TII subcells for the PSp(12,R) x Spin(8,5) block of PSp12 # cell#0 , |C| = 1 special orbit = [12] special rep = [[6], []] , dim = 1 cell rep = phi[[6],[]] TII depth = 1 TII multiplicity polynomial = X TII subcells: tii[26,1] := {0} cell#1 , |C| = 11 special orbit = [10, 2] special rep = [[5], [1]] , dim = 6 cell rep = phi[[5, 1],[]]+phi[[5],[1]] TII depth = 1 TII multiplicity polynomial = 5*X^2+X TII subcells: tii[25,1] := {2, 10} tii[25,2] := {0, 9} tii[25,3] := {3, 8} tii[25,4] := {1, 7} tii[25,5] := {4, 5} tii[25,6] := {6} cell#2 , |C| = 11 special orbit = [10, 2] special rep = [[5], [1]] , dim = 6 cell rep = phi[[5, 1],[]]+phi[[5],[1]] TII depth = 1 TII multiplicity polynomial = 5*X^2+X TII subcells: tii[25,1] := {1, 10} tii[25,2] := {2, 9} tii[25,3] := {0, 8} tii[25,4] := {3, 7} tii[25,5] := {4, 6} tii[25,6] := {5} cell#3 , |C| = 24 special orbit = [8, 4] special rep = [[4], [2]] , dim = 15 cell rep = phi[[4, 2],[]]+phi[[4],[2]] TII depth = 1 TII multiplicity polynomial = 9*X^2+6*X TII subcells: tii[24,1] := {1, 22} tii[24,2] := {6, 19} tii[24,3] := {11, 21} tii[24,4] := {20} tii[24,5] := {23} tii[24,6] := {0, 18} tii[24,7] := {2, 14} tii[24,8] := {4, 10} tii[24,9] := {7} tii[24,10] := {3, 15} tii[24,11] := {5, 13} tii[24,12] := {9} tii[24,13] := {8, 17} tii[24,14] := {12} tii[24,15] := {16} cell#4 , |C| = 24 special orbit = [8, 4] special rep = [[4], [2]] , dim = 15 cell rep = phi[[4, 2],[]]+phi[[4],[2]] TII depth = 1 TII multiplicity polynomial = 9*X^2+6*X TII subcells: tii[24,1] := {12, 22} tii[24,2] := {2, 18} tii[24,3] := {15, 16} tii[24,4] := {21} tii[24,5] := {23} tii[24,6] := {5, 20} tii[24,7] := {1, 17} tii[24,8] := {6, 7} tii[24,9] := {13} tii[24,10] := {0, 11} tii[24,11] := {3, 4} tii[24,12] := {10} tii[24,13] := {8, 9} tii[24,14] := {14} tii[24,15] := {19} cell#5 , |C| = 24 special orbit = [8, 2, 2] special rep = [[4, 1], [1]] , dim = 24 cell rep = phi[[4, 1],[1]] TII depth = 4 TII multiplicity polynomial = 24*X TII subcells: tii[23,1] := {23} tii[23,2] := {19} tii[23,3] := {21} tii[23,4] := {20} tii[23,5] := {5} tii[23,6] := {22} tii[23,7] := {1} tii[23,8] := {18} tii[23,9] := {3} tii[23,10] := {14} tii[23,11] := {7} tii[23,12] := {10} tii[23,13] := {0} tii[23,14] := {2} tii[23,15] := {15} tii[23,16] := {4} tii[23,17] := {13} tii[23,18] := {9} tii[23,19] := {6} tii[23,20] := {8} tii[23,21] := {17} tii[23,22] := {12} tii[23,23] := {11} tii[23,24] := {16} cell#6 , |C| = 24 special orbit = [8, 2, 2] special rep = [[4, 1], [1]] , dim = 24 cell rep = phi[[4, 1],[1]] TII depth = 4 TII multiplicity polynomial = 24*X TII subcells: tii[23,1] := {23} tii[23,2] := {20} tii[23,3] := {15} tii[23,4] := {4} tii[23,5] := {13} tii[23,6] := {22} tii[23,7] := {11} tii[23,8] := {21} tii[23,9] := {14} tii[23,10] := {19} tii[23,11] := {12} tii[23,12] := {17} tii[23,13] := {6} tii[23,14] := {8} tii[23,15] := {18} tii[23,16] := {7} tii[23,17] := {16} tii[23,18] := {10} tii[23,19] := {3} tii[23,20] := {2} tii[23,21] := {9} tii[23,22] := {5} tii[23,23] := {0} tii[23,24] := {1} cell#7 , |C| = 24 special orbit = [8, 2, 2] special rep = [[4, 1], [1]] , dim = 24 cell rep = phi[[4, 1],[1]] TII depth = 4 TII multiplicity polynomial = 24*X TII subcells: tii[23,1] := {23} tii[23,2] := {20} tii[23,3] := {15} tii[23,4] := {14} tii[23,5] := {0} tii[23,6] := {22} tii[23,7] := {4} tii[23,8] := {21} tii[23,9] := {8} tii[23,10] := {19} tii[23,11] := {10} tii[23,12] := {16} tii[23,13] := {1} tii[23,14] := {5} tii[23,15] := {18} tii[23,16] := {7} tii[23,17] := {17} tii[23,18] := {12} tii[23,19] := {2} tii[23,20] := {3} tii[23,21] := {13} tii[23,22] := {9} tii[23,23] := {6} tii[23,24] := {11} cell#8 , |C| = 35 special orbit = [6, 6] special rep = [[3], [3]] , dim = 20 cell rep = phi[[3],[3]]+phi[[2],[4]] TII depth = 2 TII multiplicity polynomial = 15*X^2+5*X TII subcells: tii[21,1] := {14} tii[21,2] := {25, 26} tii[21,3] := {31, 32} tii[21,4] := {33, 34} tii[21,5] := {3} tii[21,6] := {10, 11} tii[21,7] := {19, 20} tii[21,8] := {9} tii[21,9] := {4} tii[21,10] := {15, 16} tii[21,11] := {7, 8} tii[21,12] := {23, 24} tii[21,13] := {21, 22} tii[21,14] := {27, 28} tii[21,15] := {17, 18} tii[21,16] := {29, 30} tii[21,17] := {0} tii[21,18] := {1, 2} tii[21,19] := {5, 6} tii[21,20] := {12, 13} cell#9 , |C| = 75 special orbit = [6, 4, 2] special rep = [[3, 1], [2]] , dim = 45 cell rep = phi[[3, 2],[1]]+phi[[3, 1],[2]] TII depth = 3 TII multiplicity polynomial = 30*X^2+15*X TII subcells: tii[20,1] := {23, 74} tii[20,2] := {50, 67} tii[20,3] := {70} tii[20,4] := {18, 35} tii[20,5] := {38, 39} tii[20,6] := {9, 71} tii[20,7] := {30, 64} tii[20,8] := {52} tii[20,9] := {61} tii[20,10] := {7, 45} tii[20,11] := {12, 73} tii[20,12] := {1, 54} tii[20,13] := {25, 26} tii[20,14] := {4, 72} tii[20,15] := {5, 62} tii[20,16] := {31, 56} tii[20,17] := {41} tii[20,18] := {11, 69} tii[20,19] := {53} tii[20,20] := {36, 37} tii[20,21] := {42, 63} tii[20,22] := {24, 47} tii[20,23] := {51} tii[20,24] := {32, 57} tii[20,25] := {60} tii[20,26] := {59} tii[20,27] := {66} tii[20,28] := {6, 27} tii[20,29] := {14, 15} tii[20,30] := {21} tii[20,31] := {0, 46} tii[20,32] := {3, 55} tii[20,33] := {2, 68} tii[20,34] := {28, 29} tii[20,35] := {8, 65} tii[20,36] := {34} tii[20,37] := {10, 48} tii[20,38] := {44} tii[20,39] := {19, 58} tii[20,40] := {16, 17} tii[20,41] := {22} tii[20,42] := {13, 40} tii[20,43] := {33} tii[20,44] := {20, 49} tii[20,45] := {43} cell#10 , |C| = 24 special orbit = [8, 2, 2] special rep = [[4, 1], [1]] , dim = 24 cell rep = phi[[4, 1],[1]] TII depth = 4 TII multiplicity polynomial = 24*X TII subcells: tii[23,1] := {23} tii[23,2] := {21} tii[23,3] := {14} tii[23,4] := {22} tii[23,5] := {2} tii[23,6] := {20} tii[23,7] := {4} tii[23,8] := {15} tii[23,9] := {1} tii[23,10] := {6} tii[23,11] := {8} tii[23,12] := {13} tii[23,13] := {11} tii[23,14] := {3} tii[23,15] := {18} tii[23,16] := {10} tii[23,17] := {9} tii[23,18] := {17} tii[23,19] := {0} tii[23,20] := {7} tii[23,21] := {5} tii[23,22] := {12} tii[23,23] := {16} tii[23,24] := {19} cell#11 , |C| = 75 special orbit = [6, 4, 2] special rep = [[3, 1], [2]] , dim = 45 cell rep = phi[[3, 2],[1]]+phi[[3, 1],[2]] TII depth = 3 TII multiplicity polynomial = 30*X^2+15*X TII subcells: tii[20,1] := {69, 71} tii[20,2] := {60, 73} tii[20,3] := {74} tii[20,4] := {1, 21} tii[20,5] := {12, 13} tii[20,6] := {53, 57} tii[20,7] := {31, 56} tii[20,8] := {36} tii[20,9] := {52} tii[20,10] := {6, 35} tii[20,11] := {63, 65} tii[20,12] := {18, 40} tii[20,13] := {27, 28} tii[20,14] := {55, 59} tii[20,15] := {30, 34} tii[20,16] := {37, 64} tii[20,17] := {49} tii[20,18] := {45, 47} tii[20,19] := {62} tii[20,20] := {41, 42} tii[20,21] := {50, 70} tii[20,22] := {25, 54} tii[20,23] := {61} tii[20,24] := {38, 66} tii[20,25] := {68} tii[20,26] := {67} tii[20,27] := {72} tii[20,28] := {0, 10} tii[20,29] := {2, 3} tii[20,30] := {8} tii[20,31] := {7, 26} tii[20,32] := {15, 20} tii[20,33] := {44, 48} tii[20,34] := {4, 5} tii[20,35] := {32, 33} tii[20,36] := {11} tii[20,37] := {9, 29} tii[20,38] := {22} tii[20,39] := {19, 46} tii[20,40] := {16, 17} tii[20,41] := {24} tii[20,42] := {14, 43} tii[20,43] := {39} tii[20,44] := {23, 58} tii[20,45] := {51} cell#12 , |C| = 25 special orbit = [8, 2, 1, 1] special rep = [[4], [1, 1]] , dim = 15 cell rep = phi[[4, 1, 1],[]]+phi[[4],[1, 1]] TII depth = 1 TII multiplicity polynomial = 10*X^2+5*X TII subcells: tii[22,1] := {11, 24} tii[22,2] := {13, 23} tii[22,3] := {10, 22} tii[22,4] := {14, 20} tii[22,5] := {18} tii[22,6] := {7, 21} tii[22,7] := {4, 19} tii[22,8] := {8, 17} tii[22,9] := {15} tii[22,10] := {1, 16} tii[22,11] := {2, 12} tii[22,12] := {9} tii[22,13] := {0, 6} tii[22,14] := {3} tii[22,15] := {5} cell#13 , |C| = 75 special orbit = [6, 4, 2] special rep = [[3, 1], [2]] , dim = 45 cell rep = phi[[3, 2],[1]]+phi[[3, 1],[2]] TII depth = 3 TII multiplicity polynomial = 30*X^2+15*X TII subcells: tii[20,1] := {50, 74} tii[20,2] := {26, 68} tii[20,3] := {49} tii[20,4] := {40, 58} tii[20,5] := {25, 48} tii[20,6] := {31, 71} tii[20,7] := {11, 64} tii[20,8] := {43} tii[20,9] := {54} tii[20,10] := {29, 65} tii[20,11] := {41, 73} tii[20,12] := {19, 62} tii[20,13] := {15, 38} tii[20,14] := {34, 72} tii[20,15] := {14, 66} tii[20,16] := {7, 57} tii[20,17] := {33} tii[20,18] := {22, 70} tii[20,19] := {45} tii[20,20] := {6, 47} tii[20,21] := {16, 63} tii[20,22] := {3, 52} tii[20,23] := {20} tii[20,24] := {8, 60} tii[20,25] := {37} tii[20,26] := {32} tii[20,27] := {46} tii[20,28] := {30, 51} tii[20,29] := {24, 44} tii[20,30] := {35} tii[20,31] := {10, 56} tii[20,32] := {5, 59} tii[20,33] := {21, 69} tii[20,34] := {18, 39} tii[20,35] := {12, 67} tii[20,36] := {28} tii[20,37] := {1, 53} tii[20,38] := {36} tii[20,39] := {4, 61} tii[20,40] := {9, 27} tii[20,41] := {17} tii[20,42] := {0, 42} tii[20,43] := {23} tii[20,44] := {2, 55} tii[20,45] := {13} cell#14 , |C| = 24 special orbit = [8, 2, 2] special rep = [[4, 1], [1]] , dim = 24 cell rep = phi[[4, 1],[1]] TII depth = 4 TII multiplicity polynomial = 24*X TII subcells: tii[23,1] := {23} tii[23,2] := {20} tii[23,3] := {17} tii[23,4] := {11} tii[23,5] := {3} tii[23,6] := {22} tii[23,7] := {6} tii[23,8] := {21} tii[23,9] := {9} tii[23,10] := {18} tii[23,11] := {12} tii[23,12] := {15} tii[23,13] := {1} tii[23,14] := {5} tii[23,15] := {19} tii[23,16] := {8} tii[23,17] := {16} tii[23,18] := {13} tii[23,19] := {0} tii[23,20] := {4} tii[23,21] := {14} tii[23,22] := {10} tii[23,23] := {2} tii[23,24] := {7} cell#15 , |C| = 75 special orbit = [6, 4, 2] special rep = [[3, 1], [2]] , dim = 45 cell rep = phi[[3, 2],[1]]+phi[[3, 1],[2]] TII depth = 3 TII multiplicity polynomial = 30*X^2+15*X TII subcells: tii[20,1] := {44, 74} tii[20,2] := {50, 73} tii[20,3] := {70} tii[20,4] := {4, 30} tii[20,5] := {12, 35} tii[20,6] := {25, 69} tii[20,7] := {23, 62} tii[20,8] := {32} tii[20,9] := {47} tii[20,10] := {9, 40} tii[20,11] := {36, 72} tii[20,12] := {5, 49} tii[20,13] := {21, 46} tii[20,14] := {29, 68} tii[20,15] := {8, 56} tii[20,16] := {33, 67} tii[20,17] := {41} tii[20,18] := {17, 63} tii[20,19] := {54} tii[20,20] := {31, 53} tii[20,21] := {43, 71} tii[20,22] := {22, 59} tii[20,23] := {51} tii[20,24] := {37, 66} tii[20,25] := {60} tii[20,26] := {58} tii[20,27] := {65} tii[20,28] := {0, 20} tii[20,29] := {3, 19} tii[20,30] := {11} tii[20,31] := {1, 39} tii[20,32] := {2, 48} tii[20,33] := {18, 64} tii[20,34] := {7, 28} tii[20,35] := {10, 57} tii[20,36] := {16} tii[20,37] := {6, 42} tii[20,38] := {24} tii[20,39] := {15, 55} tii[20,40] := {14, 38} tii[20,41] := {27} tii[20,42] := {13, 52} tii[20,43] := {34} tii[20,44] := {26, 61} tii[20,45] := {45} cell#16 , |C| = 81 special orbit = [6, 2, 2, 2] special rep = [[3, 1], [1, 1]] , dim = 45 cell rep = phi[[3, 1, 1],[1]]+phi[[3, 1],[1, 1]] TII depth = 3 TII multiplicity polynomial = 36*X^2+9*X TII subcells: tii[18,1] := {36, 80} tii[18,2] := {11, 76} tii[18,3] := {31, 77} tii[18,4] := {49, 78} tii[18,5] := {8, 69} tii[18,6] := {35, 74} tii[18,7] := {26, 72} tii[18,8] := {44, 67} tii[18,9] := {59} tii[18,10] := {18, 58} tii[18,11] := {39, 63} tii[18,12] := {25, 47} tii[18,13] := {40} tii[18,14] := {50, 68} tii[18,15] := {57} tii[18,16] := {16, 61} tii[18,17] := {24, 79} tii[18,18] := {6, 48} tii[18,19] := {14, 75} tii[18,20] := {15, 56} tii[18,21] := {22, 70} tii[18,22] := {1, 41} tii[18,23] := {23, 66} tii[18,24] := {30, 55} tii[18,25] := {5, 51} tii[18,26] := {4, 71} tii[18,27] := {45} tii[18,28] := {10, 65} tii[18,29] := {12, 62} tii[18,30] := {20, 43} tii[18,31] := {32} tii[18,32] := {21, 73} tii[18,33] := {42} tii[18,34] := {0, 29} tii[18,35] := {2, 60} tii[18,36] := {3, 37} tii[18,37] := {7, 54} tii[18,38] := {9, 52} tii[18,39] := {13, 34} tii[18,40] := {17, 64} tii[18,41] := {28} tii[18,42] := {33} tii[18,43] := {19, 38} tii[18,44] := {27, 53} tii[18,45] := {46} cell#17 , |C| = 81 special orbit = [6, 2, 2, 2] special rep = [[3, 1], [1, 1]] , dim = 45 cell rep = phi[[3, 1, 1],[1]]+phi[[3, 1],[1, 1]] TII depth = 3 TII multiplicity polynomial = 36*X^2+9*X TII subcells: tii[18,1] := {16, 59} tii[18,2] := {19, 75} tii[18,3] := {18, 80} tii[18,4] := {24, 45} tii[18,5] := {29, 67} tii[18,6] := {33, 34} tii[18,7] := {26, 78} tii[18,8] := {43, 44} tii[18,9] := {54} tii[18,10] := {41, 63} tii[18,11] := {38, 77} tii[18,12] := {52, 53} tii[18,13] := {62} tii[18,14] := {51, 71} tii[18,15] := {61} tii[18,16] := {0, 35} tii[18,17] := {11, 47} tii[18,18] := {1, 48} tii[18,19] := {10, 57} tii[18,20] := {2, 58} tii[18,21] := {6, 66} tii[18,22] := {3, 60} tii[18,23] := {22, 23} tii[18,24] := {31, 32} tii[18,25] := {4, 70} tii[18,26] := {15, 69} tii[18,27] := {42} tii[18,28] := {9, 74} tii[18,29] := {7, 76} tii[18,30] := {27, 28} tii[18,31] := {37} tii[18,32] := {13, 79} tii[18,33] := {25} tii[18,34] := {5, 46} tii[18,35] := {21, 55} tii[18,36] := {8, 56} tii[18,37] := {14, 65} tii[18,38] := {12, 68} tii[18,39] := {39, 40} tii[18,40] := {20, 73} tii[18,41] := {50} tii[18,42] := {36} tii[18,43] := {17, 64} tii[18,44] := {30, 72} tii[18,45] := {49} cell#18 , |C| = 30 special orbit = [4, 4, 4] special rep = [[2, 2], [2]] , dim = 30 cell rep = phi[[2, 2],[2]] TII depth = 3 TII multiplicity polynomial = 30*X TII subcells: tii[14,1] := {29} tii[14,2] := {13} tii[14,3] := {23} tii[14,4] := {8} tii[14,5] := {18} tii[14,6] := {26} tii[14,7] := {16} tii[14,8] := {20} tii[14,9] := {22} tii[14,10] := {28} tii[14,11] := {24} tii[14,12] := {27} tii[14,13] := {4} tii[14,14] := {3} tii[14,15] := {9} tii[14,16] := {2} tii[14,17] := {11} tii[14,18] := {5} tii[14,19] := {17} tii[14,20] := {15} tii[14,21] := {21} tii[14,22] := {6} tii[14,23] := {14} tii[14,24] := {10} tii[14,25] := {19} tii[14,26] := {12} tii[14,27] := {25} tii[14,28] := {0} tii[14,29] := {1} tii[14,30] := {7} cell#19 , |C| = 45 special orbit = [4, 2, 2, 2, 2] special rep = [[2, 1, 1], [1, 1]] , dim = 45 cell rep = phi[[2, 1, 1],[1, 1]] TII depth = 3 TII multiplicity polynomial = 45*X TII subcells: tii[11,1] := {39} tii[11,2] := {41} tii[11,3] := {44} tii[11,4] := {4} tii[11,5] := {11} tii[11,6] := {31} tii[11,7] := {8} tii[11,8] := {35} tii[11,9] := {20} tii[11,10] := {24} tii[11,11] := {10} tii[11,12] := {22} tii[11,13] := {37} tii[11,14] := {25} tii[11,15] := {30} tii[11,16] := {14} tii[11,17] := {27} tii[11,18] := {33} tii[11,19] := {18} tii[11,20] := {29} tii[11,21] := {26} tii[11,22] := {42} tii[11,23] := {34} tii[11,24] := {38} tii[11,25] := {36} tii[11,26] := {40} tii[11,27] := {43} tii[11,28] := {0} tii[11,29] := {1} tii[11,30] := {2} tii[11,31] := {3} tii[11,32] := {5} tii[11,33] := {17} tii[11,34] := {6} tii[11,35] := {7} tii[11,36] := {13} tii[11,37] := {16} tii[11,38] := {19} tii[11,39] := {9} tii[11,40] := {28} tii[11,41] := {12} tii[11,42] := {23} tii[11,43] := {15} tii[11,44] := {21} tii[11,45] := {32} cell#20 , |C| = 56 special orbit = [6, 4, 1, 1] special rep = [[3], [2, 1]] , dim = 40 cell rep = phi[[3, 2, 1],[]]+phi[[3],[2, 1]] TII depth = 2 TII multiplicity polynomial = 16*X^2+24*X TII subcells: tii[19,1] := {20, 52} tii[19,2] := {35, 49} tii[19,3] := {51} tii[19,4] := {55} tii[19,5] := {10, 45} tii[19,6] := {25, 42} tii[19,7] := {5, 38} tii[19,8] := {11, 30} tii[19,9] := {44} tii[19,10] := {22} tii[19,11] := {53} tii[19,12] := {16, 33} tii[19,13] := {6, 24} tii[19,14] := {36} tii[19,15] := {18} tii[19,16] := {48} tii[19,17] := {41} tii[19,18] := {32} tii[19,19] := {50} tii[19,20] := {54} tii[19,21] := {13, 47} tii[19,22] := {21, 40} tii[19,23] := {31} tii[19,24] := {1, 28} tii[19,25] := {3, 19} tii[19,26] := {26, 43} tii[19,27] := {12} tii[19,28] := {39} tii[19,29] := {0, 9} tii[19,30] := {46} tii[19,31] := {4} tii[19,32] := {8} tii[19,33] := {17, 34} tii[19,34] := {29} tii[19,35] := {2, 15} tii[19,36] := {37} tii[19,37] := {7} tii[19,38] := {14} tii[19,39] := {27} tii[19,40] := {23} cell#21 , |C| = 81 special orbit = [6, 2, 2, 2] special rep = [[3, 1], [1, 1]] , dim = 45 cell rep = phi[[3, 1, 1],[1]]+phi[[3, 1],[1, 1]] TII depth = 3 TII multiplicity polynomial = 36*X^2+9*X TII subcells: tii[18,1] := {29, 80} tii[18,2] := {27, 75} tii[18,3] := {25, 65} tii[18,4] := {40, 79} tii[18,5] := {17, 70} tii[18,6] := {48, 77} tii[18,7] := {16, 57} tii[18,8] := {59, 74} tii[18,9] := {68} tii[18,10] := {26, 67} tii[18,11] := {24, 45} tii[18,12] := {34, 61} tii[18,13] := {49} tii[18,14] := {33, 58} tii[18,15] := {51} tii[18,16] := {0, 47} tii[18,17] := {21, 78} tii[18,18] := {2, 54} tii[18,19] := {15, 76} tii[18,20] := {5, 63} tii[18,21] := {9, 71} tii[18,22] := {4, 43} tii[18,23] := {36, 73} tii[18,24] := {46, 69} tii[18,25] := {7, 53} tii[18,26] := {20, 72} tii[18,27] := {60} tii[18,28] := {13, 64} tii[18,29] := {11, 42} tii[18,30] := {35, 62} tii[18,31] := {50} tii[18,32] := {19, 56} tii[18,33] := {38} tii[18,34] := {1, 31} tii[18,35] := {14, 66} tii[18,36] := {3, 41} tii[18,37] := {8, 55} tii[18,38] := {6, 30} tii[18,39] := {23, 52} tii[18,40] := {12, 44} tii[18,41] := {37} tii[18,42] := {28} tii[18,43] := {10, 22} tii[18,44] := {18, 32} tii[18,45] := {39} cell#22 , |C| = 25 special orbit = [8, 2, 1, 1] special rep = [[4], [1, 1]] , dim = 15 cell rep = phi[[4, 1, 1],[]]+phi[[4],[1, 1]] TII depth = 1 TII multiplicity polynomial = 10*X^2+5*X TII subcells: tii[22,1] := {12, 24} tii[22,2] := {10, 22} tii[22,3] := {17, 18} tii[22,4] := {20, 21} tii[22,5] := {23} tii[22,6] := {2, 16} tii[22,7] := {8, 9} tii[22,8] := {14, 15} tii[22,9] := {19} tii[22,10] := {0, 1} tii[22,11] := {6, 7} tii[22,12] := {13} tii[22,13] := {4, 5} tii[22,14] := {11} tii[22,15] := {3} cell#23 , |C| = 64 special orbit = [6, 4, 1, 1] special rep = [[3], [2, 1]] , dim = 40 cell rep = phi[[3],[2, 1]]+phi[[1],[4, 1]] TII depth = 2 TII multiplicity polynomial = 16*X+24*X^2 TII subcells: tii[19,1] := {25} tii[19,2] := {45} tii[19,3] := {58, 59} tii[19,4] := {62, 63} tii[19,5] := {14} tii[19,6] := {35} tii[19,7] := {5} tii[19,8] := {13} tii[19,9] := {50, 51} tii[19,10] := {21, 22} tii[19,11] := {60, 61} tii[19,12] := {30} tii[19,13] := {20} tii[19,14] := {46, 47} tii[19,15] := {28, 29} tii[19,16] := {54, 55} tii[19,17] := {36, 37} tii[19,18] := {26, 27} tii[19,19] := {48, 49} tii[19,20] := {56, 57} tii[19,21] := {15} tii[19,22] := {24} tii[19,23] := {33, 34} tii[19,24] := {0} tii[19,25] := {4} tii[19,26] := {38} tii[19,27] := {11, 12} tii[19,28] := {43, 44} tii[19,29] := {3} tii[19,30] := {52, 53} tii[19,31] := {8, 9} tii[19,32] := {1, 2} tii[19,33] := {23} tii[19,34] := {31, 32} tii[19,35] := {10} tii[19,36] := {41, 42} tii[19,37] := {18, 19} tii[19,38] := {6, 7} tii[19,39] := {39, 40} tii[19,40] := {16, 17} cell#24 , |C| = 81 special orbit = [6, 2, 2, 2] special rep = [[3, 1], [1, 1]] , dim = 45 cell rep = phi[[3, 1, 1],[1]]+phi[[3, 1],[1, 1]] TII depth = 3 TII multiplicity polynomial = 36*X^2+9*X TII subcells: tii[18,1] := {42, 80} tii[18,2] := {27, 67} tii[18,3] := {23, 79} tii[18,4] := {58, 78} tii[18,5] := {16, 52} tii[18,6] := {50, 73} tii[18,7] := {15, 74} tii[18,8] := {62, 63} tii[18,9] := {72} tii[18,10] := {26, 46} tii[18,11] := {22, 71} tii[18,12] := {34, 35} tii[18,13] := {44} tii[18,14] := {33, 56} tii[18,15] := {43} tii[18,16] := {1, 64} tii[18,17] := {29, 77} tii[18,18] := {4, 57} tii[18,19] := {20, 69} tii[18,20] := {8, 70} tii[18,21] := {14, 76} tii[18,22] := {3, 41} tii[18,23] := {38, 61} tii[18,24] := {48, 49} tii[18,25] := {6, 55} tii[18,26] := {19, 54} tii[18,27] := {60} tii[18,28] := {12, 66} tii[18,29] := {10, 68} tii[18,30] := {36, 37} tii[18,31] := {45} tii[18,32] := {18, 75} tii[18,33] := {31} tii[18,34] := {0, 28} tii[18,35] := {13, 39} tii[18,36] := {2, 40} tii[18,37] := {7, 51} tii[18,38] := {5, 53} tii[18,39] := {24, 25} tii[18,40] := {11, 65} tii[18,41] := {32} tii[18,42] := {21} tii[18,43] := {9, 47} tii[18,44] := {17, 59} tii[18,45] := {30} cell#25 , |C| = 81 special orbit = [6, 2, 2, 2] special rep = [[3, 1], [1, 1]] , dim = 45 cell rep = phi[[3, 1, 1],[1]]+phi[[3, 1],[1, 1]] TII depth = 3 TII multiplicity polynomial = 36*X^2+9*X TII subcells: tii[18,1] := {55, 79} tii[18,2] := {50, 73} tii[18,3] := {32, 58} tii[18,4] := {65, 80} tii[18,5] := {36, 66} tii[18,6] := {69, 78} tii[18,7] := {18, 46} tii[18,8] := {64, 76} tii[18,9] := {72} tii[18,10] := {49, 70} tii[18,11] := {5, 34} tii[18,12] := {41, 61} tii[18,13] := {52} tii[18,14] := {16, 38} tii[18,15] := {24} tii[18,16] := {9, 26} tii[18,17] := {44, 77} tii[18,18] := {13, 42} tii[18,19] := {33, 74} tii[18,20] := {8, 56} tii[18,21] := {20, 68} tii[18,22] := {27, 28} tii[18,23] := {60, 75} tii[18,24] := {54, 71} tii[18,25] := {12, 45} tii[18,26] := {37, 67} tii[18,27] := {63} tii[18,28] := {23, 59} tii[18,29] := {7, 31} tii[18,30] := {43, 62} tii[18,31] := {53} tii[18,32] := {19, 48} tii[18,33] := {40} tii[18,34] := {14, 15} tii[18,35] := {22, 57} tii[18,36] := {3, 30} tii[18,37] := {10, 47} tii[18,38] := {2, 17} tii[18,39] := {29, 51} tii[18,40] := {6, 35} tii[18,41] := {39} tii[18,42] := {25} tii[18,43] := {0, 4} tii[18,44] := {1, 21} tii[18,45] := {11} cell#26 , |C| = 40 special orbit = [5, 5, 2] special rep = [[2, 1], [3]] , dim = 40 cell rep = phi[[2, 1],[3]] TII depth = 3 TII multiplicity polynomial = 40*X TII subcells: tii[16,1] := {31} tii[16,2] := {39} tii[16,3] := {23} tii[16,4] := {14} tii[16,5] := {32} tii[16,6] := {36} tii[16,7] := {15} tii[16,8] := {4} tii[16,9] := {21} tii[16,10] := {28} tii[16,11] := {12} tii[16,12] := {34} tii[16,13] := {22} tii[16,14] := {27} tii[16,15] := {16} tii[16,16] := {33} tii[16,17] := {26} tii[16,18] := {37} tii[16,19] := {35} tii[16,20] := {38} tii[16,21] := {10} tii[16,22] := {19} tii[16,23] := {17} tii[16,24] := {1} tii[16,25] := {11} tii[16,26] := {7} tii[16,27] := {25} tii[16,28] := {3} tii[16,29] := {29} tii[16,30] := {13} tii[16,31] := {9} tii[16,32] := {5} tii[16,33] := {18} tii[16,34] := {8} tii[16,35] := {2} tii[16,36] := {24} tii[16,37] := {20} tii[16,38] := {30} tii[16,39] := {6} tii[16,40] := {0} cell#27 , |C| = 40 special orbit = [5, 5, 2] special rep = [[2, 1], [3]] , dim = 40 cell rep = phi[[2, 1],[3]] TII depth = 3 TII multiplicity polynomial = 40*X TII subcells: tii[16,1] := {31} tii[16,2] := {39} tii[16,3] := {23} tii[16,4] := {14} tii[16,5] := {32} tii[16,6] := {36} tii[16,7] := {15} tii[16,8] := {4} tii[16,9] := {21} tii[16,10] := {28} tii[16,11] := {12} tii[16,12] := {34} tii[16,13] := {22} tii[16,14] := {27} tii[16,15] := {16} tii[16,16] := {33} tii[16,17] := {26} tii[16,18] := {37} tii[16,19] := {35} tii[16,20] := {38} tii[16,21] := {10} tii[16,22] := {19} tii[16,23] := {17} tii[16,24] := {1} tii[16,25] := {11} tii[16,26] := {7} tii[16,27] := {25} tii[16,28] := {3} tii[16,29] := {29} tii[16,30] := {13} tii[16,31] := {9} tii[16,32] := {5} tii[16,33] := {18} tii[16,34] := {8} tii[16,35] := {2} tii[16,36] := {24} tii[16,37] := {20} tii[16,38] := {30} tii[16,39] := {6} tii[16,40] := {0} cell#28 , |C| = 30 special orbit = [4, 4, 4] special rep = [[2, 2], [2]] , dim = 30 cell rep = phi[[2, 2],[2]] TII depth = 3 TII multiplicity polynomial = 30*X TII subcells: tii[14,1] := {29} tii[14,2] := {11} tii[14,3] := {24} tii[14,4] := {10} tii[14,5] := {15} tii[14,6] := {26} tii[14,7] := {17} tii[14,8] := {22} tii[14,9] := {19} tii[14,10] := {28} tii[14,11] := {23} tii[14,12] := {27} tii[14,13] := {3} tii[14,14] := {6} tii[14,15] := {7} tii[14,16] := {2} tii[14,17] := {12} tii[14,18] := {4} tii[14,19] := {18} tii[14,20] := {16} tii[14,21] := {21} tii[14,22] := {5} tii[14,23] := {13} tii[14,24] := {8} tii[14,25] := {20} tii[14,26] := {14} tii[14,27] := {25} tii[14,28] := {0} tii[14,29] := {1} tii[14,30] := {9} cell#29 , |C| = 30 special orbit = [4, 4, 4] special rep = [[2, 2], [2]] , dim = 30 cell rep = phi[[2, 2],[2]] TII depth = 3 TII multiplicity polynomial = 30*X TII subcells: tii[14,1] := {29} tii[14,2] := {11} tii[14,3] := {25} tii[14,4] := {8} tii[14,5] := {16} tii[14,6] := {27} tii[14,7] := {17} tii[14,8] := {22} tii[14,9] := {20} tii[14,10] := {28} tii[14,11] := {23} tii[14,12] := {26} tii[14,13] := {3} tii[14,14] := {4} tii[14,15] := {7} tii[14,16] := {1} tii[14,17] := {13} tii[14,18] := {6} tii[14,19] := {18} tii[14,20] := {15} tii[14,21] := {21} tii[14,22] := {5} tii[14,23] := {12} tii[14,24] := {10} tii[14,25] := {19} tii[14,26] := {14} tii[14,27] := {24} tii[14,28] := {0} tii[14,29] := {2} tii[14,30] := {9} cell#30 , |C| = 30 special orbit = [4, 4, 4] special rep = [[2, 2], [2]] , dim = 30 cell rep = phi[[2, 2],[2]] TII depth = 3 TII multiplicity polynomial = 30*X TII subcells: tii[14,1] := {29} tii[14,2] := {11} tii[14,3] := {25} tii[14,4] := {8} tii[14,5] := {16} tii[14,6] := {27} tii[14,7] := {17} tii[14,8] := {22} tii[14,9] := {20} tii[14,10] := {28} tii[14,11] := {23} tii[14,12] := {26} tii[14,13] := {3} tii[14,14] := {4} tii[14,15] := {7} tii[14,16] := {1} tii[14,17] := {13} tii[14,18] := {6} tii[14,19] := {18} tii[14,20] := {15} tii[14,21] := {21} tii[14,22] := {5} tii[14,23] := {12} tii[14,24] := {10} tii[14,25] := {19} tii[14,26] := {14} tii[14,27] := {24} tii[14,28] := {0} tii[14,29] := {2} tii[14,30] := {9} cell#31 , |C| = 185 special orbit = [4, 4, 2, 2] special rep = [[2, 1], [2, 1]] , dim = 80 cell rep = phi[[2, 2, 1],[1]]+phi[[2, 1, 1],[2]]+phi[[2, 2],[1, 1]]+phi[[2, 1],[2, 1]] TII depth = 3 TII multiplicity polynomial = 25*X^4+30*X^2+25*X TII subcells: tii[13,1] := {61, 125, 149, 177} tii[13,2] := {138, 139} tii[13,3] := {108, 154} tii[13,4] := {39, 101, 165, 182} tii[13,5] := {17, 55, 169, 170} tii[13,6] := {116, 117} tii[13,7] := {146} tii[13,8] := {166} tii[13,9] := {60, 110, 175, 184} tii[13,10] := {140, 141} tii[13,11] := {50, 91, 180, 181} tii[13,12] := {103} tii[13,13] := {69, 183} tii[13,14] := {128} tii[13,15] := {147, 148} tii[13,16] := {162} tii[13,17] := {12, 51, 53, 84} tii[13,18] := {34, 78, 107, 156} tii[13,19] := {42, 90} tii[13,20] := {74, 124} tii[13,21] := {29, 30, 76, 109} tii[13,22] := {83, 133} tii[13,23] := {43, 102, 130, 168} tii[13,24] := {11, 54, 85, 134} tii[13,25] := {5, 36, 157, 158} tii[13,26] := {126} tii[13,27] := {75, 115} tii[13,28] := {65, 66} tii[13,29] := {22, 79, 123, 159} tii[13,30] := {150} tii[13,31] := {93} tii[13,32] := {96, 97} tii[13,33] := {88, 89} tii[13,34] := {104} tii[13,35] := {15, 44, 163, 164} tii[13,36] := {82} tii[13,37] := {121, 122} tii[13,38] := {26, 172} tii[13,39] := {129} tii[13,40] := {152} tii[13,41] := {13, 14, 100, 132} tii[13,42] := {99, 137} tii[13,43] := {21, 77, 151, 178} tii[13,44] := {3, 32, 111, 155} tii[13,45] := {40, 41} tii[13,46] := {118} tii[13,47] := {9, 56, 145, 171} tii[13,48] := {72, 73} tii[13,49] := {31, 68, 173, 174} tii[13,50] := {2, 16, 135, 136} tii[13,51] := {62, 63} tii[13,52] := {80} tii[13,53] := {127} tii[13,54] := {48, 179} tii[13,55] := {94, 95} tii[13,56] := {6, 37, 160, 161} tii[13,57] := {58} tii[13,58] := {106} tii[13,59] := {27, 176} tii[13,60] := {131} tii[13,61] := {86, 87} tii[13,62] := {81} tii[13,63] := {119, 120} tii[13,64] := {153} tii[13,65] := {8, 28, 35, 67} tii[13,66] := {19, 45} tii[13,67] := {7, 33, 64, 114} tii[13,68] := {52, 92} tii[13,69] := {23, 70} tii[13,70] := {71} tii[13,71] := {18, 57, 98, 144} tii[13,72] := {49} tii[13,73] := {0, 4, 112, 113} tii[13,74] := {105} tii[13,75] := {46, 47} tii[13,76] := {1, 20, 142, 143} tii[13,77] := {59} tii[13,78] := {10, 167} tii[13,79] := {24, 25} tii[13,80] := {38} cell#32 , |C| = 185 special orbit = [4, 4, 2, 2] special rep = [[2, 1], [2, 1]] , dim = 80 cell rep = phi[[2, 2, 1],[1]]+phi[[2, 1, 1],[2]]+phi[[2, 2],[1, 1]]+phi[[2, 1],[2, 1]] TII depth = 3 TII multiplicity polynomial = 25*X^4+30*X^2+25*X TII subcells: tii[13,1] := {47, 109, 141, 183} tii[13,2] := {126, 181} tii[13,3] := {46, 93} tii[13,4] := {73, 119, 131, 178} tii[13,5] := {32, 79, 125, 158} tii[13,6] := {145, 173} tii[13,7] := {98} tii[13,8] := {129} tii[13,9] := {95, 132, 151, 184} tii[13,10] := {162, 176} tii[13,11] := {70, 113, 160, 179} tii[13,12] := {133} tii[13,13] := {91, 175} tii[13,14] := {154} tii[13,15] := {172, 182} tii[13,16] := {177} tii[13,17] := {10, 11, 71, 116} tii[13,18] := {15, 62, 101, 170} tii[13,19] := {31, 123} tii[13,20] := {60, 148} tii[13,21] := {21, 22, 96, 136} tii[13,22] := {27, 66} tii[13,23] := {33, 86, 124, 180} tii[13,24] := {9, 40, 74, 153} tii[13,25] := {14, 55, 100, 140} tii[13,26] := {78} tii[13,27] := {12, 45} tii[13,28] := {53, 144} tii[13,29] := {17, 63, 104, 167} tii[13,30] := {108} tii[13,31] := {37} tii[13,32] := {85, 164} tii[13,33] := {76, 161} tii[13,34] := {88} tii[13,35] := {28, 64, 121, 159} tii[13,36] := {65} tii[13,37] := {106, 174} tii[13,38] := {42, 149} tii[13,39] := {117} tii[13,40] := {139} tii[13,41] := {38, 39, 72, 115} tii[13,42] := {29, 69} tii[13,43] := {54, 99, 110, 169} tii[13,44] := {20, 50, 61, 134} tii[13,45] := {77, 122} tii[13,46] := {59} tii[13,47] := {34, 81, 87, 155} tii[13,48] := {107, 147} tii[13,49] := {48, 90, 143, 171} tii[13,50] := {8, 30, 75, 112} tii[13,51] := {97, 142} tii[13,52] := {111} tii[13,53] := {80} tii[13,54] := {67, 165} tii[13,55] := {128, 163} tii[13,56] := {16, 58, 105, 138} tii[13,57] := {92} tii[13,58] := {137} tii[13,59] := {43, 150} tii[13,60] := {157} tii[13,61] := {120, 152} tii[13,62] := {114} tii[13,63] := {146, 166} tii[13,64] := {168} tii[13,65] := {2, 3, 49, 94} tii[13,66] := {7, 84} tii[13,67] := {1, 23, 51, 135} tii[13,68] := {4, 26} tii[13,69] := {18, 103} tii[13,70] := {19} tii[13,71] := {6, 41, 83, 156} tii[13,72] := {25} tii[13,73] := {0, 13, 52, 89} tii[13,74] := {57} tii[13,75] := {35, 127} tii[13,76] := {5, 36, 82, 118} tii[13,77] := {44} tii[13,78] := {24, 130} tii[13,79] := {56, 102} tii[13,80] := {68} cell#33 , |C| = 45 special orbit = [4, 2, 2, 2, 2] special rep = [[2, 1, 1], [1, 1]] , dim = 45 cell rep = phi[[2, 1, 1],[1, 1]] TII depth = 3 TII multiplicity polynomial = 45*X TII subcells: tii[11,1] := {37} tii[11,2] := {44} tii[11,3] := {43} tii[11,4] := {9} tii[11,5] := {8} tii[11,6] := {28} tii[11,7] := {15} tii[11,8] := {40} tii[11,9] := {12} tii[11,10] := {20} tii[11,11] := {21} tii[11,12] := {25} tii[11,13] := {32} tii[11,14] := {19} tii[11,15] := {24} tii[11,16] := {23} tii[11,17] := {22} tii[11,18] := {30} tii[11,19] := {31} tii[11,20] := {35} tii[11,21] := {38} tii[11,22] := {39} tii[11,23] := {27} tii[11,24] := {33} tii[11,25] := {42} tii[11,26] := {36} tii[11,27] := {41} tii[11,28] := {0} tii[11,29] := {6} tii[11,30] := {1} tii[11,31] := {3} tii[11,32] := {2} tii[11,33] := {13} tii[11,34] := {14} tii[11,35] := {5} tii[11,36] := {18} tii[11,37] := {11} tii[11,38] := {29} tii[11,39] := {4} tii[11,40] := {34} tii[11,41] := {10} tii[11,42] := {17} tii[11,43] := {7} tii[11,44] := {16} tii[11,45] := {26} cell#34 , |C| = 45 special orbit = [4, 2, 2, 2, 2] special rep = [[2, 1, 1], [1, 1]] , dim = 45 cell rep = phi[[2, 1, 1],[1, 1]] TII depth = 3 TII multiplicity polynomial = 45*X TII subcells: tii[11,1] := {44} tii[11,2] := {41} tii[11,3] := {28} tii[11,4] := {27} tii[11,5] := {11} tii[11,6] := {42} tii[11,7] := {35} tii[11,8] := {36} tii[11,9] := {10} tii[11,10] := {38} tii[11,11] := {26} tii[11,12] := {33} tii[11,13] := {29} tii[11,14] := {17} tii[11,15] := {23} tii[11,16] := {40} tii[11,17] := {4} tii[11,18] := {43} tii[11,19] := {34} tii[11,20] := {39} tii[11,21] := {31} tii[11,22] := {21} tii[11,23] := {9} tii[11,24] := {13} tii[11,25] := {37} tii[11,26] := {15} tii[11,27] := {22} tii[11,28] := {16} tii[11,29] := {20} tii[11,30] := {8} tii[11,31] := {12} tii[11,32] := {3} tii[11,33] := {32} tii[11,34] := {19} tii[11,35] := {6} tii[11,36] := {25} tii[11,37] := {18} tii[11,38] := {24} tii[11,39] := {2} tii[11,40] := {30} tii[11,41] := {5} tii[11,42] := {14} tii[11,43] := {0} tii[11,44] := {1} tii[11,45] := {7} cell#35 , |C| = 190 special orbit = [4, 4, 2, 2] special rep = [[2, 1], [2, 1]] , dim = 80 cell rep = phi[[2, 1, 1],[2]]+phi[[1, 1, 1],[3]]+phi[[2, 1],[2, 1]]+phi[[1, 1],[3, 1]] TII depth = 3 TII multiplicity polynomial = 50*X^2+10*X+20*X^4 TII subcells: tii[13,1] := {53, 169} tii[13,2] := {62, 63, 188, 189} tii[13,3] := {96} tii[13,4] := {73, 162} tii[13,5] := {42, 124} tii[13,6] := {83, 84, 186, 187} tii[13,7] := {133, 134} tii[13,8] := {158, 159} tii[13,9] := {95, 145} tii[13,10] := {110, 111, 180, 181} tii[13,11] := {78, 123} tii[13,12] := {131, 132} tii[13,13] := {100} tii[13,14] := {156, 157} tii[13,15] := {129, 130, 167, 168} tii[13,16] := {160, 161} tii[13,17] := {3, 105} tii[13,18] := {25, 135} tii[13,19] := {9, 10, 147, 148} tii[13,20] := {22, 23, 165, 166} tii[13,21] := {6, 128} tii[13,22] := {72} tii[13,23] := {37, 155} tii[13,24] := {14, 121} tii[13,25] := {27, 99} tii[13,26] := {106, 107} tii[13,27] := {54} tii[13,28] := {18, 19, 163, 164} tii[13,29] := {26, 136} tii[13,30] := {139, 140} tii[13,31] := {68, 69} tii[13,32] := {33, 34, 178, 179} tii[13,33] := {29, 30, 176, 177} tii[13,34] := {80, 81} tii[13,35] := {41, 75} tii[13,36] := {64, 65} tii[13,37] := {45, 46, 184, 185} tii[13,38] := {56} tii[13,39] := {117, 118} tii[13,40] := {93, 94} tii[13,41] := {13, 122} tii[13,42] := {74} tii[13,43] := {55, 146} tii[13,44] := {24, 102} tii[13,45] := {31, 32, 153, 154} tii[13,46] := {91, 92} tii[13,47] := {39, 125} tii[13,48] := {47, 48, 172, 173} tii[13,49] := {58, 98} tii[13,50] := {16, 79} tii[13,51] := {43, 44, 170, 171} tii[13,52] := {108, 109} tii[13,53] := {114, 115} tii[13,54] := {76} tii[13,55] := {66, 67, 182, 183} tii[13,56] := {28, 101} tii[13,57] := {87, 88} tii[13,58] := {141, 142} tii[13,59] := {57} tii[13,60] := {119, 120} tii[13,61] := {60, 61, 151, 152} tii[13,62] := {112, 113} tii[13,63] := {89, 90, 174, 175} tii[13,64] := {143, 144} tii[13,65] := {0, 82} tii[13,66] := {1, 2, 103, 104} tii[13,67] := {7, 97} tii[13,68] := {38} tii[13,69] := {4, 5, 126, 127} tii[13,70] := {51, 52} tii[13,71] := {15, 116} tii[13,72] := {35, 36} tii[13,73] := {8, 59} tii[13,74] := {85, 86} tii[13,75] := {11, 12, 149, 150} tii[13,76] := {17, 77} tii[13,77] := {49, 50} tii[13,78] := {40} tii[13,79] := {20, 21, 137, 138} tii[13,80] := {70, 71} cell#36 , |C| = 45 special orbit = [4, 2, 2, 2, 2] special rep = [[2, 1, 1], [1, 1]] , dim = 45 cell rep = phi[[2, 1, 1],[1, 1]] TII depth = 3 TII multiplicity polynomial = 45*X TII subcells: tii[11,1] := {44} tii[11,2] := {39} tii[11,3] := {27} tii[11,4] := {19} tii[11,5] := {16} tii[11,6] := {43} tii[11,7] := {26} tii[11,8] := {34} tii[11,9] := {10} tii[11,10] := {41} tii[11,11] := {32} tii[11,12] := {38} tii[11,13] := {30} tii[11,14] := {15} tii[11,15] := {24} tii[11,16] := {31} tii[11,17] := {6} tii[11,18] := {42} tii[11,19] := {35} tii[11,20] := {40} tii[11,21] := {28} tii[11,22] := {22} tii[11,23] := {9} tii[11,24] := {17} tii[11,25] := {36} tii[11,26] := {14} tii[11,27] := {21} tii[11,28] := {1} tii[11,29] := {13} tii[11,30] := {4} tii[11,31] := {8} tii[11,32] := {5} tii[11,33] := {37} tii[11,34] := {23} tii[11,35] := {11} tii[11,36] := {33} tii[11,37] := {25} tii[11,38] := {20} tii[11,39] := {2} tii[11,40] := {29} tii[11,41] := {7} tii[11,42] := {18} tii[11,43] := {0} tii[11,44] := {3} tii[11,45] := {12} cell#37 , |C| = 64 special orbit = [4, 2, 2, 2, 1, 1] special rep = [[2, 1], [1, 1, 1]] , dim = 40 cell rep = phi[[2, 1, 1, 1],[1]]+phi[[2, 1],[1, 1, 1]] TII depth = 2 TII multiplicity polynomial = 16*X+24*X^2 TII subcells: tii[10,1] := {17, 58} tii[10,2] := {20, 63} tii[10,3] := {28, 48} tii[10,4] := {32, 61} tii[10,5] := {39, 40} tii[10,6] := {47} tii[10,7] := {44, 60} tii[10,8] := {53} tii[10,9] := {16, 36} tii[10,10] := {19, 55} tii[10,11] := {24, 25} tii[10,12] := {34} tii[10,13] := {14, 15} tii[10,14] := {31, 52} tii[10,15] := {42} tii[10,16] := {23} tii[10,17] := {18} tii[10,18] := {37, 54} tii[10,19] := {45} tii[10,20] := {33} tii[10,21] := {0, 41} tii[10,22] := {7, 50} tii[10,23] := {1, 51} tii[10,24] := {4, 57} tii[10,25] := {3, 59} tii[10,26] := {26, 27} tii[10,27] := {11, 62} tii[10,28] := {35} tii[10,29] := {30} tii[10,30] := {5, 6} tii[10,31] := {9, 49} tii[10,32] := {13} tii[10,33] := {21, 56} tii[10,34] := {8} tii[10,35] := {43} tii[10,36] := {12} tii[10,37] := {2, 38} tii[10,38] := {10, 46} tii[10,39] := {29} tii[10,40] := {22} cell#38 , |C| = 40 special orbit = [3, 3, 2, 2, 2] special rep = [[1, 1, 1], [2, 1]] , dim = 40 cell rep = phi[[1, 1, 1],[2, 1]] TII depth = 3 TII multiplicity polynomial = 40*X TII subcells: tii[7,1] := {34} tii[7,2] := {39} tii[7,3] := {14} tii[7,4] := {28} tii[7,5] := {20} tii[7,6] := {10} tii[7,7] := {18} tii[7,8] := {35} tii[7,9] := {26} tii[7,10] := {29} tii[7,11] := {27} tii[7,12] := {17} tii[7,13] := {24} tii[7,14] := {22} tii[7,15] := {38} tii[7,16] := {32} tii[7,17] := {30} tii[7,18] := {36} tii[7,19] := {33} tii[7,20] := {37} tii[7,21] := {2} tii[7,22] := {5} tii[7,23] := {4} tii[7,24] := {6} tii[7,25] := {9} tii[7,26] := {12} tii[7,27] := {3} tii[7,28] := {19} tii[7,29] := {16} tii[7,30] := {8} tii[7,31] := {7} tii[7,32] := {23} tii[7,33] := {15} tii[7,34] := {25} tii[7,35] := {13} tii[7,36] := {11} tii[7,37] := {21} tii[7,38] := {31} tii[7,39] := {0} tii[7,40] := {1} cell#39 , |C| = 35 special orbit = [2, 2, 2, 2, 2, 2] special rep = [[1, 1, 1], [1, 1, 1]] , dim = 20 cell rep = phi[[1, 1, 1, 1],[1, 1]]+phi[[1, 1, 1],[1, 1, 1]] TII depth = 2 TII multiplicity polynomial = 15*X^2+5*X TII subcells: tii[4,1] := {13, 33} tii[4,2] := {18, 34} tii[4,3] := {23, 31} tii[4,4] := {27} tii[4,5] := {2, 15} tii[4,6] := {8, 29} tii[4,7] := {4, 20} tii[4,8] := {5, 24} tii[4,9] := {17, 26} tii[4,10] := {6, 25} tii[4,11] := {21} tii[4,12] := {9, 30} tii[4,13] := {16} tii[4,14] := {10, 28} tii[4,15] := {14, 32} tii[4,16] := {22} tii[4,17] := {0, 7} tii[4,18] := {1, 11} tii[4,19] := {3, 19} tii[4,20] := {12} cell#40 , |C| = 54 special orbit = [6, 2, 2, 2] special rep = [[3, 1], [1, 1]] , dim = 45 cell rep = phi[[3, 1],[1, 1]]+phi[[],[4, 2]] TII depth = 3 TII multiplicity polynomial = 9*X^2+36*X TII subcells: tii[18,1] := {32} tii[18,2] := {30} tii[18,3] := {28} tii[18,4] := {35} tii[18,5] := {19} tii[18,6] := {43} tii[18,7] := {18} tii[18,8] := {49} tii[18,9] := {52, 53} tii[18,10] := {31} tii[18,11] := {17} tii[18,12] := {41} tii[18,13] := {46, 47} tii[18,14] := {25} tii[18,15] := {33, 34} tii[18,16] := {0} tii[18,17] := {24} tii[18,18] := {2} tii[18,19] := {16} tii[18,20] := {4} tii[18,21] := {10} tii[18,22] := {5} tii[18,23] := {42} tii[18,24] := {48} tii[18,25] := {8} tii[18,26] := {21} tii[18,27] := {50, 51} tii[18,28] := {14} tii[18,29] := {12} tii[18,30] := {40} tii[18,31] := {44, 45} tii[18,32] := {20} tii[18,33] := {36, 37} tii[18,34] := {1} tii[18,35] := {15} tii[18,36] := {3} tii[18,37] := {9} tii[18,38] := {7} tii[18,39] := {29} tii[18,40] := {13} tii[18,41] := {38, 39} tii[18,42] := {26, 27} tii[18,43] := {6} tii[18,44] := {11} tii[18,45] := {22, 23} cell#41 , |C| = 45 special orbit = [4, 2, 2, 2, 2] special rep = [[2, 1, 1], [1, 1]] , dim = 45 cell rep = phi[[2, 1, 1],[1, 1]] TII depth = 3 TII multiplicity polynomial = 45*X TII subcells: tii[11,1] := {44} tii[11,2] := {42} tii[11,3] := {43} tii[11,4] := {9} tii[11,5] := {8} tii[11,6] := {38} tii[11,7] := {13} tii[11,8] := {36} tii[11,9] := {12} tii[11,10] := {35} tii[11,11] := {17} tii[11,12] := {26} tii[11,13] := {31} tii[11,14] := {16} tii[11,15] := {25} tii[11,16] := {19} tii[11,17] := {18} tii[11,18] := {41} tii[11,19] := {24} tii[11,20] := {34} tii[11,21] := {30} tii[11,22] := {37} tii[11,23] := {23} tii[11,24] := {33} tii[11,25] := {40} tii[11,26] := {29} tii[11,27] := {39} tii[11,28] := {0} tii[11,29] := {6} tii[11,30] := {1} tii[11,31] := {3} tii[11,32] := {2} tii[11,33] := {28} tii[11,34] := {11} tii[11,35] := {5} tii[11,36] := {20} tii[11,37] := {15} tii[11,38] := {22} tii[11,39] := {4} tii[11,40] := {32} tii[11,41] := {10} tii[11,42] := {21} tii[11,43] := {7} tii[11,44] := {14} tii[11,45] := {27} cell#42 , |C| = 30 special orbit = [6, 2, 1, 1, 1, 1] special rep = [[3], [1, 1, 1]] , dim = 20 cell rep = phi[[3, 1, 1, 1],[]]+phi[[3],[1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 10*X^2+10*X TII subcells: tii[17,1] := {22, 29} tii[17,2] := {21, 28} tii[17,3] := {25, 26} tii[17,4] := {27} tii[17,5] := {14, 24} tii[17,6] := {19, 20} tii[17,7] := {23} tii[17,8] := {12, 13} tii[17,9] := {17} tii[17,10] := {15} tii[17,11] := {7, 18} tii[17,12] := {10, 11} tii[17,13] := {16} tii[17,14] := {5, 6} tii[17,15] := {9} tii[17,16] := {8} tii[17,17] := {0, 1} tii[17,18] := {4} tii[17,19] := {2} tii[17,20] := {3} cell#43 , |C| = 81 special orbit = [4, 4, 1, 1, 1, 1] special rep = [[2], [2, 1, 1]] , dim = 45 cell rep = phi[[2],[2, 1, 1]]+phi[[1],[3, 1, 1]] TII depth = 3 TII multiplicity polynomial = 36*X^2+9*X TII subcells: tii[12,1] := {52} tii[12,2] := {69, 70} tii[12,3] := {77, 78} tii[12,4] := {38} tii[12,5] := {27} tii[12,6] := {57, 58} tii[12,7] := {36, 37} tii[12,8] := {71, 72} tii[12,9] := {53, 54} tii[12,10] := {42, 43} tii[12,11] := {65, 66} tii[12,12] := {75, 76} tii[12,13] := {26} tii[12,14] := {14} tii[12,15] := {45, 47} tii[12,16] := {21, 23} tii[12,17] := {62, 64} tii[12,18] := {7} tii[12,19] := {39, 40} tii[12,20] := {28, 29} tii[12,21] := {11, 13} tii[12,22] := {55, 56} tii[12,23] := {8, 9} tii[12,24] := {67, 68} tii[12,25] := {44, 46} tii[12,26] := {32, 34} tii[12,27] := {61, 63} tii[12,28] := {20, 22} tii[12,29] := {73, 74} tii[12,30] := {79, 80} tii[12,31] := {41} tii[12,32] := {50, 51} tii[12,33] := {15} tii[12,34] := {59, 60} tii[12,35] := {24, 25} tii[12,36] := {18, 19} tii[12,37] := {0} tii[12,38] := {48, 49} tii[12,39] := {4, 6} tii[12,40] := {30, 31} tii[12,41] := {1, 2} tii[12,42] := {3, 5} tii[12,43] := {33, 35} tii[12,44] := {16, 17} tii[12,45] := {10, 12} cell#44 , |C| = 64 special orbit = [4, 2, 2, 2, 1, 1] special rep = [[2, 1], [1, 1, 1]] , dim = 40 cell rep = phi[[2, 1, 1, 1],[1]]+phi[[2, 1],[1, 1, 1]] TII depth = 2 TII multiplicity polynomial = 16*X+24*X^2 TII subcells: tii[10,1] := {39, 63} tii[10,2] := {21, 55} tii[10,3] := {49, 61} tii[10,4] := {11, 44} tii[10,5] := {42, 58} tii[10,6] := {51} tii[10,7] := {20, 40} tii[10,8] := {29} tii[10,9] := {52, 62} tii[10,10] := {5, 33} tii[10,11] := {47, 59} tii[10,12] := {56} tii[10,13] := {37, 54} tii[10,14] := {10, 28} tii[10,15] := {17} tii[10,16] := {45} tii[10,17] := {36} tii[10,18] := {15, 32} tii[10,19] := {22} tii[10,20] := {13} tii[10,21] := {3, 53} tii[10,22] := {27, 60} tii[10,23] := {8, 48} tii[10,24] := {18, 57} tii[10,25] := {4, 38} tii[10,26] := {31, 50} tii[10,27] := {12, 46} tii[10,28] := {41} tii[10,29] := {30} tii[10,30] := {25, 43} tii[10,31] := {1, 26} tii[10,32] := {34} tii[10,33] := {6, 35} tii[10,34] := {24} tii[10,35] := {19} tii[10,36] := {14} tii[10,37] := {0, 16} tii[10,38] := {2, 23} tii[10,39] := {9} tii[10,40] := {7} cell#45 , |C| = 60 special orbit = [3, 3, 2, 2, 1, 1] special rep = [[1, 1], [2, 1, 1]] , dim = 45 cell rep = phi[[1, 1, 1, 1],[2]]+phi[[1, 1],[2, 1, 1]] TII depth = 2 TII multiplicity polynomial = 15*X^2+30*X TII subcells: tii[6,1] := {12, 58} tii[6,2] := {18, 55} tii[6,3] := {27} tii[6,4] := {37} tii[6,5] := {26, 47} tii[6,6] := {38} tii[6,7] := {28, 57} tii[6,8] := {31} tii[6,9] := {43} tii[6,10] := {22} tii[6,11] := {35, 54} tii[6,12] := {16} tii[6,13] := {48} tii[6,14] := {33} tii[6,15] := {45} tii[6,16] := {42, 59} tii[6,17] := {52} tii[6,18] := {56} tii[6,19] := {1, 32} tii[6,20] := {4, 44} tii[6,21] := {3, 41} tii[6,22] := {17} tii[6,23] := {7, 51} tii[6,24] := {29} tii[6,25] := {13} tii[6,26] := {21} tii[6,27] := {15} tii[6,28] := {6, 36} tii[6,29] := {19} tii[6,30] := {9} tii[6,31] := {14, 49} tii[6,32] := {25} tii[6,33] := {34} tii[6,34] := {30} tii[6,35] := {5} tii[6,36] := {46} tii[6,37] := {11, 40} tii[6,38] := {23} tii[6,39] := {20, 50} tii[6,40] := {10} tii[6,41] := {39} tii[6,42] := {53} tii[6,43] := {0, 24} tii[6,44] := {8} tii[6,45] := {2} cell#46 , |C| = 60 special orbit = [3, 3, 2, 2, 1, 1] special rep = [[1, 1], [2, 1, 1]] , dim = 45 cell rep = phi[[1, 1, 1, 1],[2]]+phi[[1, 1],[2, 1, 1]] TII depth = 2 TII multiplicity polynomial = 15*X^2+30*X TII subcells: tii[6,1] := {12, 58} tii[6,2] := {18, 55} tii[6,3] := {27} tii[6,4] := {37} tii[6,5] := {26, 47} tii[6,6] := {38} tii[6,7] := {28, 57} tii[6,8] := {31} tii[6,9] := {43} tii[6,10] := {22} tii[6,11] := {35, 54} tii[6,12] := {16} tii[6,13] := {48} tii[6,14] := {33} tii[6,15] := {45} tii[6,16] := {42, 59} tii[6,17] := {52} tii[6,18] := {56} tii[6,19] := {1, 32} tii[6,20] := {4, 44} tii[6,21] := {3, 41} tii[6,22] := {17} tii[6,23] := {7, 51} tii[6,24] := {29} tii[6,25] := {13} tii[6,26] := {21} tii[6,27] := {15} tii[6,28] := {6, 36} tii[6,29] := {19} tii[6,30] := {9} tii[6,31] := {14, 49} tii[6,32] := {25} tii[6,33] := {34} tii[6,34] := {30} tii[6,35] := {5} tii[6,36] := {46} tii[6,37] := {11, 40} tii[6,38] := {23} tii[6,39] := {20, 50} tii[6,40] := {10} tii[6,41] := {39} tii[6,42] := {53} tii[6,43] := {0, 24} tii[6,44] := {8} tii[6,45] := {2} cell#47 , |C| = 30 special orbit = [6, 2, 1, 1, 1, 1] special rep = [[3], [1, 1, 1]] , dim = 20 cell rep = phi[[3, 1, 1, 1],[]]+phi[[3],[1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 10*X^2+10*X TII subcells: tii[17,1] := {4, 29} tii[17,2] := {7, 28} tii[17,3] := {12, 27} tii[17,4] := {21} tii[17,5] := {2, 26} tii[17,6] := {6, 23} tii[17,7] := {13} tii[17,8] := {11, 25} tii[17,9] := {22} tii[17,10] := {24} tii[17,11] := {0, 20} tii[17,12] := {1, 15} tii[17,13] := {8} tii[17,14] := {5, 19} tii[17,15] := {14} tii[17,16] := {18} tii[17,17] := {3, 17} tii[17,18] := {10} tii[17,19] := {16} tii[17,20] := {9} cell#48 , |C| = 56 special orbit = [4, 2, 2, 2, 1, 1] special rep = [[2, 1], [1, 1, 1]] , dim = 40 cell rep = phi[[2, 1],[1, 1, 1]]+phi[[],[3, 2, 1]] TII depth = 2 TII multiplicity polynomial = 16*X^2+24*X TII subcells: tii[10,1] := {29} tii[10,2] := {26} tii[10,3] := {38} tii[10,4] := {13} tii[10,5] := {49} tii[10,6] := {54, 55} tii[10,7] := {27} tii[10,8] := {41, 42} tii[10,9] := {30} tii[10,10] := {6} tii[10,11] := {46} tii[10,12] := {52, 53} tii[10,13] := {37} tii[10,14] := {14} tii[10,15] := {24, 25} tii[10,16] := {47, 48} tii[10,17] := {31, 32} tii[10,18] := {28} tii[10,19] := {43, 44} tii[10,20] := {33, 34} tii[10,21] := {1} tii[10,22] := {16} tii[10,23] := {3} tii[10,24] := {8} tii[10,25] := {5} tii[10,26] := {45} tii[10,27] := {15} tii[10,28] := {50, 51} tii[10,29] := {39, 40} tii[10,30] := {21} tii[10,31] := {2} tii[10,32] := {35, 36} tii[10,33] := {7} tii[10,34] := {17, 18} tii[10,35] := {22, 23} tii[10,36] := {9, 10} tii[10,37] := {0} tii[10,38] := {4} tii[10,39] := {11, 12} tii[10,40] := {19, 20} cell#49 , |C| = 25 special orbit = [2, 2, 2, 2, 2, 2] special rep = [[1, 1, 1], [1, 1, 1]] , dim = 20 cell rep = phi[[1, 1, 1],[1, 1, 1]]+phi[[],[2, 2, 2]] TII depth = 2 TII multiplicity polynomial = 5*X^2+15*X TII subcells: tii[4,1] := {13} tii[4,2] := {14} tii[4,3] := {18} tii[4,4] := {23, 24} tii[4,5] := {2} tii[4,6] := {8} tii[4,7] := {3} tii[4,8] := {6} tii[4,9] := {15} tii[4,10] := {5} tii[4,11] := {21, 22} tii[4,12] := {9} tii[4,13] := {16, 17} tii[4,14] := {7} tii[4,15] := {10} tii[4,16] := {19, 20} tii[4,17] := {0} tii[4,18] := {1} tii[4,19] := {4} tii[4,20] := {11, 12} cell#50 , |C| = 64 special orbit = [4, 2, 2, 2, 1, 1] special rep = [[2, 1], [1, 1, 1]] , dim = 40 cell rep = phi[[2, 1, 1, 1],[1]]+phi[[2, 1],[1, 1, 1]] TII depth = 2 TII multiplicity polynomial = 16*X+24*X^2 TII subcells: tii[10,1] := {7, 54} tii[10,2] := {26, 52} tii[10,3] := {19, 60} tii[10,4] := {40, 61} tii[10,5] := {24, 50} tii[10,6] := {43} tii[10,7] := {51, 63} tii[10,8] := {59} tii[10,9] := {11, 56} tii[10,10] := {35, 58} tii[10,11] := {21, 45} tii[10,12] := {36} tii[10,13] := {9, 32} tii[10,14] := {47, 62} tii[10,15] := {55} tii[10,16] := {23} tii[10,17] := {31} tii[10,18] := {33, 53} tii[10,19] := {41} tii[10,20] := {30} tii[10,21] := {0, 4} tii[10,22] := {2, 46} tii[10,23] := {3, 14} tii[10,24] := {5, 28} tii[10,25] := {8, 25} tii[10,26] := {13, 38} tii[10,27] := {15, 42} tii[10,28] := {29} tii[10,29] := {37} tii[10,30] := {1, 18} tii[10,31] := {20, 39} tii[10,32] := {10} tii[10,33] := {27, 57} tii[10,34] := {17} tii[10,35] := {49} tii[10,36] := {6} tii[10,37] := {12, 34} tii[10,38] := {22, 48} tii[10,39] := {44} tii[10,40] := {16} cell#51 , |C| = 20 special orbit = [4, 2, 1, 1, 1, 1, 1, 1] special rep = [[2], [1, 1, 1, 1]] , dim = 15 cell rep = phi[[2, 1, 1, 1, 1],[]]+phi[[2],[1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 5*X^2+10*X TII subcells: tii[9,1] := {10, 19} tii[9,2] := {13, 18} tii[9,3] := {17} tii[9,4] := {7, 16} tii[9,5] := {14} tii[9,6] := {15} tii[9,7] := {1, 12} tii[9,8] := {8} tii[9,9] := {11} tii[9,10] := {9} tii[9,11] := {0, 6} tii[9,12] := {2} tii[9,13] := {5} tii[9,14] := {3} tii[9,15] := {4} cell#52 , |C| = 21 special orbit = [2, 2, 2, 2, 1, 1, 1, 1] special rep = [[1, 1], [1, 1, 1, 1]] , dim = 15 cell rep = phi[[1, 1, 1, 1, 1],[1]]+phi[[1, 1],[1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 6*X^2+9*X TII subcells: tii[3,1] := {6, 17} tii[3,2] := {12, 20} tii[3,3] := {16} tii[3,4] := {8, 18} tii[3,5] := {13} tii[3,6] := {7} tii[3,7] := {11, 19} tii[3,8] := {15} tii[3,9] := {9} tii[3,10] := {4} tii[3,11] := {0, 5} tii[3,12] := {2, 14} tii[3,13] := {10} tii[3,14] := {3} tii[3,15] := {1} cell#53 , |C| = 25 special orbit = [4, 2, 1, 1, 1, 1, 1, 1] special rep = [[2], [1, 1, 1, 1]] , dim = 15 cell rep = phi[[2],[1, 1, 1, 1]]+phi[[],[3, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 10*X^2+5*X TII subcells: tii[9,1] := {0} tii[9,2] := {10} tii[9,3] := {22, 24} tii[9,4] := {5} tii[9,5] := {13, 14} tii[9,6] := {1, 2} tii[9,7] := {9} tii[9,8] := {20, 23} tii[9,9] := {11, 12} tii[9,10] := {19, 21} tii[9,11] := {6} tii[9,12] := {16, 18} tii[9,13] := {7, 8} tii[9,14] := {15, 17} tii[9,15] := {3, 4} cell#54 , |C| = 11 special orbit = [2, 2, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [1, 1, 1, 1, 1]] , dim = 6 cell rep = phi[[1],[1, 1, 1, 1, 1]]+phi[[],[2, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 5*X^2+X TII subcells: tii[2,1] := {0} tii[2,2] := {8, 10} tii[2,3] := {1, 2} tii[2,4] := {6, 9} tii[2,5] := {3, 4} tii[2,6] := {5, 7}