Full list of non-zero Kazhdan-Lusztig-Vogan polynomials: 0: 0: 1 1: 1: 1 2: 2: 1 3: 3: 1 4: 0: 1 1: 1 4: 1 5: 0: 1 5: 1 6: 1: 1 6: 1 7: 2: 1 7: 1 8: 3: 1 8: 1 9: 0: 1 1: 1 4: 1 5: 1 6: 1 9: 1 10: 5: 1 10: 1 11: 6: 1 11: 1 12: 7: 1 12: 1 13: 8: 1 13: 1 14: 0: 1 1: 1 4: 1 5: 1 14: 1 15: 0: 1 1: 1 4: 1 6: 1 15: 1 16: 2: 1 7: 1 16: 1 17: 3: 1 8: 1 17: 1 18: 5: 1 6: 1 9: 1 10: 1 11: 1 18: 1 19: 0: 1 1: 1 4: 1 5: 1 6: 1 9: 1 14: 1 15: 1 19: 1 20: 10: 1 20: 1 21: 11: 1 21: 1 22: 12: 1 22: 1 23: 13: 1 23: 1 24: 5: 1 10: 1 14: 1 24: 1 25: 6: 1 11: 1 15: 1 25: 1 26: 7: 1 12: 1 16: 1 26: 1 27: 8: 1 13: 1 17: 1 27: 1 28: 10: 1 11: 1 18: 1 20: 1 21: 1 28: 1 29: 5: 1 6: 1 9: 1 10: 1 11: 1 14: 1 15: 1 18: 1 19: 1 24: 1 25: 1 29: 1 30: 20: 1 30: 1 31: 21: 1 31: 1 32: 22: 1 32: 1 33: 23: 1 33: 1 34: 10: 1 20: 1 24: 1 34: 1 35: 11: 1 21: 1 25: 1 35: 1 36: 12: 1 22: 1 26: 1 36: 1 37: 13: 1 23: 1 27: 1 37: 1 38: 0: q 5: q 14: 1 15: 1 19: 1 24: 1 38: 1 39: 1: q 6: q 14: 1 15: 1 19: 1 25: 1 39: 1 40: 16: 1 26: 1 40: 1 41: 17: 1 27: 1 41: 1 42: 20: 1 21: 1 28: 1 30: 1 31: 1 42: 1 43: 10: 1 11: 1 18: 1 20: 1 21: 1 24: 1 25: 1 28: 1 29: 1 34: 1 35: 1 43: 1 44: 14: 1 15: 1 19: 1 24: 1 25: 1 29: 1 38: 1 39: 1 44: 1 45: 30: 1 32: 1 45: 1 46: 31: 1 33: 1 46: 1 47: 20: 1 30: 1 34: 1 47: 1 48: 21: 1 31: 1 35: 1 48: 1 49: 22: 1 32: 1 36: 1 49: 1 50: 23: 1 33: 1 37: 1 50: 1 51: 24: 1 34: 1 38: 1 51: 1 52: 25: 1 35: 1 39: 1 52: 1 53: 26: 1 36: 1 40: 1 53: 1 54: 27: 1 37: 1 41: 1 54: 1 55: 20: 1 21: 1 28: 1 30: 1 31: 1 34: 1 35: 1 42: 1 43: 1 47: 1 48: 1 55: 1 56: 24: 1 25: 1 29: 1 34: 1 35: 1 38: 1 39: 1 43: 1 44: 1 51: 1 52: 1 56: 1 57: 30: 1 31: 1 32: 1 33: 1 42: 1 45: 1 46: 1 57: 1 58: 30: 1 32: 1 45: 1 47: 1 49: 1 58: 1 59: 31: 1 33: 1 46: 1 48: 1 50: 1 59: 1 60: 34: 1 47: 1 51: 1 60: 1 61: 35: 1 48: 1 52: 1 61: 1 62: 36: 1 49: 1 53: 1 62: 1 63: 37: 1 50: 1 54: 1 63: 1 64: 14: q 24: q 38: 1 39: 1 44: 1 51: 1 64: 1 65: 15: q 25: q 38: 1 39: 1 44: 1 52: 1 65: 1 66: 40: 1 53: 1 66: 1 67: 41: 1 54: 1 67: 1 68: 34: 1 35: 1 43: 1 47: 1 48: 1 51: 1 52: 1 55: 1 56: 1 60: 1 61: 1 68: 1 69: 38: 1 39: 1 44: 1 51: 1 52: 1 56: 1 64: 1 65: 1 69: 1 70: 30: 1 31: 1 32: 1 33: 1 42: 1 45: 1 46: 1 47: 1 48: 1 49: 1 50: 1 55: 1 57: 1 58: 1 59: 1 70: 1 71: 22: q 23: q 32: q 33: q 57: 1 71: 1 72: 47: 1 49: 1 58: 1 60: 1 62: 1 72: 1 73: 48: 1 50: 1 59: 1 61: 1 63: 1 73: 1 74: 51: 1 60: 1 64: 1 74: 1 75: 52: 1 61: 1 65: 1 75: 1 76: 53: 1 62: 1 66: 1 76: 1 77: 54: 1 63: 1 67: 1 77: 1 78: 51: 1 52: 1 56: 1 60: 1 61: 1 64: 1 65: 1 68: 1 69: 1 74: 1 75: 1 78: 1 79: 47: 1 48: 1 49: 1 50: 1 55: 1 58: 1 59: 1 60: 1 61: 1 62: 1 63: 1 68: 1 70: 1 72: 1 73: 1 79: 1 80: 60: 1 62: 1 72: 1 74: 1 76: 1 80: 1 81: 61: 1 63: 1 73: 1 75: 1 77: 1 81: 1 82: 22: q 23: q 32: q 33: q 36: q 37: q 49: q 50: q 57: 1 70: 1 71: 1 82: 1 83: 12: q^2 13: q^2 22: q^2 23: q^2 71: 1 83: 1 84: 38: q 51: q 64: 1 65: 1 69: 1 74: 1 84: 1 85: 39: q 52: q 64: 1 65: 1 69: 1 75: 1 85: 1 86: 66: 1 76: 1 86: 1 87: 67: 1 77: 1 87: 1 88: 64: 1 65: 1 69: 1 74: 1 75: 1 78: 1 84: 1 85: 1 88: 1 89: 74: 1 76: 1 80: 1 84: 1 86: 1 89: 1 90: 75: 1 77: 1 81: 1 85: 1 87: 1 90: 1 91: 60: 1 61: 1 62: 1 63: 1 68: 1 72: 1 73: 1 74: 1 75: 1 76: 1 77: 1 78: 1 79: 1 80: 1 81: 1 91: 1 92: 36: q 37: q 49: q 50: q 53: q 54: q 62: q 63: q 70: 1 79: 1 82: 1 92: 1 93: 12: q^2 13: q^2 22: q^2 23: q^2 26: q^2 27: q^2 36: q^2 37: q^2 71: 1 82: 1 83: 1 93: 1 94: 7: q^3 8: q^3 12: q^3 13: q^3 83: 1 94: 1 95: 64: q 74: q 84: 1 85: 1 86: 1 88: 1 89: 1 95: 1 96: 65: q 75: q 84: 1 85: 1 87: 1 88: 1 90: 1 96: 1 97: 74: 1 75: 1 76: 1 77: 1 78: 1 80: 1 81: 1 84: 1 85: 1 86: 1 87: 1 88: 1 89: 1 90: 1 91: 1 97: 1 98: 53: q 54: q 62: q 63: q 66: q 67: q 76: q 77: q 79: 1 91: 1 92: 1 98: 1 99: 26: q^2 27: q^2 36: q^2 37: q^2 40: q^2 41: q^2 53: q^2 54: q^2 82: 1 92: 1 93: 1 99: 1 100: 7: q^3 8: q^3 12: q^3 13: q^3 16: q^3 17: q^3 26: q^3 27: q^3 83: 1 93: 1 94: 1 100: 1 101: 2: q^4 3: q^4 7: q^4 8: q^4 94: 1 101: 1 102: 84: 1 85: 1 86: 1 87: 1 88: 1 89: 1 90: 1 95: 1 96: 1 97: 1 102: 1 103: 66: q 67: q 76: q 77: q 86: q 87: q 91: 1 97: 1 98: 1 103: 1 104: 40: q^2 41: q^2 53: q^2 54: q^2 66: q^2 67: q^2 92: 1 98: 1 99: 1 104: 1 105: 16: q^3 17: q^3 26: q^3 27: q^3 40: q^3 41: q^3 93: 1 99: 1 100: 1 105: 1 106: 2: q^4 3: q^4 7: q^4 8: q^4 16: q^4 17: q^4 94: 1 100: 1 101: 1 106: 1 107: 2: q^5 3: q^5 101: 1 107: 1 636 nonzero polynomials, and 1989 zero polynomials, at 2625 Bruhat-comparable pairs.