TII subcells for the Sp(12,R) x SO(11,2) block of Sp12 # cell#0 , |C| = 1 special orbit = [12] special rep = [[6], []] , dim = 1 cell rep = phi[[6],[]] TII depth = 1 TII multiplicity polynomial = X TII subcells: tii[26,1] := {0} cell#1 , |C| = 1 special orbit = [12] special rep = [[6], []] , dim = 1 cell rep = phi[[6],[]] TII depth = 1 TII multiplicity polynomial = X TII subcells: tii[26,1] := {0} cell#2 , |C| = 11 special orbit = [10, 2] special rep = [[5], [1]] , dim = 6 cell rep = phi[[5, 1],[]]+phi[[5],[1]] TII depth = 1 TII multiplicity polynomial = X+5*X^2 TII subcells: tii[25,1] := {0, 5} tii[25,2] := {1, 2} tii[25,3] := {3, 4} tii[25,4] := {6, 7} tii[25,5] := {8, 9} tii[25,6] := {10} cell#3 , |C| = 11 special orbit = [10, 2] special rep = [[5], [1]] , dim = 6 cell rep = phi[[5, 1],[]]+phi[[5],[1]] TII depth = 1 TII multiplicity polynomial = X+5*X^2 TII subcells: tii[25,1] := {0, 5} tii[25,2] := {1, 2} tii[25,3] := {3, 4} tii[25,4] := {6, 7} tii[25,5] := {8, 9} tii[25,6] := {10} cell#4 , |C| = 11 special orbit = [10, 2] special rep = [[5], [1]] , dim = 6 cell rep = phi[[5, 1],[]]+phi[[5],[1]] TII depth = 1 TII multiplicity polynomial = X+5*X^2 TII subcells: tii[25,1] := {0, 10} tii[25,2] := {1, 9} tii[25,3] := {2, 8} tii[25,4] := {3, 7} tii[25,5] := {4, 6} tii[25,6] := {5} cell#5 , |C| = 24 special orbit = [8, 2, 2] special rep = [[4, 1], [1]] , dim = 24 cell rep = phi[[4, 1],[1]] TII depth = 4 TII multiplicity polynomial = 24*X TII subcells: tii[23,1] := {5} tii[23,2] := {14} tii[23,3] := {20} tii[23,4] := {23} tii[23,5] := {0} tii[23,6] := {1} tii[23,7] := {2} tii[23,8] := {3} tii[23,9] := {4} tii[23,10] := {7} tii[23,11] := {8} tii[23,12] := {11} tii[23,13] := {6} tii[23,14] := {10} tii[23,15] := {9} tii[23,16] := {13} tii[23,17] := {12} tii[23,18] := {16} tii[23,19] := {15} tii[23,20] := {18} tii[23,21] := {17} tii[23,22] := {19} tii[23,23] := {21} tii[23,24] := {22} cell#6 , |C| = 24 special orbit = [8, 2, 2] special rep = [[4, 1], [1]] , dim = 24 cell rep = phi[[4, 1],[1]] TII depth = 4 TII multiplicity polynomial = 24*X TII subcells: tii[23,1] := {5} tii[23,2] := {14} tii[23,3] := {20} tii[23,4] := {23} tii[23,5] := {0} tii[23,6] := {1} tii[23,7] := {2} tii[23,8] := {3} tii[23,9] := {4} tii[23,10] := {7} tii[23,11] := {8} tii[23,12] := {11} tii[23,13] := {6} tii[23,14] := {10} tii[23,15] := {9} tii[23,16] := {13} tii[23,17] := {12} tii[23,18] := {16} tii[23,19] := {15} tii[23,20] := {18} tii[23,21] := {17} tii[23,22] := {19} tii[23,23] := {21} tii[23,24] := {22} cell#7 , |C| = 25 special orbit = [8, 2, 1, 1] special rep = [[4], [1, 1]] , dim = 15 cell rep = phi[[4, 1, 1],[]]+phi[[4],[1, 1]] TII depth = 1 TII multiplicity polynomial = 5*X+10*X^2 TII subcells: tii[22,1] := {0, 24} tii[22,2] := {1, 19} tii[22,3] := {2, 15} tii[22,4] := {4, 11} tii[22,5] := {8} tii[22,6] := {3, 23} tii[22,7] := {5, 18} tii[22,8] := {6, 14} tii[22,9] := {10} tii[22,10] := {7, 22} tii[22,11] := {9, 17} tii[22,12] := {13} tii[22,13] := {12, 21} tii[22,14] := {16} tii[22,15] := {20}