TII subcells for the Sp(5,1) x SO(7,6) block of Sp12 # cell#0 , |C| = 24 special orbit = [3, 3, 1, 1, 1, 1, 1, 1] special rep = [[1], [2, 1, 1, 1]] , dim = 24 cell rep = phi[[1],[2, 1, 1, 1]] TII depth = 4 TII multiplicity polynomial = 24*X TII subcells: tii[5,1] := {8} tii[5,2] := {0} tii[5,3] := {11} tii[5,4] := {15} tii[5,5] := {7} tii[5,6] := {1} tii[5,7] := {14} tii[5,8] := {18} tii[5,9] := {10} tii[5,10] := {19} tii[5,11] := {6} tii[5,12] := {3} tii[5,13] := {16} tii[5,14] := {20} tii[5,15] := {13} tii[5,16] := {22} tii[5,17] := {9} tii[5,18] := {23} tii[5,19] := {5} tii[5,20] := {4} tii[5,21] := {2} tii[5,22] := {12} tii[5,23] := {17} tii[5,24] := {21} cell#1 , |C| = 11 special orbit = [2, 2, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [1, 1, 1, 1, 1]] , dim = 6 cell rep = phi[[1],[1, 1, 1, 1, 1]]+phi[[],[2, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = X+5*X^2 TII subcells: tii[2,1] := {5} tii[2,2] := {4, 6} tii[2,3] := {3, 7} tii[2,4] := {2, 9} tii[2,5] := {1, 10} tii[2,6] := {0, 8} cell#2 , |C| = 1 special orbit = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [1, 1, 1, 1, 1, 1]] , dim = 1 cell rep = phi[[],[1, 1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = X TII subcells: tii[1,1] := {0}