TII subcells for the PSp(3,3) x Spin(7,6) block of PSp12 # cell#0 , |C| = 25 special orbit = [6, 6] special rep = [[3], [3]] , dim = 20 cell rep = phi[[3, 3],[]]+phi[[3],[3]] TII depth = 2 TII multiplicity polynomial = 5*X^2+15*X TII subcells: tii[21,1] := {23, 24} tii[21,2] := {16} tii[21,3] := {8} tii[21,4] := {0} tii[21,5] := {17, 18} tii[21,6] := {11} tii[21,7] := {4} tii[21,8] := {21, 22} tii[21,9] := {19, 20} tii[21,10] := {9} tii[21,11] := {15} tii[21,12] := {1} tii[21,13] := {12} tii[21,14] := {7} tii[21,15] := {6} tii[21,16] := {3} tii[21,17] := {13, 14} tii[21,18] := {10} tii[21,19] := {5} tii[21,20] := {2} cell#1 , |C| = 45 special orbit = [5, 5, 1, 1] special rep = [[2], [3, 1]] , dim = 45 cell rep = phi[[2],[3, 1]] TII depth = 4 TII multiplicity polynomial = 45*X TII subcells: tii[15,1] := {39} tii[15,2] := {42} tii[15,3] := {44} tii[15,4] := {32} tii[15,5] := {11} tii[15,6] := {37} tii[15,7] := {4} tii[15,8] := {43} tii[15,9] := {40} tii[15,10] := {34} tii[15,11] := {29} tii[15,12] := {21} tii[15,13] := {41} tii[15,14] := {38} tii[15,15] := {17} tii[15,16] := {7} tii[15,17] := {30} tii[15,18] := {19} tii[15,19] := {22} tii[15,20] := {12} tii[15,21] := {33} tii[15,22] := {9} tii[15,23] := {27} tii[15,24] := {0} tii[15,25] := {26} tii[15,26] := {18} tii[15,27] := {36} tii[15,28] := {31} tii[15,29] := {8} tii[15,30] := {2} tii[15,31] := {23} tii[15,32] := {15} tii[15,33] := {14} tii[15,34] := {24} tii[15,35] := {6} tii[15,36] := {28} tii[15,37] := {10} tii[15,38] := {35} tii[15,39] := {25} tii[15,40] := {5} tii[15,41] := {16} tii[15,42] := {1} tii[15,43] := {13} tii[15,44] := {3} tii[15,45] := {20} cell#2 , |C| = 145 special orbit = [4, 4, 2, 2] special rep = [[2, 1], [2, 1]] , dim = 80 cell rep = phi[[2, 2],[1, 1]]+phi[[2, 1],[2, 1]]+phi[[1],[3, 2]]+phi[[],[3, 3]] TII depth = 3 TII multiplicity polynomial = 50*X^2+25*X+5*X^4 TII subcells: tii[13,1] := {143, 144} tii[13,2] := {118} tii[13,3] := {91} tii[13,4] := {138, 139} tii[13,5] := {107, 108} tii[13,6] := {94} tii[13,7] := {42, 135} tii[13,8] := {71, 142} tii[13,9] := {123, 124} tii[13,10] := {67} tii[13,11] := {105, 106} tii[13,12] := {14, 92} tii[13,13] := {85, 86, 131, 132} tii[13,14] := {30, 120} tii[13,15] := {44} tii[13,16] := {24, 73} tii[13,17] := {52, 53} tii[13,18] := {127, 128} tii[13,19] := {64} tii[13,20] := {97} tii[13,21] := {75, 76} tii[13,22] := {62} tii[13,23] := {140, 141} tii[13,24] := {103, 104} tii[13,25] := {83, 84} tii[13,26] := {21, 117} tii[13,27] := {41} tii[13,28] := {50} tii[13,29] := {129, 130} tii[13,30] := {46, 136} tii[13,31] := {19, 70} tii[13,32] := {74} tii[13,33] := {65} tii[13,34] := {10, 93} tii[13,35] := {56, 57} tii[13,36] := {3, 69} tii[13,37] := {98} tii[13,38] := {35, 36, 89, 90} tii[13,39] := {25, 121} tii[13,40] := {11, 137} tii[13,41] := {101, 102} tii[13,42] := {63} tii[13,43] := {125, 126} tii[13,44] := {77, 78} tii[13,45] := {29} tii[13,46] := {39, 96} tii[13,47] := {109, 110} tii[13,48] := {51} tii[13,49] := {81, 82} tii[13,50] := {54, 55} tii[13,51] := {43} tii[13,52] := {6, 66} tii[13,53] := {20, 119} tii[13,54] := {58, 59, 113, 114} tii[13,55] := {72} tii[13,56] := {87, 88} tii[13,57] := {2, 45} tii[13,58] := {15, 99} tii[13,59] := {37, 38, 133, 134} tii[13,60] := {7, 122} tii[13,61] := {23} tii[13,62] := {5, 68} tii[13,63] := {47} tii[13,64] := {12, 100} tii[13,65] := {31, 32} tii[13,66] := {18} tii[13,67] := {79, 80} tii[13,68] := {22} tii[13,69] := {40} tii[13,70] := {8, 48} tii[13,71] := {111, 112} tii[13,72] := {4, 26} tii[13,73] := {33, 34} tii[13,74] := {9, 95} tii[13,75] := {28} tii[13,76] := {60, 61} tii[13,77] := {1, 49} tii[13,78] := {16, 17, 115, 116} tii[13,79] := {13} tii[13,80] := {0, 27} cell#3 , |C| = 54 special orbit = [4, 4, 1, 1, 1, 1] special rep = [[2], [2, 1, 1]] , dim = 45 cell rep = phi[[2, 2, 1, 1],[]]+phi[[2],[2, 1, 1]] TII depth = 3 TII multiplicity polynomial = 9*X^2+36*X TII subcells: tii[12,1] := {52, 53} tii[12,2] := {47} tii[12,3] := {40} tii[12,4] := {48, 49} tii[12,5] := {44, 45} tii[12,6] := {39} tii[12,7] := {38} tii[12,8] := {32} tii[12,9] := {31} tii[12,10] := {25} tii[12,11] := {24} tii[12,12] := {15} tii[12,13] := {42, 43} tii[12,14] := {34, 35} tii[12,15] := {30} tii[12,16] := {28} tii[12,17] := {22} tii[12,18] := {26, 27} tii[12,19] := {20} tii[12,20] := {14} tii[12,21] := {19} tii[12,22] := {13} tii[12,23] := {12} tii[12,24] := {8} tii[12,25] := {11} tii[12,26] := {7} tii[12,27] := {6} tii[12,28] := {4} tii[12,29] := {3} tii[12,30] := {0} tii[12,31] := {50, 51} tii[12,32] := {46} tii[12,33] := {36, 37} tii[12,34] := {41} tii[12,35] := {29} tii[12,36] := {21} tii[12,37] := {17, 18} tii[12,38] := {33} tii[12,39] := {10} tii[12,40] := {16} tii[12,41] := {5} tii[12,42] := {2} tii[12,43] := {23} tii[12,44] := {9} tii[12,45] := {1} cell#4 , |C| = 30 special orbit = [3, 3, 3, 3] special rep = [[1, 1], [2, 2]] , dim = 30 cell rep = phi[[1, 1],[2, 2]] TII depth = 3 TII multiplicity polynomial = 30*X TII subcells: tii[8,1] := {25} tii[8,2] := {14} tii[8,3] := {23} tii[8,4] := {20} tii[8,5] := {4} tii[8,6] := {10} tii[8,7] := {24} tii[8,8] := {28} tii[8,9] := {21} tii[8,10] := {8} tii[8,11] := {17} tii[8,12] := {13} tii[8,13] := {19} tii[8,14] := {22} tii[8,15] := {26} tii[8,16] := {15} tii[8,17] := {29} tii[8,18] := {9} tii[8,19] := {2} tii[8,20] := {6} tii[8,21] := {1} tii[8,22] := {12} tii[8,23] := {7} tii[8,24] := {3} tii[8,25] := {16} tii[8,26] := {27} tii[8,27] := {18} tii[8,28] := {5} tii[8,29] := {11} tii[8,30] := {0} cell#5 , |C| = 30 special orbit = [3, 3, 3, 3] special rep = [[1, 1], [2, 2]] , dim = 30 cell rep = phi[[1, 1],[2, 2]] TII depth = 3 TII multiplicity polynomial = 30*X TII subcells: tii[8,1] := {25} tii[8,2] := {14} tii[8,3] := {23} tii[8,4] := {20} tii[8,5] := {4} tii[8,6] := {10} tii[8,7] := {24} tii[8,8] := {28} tii[8,9] := {21} tii[8,10] := {8} tii[8,11] := {17} tii[8,12] := {13} tii[8,13] := {19} tii[8,14] := {22} tii[8,15] := {26} tii[8,16] := {15} tii[8,17] := {29} tii[8,18] := {9} tii[8,19] := {2} tii[8,20] := {6} tii[8,21] := {1} tii[8,22] := {12} tii[8,23] := {7} tii[8,24] := {3} tii[8,25] := {16} tii[8,26] := {27} tii[8,27] := {18} tii[8,28] := {5} tii[8,29] := {11} tii[8,30] := {0} cell#6 , |C| = 75 special orbit = [3, 3, 2, 2, 1, 1] special rep = [[1, 1], [2, 1, 1]] , dim = 45 cell rep = phi[[1, 1],[2, 1, 1]]+phi[[1],[2, 2, 1]] TII depth = 2 TII multiplicity polynomial = 30*X^2+15*X TII subcells: tii[6,1] := {56} tii[6,2] := {48} tii[6,3] := {19, 69} tii[6,4] := {31, 74} tii[6,5] := {55} tii[6,6] := {44, 67} tii[6,7] := {40} tii[6,8] := {13, 62} tii[6,9] := {23, 72} tii[6,10] := {9, 54} tii[6,11] := {46} tii[6,12] := {5, 43} tii[6,13] := {35, 59} tii[6,14] := {17, 66} tii[6,15] := {24, 70} tii[6,16] := {37} tii[6,17] := {26, 50} tii[6,18] := {21, 57} tii[6,19] := {27} tii[6,20] := {41} tii[6,21] := {36} tii[6,22] := {15, 63} tii[6,23] := {49} tii[6,24] := {25, 73} tii[6,25] := {8, 53} tii[6,26] := {33, 68} tii[6,27] := {6, 45} tii[6,28] := {28} tii[6,29] := {12, 61} tii[6,30] := {3, 34} tii[6,31] := {42} tii[6,32] := {11, 58} tii[6,33] := {16, 64} tii[6,34] := {39, 60} tii[6,35] := {1, 29} tii[6,36] := {10, 71} tii[6,37] := {20} tii[6,38] := {7, 52} tii[6,39] := {32} tii[6,40] := {2, 38} tii[6,41] := {30, 51} tii[6,42] := {14, 65} tii[6,43] := {18} tii[6,44] := {4, 47} tii[6,45] := {0, 22} cell#7 , |C| = 24 special orbit = [3, 3, 1, 1, 1, 1, 1, 1] special rep = [[1], [2, 1, 1, 1]] , dim = 24 cell rep = phi[[1],[2, 1, 1, 1]] TII depth = 4 TII multiplicity polynomial = 24*X TII subcells: tii[5,1] := {21} tii[5,2] := {23} tii[5,3] := {18} tii[5,4] := {13} tii[5,5] := {22} tii[5,6] := {20} tii[5,7] := {14} tii[5,8] := {8} tii[5,9] := {19} tii[5,10] := {7} tii[5,11] := {16} tii[5,12] := {11} tii[5,13] := {9} tii[5,14] := {5} tii[5,15] := {15} tii[5,16] := {3} tii[5,17] := {10} tii[5,18] := {1} tii[5,19] := {6} tii[5,20] := {2} tii[5,21] := {17} tii[5,22] := {12} tii[5,23] := {4} tii[5,24] := {0} cell#8 , |C| = 35 special orbit = [2, 2, 2, 2, 2, 2] special rep = [[1, 1, 1], [1, 1, 1]] , dim = 20 cell rep = phi[[1, 1, 1, 1],[1, 1]]+phi[[1, 1, 1],[1, 1, 1]] TII depth = 2 TII multiplicity polynomial = 15*X^2+5*X TII subcells: tii[4,1] := {30, 31} tii[4,2] := {20, 21} tii[4,3] := {28, 29} tii[4,4] := {26} tii[4,5] := {4, 5} tii[4,6] := {22, 23} tii[4,7] := {8, 9} tii[4,8] := {16, 17} tii[4,9] := {33, 34} tii[4,10] := {12, 13} tii[4,11] := {32} tii[4,12] := {24, 25} tii[4,13] := {27} tii[4,14] := {6, 7} tii[4,15] := {14, 15} tii[4,16] := {18} tii[4,17] := {0, 1} tii[4,18] := {2, 3} tii[4,19] := {10, 11} tii[4,20] := {19} cell#9 , |C| = 24 special orbit = [2, 2, 2, 2, 1, 1, 1, 1] special rep = [[1, 1], [1, 1, 1, 1]] , dim = 15 cell rep = phi[[1, 1],[1, 1, 1, 1]]+phi[[],[2, 2, 1, 1]] TII depth = 1 TII multiplicity polynomial = 9*X^2+6*X TII subcells: tii[3,1] := {18} tii[3,2] := {13} tii[3,3] := {11, 19} tii[3,4] := {10} tii[3,5] := {7, 15} tii[3,6] := {5, 21} tii[3,7] := {6} tii[3,8] := {4, 12} tii[3,9] := {2, 16} tii[3,10] := {1, 20} tii[3,11] := {9} tii[3,12] := {14} tii[3,13] := {8, 23} tii[3,14] := {3, 17} tii[3,15] := {0, 22} cell#10 , |C| = 24 special orbit = [2, 2, 2, 2, 1, 1, 1, 1] special rep = [[1, 1], [1, 1, 1, 1]] , dim = 15 cell rep = phi[[1, 1],[1, 1, 1, 1]]+phi[[],[2, 2, 1, 1]] TII depth = 1 TII multiplicity polynomial = 9*X^2+6*X TII subcells: tii[3,1] := {18} tii[3,2] := {13} tii[3,3] := {11, 19} tii[3,4] := {10} tii[3,5] := {7, 15} tii[3,6] := {5, 21} tii[3,7] := {6} tii[3,8] := {4, 12} tii[3,9] := {2, 16} tii[3,10] := {1, 20} tii[3,11] := {9} tii[3,12] := {14} tii[3,13] := {8, 23} tii[3,14] := {3, 17} tii[3,15] := {0, 22} cell#11 , |C| = 7 special orbit = [2, 2, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [1, 1, 1, 1, 1]] , dim = 6 cell rep = phi[[1, 1, 1, 1, 1, 1],[]]+phi[[1],[1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = X^2+5*X TII subcells: tii[2,1] := {5, 6} tii[2,2] := {4} tii[2,3] := {3} tii[2,4] := {2} tii[2,5] := {1} tii[2,6] := {0} cell#12 , |C| = 1 special orbit = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [1, 1, 1, 1, 1, 1]] , dim = 1 cell rep = phi[[],[1, 1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = X TII subcells: tii[1,1] := {0} cell#13 , |C| = 1 special orbit = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [1, 1, 1, 1, 1, 1]] , dim = 1 cell rep = phi[[],[1, 1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = X TII subcells: tii[1,1] := {0}