TII subcells for the PSp(12,R) x Spin(9,4) block of PSp12 # cell#0 , |C| = 1 special orbit = [12] special rep = [[6], []] , dim = 1 cell rep = phi[[6],[]] TII depth = 1 TII multiplicity polynomial = X TII subcells: tii[26,1] := {0} cell#1 , |C| = 11 special orbit = [10, 2] special rep = [[5], [1]] , dim = 6 cell rep = phi[[5, 1],[]]+phi[[5],[1]] TII depth = 1 TII multiplicity polynomial = 5*X^2+X TII subcells: tii[25,1] := {1, 10} tii[25,2] := {0, 9} tii[25,3] := {2, 8} tii[25,4] := {3, 7} tii[25,5] := {4, 6} tii[25,6] := {5} cell#2 , |C| = 11 special orbit = [10, 2] special rep = [[5], [1]] , dim = 6 cell rep = phi[[5, 1],[]]+phi[[5],[1]] TII depth = 1 TII multiplicity polynomial = 5*X^2+X TII subcells: tii[25,1] := {1, 10} tii[25,2] := {2, 9} tii[25,3] := {0, 7} tii[25,4] := {3, 4} tii[25,5] := {5, 6} tii[25,6] := {8} cell#3 , |C| = 24 special orbit = [8, 4] special rep = [[4], [2]] , dim = 15 cell rep = phi[[4, 2],[]]+phi[[4],[2]] TII depth = 1 TII multiplicity polynomial = 9*X^2+6*X TII subcells: tii[24,1] := {1, 14} tii[24,2] := {11, 12} tii[24,3] := {19, 20} tii[24,4] := {22} tii[24,5] := {23} tii[24,6] := {0, 8} tii[24,7] := {2, 3} tii[24,8] := {6, 7} tii[24,9] := {13} tii[24,10] := {4, 5} tii[24,11] := {9, 10} tii[24,12] := {15} tii[24,13] := {16, 17} tii[24,14] := {18} tii[24,15] := {21} cell#4 , |C| = 24 special orbit = [8, 4] special rep = [[4], [2]] , dim = 15 cell rep = phi[[4, 2],[]]+phi[[4],[2]] TII depth = 1 TII multiplicity polynomial = 9*X^2+6*X TII subcells: tii[24,1] := {2, 19} tii[24,2] := {6, 22} tii[24,3] := {11, 21} tii[24,4] := {20} tii[24,5] := {23} tii[24,6] := {0, 15} tii[24,7] := {1, 14} tii[24,8] := {3, 10} tii[24,9] := {7} tii[24,10] := {4, 18} tii[24,11] := {5, 13} tii[24,12] := {9} tii[24,13] := {8, 17} tii[24,14] := {12} tii[24,15] := {16} cell#5 , |C| = 24 special orbit = [8, 4] special rep = [[4], [2]] , dim = 15 cell rep = phi[[4, 2],[]]+phi[[4],[2]] TII depth = 1 TII multiplicity polynomial = 9*X^2+6*X TII subcells: tii[24,1] := {2, 19} tii[24,2] := {6, 22} tii[24,3] := {11, 21} tii[24,4] := {20} tii[24,5] := {23} tii[24,6] := {0, 15} tii[24,7] := {1, 14} tii[24,8] := {3, 10} tii[24,9] := {7} tii[24,10] := {4, 18} tii[24,11] := {5, 13} tii[24,12] := {9} tii[24,13] := {8, 17} tii[24,14] := {12} tii[24,15] := {16} cell#6 , |C| = 24 special orbit = [8, 2, 2] special rep = [[4, 1], [1]] , dim = 24 cell rep = phi[[4, 1],[1]] TII depth = 4 TII multiplicity polynomial = 24*X TII subcells: tii[23,1] := {18} tii[23,2] := {9} tii[23,3] := {20} tii[23,4] := {23} tii[23,5] := {6} tii[23,6] := {13} tii[23,7] := {1} tii[23,8] := {4} tii[23,9] := {5} tii[23,10] := {11} tii[23,11] := {12} tii[23,12] := {17} tii[23,13] := {0} tii[23,14] := {3} tii[23,15] := {2} tii[23,16] := {8} tii[23,17] := {7} tii[23,18] := {14} tii[23,19] := {10} tii[23,20] := {16} tii[23,21] := {15} tii[23,22] := {19} tii[23,23] := {21} tii[23,24] := {22} cell#7 , |C| = 24 special orbit = [8, 2, 2] special rep = [[4, 1], [1]] , dim = 24 cell rep = phi[[4, 1],[1]] TII depth = 4 TII multiplicity polynomial = 24*X TII subcells: tii[23,1] := {20} tii[23,2] := {23} tii[23,3] := {22} tii[23,4] := {21} tii[23,5] := {0} tii[23,6] := {16} tii[23,7] := {1} tii[23,8] := {15} tii[23,9] := {2} tii[23,10] := {11} tii[23,11] := {4} tii[23,12] := {8} tii[23,13] := {3} tii[23,14] := {5} tii[23,15] := {19} tii[23,16] := {6} tii[23,17] := {14} tii[23,18] := {10} tii[23,19] := {7} tii[23,20] := {9} tii[23,21] := {18} tii[23,22] := {13} tii[23,23] := {12} tii[23,24] := {17} cell#8 , |C| = 24 special orbit = [8, 2, 2] special rep = [[4, 1], [1]] , dim = 24 cell rep = phi[[4, 1],[1]] TII depth = 4 TII multiplicity polynomial = 24*X TII subcells: tii[23,1] := {23} tii[23,2] := {20} tii[23,3] := {6} tii[23,4] := {18} tii[23,5] := {11} tii[23,6] := {22} tii[23,7] := {12} tii[23,8] := {21} tii[23,9] := {10} tii[23,10] := {16} tii[23,11] := {17} tii[23,12] := {19} tii[23,13] := {4} tii[23,14] := {3} tii[23,15] := {15} tii[23,16] := {9} tii[23,17] := {8} tii[23,18] := {14} tii[23,19] := {0} tii[23,20] := {2} tii[23,21] := {1} tii[23,22] := {5} tii[23,23] := {7} tii[23,24] := {13} cell#9 , |C| = 75 special orbit = [6, 4, 2] special rep = [[3, 1], [2]] , dim = 45 cell rep = phi[[3, 2],[1]]+phi[[3, 1],[2]] TII depth = 3 TII multiplicity polynomial = 30*X^2+15*X TII subcells: tii[20,1] := {32, 74} tii[20,2] := {62, 63} tii[20,3] := {73} tii[20,4] := {13, 47} tii[20,5] := {39, 40} tii[20,6] := {7, 69} tii[20,7] := {26, 54} tii[20,8] := {59} tii[20,9] := {68} tii[20,10] := {4, 57} tii[20,11] := {18, 72} tii[20,12] := {3, 61} tii[20,13] := {22, 23} tii[20,14] := {9, 70} tii[20,15] := {8, 56} tii[20,16] := {41, 42} tii[20,17] := {48} tii[20,18] := {15, 65} tii[20,19] := {60} tii[20,20] := {37, 38} tii[20,21] := {52, 53} tii[20,22] := {30, 31} tii[20,23] := {58} tii[20,24] := {43, 44} tii[20,25] := {67} tii[20,26] := {66} tii[20,27] := {71} tii[20,28] := {10, 34} tii[20,29] := {19, 20} tii[20,30] := {29} tii[20,31] := {0, 51} tii[20,32] := {1, 46} tii[20,33] := {2, 64} tii[20,34] := {24, 25} tii[20,35] := {5, 55} tii[20,36] := {36} tii[20,37] := {6, 33} tii[20,38] := {50} tii[20,39] := {14, 45} tii[20,40] := {11, 12} tii[20,41] := {21} tii[20,42] := {16, 17} tii[20,43] := {35} tii[20,44] := {27, 28} tii[20,45] := {49} cell#10 , |C| = 81 special orbit = [6, 2, 2, 2] special rep = [[3, 1], [1, 1]] , dim = 45 cell rep = phi[[3, 1, 1],[1]]+phi[[3, 1],[1, 1]] TII depth = 3 TII multiplicity polynomial = 36*X^2+9*X TII subcells: tii[18,1] := {5, 76} tii[18,2] := {16, 79} tii[18,3] := {33, 77} tii[18,4] := {11, 66} tii[18,5] := {28, 70} tii[18,6] := {14, 55} tii[18,7] := {47, 69} tii[18,8] := {22, 52} tii[18,9] := {36} tii[18,10] := {39, 75} tii[18,11] := {58, 78} tii[18,12] := {44, 65} tii[18,13] := {60} tii[18,14] := {68, 80} tii[18,15] := {74} tii[18,16] := {0, 20} tii[18,17] := {1, 67} tii[18,18] := {2, 23} tii[18,19] := {3, 63} tii[18,20] := {4, 32} tii[18,21] := {8, 50} tii[18,22] := {6, 34} tii[18,23] := {7, 43} tii[18,24] := {13, 38} tii[18,25] := {10, 46} tii[18,26] := {9, 73} tii[18,27] := {26} tii[18,28] := {15, 61} tii[18,29] := {17, 57} tii[18,30] := {21, 42} tii[18,31] := {37} tii[18,32] := {25, 72} tii[18,33] := {41} tii[18,34] := {12, 24} tii[18,35] := {18, 62} tii[18,36] := {19, 31} tii[18,37] := {27, 49} tii[18,38] := {29, 45} tii[18,39] := {30, 54} tii[18,40] := {35, 59} tii[18,41] := {51} tii[18,42] := {53} tii[18,43] := {40, 56} tii[18,44] := {48, 71} tii[18,45] := {64} cell#11 , |C| = 24 special orbit = [8, 2, 2] special rep = [[4, 1], [1]] , dim = 24 cell rep = phi[[4, 1],[1]] TII depth = 4 TII multiplicity polynomial = 24*X TII subcells: tii[23,1] := {23} tii[23,2] := {20} tii[23,3] := {19} tii[23,4] := {18} tii[23,5] := {0} tii[23,6] := {22} tii[23,7] := {3} tii[23,8] := {21} tii[23,9] := {6} tii[23,10] := {16} tii[23,11] := {8} tii[23,12] := {12} tii[23,13] := {1} tii[23,14] := {2} tii[23,15] := {17} tii[23,16] := {4} tii[23,17] := {13} tii[23,18] := {9} tii[23,19] := {5} tii[23,20] := {7} tii[23,21] := {15} tii[23,22] := {11} tii[23,23] := {10} tii[23,24] := {14} cell#12 , |C| = 75 special orbit = [6, 4, 2] special rep = [[3, 1], [2]] , dim = 45 cell rep = phi[[3, 2],[1]]+phi[[3, 1],[2]] TII depth = 3 TII multiplicity polynomial = 30*X^2+15*X TII subcells: tii[20,1] := {36, 71} tii[20,2] := {62, 73} tii[20,3] := {74} tii[20,4] := {8, 9} tii[20,5] := {24, 25} tii[20,6] := {12, 59} tii[20,7] := {32, 58} tii[20,8] := {43} tii[20,9] := {56} tii[20,10] := {18, 19} tii[20,11] := {26, 66} tii[20,12] := {7, 31} tii[20,13] := {38, 39} tii[20,14] := {14, 61} tii[20,15] := {15, 41} tii[20,16] := {44, 65} tii[20,17] := {53} tii[20,18] := {22, 51} tii[20,19] := {64} tii[20,20] := {47, 48} tii[20,21] := {54, 70} tii[20,22] := {37, 57} tii[20,23] := {63} tii[20,24] := {45, 67} tii[20,25] := {69} tii[20,26] := {68} tii[20,27] := {72} tii[20,28] := {1, 2} tii[20,29] := {5, 6} tii[20,30] := {11} tii[20,31] := {0, 20} tii[20,32] := {4, 28} tii[20,33] := {3, 52} tii[20,34] := {16, 17} tii[20,35] := {10, 42} tii[20,36] := {23} tii[20,37] := {13, 40} tii[20,38] := {33} tii[20,39] := {21, 50} tii[20,40] := {29, 30} tii[20,41] := {35} tii[20,42] := {27, 49} tii[20,43] := {46} tii[20,44] := {34, 60} tii[20,45] := {55} cell#13 , |C| = 25 special orbit = [8, 2, 1, 1] special rep = [[4], [1, 1]] , dim = 15 cell rep = phi[[4, 1, 1],[]]+phi[[4],[1, 1]] TII depth = 1 TII multiplicity polynomial = 10*X^2+5*X TII subcells: tii[22,1] := {7, 24} tii[22,2] := {4, 23} tii[22,3] := {8, 22} tii[22,4] := {10, 20} tii[22,5] := {17} tii[22,6] := {1, 21} tii[22,7] := {3, 19} tii[22,8] := {6, 18} tii[22,9] := {11} tii[22,10] := {0, 16} tii[22,11] := {2, 13} tii[22,12] := {9} tii[22,13] := {5, 15} tii[22,14] := {12} tii[22,15] := {14} cell#14 , |C| = 24 special orbit = [8, 2, 2] special rep = [[4, 1], [1]] , dim = 24 cell rep = phi[[4, 1],[1]] TII depth = 4 TII multiplicity polynomial = 24*X TII subcells: tii[23,1] := {23} tii[23,2] := {21} tii[23,3] := {17} tii[23,4] := {11} tii[23,5] := {1} tii[23,6] := {22} tii[23,7] := {5} tii[23,8] := {20} tii[23,9] := {9} tii[23,10] := {18} tii[23,11] := {12} tii[23,12] := {15} tii[23,13] := {0} tii[23,14] := {4} tii[23,15] := {19} tii[23,16] := {8} tii[23,17] := {16} tii[23,18] := {13} tii[23,19] := {3} tii[23,20] := {6} tii[23,21] := {14} tii[23,22] := {10} tii[23,23] := {2} tii[23,24] := {7} cell#15 , |C| = 24 special orbit = [8, 2, 2] special rep = [[4, 1], [1]] , dim = 24 cell rep = phi[[4, 1],[1]] TII depth = 4 TII multiplicity polynomial = 24*X TII subcells: tii[23,1] := {23} tii[23,2] := {21} tii[23,3] := {17} tii[23,4] := {11} tii[23,5] := {1} tii[23,6] := {22} tii[23,7] := {5} tii[23,8] := {20} tii[23,9] := {9} tii[23,10] := {18} tii[23,11] := {12} tii[23,12] := {15} tii[23,13] := {0} tii[23,14] := {4} tii[23,15] := {19} tii[23,16] := {8} tii[23,17] := {16} tii[23,18] := {13} tii[23,19] := {3} tii[23,20] := {6} tii[23,21] := {14} tii[23,22] := {10} tii[23,23] := {2} tii[23,24] := {7} cell#16 , |C| = 25 special orbit = [8, 2, 1, 1] special rep = [[4], [1, 1]] , dim = 15 cell rep = phi[[4, 1, 1],[]]+phi[[4],[1, 1]] TII depth = 1 TII multiplicity polynomial = 10*X^2+5*X TII subcells: tii[22,1] := {3, 19} tii[22,2] := {10, 11} tii[22,3] := {17, 18} tii[22,4] := {22, 23} tii[22,5] := {24} tii[22,6] := {0, 1} tii[22,7] := {8, 9} tii[22,8] := {15, 16} tii[22,9] := {21} tii[22,10] := {6, 7} tii[22,11] := {13, 14} tii[22,12] := {20} tii[22,13] := {4, 5} tii[22,14] := {12} tii[22,15] := {2} cell#17 , |C| = 81 special orbit = [6, 2, 2, 2] special rep = [[3, 1], [1, 1]] , dim = 45 cell rep = phi[[3, 1, 1],[1]]+phi[[3, 1],[1, 1]] TII depth = 3 TII multiplicity polynomial = 36*X^2+9*X TII subcells: tii[18,1] := {20, 56} tii[18,2] := {18, 74} tii[18,3] := {17, 80} tii[18,4] := {30, 52} tii[18,5] := {26, 71} tii[18,6] := {40, 41} tii[18,7] := {23, 79} tii[18,8] := {50, 51} tii[18,9] := {60} tii[18,10] := {39, 61} tii[18,11] := {34, 76} tii[18,12] := {48, 49} tii[18,13] := {59} tii[18,14] := {47, 68} tii[18,15] := {58} tii[18,16] := {0, 31} tii[18,17] := {15, 42} tii[18,18] := {1, 43} tii[18,19] := {10, 54} tii[18,20] := {2, 55} tii[18,21] := {6, 65} tii[18,22] := {3, 57} tii[18,23] := {27, 28} tii[18,24] := {37, 38} tii[18,25] := {4, 67} tii[18,26] := {14, 66} tii[18,27] := {46} tii[18,28] := {9, 73} tii[18,29] := {7, 75} tii[18,30] := {24, 25} tii[18,31] := {33} tii[18,32] := {12, 78} tii[18,33] := {22} tii[18,34] := {5, 53} tii[18,35] := {21, 63} tii[18,36] := {8, 64} tii[18,37] := {13, 70} tii[18,38] := {11, 72} tii[18,39] := {35, 36} tii[18,40] := {19, 77} tii[18,41] := {45} tii[18,42] := {32} tii[18,43] := {16, 62} tii[18,44] := {29, 69} tii[18,45] := {44} cell#18 , |C| = 56 special orbit = [6, 4, 1, 1] special rep = [[3], [2, 1]] , dim = 40 cell rep = phi[[3, 2, 1],[]]+phi[[3],[2, 1]] TII depth = 2 TII multiplicity polynomial = 16*X^2+24*X TII subcells: tii[19,1] := {11, 46} tii[19,2] := {29, 49} tii[19,3] := {47} tii[19,4] := {52} tii[19,5] := {5, 37} tii[19,6] := {18, 42} tii[19,7] := {2, 27} tii[19,8] := {4, 24} tii[19,9] := {39} tii[19,10] := {12} tii[19,11] := {50} tii[19,12] := {28, 45} tii[19,13] := {19, 36} tii[19,14] := {48} tii[19,15] := {32} tii[19,16] := {53} tii[19,17] := {51} tii[19,18] := {44} tii[19,19] := {54} tii[19,20] := {55} tii[19,21] := {6, 38} tii[19,22] := {10, 34} tii[19,23] := {22} tii[19,24] := {0, 17} tii[19,25] := {1, 14} tii[19,26] := {20, 43} tii[19,27] := {7} tii[19,28] := {31} tii[19,29] := {3, 16} tii[19,30] := {40} tii[19,31] := {13} tii[19,32] := {15} tii[19,33] := {9, 33} tii[19,34] := {21} tii[19,35] := {8, 26} tii[19,36] := {30} tii[19,37] := {23} tii[19,38] := {25} tii[19,39] := {41} tii[19,40] := {35} cell#19 , |C| = 56 special orbit = [6, 4, 1, 1] special rep = [[3], [2, 1]] , dim = 40 cell rep = phi[[3, 2, 1],[]]+phi[[3],[2, 1]] TII depth = 2 TII multiplicity polynomial = 16*X^2+24*X TII subcells: tii[19,1] := {11, 46} tii[19,2] := {29, 49} tii[19,3] := {47} tii[19,4] := {52} tii[19,5] := {5, 37} tii[19,6] := {18, 42} tii[19,7] := {2, 27} tii[19,8] := {4, 24} tii[19,9] := {39} tii[19,10] := {12} tii[19,11] := {50} tii[19,12] := {28, 45} tii[19,13] := {19, 36} tii[19,14] := {48} tii[19,15] := {32} tii[19,16] := {53} tii[19,17] := {51} tii[19,18] := {44} tii[19,19] := {54} tii[19,20] := {55} tii[19,21] := {6, 38} tii[19,22] := {10, 34} tii[19,23] := {22} tii[19,24] := {0, 17} tii[19,25] := {1, 14} tii[19,26] := {20, 43} tii[19,27] := {7} tii[19,28] := {31} tii[19,29] := {3, 16} tii[19,30] := {40} tii[19,31] := {13} tii[19,32] := {15} tii[19,33] := {9, 33} tii[19,34] := {21} tii[19,35] := {8, 26} tii[19,36] := {30} tii[19,37] := {23} tii[19,38] := {25} tii[19,39] := {41} tii[19,40] := {35} cell#20 , |C| = 81 special orbit = [6, 2, 2, 2] special rep = [[3, 1], [1, 1]] , dim = 45 cell rep = phi[[3, 1, 1],[1]]+phi[[3, 1],[1, 1]] TII depth = 3 TII multiplicity polynomial = 36*X^2+9*X TII subcells: tii[18,1] := {39, 79} tii[18,2] := {22, 71} tii[18,3] := {45, 69} tii[18,4] := {56, 80} tii[18,5] := {7, 60} tii[18,6] := {51, 78} tii[18,7] := {30, 59} tii[18,8] := {58, 76} tii[18,9] := {72} tii[18,10] := {20, 67} tii[18,11] := {44, 70} tii[18,12] := {26, 53} tii[18,13] := {47} tii[18,14] := {57, 74} tii[18,15] := {66} tii[18,16] := {15, 16} tii[18,17] := {25, 77} tii[18,18] := {4, 32} tii[18,19] := {13, 73} tii[18,20] := {14, 43} tii[18,21] := {24, 64} tii[18,22] := {3, 17} tii[18,23] := {36, 75} tii[18,24] := {40, 68} tii[18,25] := {10, 29} tii[18,26] := {9, 65} tii[18,27] := {63} tii[18,28] := {19, 48} tii[18,29] := {23, 42} tii[18,30] := {28, 55} tii[18,31] := {49} tii[18,32] := {33, 62} tii[18,33] := {54} tii[18,34] := {0, 5} tii[18,35] := {1, 50} tii[18,36] := {2, 12} tii[18,37] := {6, 34} tii[18,38] := {8, 27} tii[18,39] := {11, 38} tii[18,40] := {18, 46} tii[18,41] := {35} tii[18,42] := {37} tii[18,43] := {21, 41} tii[18,44] := {31, 61} tii[18,45] := {52} cell#21 , |C| = 81 special orbit = [6, 2, 2, 2] special rep = [[3, 1], [1, 1]] , dim = 45 cell rep = phi[[3, 1, 1],[1]]+phi[[3, 1],[1, 1]] TII depth = 3 TII multiplicity polynomial = 36*X^2+9*X TII subcells: tii[18,1] := {20, 80} tii[18,2] := {18, 75} tii[18,3] := {17, 64} tii[18,4] := {29, 79} tii[18,5] := {27, 70} tii[18,6] := {40, 77} tii[18,7] := {25, 55} tii[18,8] := {50, 71} tii[18,9] := {62} tii[18,10] := {39, 76} tii[18,11] := {38, 59} tii[18,12] := {49, 72} tii[18,13] := {61} tii[18,14] := {48, 69} tii[18,15] := {63} tii[18,16] := {0, 34} tii[18,17] := {15, 78} tii[18,18] := {1, 45} tii[18,19] := {10, 74} tii[18,20] := {2, 57} tii[18,21] := {6, 67} tii[18,22] := {3, 33} tii[18,23] := {26, 73} tii[18,24] := {36, 65} tii[18,25] := {4, 44} tii[18,26] := {14, 68} tii[18,27] := {52} tii[18,28] := {9, 58} tii[18,29] := {7, 35} tii[18,30] := {24, 56} tii[18,31] := {42} tii[18,32] := {12, 51} tii[18,33] := {30} tii[18,34] := {5, 22} tii[18,35] := {21, 60} tii[18,36] := {8, 32} tii[18,37] := {13, 47} tii[18,38] := {11, 23} tii[18,39] := {37, 66} tii[18,40] := {19, 41} tii[18,41] := {53} tii[18,42] := {43} tii[18,43] := {16, 31} tii[18,44] := {28, 46} tii[18,45] := {54} cell#22 , |C| = 81 special orbit = [6, 2, 2, 2] special rep = [[3, 1], [1, 1]] , dim = 45 cell rep = phi[[3, 1, 1],[1]]+phi[[3, 1],[1, 1]] TII depth = 3 TII multiplicity polynomial = 36*X^2+9*X TII subcells: tii[18,1] := {20, 80} tii[18,2] := {18, 75} tii[18,3] := {17, 64} tii[18,4] := {29, 79} tii[18,5] := {27, 70} tii[18,6] := {40, 77} tii[18,7] := {25, 55} tii[18,8] := {50, 71} tii[18,9] := {62} tii[18,10] := {39, 76} tii[18,11] := {38, 59} tii[18,12] := {49, 72} tii[18,13] := {61} tii[18,14] := {48, 69} tii[18,15] := {63} tii[18,16] := {0, 34} tii[18,17] := {15, 78} tii[18,18] := {1, 45} tii[18,19] := {10, 74} tii[18,20] := {2, 57} tii[18,21] := {6, 67} tii[18,22] := {3, 33} tii[18,23] := {26, 73} tii[18,24] := {36, 65} tii[18,25] := {4, 44} tii[18,26] := {14, 68} tii[18,27] := {52} tii[18,28] := {9, 58} tii[18,29] := {7, 35} tii[18,30] := {24, 56} tii[18,31] := {42} tii[18,32] := {12, 51} tii[18,33] := {30} tii[18,34] := {5, 22} tii[18,35] := {21, 60} tii[18,36] := {8, 32} tii[18,37] := {13, 47} tii[18,38] := {11, 23} tii[18,39] := {37, 66} tii[18,40] := {19, 41} tii[18,41] := {53} tii[18,42] := {43} tii[18,43] := {16, 31} tii[18,44] := {28, 46} tii[18,45] := {54} cell#23 , |C| = 30 special orbit = [4, 4, 4] special rep = [[2, 2], [2]] , dim = 30 cell rep = phi[[2, 2],[2]] TII depth = 3 TII multiplicity polynomial = 30*X TII subcells: tii[14,1] := {29} tii[14,2] := {13} tii[14,3] := {23} tii[14,4] := {8} tii[14,5] := {18} tii[14,6] := {26} tii[14,7] := {16} tii[14,8] := {20} tii[14,9] := {22} tii[14,10] := {28} tii[14,11] := {24} tii[14,12] := {27} tii[14,13] := {4} tii[14,14] := {3} tii[14,15] := {9} tii[14,16] := {2} tii[14,17] := {11} tii[14,18] := {5} tii[14,19] := {17} tii[14,20] := {15} tii[14,21] := {21} tii[14,22] := {6} tii[14,23] := {14} tii[14,24] := {10} tii[14,25] := {19} tii[14,26] := {12} tii[14,27] := {25} tii[14,28] := {0} tii[14,29] := {1} tii[14,30] := {7} cell#24 , |C| = 45 special orbit = [4, 2, 2, 2, 2] special rep = [[2, 1, 1], [1, 1]] , dim = 45 cell rep = phi[[2, 1, 1],[1, 1]] TII depth = 3 TII multiplicity polynomial = 45*X TII subcells: tii[11,1] := {39} tii[11,2] := {41} tii[11,3] := {44} tii[11,4] := {4} tii[11,5] := {11} tii[11,6] := {31} tii[11,7] := {8} tii[11,8] := {35} tii[11,9] := {20} tii[11,10] := {24} tii[11,11] := {10} tii[11,12] := {22} tii[11,13] := {37} tii[11,14] := {25} tii[11,15] := {30} tii[11,16] := {14} tii[11,17] := {27} tii[11,18] := {33} tii[11,19] := {18} tii[11,20] := {29} tii[11,21] := {26} tii[11,22] := {42} tii[11,23] := {34} tii[11,24] := {38} tii[11,25] := {36} tii[11,26] := {40} tii[11,27] := {43} tii[11,28] := {0} tii[11,29] := {1} tii[11,30] := {2} tii[11,31] := {3} tii[11,32] := {5} tii[11,33] := {17} tii[11,34] := {6} tii[11,35] := {7} tii[11,36] := {13} tii[11,37] := {16} tii[11,38] := {19} tii[11,39] := {9} tii[11,40] := {28} tii[11,41] := {12} tii[11,42] := {23} tii[11,43] := {15} tii[11,44] := {21} tii[11,45] := {32} cell#25 , |C| = 145 special orbit = [4, 4, 2, 2] special rep = [[2, 1], [2, 1]] , dim = 80 cell rep = phi[[2, 2, 2],[]]+phi[[2, 2, 1],[1]]+phi[[2, 1],[2, 1]]+phi[[2],[2, 2]] TII depth = 3 TII multiplicity polynomial = 50*X^2+25*X+5*X^4 TII subcells: tii[13,1] := {56, 111} tii[13,2] := {121} tii[13,3] := {54, 55, 98, 100} tii[13,4] := {81, 125} tii[13,5] := {47, 93} tii[13,6] := {133} tii[13,7] := {103, 104} tii[13,8] := {123, 124} tii[13,9] := {101, 132} tii[13,10] := {139} tii[13,11] := {91, 120} tii[13,12] := {126, 127} tii[13,13] := {106} tii[13,14] := {135, 136} tii[13,15] := {140} tii[13,16] := {143, 144} tii[13,17] := {9, 10} tii[13,18] := {15, 69} tii[13,19] := {35} tii[13,20] := {65} tii[13,21] := {21, 22} tii[13,22] := {31, 32, 74, 76} tii[13,23] := {36, 92} tii[13,24] := {8, 45} tii[13,25] := {25, 70} tii[13,26] := {84, 85} tii[13,27] := {13, 14, 51, 53} tii[13,28] := {57} tii[13,29] := {16, 71} tii[13,30] := {109, 110} tii[13,31] := {39, 40} tii[13,32] := {90} tii[13,33] := {82} tii[13,34] := {95, 96} tii[13,35] := {44, 86} tii[13,36] := {73, 75} tii[13,37] := {107} tii[13,38] := {62} tii[13,39] := {117, 118} tii[13,40] := {130, 131} tii[13,41] := {42, 43} tii[13,42] := {33, 34, 78, 80} tii[13,43] := {58, 112} tii[13,44] := {20, 68} tii[13,45] := {83} tii[13,46] := {63, 64} tii[13,47] := {37, 94} tii[13,48] := {108} tii[13,49] := {67, 105} tii[13,50] := {12, 46} tii[13,51] := {102} tii[13,52] := {113, 114} tii[13,53] := {87, 88} tii[13,54] := {89} tii[13,55] := {122} tii[13,56] := {26, 72} tii[13,57] := {97, 99} tii[13,58] := {128, 129} tii[13,59] := {66} tii[13,60] := {137, 138} tii[13,61] := {119} tii[13,62] := {115, 116} tii[13,63] := {134} tii[13,64] := {141, 142} tii[13,65] := {1, 2} tii[13,66] := {7} tii[13,67] := {0, 24} tii[13,68] := {4, 5, 28, 30} tii[13,69] := {17} tii[13,70] := {18, 19} tii[13,71] := {6, 49} tii[13,72] := {27, 29} tii[13,73] := {3, 23} tii[13,74] := {60, 61} tii[13,75] := {38} tii[13,76] := {11, 48} tii[13,77] := {50, 52} tii[13,78] := {41} tii[13,79] := {59} tii[13,80] := {77, 79} cell#26 , |C| = 30 special orbit = [6, 2, 1, 1, 1, 1] special rep = [[3], [1, 1, 1]] , dim = 20 cell rep = phi[[3, 1, 1, 1],[]]+phi[[3],[1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 10*X^2+10*X TII subcells: tii[17,1] := {11, 28} tii[17,2] := {22, 23} tii[17,3] := {26, 27} tii[17,4] := {29} tii[17,5] := {9, 10} tii[17,6] := {20, 21} tii[17,7] := {25} tii[17,8] := {15, 16} tii[17,9] := {24} tii[17,10] := {12} tii[17,11] := {0, 1} tii[17,12] := {6, 8} tii[17,13] := {19} tii[17,14] := {3, 4} tii[17,15] := {14} tii[17,16] := {2} tii[17,17] := {5, 7} tii[17,18] := {18} tii[17,19] := {13} tii[17,20] := {17} cell#27 , |C| = 45 special orbit = [4, 2, 2, 2, 2] special rep = [[2, 1, 1], [1, 1]] , dim = 45 cell rep = phi[[2, 1, 1],[1, 1]] TII depth = 3 TII multiplicity polynomial = 45*X TII subcells: tii[11,1] := {44} tii[11,2] := {35} tii[11,3] := {43} tii[11,4] := {9} tii[11,5] := {8} tii[11,6] := {42} tii[11,7] := {14} tii[11,8] := {27} tii[11,9] := {13} tii[11,10] := {38} tii[11,11] := {21} tii[11,12] := {29} tii[11,13] := {36} tii[11,14] := {20} tii[11,15] := {30} tii[11,16] := {18} tii[11,17] := {22} tii[11,18] := {40} tii[11,19] := {25} tii[11,20] := {34} tii[11,21] := {17} tii[11,22] := {41} tii[11,23] := {28} tii[11,24] := {37} tii[11,25] := {26} tii[11,26] := {33} tii[11,27] := {39} tii[11,28] := {0} tii[11,29] := {6} tii[11,30] := {1} tii[11,31] := {3} tii[11,32] := {2} tii[11,33] := {32} tii[11,34] := {12} tii[11,35] := {5} tii[11,36] := {23} tii[11,37] := {16} tii[11,38] := {11} tii[11,39] := {4} tii[11,40] := {19} tii[11,41] := {10} tii[11,42] := {24} tii[11,43] := {7} tii[11,44] := {15} tii[11,45] := {31} cell#28 , |C| = 45 special orbit = [4, 2, 2, 2, 2] special rep = [[2, 1, 1], [1, 1]] , dim = 45 cell rep = phi[[2, 1, 1],[1, 1]] TII depth = 3 TII multiplicity polynomial = 45*X TII subcells: tii[11,1] := {44} tii[11,2] := {35} tii[11,3] := {43} tii[11,4] := {9} tii[11,5] := {8} tii[11,6] := {42} tii[11,7] := {14} tii[11,8] := {27} tii[11,9] := {13} tii[11,10] := {38} tii[11,11] := {21} tii[11,12] := {29} tii[11,13] := {36} tii[11,14] := {20} tii[11,15] := {30} tii[11,16] := {18} tii[11,17] := {22} tii[11,18] := {40} tii[11,19] := {25} tii[11,20] := {34} tii[11,21] := {17} tii[11,22] := {41} tii[11,23] := {28} tii[11,24] := {37} tii[11,25] := {26} tii[11,26] := {33} tii[11,27] := {39} tii[11,28] := {0} tii[11,29] := {6} tii[11,30] := {1} tii[11,31] := {3} tii[11,32] := {2} tii[11,33] := {32} tii[11,34] := {12} tii[11,35] := {5} tii[11,36] := {23} tii[11,37] := {16} tii[11,38] := {11} tii[11,39] := {4} tii[11,40] := {19} tii[11,41] := {10} tii[11,42] := {24} tii[11,43] := {7} tii[11,44] := {15} tii[11,45] := {31} cell#29 , |C| = 64 special orbit = [4, 2, 2, 2, 1, 1] special rep = [[2, 1], [1, 1, 1]] , dim = 40 cell rep = phi[[2, 1, 1, 1],[1]]+phi[[2, 1],[1, 1, 1]] TII depth = 2 TII multiplicity polynomial = 16*X+24*X^2 TII subcells: tii[10,1] := {9, 49} tii[10,2] := {8, 63} tii[10,3] := {18, 43} tii[10,4] := {15, 60} tii[10,5] := {30, 31} tii[10,6] := {40} tii[10,7] := {29, 53} tii[10,8] := {39} tii[10,9] := {24, 48} tii[10,10] := {32, 62} tii[10,11] := {35, 37} tii[10,12] := {46} tii[10,13] := {22, 23} tii[10,14] := {42, 59} tii[10,15] := {54} tii[10,16] := {34} tii[10,17] := {27} tii[10,18] := {50, 61} tii[10,19] := {56} tii[10,20] := {45} tii[10,21] := {0, 25} tii[10,22] := {6, 36} tii[10,23] := {1, 38} tii[10,24] := {3, 47} tii[10,25] := {2, 52} tii[10,26] := {16, 17} tii[10,27] := {5, 58} tii[10,28] := {28} tii[10,29] := {13} tii[10,30] := {11, 12} tii[10,31] := {4, 44} tii[10,32] := {21} tii[10,33] := {10, 55} tii[10,34] := {14} tii[10,35] := {26} tii[10,36] := {20} tii[10,37] := {7, 51} tii[10,38] := {19, 57} tii[10,39] := {41} tii[10,40] := {33} cell#30 , |C| = 30 special orbit = [6, 2, 1, 1, 1, 1] special rep = [[3], [1, 1, 1]] , dim = 20 cell rep = phi[[3, 1, 1, 1],[]]+phi[[3],[1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 10*X^2+10*X TII subcells: tii[17,1] := {0, 29} tii[17,2] := {1, 22} tii[17,3] := {3, 15} tii[17,4] := {8} tii[17,5] := {4, 28} tii[17,6] := {7, 21} tii[17,7] := {14} tii[17,8] := {13, 27} tii[17,9] := {20} tii[17,10] := {26} tii[17,11] := {2, 25} tii[17,12] := {6, 19} tii[17,13] := {11} tii[17,14] := {10, 24} tii[17,15] := {18} tii[17,16] := {23} tii[17,17] := {5, 17} tii[17,18] := {12} tii[17,19] := {16} tii[17,20] := {9} cell#31 , |C| = 30 special orbit = [6, 2, 1, 1, 1, 1] special rep = [[3], [1, 1, 1]] , dim = 20 cell rep = phi[[3, 1, 1, 1],[]]+phi[[3],[1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 10*X^2+10*X TII subcells: tii[17,1] := {0, 29} tii[17,2] := {1, 22} tii[17,3] := {3, 15} tii[17,4] := {8} tii[17,5] := {4, 28} tii[17,6] := {7, 21} tii[17,7] := {14} tii[17,8] := {13, 27} tii[17,9] := {20} tii[17,10] := {26} tii[17,11] := {2, 25} tii[17,12] := {6, 19} tii[17,13] := {11} tii[17,14] := {10, 24} tii[17,15] := {18} tii[17,16] := {23} tii[17,17] := {5, 17} tii[17,18] := {12} tii[17,19] := {16} tii[17,20] := {9} cell#32 , |C| = 20 special orbit = [4, 2, 1, 1, 1, 1, 1, 1] special rep = [[2], [1, 1, 1, 1]] , dim = 15 cell rep = phi[[2, 1, 1, 1, 1],[]]+phi[[2],[1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 5*X^2+10*X TII subcells: tii[9,1] := {0, 19} tii[9,2] := {1, 10} tii[9,3] := {5} tii[9,4] := {4, 18} tii[9,5] := {9} tii[9,6] := {16} tii[9,7] := {2, 13} tii[9,8] := {7} tii[9,9] := {12} tii[9,10] := {6} tii[9,11] := {3, 17} tii[9,12] := {8} tii[9,13] := {15} tii[9,14] := {11} tii[9,15] := {14} cell#33 , |C| = 20 special orbit = [4, 2, 1, 1, 1, 1, 1, 1] special rep = [[2], [1, 1, 1, 1]] , dim = 15 cell rep = phi[[2, 1, 1, 1, 1],[]]+phi[[2],[1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 5*X^2+10*X TII subcells: tii[9,1] := {0, 19} tii[9,2] := {1, 10} tii[9,3] := {5} tii[9,4] := {4, 18} tii[9,5] := {9} tii[9,6] := {16} tii[9,7] := {2, 13} tii[9,8] := {7} tii[9,9] := {12} tii[9,10] := {6} tii[9,11] := {3, 17} tii[9,12] := {8} tii[9,13] := {15} tii[9,14] := {11} tii[9,15] := {14}