TII subcells for the Sp(12,R) x SO(10,3) block of Sp12 # cell#0 , |C| = 1 special orbit = [12] special rep = [[6], []] , dim = 1 cell rep = phi[[6],[]] TII depth = 1 TII multiplicity polynomial = X TII subcells: tii[26,1] := {0} cell#1 , |C| = 1 special orbit = [12] special rep = [[6], []] , dim = 1 cell rep = phi[[6],[]] TII depth = 1 TII multiplicity polynomial = X TII subcells: tii[26,1] := {0} cell#2 , |C| = 11 special orbit = [10, 2] special rep = [[5], [1]] , dim = 6 cell rep = phi[[5, 1],[]]+phi[[5],[1]] TII depth = 1 TII multiplicity polynomial = X+5*X^2 TII subcells: tii[25,1] := {1, 9} tii[25,2] := {0, 6} tii[25,3] := {2, 3} tii[25,4] := {4, 5} tii[25,5] := {7, 8} tii[25,6] := {10} cell#3 , |C| = 11 special orbit = [10, 2] special rep = [[5], [1]] , dim = 6 cell rep = phi[[5, 1],[]]+phi[[5],[1]] TII depth = 1 TII multiplicity polynomial = X+5*X^2 TII subcells: tii[25,1] := {0, 10} tii[25,2] := {1, 9} tii[25,3] := {2, 8} tii[25,4] := {3, 7} tii[25,5] := {4, 6} tii[25,6] := {5} cell#4 , |C| = 11 special orbit = [10, 2] special rep = [[5], [1]] , dim = 6 cell rep = phi[[5, 1],[]]+phi[[5],[1]] TII depth = 1 TII multiplicity polynomial = X+5*X^2 TII subcells: tii[25,1] := {1, 9} tii[25,2] := {0, 6} tii[25,3] := {2, 3} tii[25,4] := {4, 5} tii[25,5] := {7, 8} tii[25,6] := {10} cell#5 , |C| = 11 special orbit = [10, 2] special rep = [[5], [1]] , dim = 6 cell rep = phi[[5, 1],[]]+phi[[5],[1]] TII depth = 1 TII multiplicity polynomial = X+5*X^2 TII subcells: tii[25,1] := {0, 10} tii[25,2] := {1, 9} tii[25,3] := {2, 8} tii[25,4] := {3, 7} tii[25,5] := {4, 6} tii[25,6] := {5} cell#6 , |C| = 24 special orbit = [8, 2, 2] special rep = [[4, 1], [1]] , dim = 24 cell rep = phi[[4, 1],[1]] TII depth = 4 TII multiplicity polynomial = 24*X TII subcells: tii[23,1] := {5} tii[23,2] := {14} tii[23,3] := {20} tii[23,4] := {23} tii[23,5] := {0} tii[23,6] := {1} tii[23,7] := {2} tii[23,8] := {3} tii[23,9] := {4} tii[23,10] := {7} tii[23,11] := {8} tii[23,12] := {11} tii[23,13] := {6} tii[23,14] := {10} tii[23,15] := {9} tii[23,16] := {13} tii[23,17] := {12} tii[23,18] := {16} tii[23,19] := {15} tii[23,20] := {18} tii[23,21] := {17} tii[23,22] := {19} tii[23,23] := {21} tii[23,24] := {22} cell#7 , |C| = 24 special orbit = [8, 2, 2] special rep = [[4, 1], [1]] , dim = 24 cell rep = phi[[4, 1],[1]] TII depth = 4 TII multiplicity polynomial = 24*X TII subcells: tii[23,1] := {5} tii[23,2] := {14} tii[23,3] := {20} tii[23,4] := {23} tii[23,5] := {0} tii[23,6] := {1} tii[23,7] := {2} tii[23,8] := {3} tii[23,9] := {4} tii[23,10] := {7} tii[23,11] := {8} tii[23,12] := {11} tii[23,13] := {6} tii[23,14] := {10} tii[23,15] := {9} tii[23,16] := {13} tii[23,17] := {12} tii[23,18] := {16} tii[23,19] := {15} tii[23,20] := {18} tii[23,21] := {17} tii[23,22] := {19} tii[23,23] := {21} tii[23,24] := {22} cell#8 , |C| = 24 special orbit = [8, 4] special rep = [[4], [2]] , dim = 15 cell rep = phi[[4, 2],[]]+phi[[4],[2]] TII depth = 1 TII multiplicity polynomial = 6*X+9*X^2 TII subcells: tii[24,1] := {4, 5} tii[24,2] := {13, 14} tii[24,3] := {19, 20} tii[24,4] := {22} tii[24,5] := {23} tii[24,6] := {0, 1} tii[24,7] := {2, 3} tii[24,8] := {6, 7} tii[24,9] := {10} tii[24,10] := {8, 9} tii[24,11] := {11, 12} tii[24,12] := {15} tii[24,13] := {16, 17} tii[24,14] := {18} tii[24,15] := {21} cell#9 , |C| = 24 special orbit = [8, 2, 2] special rep = [[4, 1], [1]] , dim = 24 cell rep = phi[[4, 1],[1]] TII depth = 4 TII multiplicity polynomial = 24*X TII subcells: tii[23,1] := {23} tii[23,2] := {22} tii[23,3] := {21} tii[23,4] := {20} tii[23,5] := {0} tii[23,6] := {19} tii[23,7] := {1} tii[23,8] := {15} tii[23,9] := {2} tii[23,10] := {11} tii[23,11] := {4} tii[23,12] := {8} tii[23,13] := {3} tii[23,14] := {5} tii[23,15] := {18} tii[23,16] := {6} tii[23,17] := {14} tii[23,18] := {10} tii[23,19] := {7} tii[23,20] := {9} tii[23,21] := {17} tii[23,22] := {13} tii[23,23] := {12} tii[23,24] := {16} cell#10 , |C| = 24 special orbit = [8, 2, 2] special rep = [[4, 1], [1]] , dim = 24 cell rep = phi[[4, 1],[1]] TII depth = 4 TII multiplicity polynomial = 24*X TII subcells: tii[23,1] := {23} tii[23,2] := {22} tii[23,3] := {21} tii[23,4] := {20} tii[23,5] := {0} tii[23,6] := {19} tii[23,7] := {1} tii[23,8] := {15} tii[23,9] := {2} tii[23,10] := {11} tii[23,11] := {4} tii[23,12] := {8} tii[23,13] := {3} tii[23,14] := {5} tii[23,15] := {18} tii[23,16] := {6} tii[23,17] := {14} tii[23,18] := {10} tii[23,19] := {7} tii[23,20] := {9} tii[23,21] := {17} tii[23,22] := {13} tii[23,23] := {12} tii[23,24] := {16} cell#11 , |C| = 24 special orbit = [8, 2, 2] special rep = [[4, 1], [1]] , dim = 24 cell rep = phi[[4, 1],[1]] TII depth = 4 TII multiplicity polynomial = 24*X TII subcells: tii[23,1] := {21} tii[23,2] := {8} tii[23,3] := {20} tii[23,4] := {23} tii[23,5] := {4} tii[23,6] := {16} tii[23,7] := {3} tii[23,8] := {10} tii[23,9] := {9} tii[23,10] := {15} tii[23,11] := {14} tii[23,12] := {18} tii[23,13] := {0} tii[23,14] := {1} tii[23,15] := {2} tii[23,16] := {5} tii[23,17] := {6} tii[23,18] := {11} tii[23,19] := {7} tii[23,20] := {12} tii[23,21] := {13} tii[23,22] := {17} tii[23,23] := {19} tii[23,24] := {22} cell#12 , |C| = 24 special orbit = [8, 2, 2] special rep = [[4, 1], [1]] , dim = 24 cell rep = phi[[4, 1],[1]] TII depth = 4 TII multiplicity polynomial = 24*X TII subcells: tii[23,1] := {21} tii[23,2] := {7} tii[23,3] := {19} tii[23,4] := {23} tii[23,5] := {4} tii[23,6] := {16} tii[23,7] := {3} tii[23,8] := {9} tii[23,9] := {10} tii[23,10] := {14} tii[23,11] := {15} tii[23,12] := {18} tii[23,13] := {0} tii[23,14] := {2} tii[23,15] := {1} tii[23,16] := {6} tii[23,17] := {5} tii[23,18] := {11} tii[23,19] := {8} tii[23,20] := {13} tii[23,21] := {12} tii[23,22] := {17} tii[23,23] := {20} tii[23,24] := {22} cell#13 , |C| = 25 special orbit = [8, 2, 1, 1] special rep = [[4], [1, 1]] , dim = 15 cell rep = phi[[4, 1, 1],[]]+phi[[4],[1, 1]] TII depth = 1 TII multiplicity polynomial = 5*X+10*X^2 TII subcells: tii[22,1] := {1, 24} tii[22,2] := {3, 23} tii[22,3] := {6, 22} tii[22,4] := {8, 15} tii[22,5] := {12} tii[22,6] := {0, 21} tii[22,7] := {2, 17} tii[22,8] := {4, 13} tii[22,9] := {9} tii[22,10] := {5, 20} tii[22,11] := {7, 16} tii[22,12] := {11} tii[22,13] := {10, 19} tii[22,14] := {14} tii[22,15] := {18} cell#14 , |C| = 25 special orbit = [8, 2, 1, 1] special rep = [[4], [1, 1]] , dim = 15 cell rep = phi[[4, 1, 1],[]]+phi[[4],[1, 1]] TII depth = 1 TII multiplicity polynomial = 5*X+10*X^2 TII subcells: tii[22,1] := {1, 24} tii[22,2] := {3, 23} tii[22,3] := {6, 22} tii[22,4] := {8, 15} tii[22,5] := {12} tii[22,6] := {0, 21} tii[22,7] := {2, 17} tii[22,8] := {4, 13} tii[22,9] := {9} tii[22,10] := {5, 20} tii[22,11] := {7, 16} tii[22,12] := {11} tii[22,13] := {10, 19} tii[22,14] := {14} tii[22,15] := {18} cell#15 , |C| = 75 special orbit = [6, 4, 2] special rep = [[3, 1], [2]] , dim = 45 cell rep = phi[[3, 2],[1]]+phi[[3, 1],[2]] TII depth = 3 TII multiplicity polynomial = 15*X+30*X^2 TII subcells: tii[20,1] := {50, 53} tii[20,2] := {69, 70} tii[20,3] := {74} tii[20,4] := {6, 7} tii[20,5] := {30, 31} tii[20,6] := {21, 24} tii[20,7] := {46, 47} tii[20,8] := {54} tii[20,9] := {64} tii[20,10] := {17, 18} tii[20,11] := {38, 41} tii[20,12] := {12, 13} tii[20,13] := {44, 45} tii[20,14] := {25, 28} tii[20,15] := {26, 27} tii[20,16] := {58, 59} tii[20,17] := {62} tii[20,18] := {36, 37} tii[20,19] := {68} tii[20,20] := {56, 57} tii[20,21] := {65, 66} tii[20,22] := {51, 52} tii[20,23] := {67} tii[20,24] := {60, 61} tii[20,25] := {72} tii[20,26] := {71} tii[20,27] := {73} tii[20,28] := {0, 1} tii[20,29] := {4, 5} tii[20,30] := {14} tii[20,31] := {2, 3} tii[20,32] := {9, 10} tii[20,33] := {8, 11} tii[20,34] := {15, 16} tii[20,35] := {19, 20} tii[20,36] := {29} tii[20,37] := {22, 23} tii[20,38] := {42} tii[20,39] := {34, 35} tii[20,40] := {32, 33} tii[20,41] := {43} tii[20,42] := {39, 40} tii[20,43] := {55} tii[20,44] := {48, 49} tii[20,45] := {63} cell#16 , |C| = 81 special orbit = [6, 2, 2, 2] special rep = [[3, 1], [1, 1]] , dim = 45 cell rep = phi[[3, 1, 1],[1]]+phi[[3, 1],[1, 1]] TII depth = 3 TII multiplicity polynomial = 9*X+36*X^2 TII subcells: tii[18,1] := {6, 68} tii[18,2] := {20, 65} tii[18,3] := {37, 64} tii[18,4] := {13, 72} tii[18,5] := {32, 75} tii[18,6] := {17, 61} tii[18,7] := {51, 74} tii[18,8] := {26, 57} tii[18,9] := {40} tii[18,10] := {44, 78} tii[18,11] := {63, 79} tii[18,12] := {49, 71} tii[18,13] := {67} tii[18,14] := {73, 80} tii[18,15] := {77} tii[18,16] := {0, 3} tii[18,17] := {1, 58} tii[18,18] := {2, 9} tii[18,19] := {4, 42} tii[18,20] := {5, 16} tii[18,21] := {10, 30} tii[18,22] := {7, 18} tii[18,23] := {8, 48} tii[18,24] := {15, 43} tii[18,25] := {12, 25} tii[18,26] := {11, 56} tii[18,27] := {29} tii[18,28] := {19, 39} tii[18,29] := {21, 34} tii[18,30] := {24, 47} tii[18,31] := {41} tii[18,32] := {28, 53} tii[18,33] := {46} tii[18,34] := {14, 27} tii[18,35] := {22, 69} tii[18,36] := {23, 36} tii[18,37] := {31, 54} tii[18,38] := {33, 50} tii[18,39] := {35, 60} tii[18,40] := {38, 66} tii[18,41] := {55} tii[18,42] := {59} tii[18,43] := {45, 62} tii[18,44] := {52, 76} tii[18,45] := {70} cell#17 , |C| = 81 special orbit = [6, 2, 2, 2] special rep = [[3, 1], [1, 1]] , dim = 45 cell rep = phi[[3, 1, 1],[1]]+phi[[3, 1],[1, 1]] TII depth = 3 TII multiplicity polynomial = 9*X+36*X^2 TII subcells: tii[18,1] := {6, 68} tii[18,2] := {20, 65} tii[18,3] := {37, 64} tii[18,4] := {13, 72} tii[18,5] := {32, 75} tii[18,6] := {17, 61} tii[18,7] := {51, 74} tii[18,8] := {26, 57} tii[18,9] := {40} tii[18,10] := {44, 78} tii[18,11] := {63, 79} tii[18,12] := {49, 71} tii[18,13] := {67} tii[18,14] := {73, 80} tii[18,15] := {77} tii[18,16] := {0, 3} tii[18,17] := {1, 58} tii[18,18] := {2, 9} tii[18,19] := {4, 42} tii[18,20] := {5, 16} tii[18,21] := {10, 30} tii[18,22] := {7, 18} tii[18,23] := {8, 48} tii[18,24] := {15, 43} tii[18,25] := {12, 25} tii[18,26] := {11, 56} tii[18,27] := {29} tii[18,28] := {19, 39} tii[18,29] := {21, 34} tii[18,30] := {24, 47} tii[18,31] := {41} tii[18,32] := {28, 53} tii[18,33] := {46} tii[18,34] := {14, 27} tii[18,35] := {22, 69} tii[18,36] := {23, 36} tii[18,37] := {31, 54} tii[18,38] := {33, 50} tii[18,39] := {35, 60} tii[18,40] := {38, 66} tii[18,41] := {55} tii[18,42] := {59} tii[18,43] := {45, 62} tii[18,44] := {52, 76} tii[18,45] := {70} cell#18 , |C| = 25 special orbit = [8, 2, 1, 1] special rep = [[4], [1, 1]] , dim = 15 cell rep = phi[[4, 1, 1],[]]+phi[[4],[1, 1]] TII depth = 1 TII multiplicity polynomial = 5*X+10*X^2 TII subcells: tii[22,1] := {1, 2} tii[22,2] := {9, 10} tii[22,3] := {16, 17} tii[22,4] := {21, 22} tii[22,5] := {24} tii[22,6] := {7, 8} tii[22,7] := {14, 15} tii[22,8] := {19, 20} tii[22,9] := {23} tii[22,10] := {5, 6} tii[22,11] := {12, 13} tii[22,12] := {18} tii[22,13] := {3, 4} tii[22,14] := {11} tii[22,15] := {0} cell#19 , |C| = 30 special orbit = [6, 2, 1, 1, 1, 1] special rep = [[3], [1, 1, 1]] , dim = 20 cell rep = phi[[3, 1, 1, 1],[]]+phi[[3],[1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 10*X+10*X^2 TII subcells: tii[17,1] := {0, 1} tii[17,2] := {8, 10} tii[17,3] := {19, 22} tii[17,4] := {29} tii[17,5] := {5, 6} tii[17,6] := {15, 16} tii[17,7] := {25} tii[17,8] := {3, 4} tii[17,9] := {12} tii[17,10] := {2} tii[17,11] := {7, 9} tii[17,12] := {18, 21} tii[17,13] := {28} tii[17,14] := {13, 14} tii[17,15] := {24} tii[17,16] := {11} tii[17,17] := {17, 20} tii[17,18] := {27} tii[17,19] := {23} tii[17,20] := {26}