1],[1]] TII depth = 4 TII multiplicity polynomial = 24*X TII subcells: tii[23,1] := {23} tii[23,2] := {22} tii[23,3] := {17} tii[23,4] := {19} tii[23,5] := {2} tii[23,6] := {21} tii[23,7] := {4} tii[23,8] := {18} tii[23,9] := {1} tii[23,10] := {14} tii[23,11] := {6} tii[23,12] := {11} tii[23,13] := {8} tii[23,14] := {3} tii[23,15] := {20} tii[23,16] := {7} tii[23,17] := {16} tii[23,18] := {12} tii[23,19] := {0} tii[23,20] := {5} tii[23,21] := {13} tii[23,22] := {10} tii[23,23] := {9} tii[23,24] := {15} cell#16 , |C| = 75 special orbit = [6, 4, 2] special rep = [[3, 1], [2]] , dim = 45 cell rep = phi[[3, 2],[1]]+phi[[3, 1],[2]] TII depth = 3 TII multiplicity polynomial = 30*X^2+15*X TII subcells: tii[20,1] := {62, 74} tii[20,2] := {51, 73} tii[20,3] := {71} tii[20,4] := {1, 31} tii[20,5] := {8, 26} tii[20,6] := {44, 68} tii[20,7] := {24, 59} tii[20,8] := {29} tii[20,9] := {43} tii[20,10] := {4, 41} tii[20,11] := {54, 72} tii[20,12] := {13, 48} tii[20,13] := {17, 38} tii[20,14] := {45, 70} tii[20,15] := {23, 56} tii[20,16] := {30, 65} tii[20,17] := {39} tii[20,18] := {35, 64} tii[20,19] := {53} tii[20,20] := {28, 49} tii[20,21] := {40, 69} tii[20,22] := {18, 55} tii[20,23] := {52} tii[20,24] := {33, 63} tii[20,25] := {61} tii[20,26] := {60} tii[20,27] := {67} tii[20,28] := {0, 20} tii[20,29] := {2, 12} tii[20,30] := {7} tii[20,31] := {5, 37} tii[20,32] := {14, 46} tii[20,33] := {34, 66} tii[20,34] := {3, 16} tii[20,35] := {25, 57} tii[20,36] := {11} tii[20,37] := {6, 36} tii[20,38] := {19} tii[20,39] := {15, 50} tii[20,40] := {9, 27} tii[20,41] := {22} tii[20,42] := {10, 47} tii[20,43] := {32} tii[20,44] := {21, 58} tii[20,45] := {42} cell#17 , |C| = 75 special orbit = [6, 4, 2] special rep = [[3, 1], [2]] , dim = 45 cell rep = phi[[3, 2],[1]]+phi[[3, 1],[2]] TII depth = 3 TII multiplicity polynomial = 30*X^2+15*X TII subcells: tii[20,1] := {41, 74} tii[20,2] := {29, 68} tii[20,3] := {56} tii[20,4] := {18, 50} tii[20,5] := {31, 47} tii[20,6] := {25, 71} tii[20,7] := {8, 66} tii[20,8] := {49} tii[20,9] := {58} tii[20,10] := {9, 57} tii[20,11] := {34, 73} tii[20,12] := {5, 60} tii[20,13] := {22, 38} tii[20,14] := {27, 72} tii[20,15] := {10, 64} tii[20,16] := {13, 63} tii[20,17] := {40} tii[20,18] := {20, 69} tii[20,19] := {51} tii[20,20] := {14, 46} tii[20,21] := {21, 67} tii[20,22] := {6, 52} tii[20,23] := {32} tii[20,24] := {16, 61} tii[20,25] := {44} tii[20,26] := {37} tii[20,27] := {48} tii[20,28] := {12, 43} tii[20,29] := {19, 36} tii[20,30] := {28} tii[20,31] := {1, 54} tii[20,32] := {3, 59} tii[20,33] := {17, 70} tii[20,34] := {23, 39} tii[20,35] := {11, 65} tii[20,36] := {35} tii[20,37] := {0, 53} tii[20,38] := {42} tii[20,39] := {4, 62} tii[20,40] := {15, 30} tii[20,41] := {26} tii[20,42] := {2, 45} tii[20,43] := {33} tii[20,44] := {7, 55} tii[20,45] := {24} cell#18 , |C| = 30 special orbit = [4, 4, 4] special rep = [[2, 2], [2]] , dim = 30 cell rep = phi[[2, 2],[2]] TII depth = 3 TII multiplicity polynomial = 30*X TII subcells: tii[14,1] := {29} tii[14,2] := {11} tii[14,3] := {24} tii[14,4] := {10} tii[14,5] := {15} tii[14,6] := {26} tii[14,7] := {17} tii[14,8] := {22} tii[14,9] := {19} tii[14,10] := {28} tii[14,11] := {23} tii[14,12] := {27} tii[14,13] := {6} tii[14,14] := {5} tii[14,15] := {7} tii[14,16] := {1} tii[14,17] := {12} tii[14,18] := {3} tii[14,19] := {18} tii[14,20] := {16} tii[14,21] := {21} tii[14,22] := {4} tii[14,23] := {13} tii[14,24] := {8} tii[14,25] := {20} tii[14,26] := {14} tii[14,27] := {25} tii[14,28] := {0} tii[14,29] := {2} tii[14,30] := {9} cell#19 , |C| = 25 special orbit = [8, 2, 1, 1] special rep = [[4], [1, 1]] , dim = 15 cell rep = phi[[4, 1, 1],[]]+phi[[4],[1, 1]] TII depth = 1 TII multiplicity polynomial = 10*X^2+5*X TII subcells: tii[22,1] := {14, 24} tii[22,2] := {12, 23} tii[22,3] := {15, 22} tii[22,4] := {13, 20} tii[22,5] := {18} tii[22,6] := {7, 21} tii[22,7] := {9, 19} tii[22,8] := {8, 17} tii[22,9] := {11} tii[22,10] := {4, 16} tii[22,11] := {3, 10} tii[22,12] := {6} tii[22,13] := {1, 5} tii[22,14] := {2} tii[22,15] := {0} cell#20 , |C| = 40 special orbit = [5, 5, 2] special rep = [[2, 1], [3]] , dim = 40 cell rep = phi[[2, 1],[3]] TII depth = 3 TII multiplicity polynomial = 40*X TII subcells: tii[16,1] := {33} tii[16,2] := {39} tii[16,3] := {12} tii[16,4] := {20} tii[16,5] := {25} tii[16,6] := {32} tii[16,7] := {18} tii[16,8] := {8} tii[16,9] := {26} tii[16,10] := {29} tii[16,11] := {17} tii[16,12] := {35} tii[16,13] := {24} tii[16,14] := {30} tii[16,15] := {19} tii[16,16] := {34} tii[16,17] := {28} tii[16,18] := {37} tii[16,19] := {36} tii[16,20] := {38} tii[16,21] := {3} tii[16,22] := {11} tii[16,23] := {7} tii[16,24] := {2} tii[16,25] := {4} tii[16,26] := {10} tii[16,27] := {16} tii[16,28] := {6} tii[16,29] := {21} tii[16,30] := {15} tii[16,31] := {14} tii[16,32] := {9} tii[16,33] := {23} tii[16,34] := {13} tii[16,35] := {5} tii[16,36] := {27} tii[16,37] := {22} tii[16,38] := {31} tii[16,39] := {0} tii[16,40] := {1} cell#21 , |C| = 56 special orbit = [6, 4, 1, 1] special rep = [[3], [2, 1]] , dim = 40 cell rep = phi[[3, 2, 1],[]]+phi[[3],[2, 1]] TII depth = 2 TII multiplicity polynomial = 16*X^2+24*X TII subcells: tii[19,1] := {46, 55} tii[19,2] := {31, 51} tii[19,3] := {48} tii[19,4] := {54} tii[19,5] := {35, 52} tii[19,6] := {20, 44} tii[19,7] := {24, 47} tii[19,8] := {19, 39} tii[19,9] := {38} tii[19,10] := {27} tii[19,11] := {50} tii[19,12] := {10, 32} tii[19,13] := {6, 21} tii[19,14] := {25} tii[19,15] := {12} tii[19,16] := {42} tii[19,17] := {15} tii[19,18] := {7} tii[19,19] := {29} tii[19,20] := {43} tii[19,21] := {36, 53} tii[19,22] := {30, 49} tii[19,23] := {40} tii[19,24] := {14, 37} tii[19,25] := {9, 26} tii[19,26] := {23, 45} tii[19,27] := {17} tii[19,28] := {34} tii[19,29] := {4, 16} tii[19,30] := {41} tii[19,31] := {8} tii[19,32] := {2} tii[19,33] := {13, 33} tii[19,34] := {22} tii[19,35] := {1, 11} tii[19,36] := {28} tii[19,37] := {5} tii[19,38] := {0} tii[19,39] := {18} tii[19,40] := {3} cell#22 , |C| = 81 special orbit = [6, 2, 2, 2] special rep = [[3, 1], [1, 1]] , dim = 45 cell rep = phi[[3, 1, 1],[1]]+phi[[3, 1],[1, 1]] TII depth = 3 TII multiplicity polynomial = 36*X^2+9*X TII subcells: tii[18,1] := {47, 80} tii[18,2] := {30, 75} tii[18,3] := {26, 63} tii[18,4] := {59, 79} tii[18,5] := {21, 70} tii[18,6] := {51, 77} tii[18,7] := {17, 52} tii[18,8] := {60, 74} tii[18,9] := {69} tii[18,10] := {29, 66} tii[18,11] := {12, 41} tii[18,12] := {36, 56} tii[18,13] := {49} tii[18,14] := {16, 33} tii[18,15] := {27} tii[18,16] := {1, 64} tii[18,17] := {35, 78} tii[18,18] := {5, 58} tii[18,19] := {25, 76} tii[18,20] := {10, 65} tii[18,21] := {18, 73} tii[18,22] := {3, 46} tii[18,23] := {40, 72} tii[18,24] := {48, 68} tii[18,25] := {8, 53} tii[18,26] := {22, 71} tii[18,27] := {61} tii[18,28] := {15, 67} tii[18,29] := {11, 43} tii[18,30] := {37, 57} tii[18,31] := {50} tii[18,32] := {19, 55} tii[18,33] := {39} tii[18,34] := {0, 34} tii[18,35] := {14, 62} tii[18,36] := {4, 42} tii[18,37] := {9, 54} tii[18,38] := {6, 31} tii[18,39] := {24, 45} tii[18,40] := {13, 44} tii[18,41] := {38} tii[18,42] := {28} tii[18,43] := {2, 23} tii[18,44] := {7, 32} tii[18,45] := {20} cell#23 , |C| = 45 special orbit = [5, 5, 1, 1] special rep = [[2], [3, 1]] , dim = 45 cell rep = phi[[2],[3, 1]] TII depth = 4 TII multiplicity polynomial = 45*X TII subcells: tii[15,1] := {31} tii[15,2] := {40} tii[15,3] := {43} tii[15,4] := {25} tii[15,5] := {12} tii[15,6] := {36} tii[15,7] := {23} tii[15,8] := {41} tii[15,9] := {18} tii[15,10] := {11} tii[15,11] := {32} tii[15,12] := {22} tii[15,13] := {8} tii[15,14] := {39} tii[15,15] := {37} tii[15,16] := {34} tii[15,17] := {42} tii[15,18] := {44} tii[15,19] := {20} tii[15,20] := {29} tii[15,21] := {26} tii[15,22] := {6} tii[15,23] := {21} tii[15,24] := {15} tii[15,25] := {35} tii[15,26] := {3} tii[15,27] := {38} tii[15,28] := {1} tii[15,29] := {10} tii[15,30] := {17} tii[15,31] := {19} tii[15,32] := {13} tii[15,33] := {28} tii[15,34] := {7} tii[15,35] := {9} tii[15,36] := {33} tii[15,37] := {16} tii[15,38] := {5} tii[15,39] := {2} tii[15,40] := {24} tii[15,41] := {27} tii[15,42] := {30} tii[15,43] := {14} tii[15,44] := {4} tii[15,45] := {0} cell#24 , |C| = 45 special orbit = [5, 5, 1, 1] special rep = [[2], [3, 1]] , dim = 45 cell rep = phi[[2],[3, 1]] TII depth = 4 TII multiplicity polynomial = 45*X TII subcells: tii[15,1] := {31} tii[15,2] := {40} tii[15,3] := {43} tii[15,4] := {25} tii[15,5] := {12} tii[15,6] := {36} tii[15,7] := {23} tii[15,8] := {41} tii[15,9] := {18} tii[15,10] := {11} tii[15,11] := {32} tii[15,12] := {22} tii[15,13] := {8} tii[15,14] := {39} tii[15,15] := {37} tii[15,16] := {34} tii[15,17] := {42} tii[15,18] := {44} tii[15,19] := {20} tii[15,20] := {29} tii[15,21] := {26} tii[15,22] := {6} tii[15,23] := {21} tii[15,24] := {15} tii[15,25] := {35} tii[15,26] := {3} tii[15,27] := {38} tii[15,28] := {1} tii[15,29] := {10} tii[15,30] := {17} tii[15,31] := {19} tii[15,32] := {13} tii[15,33] := {28} tii[15,34] := {7} tii[15,35] := {9} tii[15,36] := {33} tii[15,37] := {16} tii[15,38] := {5} tii[15,39] := {2} tii[15,40] := {24} tii[15,41] := {27} tii[15,42] := {30} tii[15,43] := {14} tii[15,44] := {4} tii[15,45] := {0} cell#25 , |C| = 30 special orbit = [4, 4, 4] special rep = [[2, 2], [2]] , dim = 30 cell rep = phi[[2, 2],[2]] TII depth = 3 TII multiplicity polynomial = 30*X TII subcells: tii[14,1] := {29} tii[14,2] := {11} tii[14,3] := {24} tii[14,4] := {7} tii[14,5] := {15} tii[14,6] := {26} tii[14,7] := {17} tii[14,8] := {22} tii[14,9] := {19} tii[14,10] := {28} tii[14,11] := {23} tii[14,12] := {27} tii[14,13] := {5} tii[14,14] := {3} tii[14,15] := {8} tii[14,16] := {1} tii[14,17] := {12} tii[14,18] := {6} tii[14,19] := {18} tii[14,20] := {16} tii[14,21] := {21} tii[14,22] := {4} tii[14,23] := {13} tii[14,24] := {10} tii[14,25] := {20} tii[14,26] := {14} tii[14,27] := {25} tii[14,28] := {0} tii[14,29] := {2} tii[14,30] := {9} cell#26 , |C| = 30 special orbit = [4, 4, 4] special rep = [[2, 2], [2]] , dim = 30 cell rep = phi[[2, 2],[2]] TII depth = 3 TII multiplicity polynomial = 30*X TII subcells: tii[14,1] := {29} tii[14,2] := {11} tii[14,3] := {25} tii[14,4] := {8} tii[14,5] := {16} tii[14,6] := {27} tii[14,7] := {17} tii[14,8] := {22} tii[14,9] := {20} tii[14,10] := {28} tii[14,11] := {23} tii[14,12] := {26} tii[14,13] := {3} tii[14,14] := {4} tii[14,15] := {7} tii[14,16] := {1} tii[14,17] := {13} tii[14,18] := {6} tii[14,19] := {18} tii[14,20] := {15} tii[14,21] := {21} tii[14,22] := {5} tii[14,23] := {12} tii[14,24] := {10} tii[14,25] := {19} tii[14,26] := {14} tii[14,27] := {24} tii[14,28] := {0} tii[14,29] := {2} tii[14,30] := {9} cell#27 , |C| = 81 special orbit = [6, 2, 2, 2] special rep = [[3, 1], [1, 1]] , dim = 45 cell rep = phi[[3, 1, 1],[1]]+phi[[3, 1],[1, 1]] TII depth = 3 TII multiplicity polynomial = 36*X^2+9*X TII subcells: tii[18,1] := {62, 79} tii[18,2] := {44, 69} tii[18,3] := {48, 49} tii[18,4] := {71, 80} tii[18,5] := {28, 59} tii[18,6] := {68, 78} tii[18,7] := {34, 35} tii[18,8] := {74, 75} tii[18,9] := {77} tii[18,10] := {43, 65} tii[18,11] := {21, 22} tii[18,12] := {53, 54} tii[18,13] := {63} tii[18,14] := {26, 27} tii[18,15] := {40} tii[18,16] := {15, 16} tii[18,17] := {51, 76} tii[18,18] := {5, 32} tii[18,19] := {39, 70} tii[18,20] := {13, 46} tii[18,21] := {29, 61} tii[18,22] := {4, 17} tii[18,23] := {57, 73} tii[18,24] := {66, 67} tii[18,25] := {7, 33} tii[18,26] := {30, 60} tii[18,27] := {72} tii[18,28] := {25, 50} tii[18,29] := {19, 20} tii[18,30] := {55, 56} tii[18,31] := {64} tii[18,32] := {37, 38} tii[18,33] := {58} tii[18,34] := {0, 6} tii[18,35] := {14, 47} tii[18,36] := {1, 18} tii[18,37] := {12, 36} tii[18,38] := {8, 9} tii[18,39] := {41, 42} tii[18,40] := {23, 24} tii[18,41] := {52} tii[18,42] := {45} tii[18,43] := {2, 3} tii[18,44] := {10, 11} tii[18,45] := {31} cell#28 , |C| = 185 special orbit = [4, 4, 2, 2] special rep = [[2, 1], [2, 1]] , dim = 80 cell rep = phi[[2, 2, 1],[1]]+phi[[2, 1, 1],[2]]+phi[[2, 2],[1, 1]]+phi[[2, 1],[2, 1]] TII depth = 3 TII multiplicity polynomial = 25*X^4+30*X^2+25*X TII subcells: tii[13,1] := {48, 117, 152, 183} tii[13,2] := {114, 168} tii[13,3] := {88, 116} tii[13,4] := {30, 96, 165, 180} tii[13,5] := {7, 70, 150, 167} tii[13,6] := {92, 156} tii[13,7] := {121} tii[13,8] := {146} tii[13,9] := {47, 75, 174, 184} tii[13,10] := {113, 141} tii[13,11] := {28, 58, 173, 181} tii[13,12] := {77} tii[13,13] := {40, 178} tii[13,14] := {108} tii[13,15] := {132, 158} tii[13,16] := {142} tii[13,17] := {29, 55, 111, 136} tii[13,18] := {17, 91, 124, 176} tii[13,19] := {56, 139} tii[13,20] := {85, 162} tii[13,21] := {23, 74, 89, 151} tii[13,22] := {67, 97} tii[13,23] := {33, 102, 140, 182} tii[13,24] := {11, 64, 98, 166} tii[13,25] := {6, 51, 133, 157} tii[13,26] := {101} tii[13,27] := {46, 80} tii[13,28] := {50, 122} tii[13,29] := {19, 81, 126, 179} tii[13,30] := {129} tii[13,31] := {61} tii[13,32] := {73, 147} tii[13,33] := {69, 138} tii[13,34] := {78} tii[13,35] := {13, 34, 149, 169} tii[13,36] := {63} tii[13,37] := {94, 161} tii[13,38] := {21, 159} tii[13,39] := {109} tii[13,40] := {131} tii[13,41] := {12, 66, 95, 135} tii[13,42] := {65, 103} tii[13,43] := {18, 79, 155, 175} tii[13,44] := {5, 45, 118, 153} tii[13,45] := {32, 100} tii[13,46] := {82} tii[13,47] := {9, 60, 143, 171} tii[13,48] := {53, 128} tii[13,49] := {16, 39, 164, 177} tii[13,50] := {1, 37, 112, 137} tii[13,51] := {49, 119} tii[13,52] := {57} tii[13,53] := {105} tii[13,54] := {25, 170} tii[13,55] := {72, 144} tii[13,56] := {3, 52, 134, 160} tii[13,57] := {42} tii[13,58] := {86} tii[13,59] := {14, 163} tii[13,60] := {110} tii[13,61] := {68, 99} tii[13,62] := {62} tii[13,63] := {93, 127} tii[13,64] := {130} tii[13,65] := {15, 38, 87, 123} tii[13,66] := {24, 104} tii[13,67] := {4, 54, 76, 154} tii[13,68] := {31, 59} tii[13,69] := {41, 125} tii[13,70] := {43} tii[13,71] := {8, 71, 107, 172} tii[13,72] := {26} tii[13,73] := {0, 22, 90, 120} tii[13,74] := {84} tii[13,75] := {36, 106} tii[13,76] := {2, 35, 115, 145} tii[13,77] := {44} tii[13,78] := {10, 148} tii[13,79] := {20, 83} tii[13,80] := {27} cell#29 , |C| = 25 special orbit = [8, 2, 1, 1] special rep = [[4], [1, 1]] , dim = 15 cell rep = phi[[4, 1, 1],[]]+phi[[4],[1, 1]] TII depth = 1 TII multiplicity polynomial = 10*X^2+5*X TII subcells: tii[22,1] := {14, 24} tii[22,2] := {15, 23} tii[22,3] := {13, 22} tii[22,4] := {18, 19} tii[22,5] := {20} tii[22,6] := {8, 21} tii[22,7] := {7, 17} tii[22,8] := {11, 12} tii[22,9] := {16} tii[22,10] := {2, 10} tii[22,11] := {5, 6} tii[22,12] := {9} tii[22,13] := {0, 1} tii[22,14] := {4} tii[22,15] := {3} cell#30 , |C| = 75 special orbit = [6, 4, 2] special rep = [[3, 1], [2]] , dim = 45 cell rep = phi[[3, 2],[1]]+phi[[3, 1],[2]] TII depth = 3 TII multiplicity polynomial = 30*X^2+15*X TII subcells: tii[20,1] := {37, 74} tii[20,2] := {33, 70} tii[20,3] := {58} tii[20,4] := {16, 46} tii[20,5] := {30, 49} tii[20,6] := {21, 72} tii[20,7] := {12, 67} tii[20,8] := {47} tii[20,9] := {56} tii[20,10] := {8, 54} tii[20,11] := {29, 73} tii[20,12] := {4, 60} tii[20,13] := {22, 42} tii[20,14] := {28, 71} tii[20,15] := {7, 64} tii[20,16] := {19, 63} tii[20,17] := {39} tii[20,18] := {18, 68} tii[20,19] := {50} tii[20,20] := {13, 45} tii[20,21] := {27, 66} tii[20,22] := {6, 52} tii[20,23] := {31} tii[20,24] := {17, 61} tii[20,25] := {43} tii[20,26] := {40} tii[20,27] := {51} tii[20,28] := {9, 38} tii[20,29] := {15, 36} tii[20,30] := {26} tii[20,31] := {1, 53} tii[20,32] := {2, 59} tii[20,33] := {20, 69} tii[20,34] := {23, 44} tii[20,35] := {10, 65} tii[20,36] := {34} tii[20,37] := {0, 55} tii[20,38] := {41} tii[20,39] := {5, 62} tii[20,40] := {14, 35} tii[20,41] := {25} tii[20,42] := {3, 48} tii[20,43] := {32} tii[20,44] := {11, 57} tii[20,45] := {24} cell#31 , |C| = 75 special orbit = [6, 4, 2] special rep = [[3, 1], [2]] , dim = 45 cell rep = phi[[3, 2],[1]]+phi[[3, 1],[2]] TII depth = 3 TII multiplicity polynomial = 30*X^2+15*X TII subcells: tii[20,1] := {37, 74} tii[20,2] := {33, 70} tii[20,3] := {58} tii[20,4] := {16, 46} tii[20,5] := {30, 49} tii[20,6] := {21, 72} tii[20,7] := {12, 67} tii[20,8] := {47} tii[20,9] := {56} tii[20,10] := {8, 54} tii[20,11] := {29, 73} tii[20,12] := {4, 60} tii[20,13] := {22, 42} tii[20,14] := {28, 71} tii[20,15] := {7, 64} tii[20,16] := {19, 63} tii[20,17] := {39} tii[20,18] := {18, 68} tii[20,19] := {50} tii[20,20] := {13, 45} tii[20,21] := {27, 66} tii[20,22] := {6, 52} tii[20,23] := {31} tii[20,24] := {17, 61} tii[20,25] := {43} tii[20,26] := {40} tii[20,27] := {51} tii[20,28] := {9, 38} tii[20,29] := {15, 36} tii[20,30] := {26} tii[20,31] := {1, 53} tii[20,32] := {2, 59} tii[20,33] := {20, 69} tii[20,34] := {23, 44} tii[20,35] := {10, 65} tii[20,36] := {34} tii[20,37] := {0, 55} tii[20,38] := {41} tii[20,39] := {5, 62} tii[20,40] := {14, 35} tii[20,41] := {25} tii[20,42] := {3, 48} tii[20,43] := {32} tii[20,44] := {11, 57} tii[20,45] := {24} cell#32 , |C| = 81 special orbit = [6, 2, 2, 2] special rep = [[3, 1], [1, 1]] , dim = 45 cell rep = phi[[3, 1, 1],[1]]+phi[[3, 1],[1, 1]] TII depth = 3 TII multiplicity polynomial = 36*X^2+9*X TII subcells: tii[18,1] := {43, 79} tii[18,2] := {20, 72} tii[18,3] := {22, 80} tii[18,4] := {56, 75} tii[18,5] := {15, 59} tii[18,6] := {42, 65} tii[18,7] := {18, 77} tii[18,8] := {53, 54} tii[18,9] := {64} tii[18,10] := {25, 45} tii[18,11] := {27, 68} tii[18,12] := {34, 35} tii[18,13] := {44} tii[18,14] := {38, 63} tii[18,15] := {50} tii[18,16] := {11, 69} tii[18,17] := {31, 76} tii[18,18] := {4, 55} tii[18,19] := {21, 66} tii[18,20] := {7, 67} tii[18,21] := {17, 74} tii[18,22] := {1, 49} tii[18,23] := {30, 52} tii[18,24] := {40, 41} tii[18,25] := {3, 62} tii[18,26] := {14, 61} tii[18,27] := {51} tii[18,28] := {9, 71} tii[18,29] := {8, 73} tii[18,30] := {28, 29} tii[18,31] := {39} tii[18,32] := {16, 78} tii[18,33] := {32} tii[18,34] := {0, 36} tii[18,35] := {10, 47} tii[18,36] := {2, 48} tii[18,37] := {6, 58} tii[18,38] := {5, 60} tii[18,39] := {23, 24} tii[18,40] := {13, 70} tii[18,41] := {33} tii[18,42] := {26} tii[18,43] := {12, 46} tii[18,44] := {19, 57} tii[18,45] := {37} cell#33 , |C| = 81 special orbit = [6, 2, 2, 2] special rep = [[3, 1], [1, 1]] , dim = 45 cell rep = phi[[3, 1, 1],[1]]+phi[[3, 1],[1, 1]] TII depth = 3 TII multiplicity polynomial = 36*X^2+9*X TII subcells: tii[18,1] := {34, 80} tii[18,2] := {27, 79} tii[18,3] := {15, 73} tii[18,4] := {45, 77} tii[18,5] := {38, 75} tii[18,6] := {49, 72} tii[18,7] := {17, 64} tii[18,8] := {44, 65} tii[18,9] := {54} tii[18,10] := {50, 68} tii[18,11] := {14, 51} tii[18,12] := {36, 58} tii[18,13] := {47} tii[18,14] := {23, 39} tii[18,15] := {30} tii[18,16] := {3, 57} tii[18,17] := {25, 78} tii[18,18] := {6, 61} tii[18,19] := {16, 74} tii[18,20] := {2, 56} tii[18,21] := {9, 67} tii[18,22] := {13, 71} tii[18,23] := {37, 63} tii[18,24] := {33, 52} tii[18,25] := {5, 60} tii[18,26] := {18, 76} tii[18,27] := {42} tii[18,28] := {11, 70} tii[18,29] := {1, 55} tii[18,30] := {24, 40} tii[18,31] := {31} tii[18,32] := {8, 66} tii[18,33] := {21} tii[18,34] := {22, 62} tii[18,35] := {29, 69} tii[18,36] := {12, 48} tii[18,37] := {19, 59} tii[18,38] := {4, 43} tii[18,39] := {28, 46} tii[18,40] := {10, 53} tii[18,41] := {35} tii[18,42] := {26} tii[18,43] := {0, 32} tii[18,44] := {7, 41} tii[18,45] := {20} cell#34 , |C| = 56 special orbit = [6, 4, 1, 1] special rep = [[3], [2, 1]] , dim = 40 cell rep = phi[[3, 2, 1],[]]+phi[[3],[2, 1]] TII depth = 2 TII multiplicity polynomial = 16*X^2+24*X TII subcells: tii[19,1] := {26, 48} tii[19,2] := {45, 46} tii[19,3] := {53} tii[19,4] := {55} tii[19,5] := {14, 40} tii[19,6] := {34, 35} tii[19,7] := {10, 29} tii[19,8] := {18, 19} tii[19,9] := {49} tii[19,10] := {28} tii[19,11] := {54} tii[19,12] := {22, 23} tii[19,13] := {12, 13} tii[19,14] := {42} tii[19,15] := {21} tii[19,16] := {51} tii[19,17] := {36} tii[19,18] := {27} tii[19,19] := {47} tii[19,20] := {52} tii[19,21] := {20, 41} tii[19,22] := {30, 31} tii[19,23] := {39} tii[19,24] := {2, 17} tii[19,25] := {8, 9} tii[19,26] := {37, 38} tii[19,27] := {16} tii[19,28] := {44} tii[19,29] := {0, 1} tii[19,30] := {50} tii[19,31] := {7} tii[19,32] := {3} tii[19,33] := {24, 25} tii[19,34] := {33} tii[19,35] := {4, 5} tii[19,36] := {43} tii[19,37] := {11} tii[19,38] := {6} tii[19,39] := {32} tii[19,40] := {15} cell#35 , |C| = 81 special orbit = [6, 2, 2, 2] special rep = [[3, 1], [1, 1]] , dim = 45 cell rep = phi[[3, 1, 1],[1]]+phi[[3, 1],[1, 1]] TII depth = 3 TII multiplicity polynomial = 36*X^2+9*X TII subcells: tii[18,1] := {47, 80} tii[18,2] := {42, 75} tii[18,3] := {25, 61} tii[18,4] := {58, 79} tii[18,5] := {29, 70} tii[18,6] := {65, 77} tii[18,7] := {16, 49} tii[18,8] := {57, 74} tii[18,9] := {68} tii[18,10] := {40, 66} tii[18,11] := {10, 37} tii[18,12] := {34, 54} tii[18,13] := {44} tii[18,14] := {15, 31} tii[18,15] := {21} tii[18,16] := {0, 64} tii[18,17] := {36, 78} tii[18,18] := {3, 69} tii[18,19] := {26, 76} tii[18,20] := {9, 63} tii[18,21] := {18, 72} tii[18,22] := {6, 59} tii[18,23] := {53, 73} tii[18,24] := {46, 67} tii[18,25] := {12, 52} tii[18,26] := {30, 71} tii[18,27] := {56} tii[18,28] := {22, 62} tii[18,29] := {8, 41} tii[18,30] := {35, 55} tii[18,31] := {45} tii[18,32] := {17, 51} tii[18,33] := {33} tii[18,34] := {2, 48} tii[18,35] := {20, 60} tii[18,36] := {7, 39} tii[18,37] := {13, 50} tii[18,38] := {4, 28} tii[18,39] := {24, 43} tii[18,40] := {11, 38} tii[18,41] := {32} tii[18,42] := {23} tii[18,43] := {1, 19} tii[18,44] := {5, 27} tii[18,45] := {14} cell#36 , |C| = 81 special orbit = [6, 2, 2, 2] special rep = [[3, 1], [1, 1]] , dim = 45 cell rep = phi[[3, 1, 1],[1]]+phi[[3, 1],[1, 1]] TII depth = 3 TII multiplicity polynomial = 36*X^2+9*X TII subcells: tii[18,1] := {49, 75} tii[18,2] := {56, 57} tii[18,3] := {52, 53} tii[18,4] := {63, 79} tii[18,5] := {40, 41} tii[18,6] := {72, 73} tii[18,7] := {36, 37} tii[18,8] := {77, 78} tii[18,9] := {80} tii[18,10] := {47, 48} tii[18,11] := {25, 26} tii[18,12] := {59, 60} tii[18,13] := {69} tii[18,14] := {38, 39} tii[18,15] := {51} tii[18,16] := {0, 9} tii[18,17] := {35, 68} tii[18,18] := {1, 16} tii[18,19] := {33, 58} tii[18,20] := {8, 24} tii[18,21] := {21, 44} tii[18,22] := {10, 11} tii[18,23] := {61, 62} tii[18,24] := {70, 71} tii[18,25] := {14, 15} tii[18,26] := {45, 46} tii[18,27] := {76} tii[18,28] := {29, 30} tii[18,29] := {22, 23} tii[18,30] := {66, 67} tii[18,31] := {74} tii[18,32] := {42, 43} tii[18,33] := {64} tii[18,34] := {2, 3} tii[18,35] := {31, 32} tii[18,36] := {6, 7} tii[18,37] := {19, 20} tii[18,38] := {12, 13} tii[18,39] := {54, 55} tii[18,40] := {27, 28} tii[18,41] := {65} tii[18,42] := {50} tii[18,43] := {4, 5} tii[18,44] := {17, 18} tii[18,45] := {34} cell#37 , |C| = 185 special orbit = [4, 4, 2, 2] special rep = [[2, 1], [2, 1]] , dim = 80 cell rep = phi[[2, 2, 1],[1]]+phi[[2, 1, 1],[2]]+phi[[2, 2],[1, 1]]+phi[[2, 1],[2, 1]] TII depth = 3 TII multiplicity polynomial = 25*X^4+30*X^2+25*X TII subcells: tii[13,1] := {38, 125, 152, 181} tii[13,2] := {108, 184} tii[13,3] := {68, 69} tii[13,4] := {59, 133, 146, 172} tii[13,5] := {26, 87, 142, 143} tii[13,6] := {131, 178} tii[13,7] := {110} tii[13,8] := {138} tii[13,9] := {82, 119, 163, 182} tii[13,10] := {151, 176} tii[13,11] := {58, 100, 173, 174} tii[13,12] := {122} tii[13,13] := {78, 180} tii[13,14] := {149} tii[13,15] := {167, 183} tii[13,16] := {177} tii[13,17] := {3, 19, 95, 96} tii[13,18] := {13, 81, 112, 160} tii[13,19] := {24, 135} tii[13,20] := {43, 156} tii[13,21] := {10, 34, 117, 118} tii[13,22] := {46, 47} tii[13,23] := {25, 106, 136, 175} tii[13,24] := {4, 49, 92, 140} tii[13,25] := {12, 63, 123, 124} tii[13,26] := {86} tii[13,27] := {32, 33} tii[13,28] := {40, 154} tii[13,29] := {15, 80, 113, 164} tii[13,30] := {116} tii[13,31] := {45} tii[13,32] := {62, 170} tii[13,33] := {60, 168} tii[13,34] := {74} tii[13,35] := {23, 52, 144, 145} tii[13,36] := {54} tii[13,37] := {84, 179} tii[13,38] := {35, 158} tii[13,39] := {105} tii[13,40] := {130} tii[13,41] := {22, 53, 93, 94} tii[13,42] := {50, 51} tii[13,43] := {41, 111, 129, 159} tii[13,44] := {11, 67, 73, 120} tii[13,45] := {61, 134} tii[13,46] := {66} tii[13,47] := {28, 88, 104, 147} tii[13,48] := {85, 155} tii[13,49] := {39, 77, 161, 162} tii[13,50] := {5, 48, 97, 98} tii[13,51] := {83, 153} tii[13,52] := {99} tii[13,53] := {89} tii[13,54] := {55, 171} tii[13,55] := {109, 169} tii[13,56] := {16, 65, 126, 127} tii[13,57] := {79} tii[13,58] := {128} tii[13,59] := {37, 157} tii[13,60] := {150} tii[13,61] := {107, 141} tii[13,62] := {101} tii[13,63] := {132, 165} tii[13,64] := {166} tii[13,65] := {0, 9, 75, 76} tii[13,66] := {8, 91} tii[13,67] := {2, 31, 70, 121} tii[13,68] := {17, 18} tii[13,69] := {14, 115} tii[13,70] := {29} tii[13,71] := {7, 56, 90, 148} tii[13,72] := {21} tii[13,73] := {1, 30, 71, 72} tii[13,74] := {64} tii[13,75] := {27, 137} tii[13,76] := {6, 44, 102, 103} tii[13,77] := {36} tii[13,78] := {20, 139} tii[13,79] := {42, 114} tii[13,80] := {57} cell#38 , |C| = 45 special orbit = [4, 2, 2, 2, 2] special rep = [[2, 1, 1], [1, 1]] , dim = 45 cell rep = phi[[2, 1, 1],[1, 1]] TII depth = 3 TII multiplicity polynomial = 45*X TII subcells: tii[11,1] := {44} tii[11,2] := {38} tii[11,3] := {31} tii[11,4] := {30} tii[11,5] := {13} tii[11,6] := {42} tii[11,7] := {37} tii[11,8] := {32} tii[11,9] := {6} tii[11,10] := {39} tii[11,11] := {29} tii[11,12] := {35} tii[11,13] := {25} tii[11,14] := {12} tii[11,15] := {18} tii[11,16] := {41} tii[11,17] := {5} tii[11,18] := {43} tii[11,19] := {36} tii[11,20] := {40} tii[11,21] := {28} tii[11,22] := {23} tii[11,23] := {10} tii[11,24] := {15} tii[11,25] := {34} tii[11,26] := {16} tii[11,27] := {24} tii[11,28] := {17} tii[11,29] := {22} tii[11,30] := {9} tii[11,31] := {14} tii[11,32] := {4} tii[11,33] := {33} tii[11,34] := {21} tii[11,35] := {7} tii[11,36] := {27} tii[11,37] := {19} tii[11,38] := {20} tii[11,39] := {1} tii[11,40] := {26} tii[11,41] := {3} tii[11,42] := {11} tii[11,43] := {0} tii[11,44] := {2} tii[11,45] := {8} cell#39 , |C| = 185 special orbit = [4, 4, 2, 2] special rep = [[2, 1], [2, 1]] , dim = 80 cell rep = phi[[2, 2, 1],[1]]+phi[[2, 1, 1],[2]]+phi[[2, 2],[1, 1]]+phi[[2, 1],[2, 1]] TII depth = 3 TII multiplicity polynomial = 25*X^4+30*X^2+25*X TII subcells: tii[13,1] := {60, 90, 180, 184} tii[13,2] := {77, 183} tii[13,3] := {47, 96} tii[13,4] := {84, 117, 169, 181} tii[13,5] := {76, 129, 130, 157} tii[13,6] := {101, 175} tii[13,7] := {87} tii[13,8] := {119} tii[13,9] := {109, 142, 174, 177} tii[13,10] := {128, 162} tii[13,11] := {126, 160, 161, 168} tii[13,12] := {86} tii[13,13] := {155, 171} tii[13,14] := {118} tii[13,15] := {151, 176} tii[13,16] := {163} tii[13,17] := {1, 12, 68, 125} tii[13,18] := {25, 46, 153, 173} tii[13,19] := {7, 113} tii[13,20] := {21, 145} tii[13,21] := {4, 23, 95, 150} tii[13,22] := {29, 70} tii[13,23] := {41, 67, 170, 182} tii[13,24] := {13, 30, 127, 158} tii[13,25] := {53, 102, 103, 135} tii[13,26] := {62} tii[13,27] := {22, 52} tii[13,28] := {18, 139} tii[13,29] := {26, 57, 154, 179} tii[13,30] := {91} tii[13,31] := {35} tii[13,32] := {37, 166} tii[13,33] := {32, 159} tii[13,34] := {43} tii[13,35] := {74, 114, 115, 123} tii[13,36] := {27} tii[13,37] := {56, 178} tii[13,38] := {107, 134} tii[13,39] := {66} tii[13,40] := {94} tii[13,41] := {10, 40, 69, 124} tii[13,42] := {39, 75} tii[13,43] := {61, 93, 152, 172} tii[13,44] := {24, 48, 97, 136} tii[13,45] := {33, 112} tii[13,46] := {54} tii[13,47] := {42, 82, 131, 165} tii[13,48] := {58, 144} tii[13,49] := {99, 140, 141, 149} tii[13,50] := {31, 72, 73, 111} tii[13,51] := {51, 137} tii[13,52] := {63} tii[13,53] := {64} tii[13,54] := {133, 156} tii[13,55] := {81, 164} tii[13,56] := {55, 105, 106, 146} tii[13,57] := {45} tii[13,58] := {92} tii[13,59] := {108, 148} tii[13,60] := {121} tii[13,61] := {71, 110} tii[13,62] := {65} tii[13,63] := {104, 143} tii[13,64] := {147} tii[13,65] := {0, 6, 59, 100} tii[13,66] := {2, 78} tii[13,67] := {5, 17, 98, 138} tii[13,68] := {11, 34} tii[13,69] := {3, 88} tii[13,70] := {20} tii[13,71] := {14, 38, 132, 167} tii[13,72] := {9} tii[13,73] := {16, 49, 50, 85} tii[13,74] := {44} tii[13,75] := {8, 116} tii[13,76] := {36, 79, 80, 120} tii[13,77] := {15} tii[13,78] := {83, 122} tii[13,79] := {19, 89} tii[13,80] := {28} cell#40 , |C| = 45 special orbit = [4, 2, 2, 2, 2] special rep = [[2, 1, 1], [1, 1]] , dim = 45 cell rep = phi[[2, 1, 1],[1, 1]] TII depth = 3 TII multiplicity polynomial = 45*X TII subcells: tii[11,1] := {34} tii[11,2] := {43} tii[11,3] := {44} tii[11,4] := {7} tii[11,5] := {9} tii[11,6] := {25} tii[11,7] := {13} tii[11,8] := {39} tii[11,9] := {15} tii[11,10] := {18} tii[11,11] := {19} tii[11,12] := {24} tii[11,13] := {36} tii[11,14] := {22} tii[11,15] := {29} tii[11,16] := {20} tii[11,17] := {23} tii[11,18] := {27} tii[11,19] := {28} tii[11,20] := {33} tii[11,21] := {35} tii[11,22] := {41} tii[11,23] := {31} tii[11,24] := {37} tii[11,25] := {40} tii[11,26] := {38} tii[11,27] := {42} tii[11,28] := {0} tii[11,29] := {4} tii[11,30] := {1} tii[11,31] := {3} tii[11,32] := {2} tii[11,33] := {11} tii[11,34] := {12} tii[11,35] := {6} tii[11,36] := {17} tii[11,37] := {14} tii[11,38] := {26} tii[11,39] := {5} tii[11,40] := {32} tii[11,41] := {10} tii[11,42] := {21} tii[11,43] := {8} tii[11,44] := {16} tii[11,45] := {30} cell#41 , |C| = 45 special orbit = [4, 2, 2, 2, 2] special rep = [[2, 1, 1], [1, 1]] , dim = 45 cell rep = phi[[2, 1, 1],[1, 1]] TII depth = 3 TII multiplicity polynomial = 45*X TII subcells: tii[11,1] := {39} tii[11,2] := {44} tii[11,3] := {36} tii[11,4] := {9} tii[11,5] := {11} tii[11,6] := {30} tii[11,7] := {15} tii[11,8] := {42} tii[11,9] := {19} tii[11,10] := {22} tii[11,11] := {23} tii[11,12] := {29} tii[11,13] := {41} tii[11,14] := {27} tii[11,15] := {35} tii[11,16] := {24} tii[11,17] := {10} tii[11,18] := {32} tii[11,19] := {33} tii[11,20] := {38} tii[11,21] := {40} tii[11,22] := {34} tii[11,23] := {18} tii[11,24] := {25} tii[11,25] := {43} tii[11,26] := {21} tii[11,27] := {28} tii[11,28] := {0} tii[11,29] := {5} tii[11,30] := {1} tii[11,31] := {4} tii[11,32] := {3} tii[11,33] := {13} tii[11,34] := {14} tii[11,35] := {8} tii[11,36] := {20} tii[11,37] := {17} tii[11,38] := {31} tii[11,39] := {6} tii[11,40] := {37} tii[11,41] := {12} tii[11,42] := {26} tii[11,43] := {2} tii[11,44] := {7} tii[11,45] := {16} cell#42 , |C| = 35 special orbit = [2, 2, 2, 2, 2, 2] special rep = [[1, 1, 1], [1, 1, 1]] , dim = 20 cell rep = phi[[1, 1, 1, 1],[1, 1]]+phi[[1, 1, 1],[1, 1, 1]] TII depth = 2 TII multiplicity polynomial = 15*X^2+5*X TII subcells: tii[4,1] := {11, 34} tii[4,2] := {16, 31} tii[4,3] := {20, 27} tii[4,4] := {23} tii[4,5] := {2, 21} tii[4,6] := {7, 32} tii[4,7] := {4, 26} tii[4,8] := {5, 29} tii[4,9] := {15, 22} tii[4,10] := {6, 30} tii[4,11] := {18} tii[4,12] := {8, 33} tii[4,13] := {14} tii[4,14] := {9, 25} tii[4,15] := {12, 28} tii[4,16] := {19} tii[4,17] := {0, 13} tii[4,18] := {1, 17} tii[4,19] := {3, 24} tii[4,20] := {10} cell#43 , |C| = 185 special orbit = [4, 4, 2, 2] special rep = [[2, 1], [2, 1]] , dim = 80 cell rep = phi[[2, 2, 1],[1]]+phi[[2, 1, 1],[2]]+phi[[2, 2],[1, 1]]+phi[[2, 1],[2, 1]] TII depth = 3 TII multiplicity polynomial = 25*X^4+30*X^2+25*X TII subcells: tii[13,1] := {66, 110, 138, 184} tii[13,2] := {78, 172} tii[13,3] := {109, 148} tii[13,4] := {46, 118, 130, 183} tii[13,5] := {23, 79, 123, 176} tii[13,6] := {56, 162} tii[13,7] := {141} tii[13,8] := {158} tii[13,9] := {64, 111, 147, 179} tii[13,10] := {77, 154} tii[13,11] := {53, 88, 156, 175} tii[13,12] := {97} tii[13,13] := {70, 170} tii[13,14] := {126} tii[13,15] := {96, 137} tii[13,16] := {128} tii[13,17] := {4, 17, 117, 155} tii[13,18] := {37, 68, 101, 178} tii[13,19] := {19, 150} tii[13,20] := {34, 164} tii[13,21] := {8, 28, 95, 168} tii[13,22] := {87, 131} tii[13,23] := {48, 89, 122, 182} tii[13,24] := {18, 47, 86, 173} tii[13,25] := {13, 57, 100, 167} tii[13,26] := {121} tii[13,27] := {73, 112} tii[13,28] := {26, 134} tii[13,29] := {33, 72, 102, 180} tii[13,30] := {143} tii[13,31] := {91} tii[13,32] := {42, 151} tii[13,33] := {39, 149} tii[13,34] := {98} tii[13,35] := {22, 49, 119, 153} tii[13,36] := {83} tii[13,37] := {61, 165} tii[13,38] := {32, 144} tii[13,39] := {127} tii[13,40] := {106} tii[13,41] := {2, 44, 74, 161} tii[13,42] := {93, 132} tii[13,43] := {31, 99, 113, 181} tii[13,44] := {9, 63, 67, 169} tii[13,45] := {15, 115} tii[13,46] := {114} tii[13,47] := {20, 80, 92, 177} tii[13,48] := {27, 136} tii[13,49] := {36, 69, 139, 166} tii[13,50] := {5, 45, 75, 157} tii[13,51] := {25, 133} tii[13,52] := {76} tii[13,53] := {125} tii[13,54] := {50, 159} tii[13,55] := {41, 152} tii[13,56] := {14, 58, 104, 171} tii[13,57] := {59} tii[13,58] := {105} tii[13,59] := {35, 146} tii[13,60] := {85} tii[13,61] := {38, 120} tii[13,62] := {81} tii[13,63] := {60, 145} tii[13,64] := {107} tii[13,65] := {0, 10, 108, 142} tii[13,66] := {3, 124} tii[13,67] := {12, 30, 65, 163} tii[13,68] := {54, 90} tii[13,69] := {11, 135} tii[13,70] := {71} tii[13,71] := {24, 51, 82, 174} tii[13,72] := {52} tii[13,73] := {1, 29, 55, 140} tii[13,74] := {103} tii[13,75] := {16, 116} tii[13,76] := {6, 40, 84, 160} tii[13,77] := {62} tii[13,78] := {21, 129} tii[13,79] := {7, 94} tii[13,80] := {43} cell#44 , |C| = 45 special orbit = [4, 2, 2, 2, 2] special rep = [[2, 1, 1], [1, 1]] , dim = 45 cell rep = phi[[2, 1, 1],[1, 1]] TII depth = 3 TII multiplicity polynomial = 45*X TII subcells: tii[11,1] := {43} tii[11,2] := {44} tii[11,3] := {35} tii[11,4] := {12} tii[11,5] := {9} tii[11,6] := {39} tii[11,7] := {18} tii[11,8] := {41} tii[11,9] := {15} tii[11,10] := {33} tii[11,11] := {19} tii[11,12] := {32} tii[11,13] := {36} tii[11,14] := {21} tii[11,15] := {31} tii[11,16] := {25} tii[11,17] := {10} tii[11,18] := {40} tii[11,19] := {27} tii[11,20] := {38} tii[11,21] := {34} tii[11,22] := {29} tii[11,23] := {14} tii[11,24] := {22} tii[11,25] := {42} tii[11,26] := {20} tii[11,27] := {30} tii[11,28] := {0} tii[11,29] := {8} tii[11,30] := {1} tii[11,31] := {4} tii[11,32] := {2} tii[11,33] := {26} tii[11,34] := {13} tii[11,35] := {6} tii[11,36] := {23} tii[11,37] := {17} tii[11,38] := {28} tii[11,39] := {5} tii[11,40] := {37} tii[11,41] := {11} tii[11,42] := {24} tii[11,43] := {3} tii[11,44] := {7} tii[11,45] := {16} cell#45 , |C| = 185 special orbit = [4, 4, 2, 2] special rep = [[2, 1], [2, 1]] , dim = 80 cell rep = phi[[2, 2, 1],[1]]+phi[[2, 1, 1],[2]]+phi[[2, 2],[1, 1]]+phi[[2, 1],[2, 1]] TII depth = 3 TII multiplicity polynomial = 25*X^4+30*X^2+25*X TII subcells: tii[13,1] := {61, 97, 131, 184} tii[13,2] := {85, 174} tii[13,3] := {102, 138} tii[13,4] := {41, 111, 120, 183} tii[13,5] := {18, 70, 117, 176} tii[13,6] := {105, 164} tii[13,7] := {144} tii[13,8] := {159} tii[13,9] := {60, 96, 136, 180} tii[13,10] := {125, 157} tii[13,11] := {42, 78, 150, 177} tii[13,12] := {103} tii[13,13] := {66, 167} tii[13,14] := {127} tii[13,15] := {143, 171} tii[13,16] := {160} tii[13,17] := {2, 13, 113, 148} tii[13,18] := {29, 58, 91, 179} tii[13,19] := {17, 151} tii[13,20] := {32, 166} tii[13,21] := {7, 25, 92, 162} tii[13,22] := {81, 119} tii[13,23] := {46, 79, 112, 182} tii[13,24] := {15, 36, 72, 172} tii[13,25] := {10, 51, 94, 169} tii[13,26] := {124} tii[13,27] := {62, 100} tii[13,28] := {27, 133} tii[13,29] := {31, 56, 99, 178} tii[13,30] := {145} tii[13,31] := {89} tii[13,32] := {47, 154} tii[13,33] := {43, 147} tii[13,34] := {104} tii[13,35] := {16, 40, 116, 158} tii[13,36] := {87} tii[13,37] := {65, 163} tii[13,38] := {33, 141} tii[13,39] := {128} tii[13,40] := {110} tii[13,41] := {14, 37, 71, 153} tii[13,42] := {82, 122} tii[13,43] := {28, 90, 101, 181} tii[13,44] := {8, 52, 55, 165} tii[13,45] := {45, 114} tii[13,46] := {108} tii[13,47] := {20, 75, 76, 175} tii[13,48] := {67, 139} tii[13,49] := {26, 59, 135, 170} tii[13,50] := {3, 35, 73, 152} tii[13,51] := {63, 130} tii[13,52] := {84} tii[13,53] := {126} tii[13,54] := {48, 156} tii[13,55] := {88, 149} tii[13,56] := {12, 57, 98, 168} tii[13,57] := {64} tii[13,58] := {109} tii[13,59] := {34, 142} tii[13,60] := {129} tii[13,61] := {83, 115} tii[13,62] := {86} tii[13,63] := {107, 140} tii[13,64] := {146} tii[13,65] := {0, 6, 93, 132} tii[13,66] := {5, 121} tii[13,67] := {9, 24, 54, 161} tii[13,68] := {44, 80} tii[13,69] := {11, 137} tii[13,70] := {68} tii[13,71] := {21, 38, 77, 173} tii[13,72] := {50} tii[13,73] := {1, 23, 53, 134} tii[13,74] := {106} tii[13,75] := {19, 118} tii[13,76] := {4, 39, 74, 155} tii[13,77] := {69} tii[13,78] := {22, 123} tii[13,79] := {30, 95} tii[13,80] := {49} cell#46 , |C| = 185 special orbit = [4, 4, 2, 2] special rep = [[2, 1], [2, 1]] , dim = 80 cell rep = phi[[2, 2, 1],[1]]+phi[[2, 1, 1],[2]]+phi[[2, 2],[1, 1]]+phi[[2, 1],[2, 1]] TII depth = 3 TII multiplicity polynomial = 25*X^4+30*X^2+25*X TII subcells: tii[13,1] := {61, 97, 131, 184} tii[13,2] := {85, 174} tii[13,3] := {102, 138} tii[13,4] := {41, 111, 120, 183} tii[13,5] := {18, 70, 117, 176} tii[13,6] := {105, 164} tii[13,7] := {144} tii[13,8] := {159} tii[13,9] := {60, 96, 136, 180} tii[13,10] := {125, 157} tii[13,11] := {42, 78, 150, 177} tii[13,12] := {103} tii[13,13] := {66, 167} tii[13,14] := {127} tii[13,15] := {143, 171} tii[13,16] := {160} tii[13,17] := {2, 13, 113, 148} tii[13,18] := {29, 58, 91, 179} tii[13,19] := {17, 151} tii[13,20] := {32, 166} tii[13,21] := {7, 25, 92, 162} tii[13,22] := {81, 119} tii[13,23] := {46, 79, 112, 182} tii[13,24] := {15, 36, 72, 172} tii[13,25] := {10, 51, 94, 169} tii[13,26] := {124} tii[13,27] := {62, 100} tii[13,28] := {27, 133} tii[13,29] := {31, 56, 99, 178} tii[13,30] := {145} tii[13,31] := {89} tii[13,32] := {47, 154} tii[13,33] := {43, 147} tii[13,34] := {104} tii[13,35] := {16, 40, 116, 158} tii[13,36] := {87} tii[13,37] := {65, 163} tii[13,38] := {33, 141} tii[13,39] := {128} tii[13,40] := {110} tii[13,41] := {14, 37, 71, 153} tii[13,42] := {82, 122} tii[13,43] := {28, 90, 101, 181} tii[13,44] := {8, 52, 55, 165} tii[13,45] := {45, 114} tii[13,46] := {108} tii[13,47] := {20, 75, 76, 175} tii[13,48] := {67, 139} tii[13,49] := {26, 59, 135, 170} tii[13,50] := {3, 35, 73, 152} tii[13,51] := {63, 130} tii[13,52] := {84} tii[13,53] := {126} tii[13,54] := {48, 156} tii[13,55] := {88, 149} tii[13,56] := {12, 57, 98, 168} tii[13,57] := {64} tii[13,58] := {109} tii[13,59] := {34, 142} tii[13,60] := {129} tii[13,61] := {83, 115} tii[13,62] := {86} tii[13,63] := {107, 140} tii[13,64] := {146} tii[13,65] := {0, 6, 93, 132} tii[13,66] := {5, 121} tii[13,67] := {9, 24, 54, 161} tii[13,68] := {44, 80} tii[13,69] := {11, 137} tii[13,70] := {68} tii[13,71] := {21, 38, 77, 173} tii[13,72] := {50} tii[13,73] := {1, 23, 53, 134} tii[13,74] := {106} tii[13,75] := {19, 118} tii[13,76] := {4, 39, 74, 155} tii[13,77] := {69} tii[13,78] := {22, 123} tii[13,79] := {30, 95} tii[13,80] := {49} cell#47 , |C| = 45 special orbit = [4, 2, 2, 2, 2] special rep = [[2, 1, 1], [1, 1]] , dim = 45 cell rep = phi[[2, 1, 1],[1, 1]] TII depth = 3 TII multiplicity polynomial = 45*X TII subcells: tii[11,1] := {44} tii[11,2] := {41} tii[11,3] := {28} tii[11,4] := {27} tii[11,5] := {12} tii[11,6] := {42} tii[11,7] := {35} tii[11,8] := {36} tii[11,9] := {11} tii[11,10] := {38} tii[11,11] := {26} tii[11,12] := {33} tii[11,13] := {29} tii[11,14] := {17} tii[11,15] := {23} tii[11,16] := {40} tii[11,17] := {5} tii[11,18] := {43} tii[11,19] := {34} tii[11,20] := {39} tii[11,21] := {31} tii[11,22] := {21} tii[11,23] := {10} tii[11,24] := {13} tii[11,25] := {37} tii[11,26] := {16} tii[11,27] := {22} tii[11,28] := {3} tii[11,29] := {20} tii[11,30] := {7} tii[11,31] := {14} tii[11,32] := {4} tii[11,33] := {32} tii[11,34] := {19} tii[11,35] := {8} tii[11,36] := {25} tii[11,37] := {18} tii[11,38] := {24} tii[11,39] := {1} tii[11,40] := {30} tii[11,41] := {6} tii[11,42] := {15} tii[11,43] := {0} tii[11,44] := {2} tii[11,45] := {9} cell#48 , |C| = 40 special orbit = [3, 3, 2, 2, 2] special rep = [[1, 1, 1], [2, 1]] , dim = 40 cell rep = phi[[1, 1, 1],[2, 1]] TII depth = 3 TII multiplicity polynomial = 40*X TII subcells: tii[7,1] := {33} tii[7,2] := {39} tii[7,3] := {14} tii[7,4] := {28} tii[7,5] := {20} tii[7,6] := {10} tii[7,7] := {18} tii[7,8] := {34} tii[7,9] := {26} tii[7,10] := {29} tii[7,11] := {27} tii[7,12] := {17} tii[7,13] := {24} tii[7,14] := {22} tii[7,15] := {37} tii[7,16] := {32} tii[7,17] := {30} tii[7,18] := {35} tii[7,19] := {36} tii[7,20] := {38} tii[7,21] := {2} tii[7,22] := {5} tii[7,23] := {4} tii[7,24] := {6} tii[7,25] := {9} tii[7,26] := {12} tii[7,27] := {3} tii[7,28] := {19} tii[7,29] := {16} tii[7,30] := {8} tii[7,31] := {7} tii[7,32] := {23} tii[7,33] := {15} tii[7,34] := {25} tii[7,35] := {13} tii[7,36] := {11} tii[7,37] := {21} tii[7,38] := {31} tii[7,39] := {0} tii[7,40] := {1} cell#49 , |C| = 30 special orbit = [6, 2, 1, 1, 1, 1] special rep = [[3], [1, 1, 1]] , dim = 20 cell rep = phi[[3, 1, 1, 1],[]]+phi[[3],[1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 10*X^2+10*X TII subcells: tii[17,1] := {21, 29} tii[17,2] := {22, 28} tii[17,3] := {20, 27} tii[17,4] := {25} tii[17,5] := {16, 26} tii[17,6] := {15, 24} tii[17,7] := {19} tii[17,8] := {10, 18} tii[17,9] := {14} tii[17,10] := {8} tii[17,11] := {11, 23} tii[17,12] := {9, 17} tii[17,13] := {13} tii[17,14] := {5, 12} tii[17,15] := {7} tii[17,16] := {4} tii[17,17] := {2, 6} tii[17,18] := {3} tii[17,19] := {1} tii[17,20] := {0} cell#50 , |C| = 145 special orbit = [4, 4, 2, 2] special rep = [[2, 1], [2, 1]] , dim = 80 cell rep = phi[[2, 2],[1, 1]]+phi[[2, 1],[2, 1]]+phi[[1],[3, 2]]+phi[[],[3, 3]] TII depth = 3 TII multiplicity polynomial = 50*X^2+25*X+5*X^4 TII subcells: tii[13,1] := {56, 120} tii[13,2] := {111} tii[13,3] := {84} tii[13,4] := {39, 133} tii[13,5] := {14, 131} tii[13,6] := {94} tii[13,7] := {112, 113} tii[13,8] := {125, 126} tii[13,9] := {48, 134} tii[13,10] := {103} tii[13,11] := {32, 140} tii[13,12] := {78, 79} tii[13,13] := {44, 45, 143, 144} tii[13,14] := {100, 101} tii[13,15] := {119} tii[13,16] := {129, 130} tii[13,17] := {11, 34} tii[13,18] := {26, 93} tii[13,19] := {41} tii[13,20] := {60} tii[13,21] := {24, 51} tii[13,22] := {65} tii[13,23] := {42, 108} tii[13,24] := {13, 67} tii[13,25] := {6, 118} tii[13,26] := {96, 97} tii[13,27] := {50} tii[13,28] := {58} tii[13,29] := {29, 90} tii[13,30] := {114, 115} tii[13,31] := {63, 64} tii[13,32] := {77} tii[13,33] := {75} tii[13,34] := {87, 88} tii[13,35] := {8, 132} tii[13,36] := {72, 73} tii[13,37] := {95} tii[13,38] := {18, 19, 137, 138} tii[13,39] := {106, 107} tii[13,40] := {123, 124} tii[13,41] := {12, 71} tii[13,42] := {70} tii[13,43] := {25, 122} tii[13,44] := {4, 86} tii[13,45] := {40} tii[13,46] := {82, 83} tii[13,47] := {15, 105} tii[13,48] := {59} tii[13,49] := {20, 139} tii[13,50] := {1, 102} tii[13,51] := {57} tii[13,52] := {68, 69} tii[13,53] := {98, 99} tii[13,54] := {30, 31, 141, 142} tii[13,55] := {76} tii[13,56] := {7, 121} tii[13,57] := {52, 53} tii[13,58] := {91, 92} tii[13,59] := {22, 23, 135, 136} tii[13,60] := {109, 110} tii[13,61] := {66} tii[13,62] := {61, 62} tii[13,63] := {89} tii[13,64] := {116, 117} tii[13,65] := {3, 21} tii[13,66] := {17} tii[13,67] := {5, 49} tii[13,68] := {33} tii[13,69] := {28} tii[13,70] := {46, 47} tii[13,71] := {16, 74} tii[13,72] := {37, 38} tii[13,73] := {0, 85} tii[13,74] := {80, 81} tii[13,75] := {43} tii[13,76] := {2, 104} tii[13,77] := {54, 55} tii[13,78] := {9, 10, 127, 128} tii[13,79] := {27} tii[13,80] := {35, 36} cell#51 , |C| = 45 special orbit = [4, 2, 2, 2, 2] special rep = [[2, 1, 1], [1, 1]] , dim = 45 cell rep = phi[[2, 1, 1],[1, 1]] TII depth = 3 TII multiplicity polynomial = 45*X TII subcells: tii[11,1] := {44} tii[11,2] := {39} tii[11,3] := {25} tii[11,4] := {28} tii[11,5] := {17} tii[11,6] := {43} tii[11,7] := {35} tii[11,8] := {32} tii[11,9] := {10} tii[11,10] := {41} tii[11,11] := {31} tii[11,12] := {37} tii[11,13] := {29} tii[11,14] := {16} tii[11,15] := {22} tii[11,16] := {38} tii[11,17] := {5} tii[11,18] := {42} tii[11,19] := {34} tii[11,20] := {40} tii[11,21] := {27} tii[11,22] := {21} tii[11,23] := {9} tii[11,24] := {13} tii[11,25] := {33} tii[11,26] := {12} tii[11,27] := {18} tii[11,28] := {3} tii[11,29] := {20} tii[11,30] := {7} tii[11,31] := {14} tii[11,32] := {4} tii[11,33] := {36} tii[11,34] := {24} tii[11,35] := {11} tii[11,36] := {30} tii[11,37] := {23} tii[11,38] := {19} tii[11,39] := {1} tii[11,40] := {26} tii[11,41] := {6} tii[11,42] := {15} tii[11,43] := {0} tii[11,44] := {2} tii[11,45] := {8} cell#52 , |C| = 64 special orbit = [4, 2, 2, 2, 1, 1] special rep = [[2, 1], [1, 1, 1]] , dim = 40 cell rep = phi[[2, 1, 1, 1],[1]]+phi[[2, 1],[1, 1, 1]] TII depth = 2 TII multiplicity polynomial = 16*X+24*X^2 TII subcells: tii[10,1] := {44, 63} tii[10,2] := {21, 60} tii[10,3] := {53, 61} tii[10,4] := {17, 54} tii[10,5] := {42, 57} tii[10,6] := {51} tii[10,7] := {28, 46} tii[10,8] := {37} tii[10,9] := {43, 56} tii[10,10] := {8, 45} tii[10,11] := {32, 49} tii[10,12] := {40} tii[10,13] := {20, 39} tii[10,14] := {16, 35} tii[10,15] := {24} tii[10,16] := {30} tii[10,17] := {19} tii[10,18] := {7, 22} tii[10,19] := {13} tii[10,20] := {5} tii[10,21] := {27, 59} tii[10,22] := {34, 62} tii[10,23] := {15, 52} tii[10,24] := {23, 58} tii[10,25] := {6, 48} tii[10,26] := {33, 50} tii[10,27] := {12, 55} tii[10,28] := {41} tii[10,29] := {31} tii[10,30] := {11, 29} tii[10,31] := {3, 38} tii[10,32] := {18} tii[10,33] := {9, 47} tii[10,34] := {10} tii[10,35] := {25} tii[10,36] := {4} tii[10,37] := {0, 26} tii[10,38] := {2, 36} tii[10,39] := {14} tii[10,40] := {1} cell#53 , |C| = 45 special orbit = [4, 2, 2, 2, 2] special rep = [[2, 1, 1], [1, 1]] , dim = 45 cell rep = phi[[2, 1, 1],[1, 1]] TII depth = 3 TII multiplicity polynomial = 45*X TII subcells: tii[11,1] := {37} tii[11,2] := {44} tii[11,3] := {40} tii[11,4] := {11} tii[11,5] := {10} tii[11,6] := {34} tii[11,7] := {19} tii[11,8] := {43} tii[11,9] := {16} tii[11,10] := {26} tii[11,11] := {27} tii[11,12] := {33} tii[11,13] := {39} tii[11,14] := {24} tii[11,15] := {31} tii[11,16] := {20} tii[11,17] := {9} tii[11,18] := {28} tii[11,19] := {29} tii[11,20] := {36} tii[11,21] := {38} tii[11,22] := {30} tii[11,23] := {15} tii[11,24] := {21} tii[11,25] := {42} tii[11,26] := {25} tii[11,27] := {32} tii[11,28] := {0} tii[11,29] := {8} tii[11,30] := {1} tii[11,31] := {4} tii[11,32] := {3} tii[11,33] := {17} tii[11,34] := {18} tii[11,35] := {7} tii[11,36] := {23} tii[11,37] := {14} tii[11,38] := {35} tii[11,39] := {5} tii[11,40] := {41} tii[11,41] := {12} tii[11,42] := {22} tii[11,43] := {2} tii[11,44] := {6} tii[11,45] := {13} cell#54 , |C| = 64 special orbit = [4, 2, 2, 2, 1, 1] special rep = [[2, 1], [1, 1, 1]] , dim = 40 cell rep = phi[[2, 1, 1, 1],[1]]+phi[[2, 1],[1, 1, 1]] TII depth = 2 TII multiplicity polynomial = 16*X+24*X^2 TII subcells: tii[10,1] := {10, 62} tii[10,2] := {27, 63} tii[10,3] := {20, 57} tii[10,4] := {41, 59} tii[10,5] := {24, 48} tii[10,6] := {44} tii[10,7] := {49, 61} tii[10,8] := {56} tii[10,9] := {8, 46} tii[10,10] := {26, 51} tii[10,11] := {14, 35} tii[10,12] := {29} tii[10,13] := {4, 23} tii[10,14] := {38, 55} tii[10,15] := {45} tii[10,16] := {18} tii[10,17] := {22} tii[10,18] := {33, 52} tii[10,19] := {42} tii[10,20] := {31} tii[10,21] := {0, 32} tii[10,22] := {2, 58} tii[10,23] := {3, 39} tii[10,24] := {6, 54} tii[10,25] := {11, 50} tii[10,26] := {15, 37} tii[10,27] := {17, 60} tii[10,28] := {30} tii[10,29] := {36} tii[10,30] := {1, 13} tii[10,31] := {21, 40} tii[10,32] := {5} tii[10,33] := {28, 53} tii[10,34] := {12} tii[10,35] := {47} tii[10,36] := {7} tii[10,37] := {9, 25} tii[10,38] := {16, 43} tii[10,39] := {34} tii[10,40] := {19} cell#55 , |C| = 35 special orbit = [2, 2, 2, 2, 2, 2] special rep = [[1, 1, 1], [1, 1, 1]] , dim = 20 cell rep = phi[[1, 1, 1, 1],[1, 1]]+phi[[1, 1, 1],[1, 1, 1]] TII depth = 2 TII multiplicity polynomial = 15*X^2+5*X TII subcells: tii[4,1] := {12, 34} tii[4,2] := {17, 33} tii[4,3] := {21, 29} tii[4,4] := {25} tii[4,5] := {2, 18} tii[4,6] := {7, 31} tii[4,7] := {4, 23} tii[4,8] := {5, 27} tii[4,9] := {16, 24} tii[4,10] := {6, 28} tii[4,11] := {19} tii[4,12] := {8, 32} tii[4,13] := {15} tii[4,14] := {9, 26} tii[4,15] := {13, 30} tii[4,16] := {20} tii[4,17] := {0, 11} tii[4,18] := {1, 14} tii[4,19] := {3, 22} tii[4,20] := {10} cell#56 , |C| = 54 special orbit = [4, 4, 1, 1, 1, 1] special rep = [[2], [2, 1, 1]] , dim = 45 cell rep = phi[[2, 2, 1, 1],[]]+phi[[2],[2, 1, 1]] TII depth = 3 TII multiplicity polynomial = 9*X^2+36*X TII subcells: tii[12,1] := {37, 52} tii[12,2] := {49} tii[12,3] := {53} tii[12,4] := {27, 47} tii[12,5] := {22, 39} tii[12,6] := {41} tii[12,7] := {30} tii[12,8] := {50} tii[12,9] := {33} tii[12,10] := {25} tii[12,11] := {44} tii[12,12] := {51} tii[12,13] := {18, 38} tii[12,14] := {13, 28} tii[12,15] := {32} tii[12,16] := {20} tii[12,17] := {43} tii[12,18] := {7, 19} tii[12,19] := {23} tii[12,20] := {16} tii[12,21] := {11} tii[12,22] := {35} tii[12,23] := {6} tii[12,24] := {45} tii[12,25] := {15} tii[12,26] := {8} tii[12,27] := {26} tii[12,28] := {4} tii[12,29] := {36} tii[12,30] := {46} tii[12,31] := {31, 48} tii[12,32] := {40} tii[12,33] := {14, 29} tii[12,34] := {42} tii[12,35] := {21} tii[12,36] := {12} tii[12,37] := {3, 10} tii[12,38] := {34} tii[12,39] := {5} tii[12,40] := {17} tii[12,41] := {2} tii[12,42] := {0} tii[12,43] := {24} tii[12,44] := {9} tii[12,45] := {1} cell#57 , |C| = 45 special orbit = [4, 2, 2, 2, 2] special rep = [[2, 1, 1], [1, 1]] , dim = 45 cell rep = phi[[2, 1, 1],[1, 1]] TII depth = 3 TII multiplicity polynomial = 45*X TII subcells: tii[11,1] := {44} tii[11,2] := {40} tii[11,3] := {30} tii[11,4] := {14} tii[11,5] := {17} tii[11,6] := {42} tii[11,7] := {20} tii[11,8] := {35} tii[11,9] := {11} tii[11,10] := {39} tii[11,11] := {28} tii[11,12] := {37} tii[11,13] := {31} tii[11,14] := {16} tii[11,15] := {25} tii[11,16] := {27} tii[11,17] := {6} tii[11,18] := {43} tii[11,19] := {34} tii[11,20] := {41} tii[11,21] := {29} tii[11,22] := {23} tii[11,23] := {9} tii[11,24] := {18} tii[11,25] := {38} tii[11,26] := {15} tii[11,27] := {24} tii[11,28] := {0} tii[11,29] := {10} tii[11,30] := {2} tii[11,31] := {7} tii[11,32] := {5} tii[11,33] := {36} tii[11,34] := {22} tii[11,35] := {12} tii[11,36] := {33} tii[11,37] := {26} tii[11,38] := {21} tii[11,39] := {3} tii[11,40] := {32} tii[11,41] := {8} tii[11,42] := {19} tii[11,43] := {1} tii[11,44] := {4} tii[11,45] := {13} cell#58 , |C| = 30 special orbit = [3, 3, 3, 3] special rep = [[1, 1], [2, 2]] , dim = 30 cell rep = phi[[1, 1],[2, 2]] TII depth = 3 TII multiplicity polynomial = 30*X TII subcells: tii[8,1] := {20} tii[8,2] := {27} tii[8,3] := {29} tii[8,4] := {15} tii[8,5] := {4} tii[8,6] := {9} tii[8,7] := {19} tii[8,8] := {25} tii[8,9] := {16} tii[8,10] := {8} tii[8,11] := {13} tii[8,12] := {11} tii[8,13] := {23} tii[8,14] := {17} tii[8,15] := {28} tii[8,16] := {21} tii[8,17] := {26} tii[8,18] := {24} tii[8,19] := {2} tii[8,20] := {6} tii[8,21] := {1} tii[8,22] := {10} tii[8,23] := {7} tii[8,24] := {3} tii[8,25] := {12} tii[8,26] := {22} tii[8,27] := {14} tii[8,28] := {5} tii[8,29] := {18} tii[8,30] := {0} cell#59 , |C| = 30 special orbit = [3, 3, 3, 3] special rep = [[1, 1], [2, 2]] , dim = 30 cell rep = phi[[1, 1],[2, 2]] TII depth = 3 TII multiplicity polynomial = 30*X TII subcells: tii[8,1] := {20} tii[8,2] := {27} tii[8,3] := {29} tii[8,4] := {15} tii[8,5] := {4} tii[8,6] := {9} tii[8,7] := {19} tii[8,8] := {25} tii[8,9] := {16} tii[8,10] := {8} tii[8,11] := {13} tii[8,12] := {11} tii[8,13] := {23} tii[8,14] := {17} tii[8,15] := {28} tii[8,16] := {21} tii[8,17] := {26} tii[8,18] := {24} tii[8,19] := {2} tii[8,20] := {6} tii[8,21] := {1} tii[8,22] := {10} tii[8,23] := {7} tii[8,24] := {3} tii[8,25] := {12} tii[8,26] := {22} tii[8,27] := {14} tii[8,28] := {5} tii[8,29] := {18} tii[8,30] := {0} cell#60 , |C| = 40 special orbit = [3, 3, 2, 2, 2] special rep = [[1, 1, 1], [2, 1]] , dim = 40 cell rep = phi[[1, 1, 1],[2, 1]] TII depth = 3 TII multiplicity polynomial = 40*X TII subcells: tii[7,1] := {38} tii[7,2] := {39} tii[7,3] := {8} tii[7,4] := {34} tii[7,5] := {12} tii[7,6] := {17} tii[7,7] := {26} tii[7,8] := {30} tii[7,9] := {16} tii[7,10] := {25} tii[7,11] := {18} tii[7,12] := {24} tii[7,13] := {33} tii[7,14] := {29} tii[7,15] := {35} tii[7,16] := {23} tii[7,17] := {37} tii[7,18] := {32} tii[7,19] := {28} tii[7,20] := {36} tii[7,21] := {1} tii[7,22] := {3} tii[7,23] := {2} tii[7,24] := {11} tii[7,25] := {5} tii[7,26] := {20} tii[7,27] := {9} tii[7,28] := {15} tii[7,29] := {22} tii[7,30] := {4} tii[7,31] := {13} tii[7,32] := {31} tii[7,33] := {10} tii[7,34] := {21} tii[7,35] := {7} tii[7,36] := {19} tii[7,37] := {14} tii[7,38] := {27} tii[7,39] := {0} tii[7,40] := {6} cell#61 , |C| = 64 special orbit = [4, 2, 2, 2, 1, 1] special rep = [[2, 1], [1, 1, 1]] , dim = 40 cell rep = phi[[2, 1, 1, 1],[1]]+phi[[2, 1],[1, 1, 1]] TII depth = 2 TII multiplicity polynomial = 16*X+24*X^2 TII subcells: tii[10,1] := {20, 62} tii[10,2] := {17, 54} tii[10,3] := {30, 61} tii[10,4] := {10, 45} tii[10,5] := {42, 58} tii[10,6] := {52} tii[10,7] := {16, 39} tii[10,8] := {28} tii[10,9] := {41, 63} tii[10,10] := {6, 32} tii[10,11] := {48, 60} tii[10,12] := {57} tii[10,13] := {35, 55} tii[10,14] := {9, 26} tii[10,15] := {18} tii[10,16] := {50} tii[10,17] := {53} tii[10,18] := {15, 33} tii[10,19] := {24} tii[10,20] := {31} tii[10,21] := {1, 40} tii[10,22] := {13, 59} tii[10,23] := {4, 47} tii[10,24] := {8, 56} tii[10,25] := {5, 34} tii[10,26] := {27, 51} tii[10,27] := {11, 49} tii[10,28] := {43} tii[10,29] := {29} tii[10,30] := {22, 46} tii[10,31] := {2, 21} tii[10,32] := {37} tii[10,33] := {7, 36} tii[10,34] := {44} tii[10,35] := {19} tii[10,36] := {38} tii[10,37] := {0, 14} tii[10,38] := {3, 23} tii[10,39] := {12} tii[10,40] := {25} cell#62 , |C| = 64 special orbit = [4, 2, 2, 2, 1, 1] special rep = [[2, 1], [1, 1, 1]] , dim = 40 cell rep = phi[[2, 1, 1, 1],[1]]+phi[[2, 1],[1, 1, 1]] TII depth = 2 TII multiplicity polynomial = 16*X+24*X^2 TII subcells: tii[10,1] := {37, 60} tii[10,2] := {40, 41} tii[10,3] := {50, 63} tii[10,4] := {27, 28} tii[10,5] := {57, 58} tii[10,6] := {62} tii[10,7] := {35, 36} tii[10,8] := {47} tii[10,9] := {44, 61} tii[10,10] := {12, 13} tii[10,11] := {53, 54} tii[10,12] := {59} tii[10,13] := {42, 43} tii[10,14] := {21, 22} tii[10,15] := {34} tii[10,16] := {52} tii[10,17] := {46} tii[10,18] := {14, 15} tii[10,19] := {25} tii[10,20] := {19} tii[10,21] := {2, 9} tii[10,22] := {23, 55} tii[10,23] := {3, 26} tii[10,24] := {18, 45} tii[10,25] := {10, 11} tii[10,26] := {48, 49} tii[10,27] := {31, 32} tii[10,28] := {56} tii[10,29] := {51} tii[10,30] := {29, 30} tii[10,31] := {4, 5} tii[10,32] := {39} tii[10,33] := {16, 17} tii[10,34] := {33} tii[10,35] := {38} tii[10,36] := {20} tii[10,37] := {0, 1} tii[10,38] := {6, 7} tii[10,39] := {24} tii[10,40] := {8} cell#63 , |C| = 40 special orbit = [3, 3, 2, 2, 2] special rep = [[1, 1, 1], [2, 1]] , dim = 40 cell rep = phi[[1, 1, 1],[2, 1]] TII depth = 3 TII multiplicity polynomial = 40*X TII subcells: tii[7,1] := {39} tii[7,2] := {35} tii[7,3] := {10} tii[7,4] := {38} tii[7,5] := {15} tii[7,6] := {22} tii[7,7] := {29} tii[7,8] := {34} tii[7,9] := {20} tii[7,10] := {30} tii[7,11] := {9} tii[7,12] := {26} tii[7,13] := {33} tii[7,14] := {32} tii[7,15] := {27} tii[7,16] := {13} tii[7,17] := {37} tii[7,18] := {24} tii[7,19] := {21} tii[7,20] := {31} tii[7,21] := {1} tii[7,22] := {4} tii[7,23] := {3} tii[7,24] := {14} tii[7,25] := {7} tii[7,26] := {23} tii[7,27] := {11} tii[7,28] := {17} tii[7,29] := {28} tii[7,30] := {5} tii[7,31] := {16} tii[7,32] := {36} tii[7,33] := {12} tii[7,34] := {25} tii[7,35] := {2} tii[7,36] := {19} tii[7,37] := {6} tii[7,38] := {18} tii[7,39] := {0} tii[7,40] := {8} cell#64 , |C| = 40 special orbit = [3, 3, 2, 2, 2] special rep = [[1, 1, 1], [2, 1]] , dim = 40 cell rep = phi[[1, 1, 1],[2, 1]] TII depth = 3 TII multiplicity polynomial = 40*X TII subcells: tii[7,1] := {39} tii[7,2] := {35} tii[7,3] := {10} tii[7,4] := {38} tii[7,5] := {15} tii[7,6] := {22} tii[7,7] := {29} tii[7,8] := {34} tii[7,9] := {20} tii[7,10] := {30} tii[7,11] := {9} tii[7,12] := {26} tii[7,13] := {33} tii[7,14] := {32} tii[7,15] := {27} tii[7,16] := {13} tii[7,17] := {37} tii[7,18] := {24} tii[7,19] := {21} tii[7,20] := {31} tii[7,21] := {1} tii[7,22] := {4} tii[7,23] := {3} tii[7,24] := {14} tii[7,25] := {7} tii[7,26] := {23} tii[7,27] := {11} tii[7,28] := {17} tii[7,29] := {28} tii[7,30] := {5} tii[7,31] := {16} tii[7,32] := {36} tii[7,33] := {12} tii[7,34] := {25} tii[7,35] := {2} tii[7,36] := {19} tii[7,37] := {6} tii[7,38] := {18} tii[7,39] := {0} tii[7,40] := {8} cell#65 , |C| = 60 special orbit = [3, 3, 2, 2, 1, 1] special rep = [[1, 1], [2, 1, 1]] , dim = 45 cell rep = phi[[1, 1, 1, 1],[2]]+phi[[1, 1],[2, 1, 1]] TII depth = 2 TII multiplicity polynomial = 15*X^2+30*X TII subcells: tii[6,1] := {32, 57} tii[6,2] := {42, 52} tii[6,3] := {25} tii[6,4] := {37} tii[6,5] := {50, 58} tii[6,6] := {54} tii[6,7] := {31, 44} tii[6,8] := {16} tii[6,9] := {27} tii[6,10] := {9} tii[6,11] := {41, 53} tii[6,12] := {6} tii[6,13] := {45} tii[6,14] := {19} tii[6,15] := {29} tii[6,16] := {51, 59} tii[6,17] := {55} tii[6,18] := {48} tii[6,19] := {8, 35} tii[6,20] := {15, 47} tii[6,21] := {14, 43} tii[6,22] := {17} tii[6,23] := {23, 56} tii[6,24] := {28} tii[6,25] := {11} tii[6,26] := {39} tii[6,27] := {5} tii[6,28] := {21, 34} tii[6,29] := {18} tii[6,30] := {2} tii[6,31] := {33, 46} tii[6,32] := {12} tii[6,33] := {20} tii[6,34] := {49} tii[6,35] := {1} tii[6,36] := {30} tii[6,37] := {13, 24} tii[6,38] := {10} tii[6,39] := {22, 36} tii[6,40] := {3} tii[6,41] := {38} tii[6,42] := {40} tii[6,43] := {4, 26} tii[6,44] := {7} tii[6,45] := {0} cell#66 , |C| = 30 special orbit = [6, 2, 1, 1, 1, 1] special rep = [[3], [1, 1, 1]] , dim = 20 cell rep = phi[[3, 1, 1, 1],[]]+phi[[3],[1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 10*X^2+10*X TII subcells: tii[17,1] := {20, 29} tii[17,2] := {16, 28} tii[17,3] := {21, 27} tii[17,4] := {25} tii[17,5] := {10, 26} tii[17,6] := {13, 24} tii[17,7] := {22} tii[17,8] := {8, 19} tii[17,9] := {15} tii[17,10] := {18} tii[17,11] := {4, 23} tii[17,12] := {7, 17} tii[17,13] := {14} tii[17,14] := {1, 12} tii[17,15] := {9} tii[17,16] := {11} tii[17,17] := {0, 6} tii[17,18] := {2} tii[17,19] := {5} tii[17,20] := {3} cell#67 , |C| = 35 special orbit = [2, 2, 2, 2, 2, 2] special rep = [[1, 1, 1], [1, 1, 1]] , dim = 20 cell rep = phi[[1, 1, 1, 1],[1, 1]]+phi[[1, 1, 1],[1, 1, 1]] TII depth = 2 TII multiplicity polynomial = 15*X^2+5*X TII subcells: tii[4,1] := {12, 34} tii[4,2] := {17, 33} tii[4,3] := {21, 30} tii[4,4] := {26} tii[4,5] := {2, 18} tii[4,6] := {8, 32} tii[4,7] := {3, 23} tii[4,8] := {6, 28} tii[4,9] := {16, 25} tii[4,10] := {5, 27} tii[4,11] := {19} tii[4,12] := {9, 31} tii[4,13] := {15} tii[4,14] := {7, 24} tii[4,15] := {13, 29} tii[4,16] := {20} tii[4,17] := {0, 10} tii[4,18] := {1, 14} tii[4,19] := {4, 22} tii[4,20] := {11} cell#68 , |C| = 54 special orbit = [4, 4, 1, 1, 1, 1] special rep = [[2], [2, 1, 1]] , dim = 45 cell rep = phi[[2, 2, 1, 1],[]]+phi[[2],[2, 1, 1]] TII depth = 3 TII multiplicity polynomial = 9*X^2+36*X TII subcells: tii[12,1] := {30, 44} tii[12,2] := {46} tii[12,3] := {51} tii[12,4] := {21, 37} tii[12,5] := {13, 29} tii[12,6] := {39} tii[12,7] := {25} tii[12,8] := {47} tii[12,9] := {43} tii[12,10] := {36} tii[12,11] := {49} tii[12,12] := {53} tii[12,13] := {12, 27} tii[12,14] := {6, 18} tii[12,15] := {31} tii[12,16] := {14} tii[12,17] := {41} tii[12,18] := {1, 11} tii[12,19] := {35} tii[12,20] := {26} tii[12,21] := {8} tii[12,22] := {45} tii[12,23] := {10} tii[12,24] := {50} tii[12,25] := {32} tii[12,26] := {24} tii[12,27] := {42} tii[12,28] := {16} tii[12,29] := {48} tii[12,30] := {52} tii[12,31] := {22, 38} tii[12,32] := {34} tii[12,33] := {7, 20} tii[12,34] := {40} tii[12,35] := {15} tii[12,36] := {19} tii[12,37] := {0, 5} tii[12,38] := {33} tii[12,39] := {2} tii[12,40] := {28} tii[12,41] := {4} tii[12,42] := {3} tii[12,43] := {23} tii[12,44] := {17} tii[12,45] := {9} cell#69 , |C| = 54 special orbit = [4, 4, 1, 1, 1, 1] special rep = [[2], [2, 1, 1]] , dim = 45 cell rep = phi[[2, 2, 1, 1],[]]+phi[[2],[2, 1, 1]] TII depth = 3 TII multiplicity polynomial = 9*X^2+36*X TII subcells: tii[12,1] := {30, 44} tii[12,2] := {46} tii[12,3] := {51} tii[12,4] := {21, 37} tii[12,5] := {13, 29} tii[12,6] := {39} tii[12,7] := {25} tii[12,8] := {47} tii[12,9] := {43} tii[12,10] := {36} tii[12,11] := {49} tii[12,12] := {53} tii[12,13] := {12, 27} tii[12,14] := {6, 18} tii[12,15] := {31} tii[12,16] := {14} tii[12,17] := {41} tii[12,18] := {1, 11} tii[12,19] := {35} tii[12,20] := {26} tii[12,21] := {8} tii[12,22] := {45} tii[12,23] := {10} tii[12,24] := {50} tii[12,25] := {32} tii[12,26] := {24} tii[12,27] := {42} tii[12,28] := {16} tii[12,29] := {48} tii[12,30] := {52} tii[12,31] := {22, 38} tii[12,32] := {34} tii[12,33] := {7, 20} tii[12,34] := {40} tii[12,35] := {15} tii[12,36] := {19} tii[12,37] := {0, 5} tii[12,38] := {33} tii[12,39] := {2} tii[12,40] := {28} tii[12,41] := {4} tii[12,42] := {3} tii[12,43] := {23} tii[12,44] := {17} tii[12,45] := {9} cell#70 , |C| = 64 special orbit = [4, 2, 2, 2, 1, 1] special rep = [[2, 1], [1, 1, 1]] , dim = 40 cell rep = phi[[2, 1, 1, 1],[1]]+phi[[2, 1],[1, 1, 1]] TII depth = 2 TII multiplicity polynomial = 16*X+24*X^2 TII subcells: tii[10,1] := {12, 62} tii[10,2] := {11, 47} tii[10,3] := {19, 59} tii[10,4] := {18, 36} tii[10,5] := {29, 53} tii[10,6] := {40} tii[10,7] := {27, 49} tii[10,8] := {41} tii[10,9] := {24, 63} tii[10,10] := {10, 26} tii[10,11] := {34, 56} tii[10,12] := {46} tii[10,13] := {44, 61} tii[10,14] := {16, 38} tii[10,15] := {31} tii[10,16] := {54} tii[10,17] := {60} tii[10,18] := {28, 51} tii[10,19] := {42} tii[10,20] := {50} tii[10,21] := {0, 23} tii[10,22] := {8, 55} tii[10,23] := {1, 33} tii[10,24] := {4, 45} tii[10,25] := {3, 22} tii[10,26] := {17, 43} tii[10,27] := {7, 35} tii[10,28] := {30} tii[10,29] := {20} tii[10,30] := {39, 58} tii[10,31] := {5, 14} tii[10,32] := {52} tii[10,33] := {13, 25} tii[10,34] := {57} tii[10,35] := {32} tii[10,36] := {48} tii[10,37] := {2, 9} tii[10,38] := {6, 15} tii[10,39] := {21} tii[10,40] := {37} cell#71 , |C| = 64 special orbit = [4, 2, 2, 2, 1, 1] special rep = [[2, 1], [1, 1, 1]] , dim = 40 cell rep = phi[[2, 1, 1, 1],[1]]+phi[[2, 1],[1, 1, 1]] TII depth = 2 TII multiplicity polynomial = 16*X+24*X^2 TII subcells: tii[10,1] := {46, 61} tii[10,2] := {28, 51} tii[10,3] := {55, 63} tii[10,4] := {15, 41} tii[10,5] := {49, 60} tii[10,6] := {57} tii[10,7] := {26, 47} tii[10,8] := {37} tii[10,9] := {50, 62} tii[10,10] := {5, 29} tii[10,11] := {45, 58} tii[10,12] := {53} tii[10,13] := {34, 52} tii[10,14] := {13, 36} tii[10,15] := {22} tii[10,16] := {43} tii[10,17] := {33} tii[10,18] := {10, 30} tii[10,19] := {17} tii[10,20] := {7} tii[10,21] := {24, 25} tii[10,22] := {35, 59} tii[10,23] := {12, 40} tii[10,24] := {21, 54} tii[10,25] := {9, 27} tii[10,26] := {39, 56} tii[10,27] := {16, 44} tii[10,28] := {48} tii[10,29] := {38} tii[10,30] := {20, 42} tii[10,31] := {3, 14} tii[10,32] := {31} tii[10,33] := {6, 32} tii[10,34] := {19} tii[10,35] := {23} tii[10,36] := {8} tii[10,37] := {0, 4} tii[10,38] := {1, 18} tii[10,39] := {11} tii[10,40] := {2} cell#72 , |C| = 75 special orbit = [3, 3, 2, 2, 1, 1] special rep = [[1, 1], [2, 1, 1]] , dim = 45 cell rep = phi[[1, 1],[2, 1, 1]]+phi[[1],[2, 2, 1]] TII depth = 2 TII multiplicity polynomial = 30*X^2+15*X TII subcells: tii[6,1] := {48} tii[6,2] := {64} tii[6,3] := {44, 45} tii[6,4] := {58, 59} tii[6,5] := {68} tii[6,6] := {73, 74} tii[6,7] := {57} tii[6,8] := {34, 35} tii[6,9] := {51, 52} tii[6,10] := {19, 20} tii[6,11] := {65} tii[6,12] := {14, 15} tii[6,13] := {71, 72} tii[6,14] := {37, 38} tii[6,15] := {53, 54} tii[6,16] := {49} tii[6,17] := {62, 63} tii[6,18] := {55, 56} tii[6,19] := {11} tii[6,20] := {23} tii[6,21] := {18} tii[6,22] := {29, 30} tii[6,23] := {36} tii[6,24] := {46, 47} tii[6,25] := {16, 17} tii[6,26] := {60, 61} tii[6,27] := {12, 13} tii[6,28] := {33} tii[6,29] := {31, 32} tii[6,30] := {5, 6} tii[6,31] := {50} tii[6,32] := {24, 25} tii[6,33] := {39, 40} tii[6,34] := {69, 70} tii[6,35] := {2, 3} tii[6,36] := {26, 27} tii[6,37] := {28} tii[6,38] := {21, 22} tii[6,39] := {43} tii[6,40] := {7, 8} tii[6,41] := {66, 67} tii[6,42] := {41, 42} tii[6,43] := {4} tii[6,44] := {9, 10} tii[6,45] := {0, 1} cell#73 , |C| = 35 special orbit = [2, 2, 2, 2, 2, 2] special rep = [[1, 1, 1], [1, 1, 1]] , dim = 20 cell rep = phi[[1, 1, 1, 1],[1, 1]]+phi[[1, 1, 1],[1, 1, 1]] TII depth = 2 TII multiplicity polynomial = 15*X^2+5*X TII subcells: tii[4,1] := {11, 34} tii[4,2] := {16, 33} tii[4,3] := {19, 30} tii[4,4] := {26} tii[4,5] := {2, 18} tii[4,6] := {8, 32} tii[4,7] := {3, 22} tii[4,8] := {6, 28} tii[4,9] := {15, 25} tii[4,10] := {5, 27} tii[4,11] := {20} tii[4,12] := {9, 31} tii[4,13] := {17} tii[4,14] := {7, 23} tii[4,15] := {12, 29} tii[4,16] := {21} tii[4,17] := {0, 10} tii[4,18] := {1, 14} tii[4,19] := {4, 24} tii[4,20] := {13} cell#74 , |C| = 64 special orbit = [4, 2, 2, 2, 1, 1] special rep = [[2, 1], [1, 1, 1]] , dim = 40 cell rep = phi[[2, 1, 1, 1],[1]]+phi[[2, 1],[1, 1, 1]] TII depth = 2 TII multiplicity polynomial = 16*X+24*X^2 TII subcells: tii[10,1] := {12, 62} tii[10,2] := {11, 47} tii[10,3] := {19, 59} tii[10,4] := {18, 36} tii[10,5] := {29, 53} tii[10,6] := {40} tii[10,7] := {27, 49} tii[10,8] := {41} tii[10,9] := {24, 63} tii[10,10] := {10, 26} tii[10,11] := {34, 56} tii[10,12] := {46} tii[10,13] := {44, 61} tii[10,14] := {16, 38} tii[10,15] := {31} tii[10,16] := {54} tii[10,17] := {60} tii[10,18] := {28, 51} tii[10,19] := {42} tii[10,20] := {50} tii[10,21] := {0, 23} tii[10,22] := {8, 55} tii[10,23] := {1, 33} tii[10,24] := {4, 45} tii[10,25] := {3, 22} tii[10,26] := {17, 43} tii[10,27] := {7, 35} tii[10,28] := {30} tii[10,29] := {20} tii[10,30] := {39, 58} tii[10,31] := {5, 14} tii[10,32] := {52} tii[10,33] := {13, 25} tii[10,34] := {57} tii[10,35] := {32} tii[10,36] := {48} tii[10,37] := {2, 9} tii[10,38] := {6, 15} tii[10,39] := {21} tii[10,40] := {37} cell#75 , |C| = 35 special orbit = [2, 2, 2, 2, 2, 2] special rep = [[1, 1, 1], [1, 1, 1]] , dim = 20 cell rep = phi[[1, 1, 1, 1],[1, 1]]+phi[[1, 1, 1],[1, 1, 1]] TII depth = 2 TII multiplicity polynomial = 15*X^2+5*X TII subcells: tii[4,1] := {11, 34} tii[4,2] := {16, 33} tii[4,3] := {19, 30} tii[4,4] := {26} tii[4,5] := {2, 18} tii[4,6] := {8, 32} tii[4,7] := {3, 22} tii[4,8] := {6, 28} tii[4,9] := {15, 25} tii[4,10] := {5, 27} tii[4,11] := {20} tii[4,12] := {9, 31} tii[4,13] := {17} tii[4,14] := {7, 23} tii[4,15] := {12, 29} tii[4,16] := {21} tii[4,17] := {0, 10} tii[4,18] := {1, 14} tii[4,19] := {4, 24} tii[4,20] := {13} cell#76 , |C| = 20 special orbit = [4, 2, 1, 1, 1, 1, 1, 1] special rep = [[2], [1, 1, 1, 1]] , dim = 15 cell rep = phi[[2, 1, 1, 1, 1],[]]+phi[[2],[1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 5*X^2+10*X TII subcells: tii[9,1] := {15, 19} tii[9,2] := {14, 18} tii[9,3] := {17} tii[9,4] := {11, 16} tii[9,5] := {13} tii[9,6] := {10} tii[9,7] := {7, 12} tii[9,8] := {9} tii[9,9] := {6} tii[9,10] := {3} tii[9,11] := {4, 8} tii[9,12] := {5} tii[9,13] := {2} tii[9,14] := {1} tii[9,15] := {0} cell#77 , |C| = 35 special orbit = [2, 2, 2, 2, 2, 2] special rep = [[1, 1, 1], [1, 1, 1]] , dim = 20 cell rep = phi[[1, 1, 1, 1],[1, 1]]+phi[[1, 1, 1],[1, 1, 1]] TII depth = 2 TII multiplicity polynomial = 15*X^2+5*X TII subcells: tii[4,1] := {18, 30} tii[4,2] := {21, 32} tii[4,3] := {27, 34} tii[4,4] := {31} tii[4,5] := {3, 7} tii[4,6] := {12, 24} tii[4,7] := {6, 11} tii[4,8] := {8, 19} tii[4,9] := {23, 33} tii[4,10] := {9, 17} tii[4,11] := {28} tii[4,12] := {13, 25} tii[4,13] := {22} tii[4,14] := {10, 20} tii[4,15] := {15, 29} tii[4,16] := {26} tii[4,17] := {0, 2} tii[4,18] := {1, 4} tii[4,19] := {5, 14} tii[4,20] := {16} cell#78 , |C| = 21 special orbit = [2, 2, 2, 2, 1, 1, 1, 1] special rep = [[1, 1], [1, 1, 1, 1]] , dim = 15 cell rep = phi[[1, 1, 1, 1, 1],[1]]+phi[[1, 1],[1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 6*X^2+9*X TII subcells: tii[3,1] := {10, 20} tii[3,2] := {14, 18} tii[3,3] := {16} tii[3,4] := {9, 15} tii[3,5] := {12} tii[3,6] := {8} tii[3,7] := {5, 11} tii[3,8] := {7} tii[3,9] := {3} tii[3,10] := {1} tii[3,11] := {2, 17} tii[3,12] := {6, 19} tii[3,13] := {13} tii[3,14] := {4} tii[3,15] := {0} cell#79 , |C| = 24 special orbit = [3, 3, 1, 1, 1, 1, 1, 1] special rep = [[1], [2, 1, 1, 1]] , dim = 24 cell rep = phi[[1],[2, 1, 1, 1]] TII depth = 4 TII multiplicity polynomial = 24*X TII subcells: tii[5,1] := {16} tii[5,2] := {20} tii[5,3] := {12} tii[5,4] := {10} tii[5,5] := {17} tii[5,6] := {21} tii[5,7] := {9} tii[5,8] := {7} tii[5,9] := {14} tii[5,10] := {5} tii[5,11] := {18} tii[5,12] := {22} tii[5,13] := {6} tii[5,14] := {4} tii[5,15] := {11} tii[5,16] := {2} tii[5,17] := {15} tii[5,18] := {1} tii[5,19] := {19} tii[5,20] := {23} tii[5,21] := {13} tii[5,22] := {8} tii[5,23] := {3} tii[5,24] := {0} cell#80 , |C| = 24 special orbit = [3, 3, 1, 1, 1, 1, 1, 1] special rep = [[1], [2, 1, 1, 1]] , dim = 24 cell rep = phi[[1],[2, 1, 1, 1]] TII depth = 4 TII multiplicity polynomial = 24*X TII subcells: tii[5,1] := {16} tii[5,2] := {20} tii[5,3] := {12} tii[5,4] := {10} tii[5,5] := {17} tii[5,6] := {21} tii[5,7] := {9} tii[5,8] := {7} tii[5,9] := {14} tii[5,10] := {5} tii[5,11] := {18} tii[5,12] := {22} tii[5,13] := {6} tii[5,14] := {4} tii[5,15] := {11} tii[5,16] := {2} tii[5,17] := {15} tii[5,18] := {1} tii[5,19] := {19} tii[5,20] := {23} tii[5,21] := {13} tii[5,22] := {8} tii[5,23] := {3} tii[5,24] := {0} cell#81 , |C| = 20 special orbit = [4, 2, 1, 1, 1, 1, 1, 1] special rep = [[2], [1, 1, 1, 1]] , dim = 15 cell rep = phi[[2, 1, 1, 1, 1],[]]+phi[[2],[1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 5*X^2+10*X TII subcells: tii[9,1] := {13, 19} tii[9,2] := {16, 17} tii[9,3] := {18} tii[9,4] := {11, 12} tii[9,5] := {15} tii[9,6] := {14} tii[9,7] := {6, 7} tii[9,8] := {10} tii[9,9] := {8} tii[9,10] := {9} tii[9,11] := {0, 1} tii[9,12] := {5} tii[9,13] := {2} tii[9,14] := {4} tii[9,15] := {3} cell#82 , |C| = 21 special orbit = [2, 2, 2, 2, 1, 1, 1, 1] special rep = [[1, 1], [1, 1, 1, 1]] , dim = 15 cell rep = phi[[1, 1, 1, 1, 1],[1]]+phi[[1, 1],[1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 6*X^2+9*X TII subcells: tii[3,1] := {4, 20} tii[3,2] := {8, 17} tii[3,3] := {13} tii[3,4] := {11, 19} tii[3,5] := {15} tii[3,6] := {10} tii[3,7] := {9, 18} tii[3,8] := {14} tii[3,9] := {6} tii[3,10] := {3} tii[3,11] := {0, 12} tii[3,12] := {2, 16} tii[3,13] := {7} tii[3,14] := {5} tii[3,15] := {1} cell#83 , |C| = 21 special orbit = [2, 2, 2, 2, 1, 1, 1, 1] special rep = [[1, 1], [1, 1, 1, 1]] , dim = 15 cell rep = phi[[1, 1, 1, 1, 1],[1]]+phi[[1, 1],[1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 6*X^2+9*X TII subcells: tii[3,1] := {2, 19} tii[3,2] := {3, 15} tii[3,3] := {9} tii[3,4] := {8, 20} tii[3,5] := {13} tii[3,6] := {18} tii[3,7] := {4, 17} tii[3,8] := {10} tii[3,9] := {16} tii[3,10] := {11} tii[3,11] := {0, 7} tii[3,12] := {1, 12} tii[3,13] := {5} tii[3,14] := {14} tii[3,15] := {6} cell#84 , |C| = 21 special orbit = [2, 2, 2, 2, 1, 1, 1, 1] special rep = [[1, 1], [1, 1, 1, 1]] , dim = 15 cell rep = phi[[1, 1, 1, 1, 1],[1]]+phi[[1, 1],[1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 6*X^2+9*X TII subcells: tii[3,1] := {2, 19} tii[3,2] := {3, 15} tii[3,3] := {9} tii[3,4] := {8, 20} tii[3,5] := {13} tii[3,6] := {18} tii[3,7] := {4, 17} tii[3,8] := {10} tii[3,9] := {16} tii[3,10] := {11} tii[3,11] := {0, 7} tii[3,12] := {1, 12} tii[3,13] := {5} tii[3,14] := {14} tii[3,15] := {6} cell#85 , |C| = 24 special orbit = [2, 2, 2, 2, 1, 1, 1, 1] special rep = [[1, 1], [1, 1, 1, 1]] , dim = 15 cell rep = phi[[1, 1],[1, 1, 1, 1]]+phi[[],[2, 2, 1, 1]] TII depth = 1 TII multiplicity polynomial = 9*X^2+6*X TII subcells: tii[3,1] := {4} tii[3,2] := {8} tii[3,3] := {19, 22} tii[3,4] := {5} tii[3,5] := {15, 17} tii[3,6] := {6, 7} tii[3,7] := {9} tii[3,8] := {20, 23} tii[3,9] := {11, 13} tii[3,10] := {18, 21} tii[3,11] := {0} tii[3,12] := {1} tii[3,13] := {10, 12} tii[3,14] := {2, 3} tii[3,15] := {14, 16} cell#86 , |C| = 7 special orbit = [2, 2, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [1, 1, 1, 1, 1]] , dim = 6 cell rep = phi[[1, 1, 1, 1, 1, 1],[]]+phi[[1],[1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = X^2+5*X TII subcells: tii[2,1] := {4, 6} tii[2,2] := {5} tii[2,3] := {3} tii[2,4] := {2} tii[2,5] := {1} tii[2,6] := {0} cell#87 , |C| = 7 special orbit = [2, 2, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [1, 1, 1, 1, 1]] , dim = 6 cell rep = phi[[1, 1, 1, 1, 1, 1],[]]+phi[[1],[1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = X^2+5*X TII subcells: tii[2,1] := {0, 6} tii[2,2] := {1} tii[2,3] := {5} tii[2,4] := {2} tii[2,5] := {4} tii[2,6] := {3} cell#88 , |C| = 7 special orbit = [2, 2, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [1, 1, 1, 1, 1]] , dim = 6 cell rep = phi[[1, 1, 1, 1, 1, 1],[]]+phi[[1],[1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = X^2+5*X TII subcells: tii[2,1] := {0, 6} tii[2,2] := {1} tii[2,3] := {5} tii[2,4] := {2} tii[2,5] := {4} tii[2,6] := {3} cell#89 , |C| = 1 special orbit = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [1, 1, 1, 1, 1, 1]] , dim = 1 cell rep = phi[[],[1, 1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = X TII subcells: tii[1,1] := {0} cell#90 , |C| = 1 special orbit = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [1, 1, 1, 1, 1, 1]] , dim = 1 cell rep = phi[[],[1, 1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = X TII subcells: tii[1,1] := {0}