TII subcells for the PSp(14,R) x Spin(10,5) block of PSp14 # cell#0 , |C| = 1 special orbit = [14] special rep = [[7], []] , dim = 1 cell rep = phi[[7],[]] TII depth = 1 TII multiplicity polynomial = X TII subcells: tii[40,1] := {0} cell#1 , |C| = 13 special orbit = [12, 2] special rep = [[6], [1]] , dim = 7 cell rep = phi[[6, 1],[]]+phi[[6],[1]] TII depth = 1 TII multiplicity polynomial = 6*X^2+X TII subcells: tii[39,1] := {2, 12} tii[39,2] := {0, 11} tii[39,3] := {3, 10} tii[39,4] := {1, 8} tii[39,5] := {4, 5} tii[39,6] := {6, 7} tii[39,7] := {9} cell#2 , |C| = 13 special orbit = [12, 2] special rep = [[6], [1]] , dim = 7 cell rep = phi[[6, 1],[]]+phi[[6],[1]] TII depth = 1 TII multiplicity polynomial = 6*X^2+X TII subcells: tii[39,1] := {1, 12} tii[39,2] := {2, 11} tii[39,3] := {0, 10} tii[39,4] := {3, 9} tii[39,5] := {4, 8} tii[39,6] := {5, 7} tii[39,7] := {6} cell#3 , |C| = 35 special orbit = [10, 4] special rep = [[5], [2]] , dim = 21 cell rep = phi[[5, 2],[]]+phi[[5],[2]] TII depth = 1 TII multiplicity polynomial = 14*X^2+7*X TII subcells: tii[38,1] := {1, 33} tii[38,2] := {6, 29} tii[38,3] := {12, 32} tii[38,4] := {19, 31} tii[38,5] := {30} tii[38,6] := {34} tii[38,7] := {0, 28} tii[38,8] := {2, 23} tii[38,9] := {4, 18} tii[38,10] := {7, 14} tii[38,11] := {10} tii[38,12] := {3, 24} tii[38,13] := {5, 22} tii[38,14] := {8, 17} tii[38,15] := {13} tii[38,16] := {9, 27} tii[38,17] := {11, 21} tii[38,18] := {16} tii[38,19] := {15, 26} tii[38,20] := {20} tii[38,21] := {25} cell#4 , |C| = 35 special orbit = [10, 4] special rep = [[5], [2]] , dim = 21 cell rep = phi[[5, 2],[]]+phi[[5],[2]] TII depth = 1 TII multiplicity polynomial = 14*X^2+7*X TII subcells: tii[38,1] := {13, 31} tii[38,2] := {2, 22} tii[38,3] := {18, 19} tii[38,4] := {29, 30} tii[38,5] := {33} tii[38,6] := {34} tii[38,7] := {5, 27} tii[38,8] := {1, 20} tii[38,9] := {6, 7} tii[38,10] := {14, 15} tii[38,11] := {23} tii[38,12] := {0, 12} tii[38,13] := {3, 4} tii[38,14] := {10, 11} tii[38,15] := {21} tii[38,16] := {8, 9} tii[38,17] := {16, 17} tii[38,18] := {24} tii[38,19] := {25, 26} tii[38,20] := {28} tii[38,21] := {32} cell#5 , |C| = 35 special orbit = [10, 2, 2] special rep = [[5, 1], [1]] , dim = 35 cell rep = phi[[5, 1],[1]] TII depth = 5 TII multiplicity polynomial = 35*X TII subcells: tii[37,1] := {34} tii[37,2] := {29} tii[37,3] := {32} tii[37,4] := {31} tii[37,5] := {30} tii[37,6] := {5} tii[37,7] := {33} tii[37,8] := {1} tii[37,9] := {28} tii[37,10] := {3} tii[37,11] := {23} tii[37,12] := {7} tii[37,13] := {18} tii[37,14] := {10} tii[37,15] := {14} tii[37,16] := {0} tii[37,17] := {2} tii[37,18] := {24} tii[37,19] := {4} tii[37,20] := {22} tii[37,21] := {8} tii[37,22] := {17} tii[37,23] := {13} tii[37,24] := {6} tii[37,25] := {9} tii[37,26] := {27} tii[37,27] := {11} tii[37,28] := {21} tii[37,29] := {16} tii[37,30] := {12} tii[37,31] := {15} tii[37,32] := {26} tii[37,33] := {20} tii[37,34] := {19} tii[37,35] := {25} cell#6 , |C| = 35 special orbit = [10, 2, 2] special rep = [[5, 1], [1]] , dim = 35 cell rep = phi[[5, 1],[1]] TII depth = 5 TII multiplicity polynomial = 35*X TII subcells: tii[37,1] := {34} tii[37,2] := {31} tii[37,3] := {24} tii[37,4] := {6} tii[37,5] := {20} tii[37,6] := {21} tii[37,7] := {33} tii[37,8] := {18} tii[37,9] := {32} tii[37,10] := {22} tii[37,11] := {30} tii[37,12] := {19} tii[37,13] := {26} tii[37,14] := {27} tii[37,15] := {28} tii[37,16] := {10} tii[37,17] := {12} tii[37,18] := {29} tii[37,19] := {11} tii[37,20] := {25} tii[37,21] := {17} tii[37,22] := {16} tii[37,23] := {23} tii[37,24] := {4} tii[37,25] := {3} tii[37,26] := {15} tii[37,27] := {9} tii[37,28] := {8} tii[37,29] := {14} tii[37,30] := {0} tii[37,31] := {2} tii[37,32] := {1} tii[37,33] := {5} tii[37,34] := {7} tii[37,35] := {13} cell#7 , |C| = 56 special orbit = [8, 6] special rep = [[4], [3]] , dim = 35 cell rep = phi[[4],[3]]+phi[[2],[5]] TII depth = 2 TII multiplicity polynomial = 21*X^2+14*X TII subcells: tii[35,1] := {15} tii[35,2] := {35} tii[35,3] := {46, 47} tii[35,4] := {52, 53} tii[35,5] := {54, 55} tii[35,6] := {2} tii[35,7] := {13} tii[35,8] := {22, 23} tii[35,9] := {33, 34} tii[35,10] := {8} tii[35,11] := {3} tii[35,12] := {20} tii[35,13] := {7} tii[35,14] := {29, 30} tii[35,15] := {11, 12} tii[35,16] := {40, 41} tii[35,17] := {28} tii[35,18] := {21} tii[35,19] := {36, 37} tii[35,20] := {26, 27} tii[35,21] := {44, 45} tii[35,22] := {42, 43} tii[35,23] := {48, 49} tii[35,24] := {38, 39} tii[35,25] := {50, 51} tii[35,26] := {0} tii[35,27] := {1} tii[35,28] := {4, 5} tii[35,29] := {6} tii[35,30] := {9, 10} tii[35,31] := {16, 17} tii[35,32] := {14} tii[35,33] := {18, 19} tii[35,34] := {24, 25} tii[35,35] := {31, 32} cell#8 , |C| = 35 special orbit = [10, 2, 2] special rep = [[5, 1], [1]] , dim = 35 cell rep = phi[[5, 1],[1]] TII depth = 5 TII multiplicity polynomial = 35*X TII subcells: tii[37,1] := {34} tii[37,2] := {31} tii[37,3] := {26} tii[37,4] := {25} tii[37,5] := {24} tii[37,6] := {0} tii[37,7] := {33} tii[37,8] := {4} tii[37,9] := {32} tii[37,10] := {9} tii[37,11] := {30} tii[37,12] := {12} tii[37,13] := {27} tii[37,14] := {15} tii[37,15] := {20} tii[37,16] := {1} tii[37,17] := {5} tii[37,18] := {29} tii[37,19] := {8} tii[37,20] := {28} tii[37,21] := {11} tii[37,22] := {22} tii[37,23] := {17} tii[37,24] := {2} tii[37,25] := {3} tii[37,26] := {23} tii[37,27] := {6} tii[37,28] := {18} tii[37,29] := {13} tii[37,30] := {7} tii[37,31] := {10} tii[37,32] := {21} tii[37,33] := {16} tii[37,34] := {14} tii[37,35] := {19} cell#9 , |C| = 147 special orbit = [8, 4, 2] special rep = [[4, 1], [2]] , dim = 84 cell rep = phi[[4, 2],[1]]+phi[[4, 1],[2]] TII depth = 4 TII multiplicity polynomial = 63*X^2+21*X TII subcells: tii[34,1] := {31, 146} tii[34,2] := {82, 137} tii[34,3] := {123, 141} tii[34,4] := {144} tii[34,5] := {20, 52} tii[34,6] := {55, 56} tii[34,7] := {10, 142} tii[34,8] := {86, 87} tii[34,9] := {39, 130} tii[34,10] := {72, 128} tii[34,11] := {110} tii[34,12] := {126} tii[34,13] := {7, 73} tii[34,14] := {14, 145} tii[34,15] := {1, 91} tii[34,16] := {33, 34} tii[34,17] := {63, 64} tii[34,18] := {4, 143} tii[34,19] := {5, 104} tii[34,20] := {44, 117} tii[34,21] := {77, 116} tii[34,22] := {12, 139} tii[34,23] := {13, 115} tii[34,24] := {94} tii[34,25] := {24, 132} tii[34,26] := {113} tii[34,27] := {53, 54} tii[34,28] := {65, 129} tii[34,29] := {32, 75} tii[34,30] := {84, 85} tii[34,31] := {47, 89} tii[34,32] := {46, 121} tii[34,33] := {95, 127} tii[34,34] := {109} tii[34,35] := {60, 106} tii[34,36] := {125} tii[34,37] := {99, 100} tii[34,38] := {111, 136} tii[34,39] := {83, 114} tii[34,40] := {124} tii[34,41] := {96, 131} tii[34,42] := {135} tii[34,43] := {134} tii[34,44] := {140} tii[34,45] := {6, 35} tii[34,46] := {16, 17} tii[34,47] := {27, 28} tii[34,48] := {42} tii[34,49] := {0, 74} tii[34,50] := {3, 92} tii[34,51] := {2, 138} tii[34,52] := {36, 37} tii[34,53] := {9, 103} tii[34,54] := {8, 133} tii[34,55] := {50, 51} tii[34,56] := {21, 120} tii[34,57] := {62} tii[34,58] := {11, 76} tii[34,59] := {23, 90} tii[34,60] := {22, 122} tii[34,61] := {70, 71} tii[34,62] := {38, 107} tii[34,63] := {81} tii[34,64] := {40, 102} tii[34,65] := {98} tii[34,66] := {58, 119} tii[34,67] := {18, 19} tii[34,68] := {29, 30} tii[34,69] := {43} tii[34,70] := {15, 57} tii[34,71] := {48, 49} tii[34,72] := {26, 67} tii[34,73] := {25, 108} tii[34,74] := {41, 93} tii[34,75] := {61} tii[34,76] := {45, 88} tii[34,77] := {78} tii[34,78] := {59, 105} tii[34,79] := {68, 69} tii[34,80] := {80} tii[34,81] := {66, 101} tii[34,82] := {97} tii[34,83] := {79, 118} tii[34,84] := {112} cell#10 , |C| = 35 special orbit = [10, 2, 2] special rep = [[5, 1], [1]] , dim = 35 cell rep = phi[[5, 1],[1]] TII depth = 5 TII multiplicity polynomial = 35*X TII subcells: tii[37,1] := {32} tii[37,2] := {28} tii[37,3] := {16} tii[37,4] := {30} tii[37,5] := {34} tii[37,6] := {2} tii[37,7] := {26} tii[37,8] := {4} tii[37,9] := {17} tii[37,10] := {1} tii[37,11] := {6} tii[37,12] := {8} tii[37,13] := {13} tii[37,14] := {15} tii[37,15] := {23} tii[37,16] := {11} tii[37,17] := {3} tii[37,18] := {21} tii[37,19] := {10} tii[37,20] := {9} tii[37,21] := {20} tii[37,22] := {19} tii[37,23] := {27} tii[37,24] := {0} tii[37,25] := {7} tii[37,26] := {5} tii[37,27] := {14} tii[37,28] := {12} tii[37,29] := {22} tii[37,30] := {18} tii[37,31] := {25} tii[37,32] := {24} tii[37,33] := {29} tii[37,34] := {31} tii[37,35] := {33} cell#11 , |C| = 147 special orbit = [8, 4, 2] special rep = [[4, 1], [2]] , dim = 84 cell rep = phi[[4, 2],[1]]+phi[[4, 1],[2]] TII depth = 4 TII multiplicity polynomial = 63*X^2+21*X TII subcells: tii[34,1] := {122, 139} tii[34,2] := {95, 143} tii[34,3] := {133, 145} tii[34,4] := {146} tii[34,5] := {1, 25} tii[34,6] := {14, 15} tii[34,7] := {88, 119} tii[34,8] := {50, 51} tii[34,9] := {41, 116} tii[34,10] := {82, 115} tii[34,11] := {90} tii[34,12] := {111} tii[34,13] := {6, 46} tii[34,14] := {106, 131} tii[34,15] := {20, 60} tii[34,16] := {36, 37} tii[34,17] := {74, 75} tii[34,18] := {89, 121} tii[34,19] := {39, 45} tii[34,20] := {52, 129} tii[34,21] := {91, 128} tii[34,22] := {68, 104} tii[34,23] := {55, 69} tii[34,24] := {107} tii[34,25] := {85, 86} tii[34,26] := {126} tii[34,27] := {61, 62} tii[34,28] := {76, 137} tii[34,29] := {34, 83} tii[34,30] := {97, 98} tii[34,31] := {57, 100} tii[34,32] := {56, 132} tii[34,33] := {108, 136} tii[34,34] := {123} tii[34,35] := {72, 118} tii[34,36] := {135} tii[34,37] := {112, 113} tii[34,38] := {124, 142} tii[34,39] := {96, 127} tii[34,40] := {134} tii[34,41] := {109, 138} tii[34,42] := {141} tii[34,43] := {140} tii[34,44] := {144} tii[34,45] := {0, 11} tii[34,46] := {2, 3} tii[34,47] := {8, 9} tii[34,48] := {21} tii[34,49] := {7, 35} tii[34,50] := {17, 24} tii[34,51] := {67, 105} tii[34,52] := {4, 5} tii[34,53] := {27, 44} tii[34,54] := {43, 87} tii[34,55] := {12, 13} tii[34,56] := {65, 66} tii[34,57] := {26} tii[34,58] := {10, 38} tii[34,59] := {23, 54} tii[34,60] := {22, 103} tii[34,61] := {28, 29} tii[34,62] := {40, 84} tii[34,63] := {47} tii[34,64] := {42, 78} tii[34,65] := {70} tii[34,66] := {64, 101} tii[34,67] := {18, 19} tii[34,68] := {32, 33} tii[34,69] := {49} tii[34,70] := {16, 63} tii[34,71] := {58, 59} tii[34,72] := {31, 79} tii[34,73] := {30, 120} tii[34,74] := {48, 102} tii[34,75] := {73} tii[34,76] := {53, 99} tii[34,77] := {92} tii[34,78] := {71, 117} tii[34,79] := {80, 81} tii[34,80] := {94} tii[34,81] := {77, 114} tii[34,82] := {110} tii[34,83] := {93, 130} tii[34,84] := {125} cell#12 , |C| = 36 special orbit = [10, 2, 1, 1] special rep = [[5], [1, 1]] , dim = 21 cell rep = phi[[5, 1, 1],[]]+phi[[5],[1, 1]] TII depth = 1 TII multiplicity polynomial = 15*X^2+6*X TII subcells: tii[36,1] := {11, 35} tii[36,2] := {13, 34} tii[36,3] := {10, 33} tii[36,4] := {14, 31} tii[36,5] := {21, 29} tii[36,6] := {25} tii[36,7] := {7, 32} tii[36,8] := {4, 30} tii[36,9] := {8, 28} tii[36,10] := {12, 26} tii[36,11] := {22} tii[36,12] := {1, 27} tii[36,13] := {3, 24} tii[36,14] := {6, 23} tii[36,15] := {15} tii[36,16] := {0, 20} tii[36,17] := {2, 17} tii[36,18] := {9} tii[36,19] := {5, 19} tii[36,20] := {16} tii[36,21] := {18} cell#13 , |C| = 147 special orbit = [8, 4, 2] special rep = [[4, 1], [2]] , dim = 84 cell rep = phi[[4, 2],[1]]+phi[[4, 1],[2]] TII depth = 4 TII multiplicity polynomial = 63*X^2+21*X TII subcells: tii[34,1] := {107, 146} tii[34,2] := {50, 140} tii[34,3] := {111, 112} tii[34,4] := {139} tii[34,5] := {84, 123} tii[34,6] := {46, 101} tii[34,7] := {63, 143} tii[34,8] := {91, 92} tii[34,9] := {17, 136} tii[34,10] := {57, 114} tii[34,11] := {120} tii[34,12] := {131} tii[34,13] := {58, 133} tii[34,14] := {89, 145} tii[34,15] := {33, 129} tii[34,16] := {24, 79} tii[34,17] := {66, 67} tii[34,18] := {68, 144} tii[34,19] := {23, 134} tii[34,20] := {10, 125} tii[34,21] := {44, 96} tii[34,22] := {40, 142} tii[34,23] := {41, 130} tii[34,24] := {104} tii[34,25] := {61, 138} tii[34,26] := {122} tii[34,27] := {8, 99} tii[34,28] := {27, 135} tii[34,29] := {4, 109} tii[34,30] := {37, 38} tii[34,31] := {13, 100} tii[34,32] := {12, 126} tii[34,33] := {73, 74} tii[34,34] := {83} tii[34,35] := {26, 115} tii[34,36] := {106} tii[34,37] := {64, 65} tii[34,38] := {94, 95} tii[34,39] := {51, 52} tii[34,40] := {103} tii[34,41] := {75, 76} tii[34,42] := {121} tii[34,43] := {119} tii[34,44] := {132} tii[34,45] := {59, 108} tii[34,46] := {45, 93} tii[34,47] := {69, 70} tii[34,48] := {87} tii[34,49] := {15, 117} tii[34,50] := {7, 124} tii[34,51] := {39, 141} tii[34,52] := {32, 81} tii[34,53] := {20, 118} tii[34,54] := {19, 137} tii[34,55] := {55, 56} tii[34,56] := {35, 128} tii[34,57] := {78} tii[34,58] := {1, 110} tii[34,59] := {6, 102} tii[34,60] := {5, 127} tii[34,61] := {71, 72} tii[34,62] := {16, 116} tii[34,63] := {88} tii[34,64] := {18, 82} tii[34,65] := {105} tii[34,66] := {34, 98} tii[34,67] := {14, 53} tii[34,68] := {30, 31} tii[34,69] := {49} tii[34,70] := {0, 90} tii[34,71] := {42, 43} tii[34,72] := {3, 80} tii[34,73] := {2, 113} tii[34,74] := {9, 97} tii[34,75] := {62} tii[34,76] := {11, 54} tii[34,77] := {86} tii[34,78] := {25, 77} tii[34,79] := {21, 22} tii[34,80] := {36} tii[34,81] := {28, 29} tii[34,82] := {60} tii[34,83] := {47, 48} tii[34,84] := {85} cell#14 , |C| = 35 special orbit = [10, 2, 2] special rep = [[5, 1], [1]] , dim = 35 cell rep = phi[[5, 1],[1]] TII depth = 5 TII multiplicity polynomial = 35*X TII subcells: tii[37,1] := {34} tii[37,2] := {31} tii[37,3] := {28} tii[37,4] := {22} tii[37,5] := {14} tii[37,6] := {4} tii[37,7] := {33} tii[37,8] := {7} tii[37,9] := {32} tii[37,10] := {12} tii[37,11] := {29} tii[37,12] := {16} tii[37,13] := {26} tii[37,14] := {19} tii[37,15] := {23} tii[37,16] := {1} tii[37,17] := {6} tii[37,18] := {30} tii[37,19] := {11} tii[37,20] := {27} tii[37,21] := {15} tii[37,22] := {24} tii[37,23] := {20} tii[37,24] := {0} tii[37,25] := {5} tii[37,26] := {25} tii[37,27] := {10} tii[37,28] := {21} tii[37,29] := {17} tii[37,30] := {3} tii[37,31] := {8} tii[37,32] := {18} tii[37,33] := {13} tii[37,34] := {2} tii[37,35] := {9} cell#15 , |C| = 147 special orbit = [8, 4, 2] special rep = [[4, 1], [2]] , dim = 84 cell rep = phi[[4, 2],[1]]+phi[[4, 1],[2]] TII depth = 4 TII multiplicity polynomial = 63*X^2+21*X TII subcells: tii[34,1] := {88, 146} tii[34,2] := {97, 145} tii[34,3] := {106, 142} tii[34,4] := {136} tii[34,5] := {4, 61} tii[34,6] := {15, 72} tii[34,7] := {56, 141} tii[34,8] := {31, 67} tii[34,9] := {51, 133} tii[34,10] := {49, 115} tii[34,11] := {64} tii[34,12] := {87} tii[34,13] := {11, 77} tii[34,14] := {73, 144} tii[34,15] := {5, 92} tii[34,16] := {24, 90} tii[34,17] := {46, 83} tii[34,18] := {60, 140} tii[34,19] := {10, 105} tii[34,20] := {68, 139} tii[34,21] := {65, 124} tii[34,22] := {42, 134} tii[34,23] := {14, 116} tii[34,24] := {79} tii[34,25] := {28, 126} tii[34,26] := {101} tii[34,27] := {35, 103} tii[34,28] := {85, 143} tii[34,29] := {25, 111} tii[34,30] := {62, 99} tii[34,31] := {34, 120} tii[34,32] := {74, 138} tii[34,33] := {81, 131} tii[34,34] := {93} tii[34,35] := {54, 130} tii[34,36] := {112} tii[34,37] := {78, 110} tii[34,38] := {96, 137} tii[34,39] := {63, 119} tii[34,40] := {107} tii[34,41] := {86, 129} tii[34,42] := {121} tii[34,43] := {118} tii[34,44] := {128} tii[34,45] := {0, 45} tii[34,46] := {3, 44} tii[34,47] := {7, 30} tii[34,48] := {19} tii[34,49] := {1, 76} tii[34,50] := {2, 91} tii[34,51] := {43, 135} tii[34,52] := {9, 59} tii[34,53] := {6, 104} tii[34,54] := {29, 127} tii[34,55] := {13, 41} tii[34,56] := {18, 117} tii[34,57] := {27} tii[34,58] := {8, 84} tii[34,59] := {12, 95} tii[34,60] := {40, 125} tii[34,61] := {21, 55} tii[34,62] := {26, 114} tii[34,63] := {37} tii[34,64] := {20, 80} tii[34,65] := {50} tii[34,66] := {36, 102} tii[34,67] := {17, 75} tii[34,68] := {23, 58} tii[34,69] := {39} tii[34,70] := {16, 100} tii[34,71] := {33, 71} tii[34,72] := {22, 109} tii[34,73] := {57, 132} tii[34,74] := {38, 123} tii[34,75] := {53} tii[34,76] := {32, 94} tii[34,77] := {66} tii[34,78] := {52, 113} tii[34,79] := {48, 89} tii[34,80] := {70} tii[34,81] := {47, 108} tii[34,82] := {82} tii[34,83] := {69, 122} tii[34,84] := {98} cell#16 , |C| = 154 special orbit = [8, 2, 2, 2] special rep = [[4, 1], [1, 1]] , dim = 84 cell rep = phi[[4, 1, 1],[1]]+phi[[4, 1],[1, 1]] TII depth = 4 TII multiplicity polynomial = 70*X^2+14*X TII subcells: tii[32,1] := {49, 153} tii[32,2] := {13, 148} tii[32,3] := {44, 150} tii[32,4] := {78, 149} tii[32,5] := {68, 151} tii[32,6] := {9, 137} tii[32,7] := {48, 145} tii[32,8] := {35, 142} tii[32,9] := {60, 134} tii[32,10] := {66, 140} tii[32,11] := {77, 122} tii[32,12] := {102} tii[32,13] := {22, 121} tii[32,14] := {55, 127} tii[32,15] := {33, 106} tii[32,16] := {90, 126} tii[32,17] := {47, 97} tii[32,18] := {72} tii[32,19] := {75, 136} tii[32,20] := {110, 141} tii[32,21] := {86, 120} tii[32,22] := {112} tii[32,23] := {124, 147} tii[32,24] := {135} tii[32,25] := {18, 91} tii[32,26] := {32, 152} tii[32,27] := {6, 67} tii[32,28] := {16, 146} tii[32,29] := {17, 79} tii[32,30] := {29, 138} tii[32,31] := {30, 101} tii[32,32] := {43, 118} tii[32,33] := {1, 57} tii[32,34] := {31, 133} tii[32,35] := {41, 117} tii[32,36] := {5, 69} tii[32,37] := {4, 139} tii[32,38] := {59, 103} tii[32,39] := {12, 89} tii[32,40] := {11, 132} tii[32,41] := {80} tii[32,42] := {25, 114} tii[32,43] := {14, 93} tii[32,44] := {24, 100} tii[32,45] := {28, 109} tii[32,46] := {40, 82} tii[32,47] := {27, 144} tii[32,48] := {62} tii[32,49] := {42, 130} tii[32,50] := {45, 125} tii[32,51] := {58, 99} tii[32,52] := {81} tii[32,53] := {61, 143} tii[32,54] := {98} tii[32,55] := {0, 39} tii[32,56] := {2, 123} tii[32,57] := {3, 50} tii[32,58] := {7, 116} tii[32,59] := {8, 65} tii[32,60] := {19, 95} tii[32,61] := {10, 70} tii[32,62] := {15, 85} tii[32,63] := {21, 88} tii[32,64] := {20, 131} tii[32,65] := {26, 74} tii[32,66] := {34, 113} tii[32,67] := {53} tii[32,68] := {36, 108} tii[32,69] := {46, 84} tii[32,70] := {73} tii[32,71] := {52, 129} tii[32,72] := {83} tii[32,73] := {23, 51} tii[32,74] := {37, 115} tii[32,75] := {38, 64} tii[32,76] := {54, 94} tii[32,77] := {56, 87} tii[32,78] := {63, 105} tii[32,79] := {71, 111} tii[32,80] := {96} tii[32,81] := {104} tii[32,82] := {76, 107} tii[32,83] := {92, 128} tii[32,84] := {119} cell#17 , |C| = 154 special orbit = [8, 2, 2, 2] special rep = [[4, 1], [1, 1]] , dim = 84 cell rep = phi[[4, 1, 1],[1]]+phi[[4, 1],[1, 1]] TII depth = 4 TII multiplicity polynomial = 70*X^2+14*X TII subcells: tii[32,1] := {31, 97} tii[32,2] := {37, 132} tii[32,3] := {34, 148} tii[32,4] := {33, 153} tii[32,5] := {43, 75} tii[32,6] := {52, 114} tii[32,7] := {56, 57} tii[32,8] := {48, 140} tii[32,9] := {73, 74} tii[32,10] := {45, 151} tii[32,11] := {91, 92} tii[32,12] := {109} tii[32,13] := {70, 107} tii[32,14] := {66, 136} tii[32,15] := {88, 89} tii[32,16] := {61, 150} tii[32,17] := {105, 106} tii[32,18] := {120} tii[32,19] := {87, 121} tii[32,20] := {82, 144} tii[32,21] := {103, 104} tii[32,22] := {119} tii[32,23] := {102, 131} tii[32,24] := {118} tii[32,25] := {0, 59} tii[32,26] := {23, 77} tii[32,27] := {1, 78} tii[32,28] := {22, 95} tii[32,29] := {2, 96} tii[32,30] := {15, 112} tii[32,31] := {4, 113} tii[32,32] := {10, 126} tii[32,33] := {3, 98} tii[32,34] := {40, 41} tii[32,35] := {54, 55} tii[32,36] := {5, 117} tii[32,37] := {30, 116} tii[32,38] := {71, 72} tii[32,39] := {7, 130} tii[32,40] := {21, 129} tii[32,41] := {90} tii[32,42] := {14, 139} tii[32,43] := {8, 133} tii[32,44] := {49, 50} tii[32,45] := {11, 143} tii[32,46] := {64, 65} tii[32,47] := {28, 142} tii[32,48] := {81} tii[32,49] := {19, 147} tii[32,50] := {16, 149} tii[32,51] := {46, 47} tii[32,52] := {60} tii[32,53] := {26, 152} tii[32,54] := {42} tii[32,55] := {6, 76} tii[32,56] := {39, 93} tii[32,57] := {9, 94} tii[32,58] := {29, 110} tii[32,59] := {12, 111} tii[32,60] := {20, 125} tii[32,61] := {13, 115} tii[32,62] := {67, 68} tii[32,63] := {17, 128} tii[32,64] := {38, 127} tii[32,65] := {85, 86} tii[32,66] := {27, 138} tii[32,67] := {101} tii[32,68] := {24, 141} tii[32,69] := {62, 63} tii[32,70] := {80} tii[32,71] := {35, 146} tii[32,72] := {58} tii[32,73] := {18, 108} tii[32,74] := {53, 123} tii[32,75] := {25, 124} tii[32,76] := {36, 135} tii[32,77] := {32, 137} tii[32,78] := {83, 84} tii[32,79] := {51, 145} tii[32,80] := {100} tii[32,81] := {79} tii[32,82] := {44, 122} tii[32,83] := {69, 134} tii[32,84] := {99} cell#18 , |C| = 105 special orbit = [6, 4, 4] special rep = [[3, 2], [2]] , dim = 105 cell rep = phi[[3, 2],[2]] TII depth = 4 TII multiplicity polynomial = 105*X TII subcells: tii[27,1] := {96} tii[27,2] := {104} tii[27,3] := {32} tii[27,4] := {72} tii[27,5] := {71} tii[27,6] := {92} tii[27,7] := {13} tii[27,8] := {50} tii[27,9] := {40} tii[27,10] := {41} tii[27,11] := {83} tii[27,12] := {82} tii[27,13] := {58} tii[27,14] := {98} tii[27,15] := {66} tii[27,16] := {81} tii[27,17] := {64} tii[27,18] := {90} tii[27,19] := {69} tii[27,20] := {91} tii[27,21] := {70} tii[27,22] := {101} tii[27,23] := {84} tii[27,24] := {63} tii[27,25] := {87} tii[27,26] := {75} tii[27,27] := {94} tii[27,28] := {97} tii[27,29] := {103} tii[27,30] := {99} tii[27,31] := {102} tii[27,32] := {7} tii[27,33] := {26} tii[27,34] := {4} tii[27,35] := {18} tii[27,36] := {3} tii[27,37] := {22} tii[27,38] := {23} tii[27,39] := {9} tii[27,40] := {8} tii[27,41] := {42} tii[27,42] := {43} tii[27,43] := {51} tii[27,44] := {15} tii[27,45] := {68} tii[27,46] := {38} tii[27,47] := {39} tii[27,48] := {57} tii[27,49] := {30} tii[27,50] := {56} tii[27,51] := {31} tii[27,52] := {65} tii[27,53] := {45} tii[27,54] := {80} tii[27,55] := {44} tii[27,56] := {77} tii[27,57] := {89} tii[27,58] := {10} tii[27,59] := {35} tii[27,60] := {59} tii[27,61] := {19} tii[27,62] := {20} tii[27,63] := {29} tii[27,64] := {54} tii[27,65] := {55} tii[27,66] := {74} tii[27,67] := {49} tii[27,68] := {73} tii[27,69] := {48} tii[27,70] := {24} tii[27,71] := {25} tii[27,72] := {78} tii[27,73] := {60} tii[27,74] := {61} tii[27,75] := {37} tii[27,76] := {88} tii[27,77] := {34} tii[27,78] := {86} tii[27,79] := {53} tii[27,80] := {95} tii[27,81] := {46} tii[27,82] := {62} tii[27,83] := {85} tii[27,84] := {76} tii[27,85] := {93} tii[27,86] := {79} tii[27,87] := {100} tii[27,88] := {0} tii[27,89] := {1} tii[27,90] := {2} tii[27,91] := {5} tii[27,92] := {6} tii[27,93] := {14} tii[27,94] := {11} tii[27,95] := {12} tii[27,96] := {21} tii[27,97] := {16} tii[27,98] := {17} tii[27,99] := {36} tii[27,100] := {28} tii[27,101] := {27} tii[27,102] := {52} tii[27,103] := {33} tii[27,104] := {47} tii[27,105] := {67} cell#19 , |C| = 126 special orbit = [6, 2, 2, 2, 2] special rep = [[3, 1, 1], [1, 1]] , dim = 126 cell rep = phi[[3, 1, 1],[1, 1]] TII depth = 4 TII multiplicity polynomial = 126*X TII subcells: tii[24,1] := {101} tii[24,2] := {107} tii[24,3] := {105} tii[24,4] := {120} tii[24,5] := {122} tii[24,6] := {125} tii[24,7] := {5} tii[24,8] := {16} tii[24,9] := {36} tii[24,10] := {82} tii[24,11] := {11} tii[24,12] := {92} tii[24,13] := {29} tii[24,14] := {65} tii[24,15] := {14} tii[24,16] := {90} tii[24,17] := {54} tii[24,18] := {60} tii[24,19] := {23} tii[24,20] := {39} tii[24,21] := {98} tii[24,22] := {43} tii[24,23] := {106} tii[24,24] := {69} tii[24,25] := {81} tii[24,26] := {50} tii[24,27] := {73} tii[24,28] := {110} tii[24,29] := {86} tii[24,30] := {97} tii[24,31] := {20} tii[24,32] := {45} tii[24,33] := {85} tii[24,34] := {24} tii[24,35] := {70} tii[24,36] := {77} tii[24,37] := {35} tii[24,38] := {58} tii[24,39] := {37} tii[24,40] := {112} tii[24,41] := {61} tii[24,42] := {89} tii[24,43] := {66} tii[24,44] := {100} tii[24,45] := {53} tii[24,46] := {96} tii[24,47] := {116} tii[24,48] := {95} tii[24,49] := {74} tii[24,50] := {68} tii[24,51] := {118} tii[24,52] := {102} tii[24,53] := {111} tii[24,54] := {94} tii[24,55] := {78} tii[24,56] := {104} tii[24,57] := {114} tii[24,58] := {87} tii[24,59] := {109} tii[24,60] := {103} tii[24,61] := {123} tii[24,62] := {115} tii[24,63] := {119} tii[24,64] := {117} tii[24,65] := {121} tii[24,66] := {124} tii[24,67] := {0} tii[24,68] := {1} tii[24,69] := {2} tii[24,70] := {3} tii[24,71] := {4} tii[24,72] := {8} tii[24,73] := {6} tii[24,74] := {49} tii[24,75] := {7} tii[24,76] := {10} tii[24,77] := {9} tii[24,78] := {42} tii[24,79] := {13} tii[24,80] := {15} tii[24,81] := {27} tii[24,82] := {17} tii[24,83] := {48} tii[24,84] := {22} tii[24,85] := {26} tii[24,86] := {40} tii[24,87] := {47} tii[24,88] := {25} tii[24,89] := {12} tii[24,90] := {76} tii[24,91] := {18} tii[24,92] := {34} tii[24,93] := {19} tii[24,94] := {57} tii[24,95] := {28} tii[24,96] := {51} tii[24,97] := {30} tii[24,98] := {64} tii[24,99] := {33} tii[24,100] := {72} tii[24,101] := {38} tii[24,102] := {59} tii[24,103] := {63} tii[24,104] := {67} tii[24,105] := {44} tii[24,106] := {93} tii[24,107] := {55} tii[24,108] := {80} tii[24,109] := {21} tii[24,110] := {31} tii[24,111] := {32} tii[24,112] := {41} tii[24,113] := {46} tii[24,114] := {52} tii[24,115] := {84} tii[24,116] := {56} tii[24,117] := {75} tii[24,118] := {83} tii[24,119] := {88} tii[24,120] := {62} tii[24,121] := {108} tii[24,122] := {71} tii[24,123] := {99} tii[24,124] := {79} tii[24,125] := {91} tii[24,126] := {113} cell#20 , |C| = 105 special orbit = [8, 4, 1, 1] special rep = [[4], [2, 1]] , dim = 70 cell rep = phi[[4, 2, 1],[]]+phi[[4],[2, 1]] TII depth = 2 TII multiplicity polynomial = 35*X^2+35*X TII subcells: tii[33,1] := {20, 101} tii[33,2] := {46, 96} tii[33,3] := {73, 98} tii[33,4] := {97} tii[33,5] := {103} tii[33,6] := {10, 92} tii[33,7] := {28, 85} tii[33,8] := {5, 80} tii[33,9] := {58, 90} tii[33,10] := {11, 67} tii[33,11] := {19, 53} tii[33,12] := {87} tii[33,13] := {37} tii[33,14] := {99} tii[33,15] := {16, 71} tii[33,16] := {42, 77} tii[33,17] := {7, 56} tii[33,18] := {15, 50} tii[33,19] := {74} tii[33,20] := {30} tii[33,21] := {91} tii[33,22] := {57, 84} tii[33,23] := {43, 70} tii[33,24] := {88} tii[33,25] := {62} tii[33,26] := {100} tii[33,27] := {95} tii[33,28] := {83} tii[33,29] := {102} tii[33,30] := {104} tii[33,31] := {13, 94} tii[33,32] := {21, 82} tii[33,33] := {36, 68} tii[33,34] := {52} tii[33,35] := {1, 65} tii[33,36] := {4, 51} tii[33,37] := {29, 86} tii[33,38] := {9, 38} tii[33,39] := {45, 81} tii[33,40] := {22} tii[33,41] := {63} tii[33,42] := {0, 35} tii[33,43] := {3, 24} tii[33,44] := {59, 93} tii[33,45] := {12} tii[33,46] := {78} tii[33,47] := {8, 34} tii[33,48] := {89} tii[33,49] := {23} tii[33,50] := {33} tii[33,51] := {17, 72} tii[33,52] := {27, 66} tii[33,53] := {48} tii[33,54] := {2, 41} tii[33,55] := {44, 79} tii[33,56] := {6, 32} tii[33,57] := {18} tii[33,58] := {61} tii[33,59] := {14, 40} tii[33,60] := {75} tii[33,61] := {31} tii[33,62] := {39} tii[33,63] := {26, 64} tii[33,64] := {47} tii[33,65] := {25, 55} tii[33,66] := {60} tii[33,67] := {49} tii[33,68] := {54} tii[33,69] := {76} tii[33,70] := {69} cell#21 , |C| = 154 special orbit = [8, 2, 2, 2] special rep = [[4, 1], [1, 1]] , dim = 84 cell rep = phi[[4, 1, 1],[1]]+phi[[4, 1],[1, 1]] TII depth = 4 TII multiplicity polynomial = 70*X^2+14*X TII subcells: tii[32,1] := {54, 153} tii[32,2] := {52, 148} tii[32,3] := {49, 138} tii[32,4] := {46, 121} tii[32,5] := {72, 152} tii[32,6] := {37, 143} tii[32,7] := {90, 150} tii[32,8] := {34, 130} tii[32,9] := {102, 147} tii[32,10] := {33, 108} tii[32,11] := {119, 141} tii[32,12] := {132} tii[32,13] := {51, 140} tii[32,14] := {48, 118} tii[32,15] := {65, 134} tii[32,16] := {45, 92} tii[32,17] := {81, 122} tii[32,18] := {104} tii[32,19] := {64, 131} tii[32,20] := {63, 99} tii[32,21] := {80, 124} tii[32,22] := {103} tii[32,23] := {79, 117} tii[32,24] := {107} tii[32,25] := {0, 89} tii[32,26] := {41, 151} tii[32,27] := {2, 98} tii[32,28] := {31, 149} tii[32,29] := {5, 113} tii[32,30] := {22, 144} tii[32,31] := {9, 126} tii[32,32] := {15, 136} tii[32,33] := {4, 78} tii[32,34] := {69, 146} tii[32,35] := {84, 142} tii[32,36] := {8, 96} tii[32,37] := {40, 145} tii[32,38] := {101, 133} tii[32,39] := {11, 112} tii[32,40] := {29, 137} tii[32,41] := {120} tii[32,42] := {20, 127} tii[32,43] := {13, 75} tii[32,44] := {66, 135} tii[32,45] := {18, 95} tii[32,46] := {83, 123} tii[32,47] := {39, 129} tii[32,48] := {106} tii[32,49] := {27, 115} tii[32,50] := {24, 82} tii[32,51] := {62, 110} tii[32,52] := {88} tii[32,53] := {36, 105} tii[32,54] := {71} tii[32,55] := {1, 58} tii[32,56] := {30, 139} tii[32,57] := {3, 74} tii[32,58] := {21, 128} tii[32,59] := {6, 94} tii[32,60] := {14, 114} tii[32,61] := {7, 57} tii[32,62] := {47, 125} tii[32,63] := {10, 73} tii[32,64] := {28, 116} tii[32,65] := {60, 109} tii[32,66] := {19, 97} tii[32,67] := {86} tii[32,68] := {16, 59} tii[32,69] := {44, 93} tii[32,70] := {68} tii[32,71] := {25, 85} tii[32,72] := {53} tii[32,73] := {12, 42} tii[32,74] := {38, 100} tii[32,75] := {17, 56} tii[32,76] := {26, 77} tii[32,77] := {23, 43} tii[32,78] := {61, 111} tii[32,79] := {35, 67} tii[32,80] := {87} tii[32,81] := {70} tii[32,82] := {32, 55} tii[32,83] := {50, 76} tii[32,84] := {91} cell#22 , |C| = 36 special orbit = [10, 2, 1, 1] special rep = [[5], [1, 1]] , dim = 21 cell rep = phi[[5, 1, 1],[]]+phi[[5],[1, 1]] TII depth = 1 TII multiplicity polynomial = 15*X^2+6*X TII subcells: tii[36,1] := {16, 34} tii[36,2] := {12, 30} tii[36,3] := {22, 23} tii[36,4] := {28, 29} tii[36,5] := {32, 33} tii[36,6] := {35} tii[36,7] := {3, 21} tii[36,8] := {10, 11} tii[36,9] := {19, 20} tii[36,10] := {26, 27} tii[36,11] := {31} tii[36,12] := {0, 1} tii[36,13] := {8, 9} tii[36,14] := {17, 18} tii[36,15] := {25} tii[36,16] := {6, 7} tii[36,17] := {14, 15} tii[36,18] := {24} tii[36,19] := {4, 5} tii[36,20] := {13} tii[36,21] := {2} cell#23 , |C| = 105 special orbit = [8, 4, 1, 1] special rep = [[4], [2, 1]] , dim = 70 cell rep = phi[[4],[2, 1]]+phi[[1],[5, 1]] TII depth = 2 TII multiplicity polynomial = 35*X^2+35*X TII subcells: tii[33,1] := {32} tii[33,2] := {64} tii[33,3] := {86} tii[33,4] := {99, 100} tii[33,5] := {103, 104} tii[33,6] := {16} tii[33,7] := {46} tii[33,8] := {6} tii[33,9] := {74} tii[33,10] := {15} tii[33,11] := {29} tii[33,12] := {93, 94} tii[33,13] := {42, 43} tii[33,14] := {101, 102} tii[33,15] := {41} tii[33,16] := {69} tii[33,17] := {26} tii[33,18] := {40} tii[33,19] := {87, 88} tii[33,20] := {52, 53} tii[33,21] := {97, 98} tii[33,22] := {54} tii[33,23] := {39} tii[33,24] := {75, 76} tii[33,25] := {50, 51} tii[33,26] := {89, 90} tii[33,27] := {60, 61} tii[33,28] := {47, 48} tii[33,29] := {80, 81} tii[33,30] := {91, 92} tii[33,31] := {17} tii[33,32] := {31} tii[33,33] := {45} tii[33,34] := {58, 59} tii[33,35] := {0} tii[33,36] := {5} tii[33,37] := {49} tii[33,38] := {14} tii[33,39] := {63} tii[33,40] := {27, 28} tii[33,41] := {72, 73} tii[33,42] := {4} tii[33,43] := {12} tii[33,44] := {77} tii[33,45] := {22, 23} tii[33,46] := {84, 85} tii[33,47] := {3} tii[33,48] := {95, 96} tii[33,49] := {9, 10} tii[33,50] := {1, 2} tii[33,51] := {30} tii[33,52] := {44} tii[33,53] := {56, 57} tii[33,54] := {13} tii[33,55] := {62} tii[33,56] := {25} tii[33,57] := {37, 38} tii[33,58] := {70, 71} tii[33,59] := {11} tii[33,60] := {82, 83} tii[33,61] := {20, 21} tii[33,62] := {7, 8} tii[33,63] := {55} tii[33,64] := {67, 68} tii[33,65] := {24} tii[33,66] := {78, 79} tii[33,67] := {35, 36} tii[33,68] := {18, 19} tii[33,69] := {65, 66} tii[33,70] := {33, 34} cell#24 , |C| = 154 special orbit = [8, 2, 2, 2] special rep = [[4, 1], [1, 1]] , dim = 84 cell rep = phi[[4, 1, 1],[1]]+phi[[4, 1],[1, 1]] TII depth = 4 TII multiplicity polynomial = 70*X^2+14*X TII subcells: tii[32,1] := {74, 150} tii[32,2] := {52, 119} tii[32,3] := {47, 147} tii[32,4] := {43, 153} tii[32,5] := {99, 143} tii[32,6] := {36, 93} tii[32,7] := {90, 130} tii[32,8] := {33, 133} tii[32,9] := {110, 111} tii[32,10] := {32, 151} tii[32,11] := {128, 129} tii[32,12] := {142} tii[32,13] := {51, 86} tii[32,14] := {46, 126} tii[32,15] := {66, 67} tii[32,16] := {42, 149} tii[32,17] := {82, 83} tii[32,18] := {101} tii[32,19] := {65, 103} tii[32,20] := {58, 139} tii[32,21] := {80, 81} tii[32,22] := {100} tii[32,23] := {79, 118} tii[32,24] := {97} tii[32,25] := {1, 112} tii[32,26] := {54, 140} tii[32,27] := {4, 98} tii[32,28] := {41, 121} tii[32,29] := {8, 122} tii[32,30] := {30, 137} tii[32,31] := {14, 138} tii[32,32] := {21, 146} tii[32,33] := {3, 73} tii[32,34] := {70, 109} tii[32,35] := {88, 89} tii[32,36] := {7, 96} tii[32,37] := {39, 95} tii[32,38] := {107, 108} tii[32,39] := {10, 117} tii[32,40] := {28, 116} tii[32,41] := {125} tii[32,42] := {19, 132} tii[32,43] := {12, 120} tii[32,44] := {68, 69} tii[32,45] := {17, 136} tii[32,46] := {84, 85} tii[32,47] := {38, 135} tii[32,48] := {102} tii[32,49] := {26, 145} tii[32,50] := {23, 148} tii[32,51] := {61, 62} tii[32,52] := {77} tii[32,53] := {35, 152} tii[32,54] := {56} tii[32,55] := {0, 53} tii[32,56] := {29, 71} tii[32,57] := {2, 72} tii[32,58] := {20, 91} tii[32,59] := {5, 92} tii[32,60] := {13, 113} tii[32,61] := {6, 94} tii[32,62] := {48, 49} tii[32,63] := {9, 115} tii[32,64] := {27, 114} tii[32,65] := {63, 64} tii[32,66] := {18, 131} tii[32,67] := {78} tii[32,68] := {15, 134} tii[32,69] := {44, 45} tii[32,70] := {57} tii[32,71] := {24, 144} tii[32,72] := {40} tii[32,73] := {11, 87} tii[32,74] := {37, 105} tii[32,75] := {16, 106} tii[32,76] := {25, 124} tii[32,77] := {22, 127} tii[32,78] := {59, 60} tii[32,79] := {34, 141} tii[32,80] := {76} tii[32,81] := {55} tii[32,82] := {31, 104} tii[32,83] := {50, 123} tii[32,84] := {75} cell#25 , |C| = 175 special orbit = [6, 6, 2] special rep = [[3, 1], [3]] , dim = 105 cell rep = phi[[3, 1],[3]]+phi[[2, 1],[4]] TII depth = 3 TII multiplicity polynomial = 70*X^2+35*X TII subcells: tii[29,1] := {120} tii[29,2] := {159, 160} tii[29,3] := {173, 174} tii[29,4] := {78} tii[29,5] := {125, 126} tii[29,6] := {56} tii[29,7] := {102, 103} tii[29,8] := {153, 154} tii[29,9] := {165, 166} tii[29,10] := {53} tii[29,11] := {14} tii[29,12] := {79} tii[29,13] := {104, 105} tii[29,14] := {36} tii[29,15] := {121, 122} tii[29,16] := {41, 42} tii[29,17] := {141, 142} tii[29,18] := {75, 76} tii[29,19] := {157, 158} tii[29,20] := {77} tii[29,21] := {101} tii[29,22] := {54} tii[29,23] := {123, 124} tii[29,24] := {80} tii[29,25] := {38} tii[29,26] := {85, 86} tii[29,27] := {137, 138} tii[29,28] := {151, 152} tii[29,29] := {58} tii[29,30] := {114, 115} tii[29,31] := {163, 164} tii[29,32] := {139, 140} tii[29,33] := {149, 150} tii[29,34] := {127, 128} tii[29,35] := {161, 162} tii[29,36] := {147, 148} tii[29,37] := {169, 170} tii[29,38] := {167, 168} tii[29,39] := {171, 172} tii[29,40] := {33} tii[29,41] := {65, 66} tii[29,42] := {97, 98} tii[29,43] := {55} tii[29,44] := {4} tii[29,45] := {34} tii[29,46] := {17} tii[29,47] := {87, 88} tii[29,48] := {21, 22} tii[29,49] := {51, 52} tii[29,50] := {116, 117} tii[29,51] := {49, 50} tii[29,52] := {13} tii[29,53] := {110, 111} tii[29,54] := {35} tii[29,55] := {7} tii[29,56] := {39, 40} tii[29,57] := {133, 134} tii[29,58] := {18} tii[29,59] := {91, 92} tii[29,60] := {73, 74} tii[29,61] := {59, 60} tii[29,62] := {145, 146} tii[29,63] := {99, 100} tii[29,64] := {32} tii[29,65] := {15} tii[29,66] := {63, 64} tii[29,67] := {27, 28} tii[29,68] := {95, 96} tii[29,69] := {31} tii[29,70] := {20} tii[29,71] := {57} tii[29,72] := {5} tii[29,73] := {83, 84} tii[29,74] := {61, 62} tii[29,75] := {37} tii[29,76] := {11, 12} tii[29,77] := {112, 113} tii[29,78] := {67, 68} tii[29,79] := {93, 94} tii[29,80] := {8} tii[29,81] := {81, 82} tii[29,82] := {25, 26} tii[29,83] := {129, 130} tii[29,84] := {19} tii[29,85] := {118, 119} tii[29,86] := {108, 109} tii[29,87] := {131, 132} tii[29,88] := {89, 90} tii[29,89] := {106, 107} tii[29,90] := {69, 70} tii[29,91] := {143, 144} tii[29,92] := {135, 136} tii[29,93] := {155, 156} tii[29,94] := {16} tii[29,95] := {29, 30} tii[29,96] := {47, 48} tii[29,97] := {0} tii[29,98] := {2, 3} tii[29,99] := {1} tii[29,100] := {71, 72} tii[29,101] := {9, 10} tii[29,102] := {6} tii[29,103] := {23, 24} tii[29,104] := {45, 46} tii[29,105] := {43, 44} cell#26 , |C| = 105 special orbit = [6, 4, 4] special rep = [[3, 2], [2]] , dim = 105 cell rep = phi[[3, 2],[2]] TII depth = 4 TII multiplicity polynomial = 105*X TII subcells: tii[27,1] := {104} tii[27,2] := {92} tii[27,3] := {77} tii[27,4] := {45} tii[27,5] := {98} tii[27,6] := {76} tii[27,7] := {64} tii[27,8] := {87} tii[27,9] := {43} tii[27,10] := {74} tii[27,11] := {29} tii[27,12] := {101} tii[27,13] := {94} tii[27,14] := {63} tii[27,15] := {68} tii[27,16] := {82} tii[27,17] := {95} tii[27,18] := {103} tii[27,19] := {14} tii[27,20] := {44} tii[27,21] := {91} tii[27,22] := {75} tii[27,23] := {102} tii[27,24] := {96} tii[27,25] := {36} tii[27,26] := {100} tii[27,27] := {57} tii[27,28] := {60} tii[27,29] := {85} tii[27,30] := {66} tii[27,31] := {81} tii[27,32] := {50} tii[27,33] := {23} tii[27,34] := {48} tii[27,35] := {65} tii[27,36] := {34} tii[27,37] := {28} tii[27,38] := {61} tii[27,39] := {54} tii[27,40] := {27} tii[27,41] := {86} tii[27,42] := {17} tii[27,43] := {53} tii[27,44] := {39} tii[27,45] := {70} tii[27,46] := {15} tii[27,47] := {73} tii[27,48] := {31} tii[27,49] := {10} tii[27,50] := {93} tii[27,51] := {79} tii[27,52] := {37} tii[27,53] := {19} tii[27,54] := {58} tii[27,55] := {89} tii[27,56] := {52} tii[27,57] := {72} tii[27,58] := {49} tii[27,59] := {78} tii[27,60] := {6} tii[27,61] := {42} tii[27,62] := {69} tii[27,63] := {55} tii[27,64] := {4} tii[27,65] := {84} tii[27,66] := {16} tii[27,67] := {88} tii[27,68] := {99} tii[27,69] := {2} tii[27,70] := {33} tii[27,71] := {62} tii[27,72] := {22} tii[27,73] := {97} tii[27,74] := {7} tii[27,75] := {47} tii[27,76] := {41} tii[27,77] := {80} tii[27,78] := {35} tii[27,79] := {56} tii[27,80] := {59} tii[27,81] := {90} tii[27,82] := {9} tii[27,83] := {30} tii[27,84] := {18} tii[27,85] := {51} tii[27,86] := {25} tii[27,87] := {71} tii[27,88] := {21} tii[27,89] := {13} tii[27,90] := {38} tii[27,91] := {24} tii[27,92] := {5} tii[27,93] := {12} tii[27,94] := {20} tii[27,95] := {46} tii[27,96] := {32} tii[27,97] := {3} tii[27,98] := {67} tii[27,99] := {40} tii[27,100] := {8} tii[27,101] := {83} tii[27,102] := {26} tii[27,103] := {0} tii[27,104] := {1} tii[27,105] := {11} cell#27 , |C| = 105 special orbit = [6, 4, 4] special rep = [[3, 2], [2]] , dim = 105 cell rep = phi[[3, 2],[2]] TII depth = 4 TII multiplicity polynomial = 105*X TII subcells: tii[27,1] := {102} tii[27,2] := {104} tii[27,3] := {24} tii[27,4] := {57} tii[27,5] := {86} tii[27,6] := {91} tii[27,7] := {19} tii[27,8] := {37} tii[27,9] := {42} tii[27,10] := {41} tii[27,11] := {70} tii[27,12] := {94} tii[27,13] := {79} tii[27,14] := {97} tii[27,15] := {59} tii[27,16] := {76} tii[27,17] := {50} tii[27,18] := {99} tii[27,19] := {65} tii[27,20] := {81} tii[27,21] := {64} tii[27,22] := {100} tii[27,23] := {95} tii[27,24] := {77} tii[27,25] := {83} tii[27,26] := {88} tii[27,27] := {93} tii[27,28] := {89} tii[27,29] := {103} tii[27,30] := {96} tii[27,31] := {101} tii[27,32] := {5} tii[27,33] := {20} tii[27,34] := {10} tii[27,35] := {13} tii[27,36] := {3} tii[27,37] := {27} tii[27,38] := {26} tii[27,39] := {7} tii[27,40] := {8} tii[27,41] := {67} tii[27,42] := {32} tii[27,43] := {44} tii[27,44] := {12} tii[27,45] := {63} tii[27,46] := {40} tii[27,47] := {39} tii[27,48] := {45} tii[27,49] := {25} tii[27,50] := {78} tii[27,51] := {54} tii[27,52] := {58} tii[27,53] := {33} tii[27,54] := {75} tii[27,55] := {68} tii[27,56] := {71} tii[27,57] := {84} tii[27,58] := {9} tii[27,59] := {28} tii[27,60] := {46} tii[27,61] := {16} tii[27,62] := {15} tii[27,63] := {22} tii[27,64] := {53} tii[27,65] := {52} tii[27,66] := {60} tii[27,67] := {66} tii[27,68] := {87} tii[27,69] := {38} tii[27,70] := {31} tii[27,71] := {30} tii[27,72] := {72} tii[27,73] := {80} tii[27,74] := {47} tii[27,75] := {36} tii[27,76] := {85} tii[27,77] := {55} tii[27,78] := {82} tii[27,79] := {49} tii[27,80] := {92} tii[27,81] := {69} tii[27,82] := {51} tii[27,83] := {73} tii[27,84] := {61} tii[27,85] := {90} tii[27,86] := {74} tii[27,87] := {98} tii[27,88] := {0} tii[27,89] := {2} tii[27,90] := {1} tii[27,91] := {4} tii[27,92] := {6} tii[27,93] := {11} tii[27,94] := {18} tii[27,95] := {17} tii[27,96] := {23} tii[27,97] := {14} tii[27,98] := {43} tii[27,99] := {34} tii[27,100] := {21} tii[27,101] := {56} tii[27,102] := {48} tii[27,103] := {29} tii[27,104] := {35} tii[27,105] := {62} cell#28 , |C| = 154 special orbit = [8, 2, 2, 2] special rep = [[4, 1], [1, 1]] , dim = 84 cell rep = phi[[4, 1, 1],[1]]+phi[[4, 1],[1, 1]] TII depth = 4 TII multiplicity polynomial = 70*X^2+14*X TII subcells: tii[32,1] := {104, 152} tii[32,2] := {86, 146} tii[32,3] := {54, 132} tii[32,4] := {93, 130} tii[32,5] := {123, 153} tii[32,6] := {60, 139} tii[32,7] := {128, 151} tii[32,8] := {27, 115} tii[32,9] := {122, 149} tii[32,10] := {69, 113} tii[32,11] := {129, 145} tii[32,12] := {141} tii[32,13] := {85, 143} tii[32,14] := {7, 95} tii[32,15] := {78, 136} tii[32,16] := {41, 92} tii[32,17] := {88, 126} tii[32,18] := {117} tii[32,19] := {25, 106} tii[32,20] := {68, 114} tii[32,21] := {35, 82} tii[32,22] := {74} tii[32,23] := {87, 124} tii[32,24] := {105} tii[32,25] := {13, 42} tii[32,26] := {80, 150} tii[32,27] := {19, 70} tii[32,28] := {55, 147} tii[32,29] := {12, 94} tii[32,30] := {30, 142} tii[32,31] := {32, 112} tii[32,32] := {52, 134} tii[32,33] := {43, 44} tii[32,34] := {110, 148} tii[32,35] := {103, 144} tii[32,36] := {18, 71} tii[32,37] := {61, 140} tii[32,38] := {111, 138} tii[32,39] := {40, 91} tii[32,40] := {39, 135} tii[32,41] := {133} tii[32,42] := {57, 119} tii[32,43] := {11, 47} tii[32,44] := {79, 137} tii[32,45] := {31, 67} tii[32,46] := {89, 127} tii[32,47] := {29, 121} tii[32,48] := {118} tii[32,49] := {51, 100} tii[32,50] := {56, 90} tii[32,51] := {65, 109} tii[32,52] := {101} tii[32,53] := {72, 116} tii[32,54] := {108} tii[32,55] := {20, 21} tii[32,56] := {34, 131} tii[32,57] := {4, 46} tii[32,58] := {16, 120} tii[32,59] := {17, 66} tii[32,60] := {33, 99} tii[32,61] := {3, 22} tii[32,62] := {53, 125} tii[32,63] := {10, 38} tii[32,64] := {9, 102} tii[32,65] := {62, 107} tii[32,66] := {24, 75} tii[32,67] := {98} tii[32,68] := {28, 64} tii[32,69] := {37, 84} tii[32,70] := {76} tii[32,71] := {48, 97} tii[32,72] := {83} tii[32,73] := {0, 5} tii[32,74] := {1, 77} tii[32,75] := {2, 15} tii[32,76] := {6, 49} tii[32,77] := {8, 36} tii[32,78] := {14, 59} tii[32,79] := {23, 73} tii[32,80] := {50} tii[32,81] := {58} tii[32,82] := {26, 63} tii[32,83] := {45, 96} tii[32,84] := {81} cell#29 , |C| = 553 special orbit = [6, 4, 2, 2] special rep = [[3, 1], [2, 1]] , dim = 210 cell rep = phi[[3, 2, 1],[1]]+phi[[3, 1, 1],[2]]+phi[[3, 2],[1, 1]]+phi[[3, 1],[2, 1]] TII depth = 3 TII multiplicity polynomial = 91*X^4+70*X^2+49*X TII subcells: tii[26,1] := {142, 445, 459, 547} tii[26,2] := {349, 350, 492, 493} tii[26,3] := {514, 515} tii[26,4] := {302, 518} tii[26,5] := {76, 398, 491, 551} tii[26,6] := {415, 503} tii[26,7] := {26, 249, 470, 540} tii[26,8] := {270, 271, 449, 450} tii[26,9] := {101, 245, 389, 499} tii[26,10] := {476, 477} tii[26,11] := {510} tii[26,12] := {538} tii[26,13] := {139, 429, 523, 552} tii[26,14] := {268, 409} tii[26,15] := {347, 348, 494, 495} tii[26,16] := {113, 368, 532, 550} tii[26,17] := {241, 242, 393, 394} tii[26,18] := {512, 513} tii[26,19] := {156, 299, 522, 546} tii[26,20] := {421} tii[26,21] := {255, 537} tii[26,22] := {488} tii[26,23] := {413, 414, 508, 509} tii[26,24] := {535, 536} tii[26,25] := {379, 380, 474, 475} tii[26,26] := {502} tii[26,27] := {427, 428} tii[26,28] := {529} tii[26,29] := {542, 543} tii[26,30] := {549} tii[26,31] := {18, 102, 119, 219} tii[26,32] := {83, 84, 229, 230} tii[26,33] := {63, 312, 330, 524} tii[26,34] := {169, 170, 324, 458} tii[26,35] := {194, 359} tii[26,36] := {296, 441} tii[26,37] := {50, 51, 186, 304} tii[26,38] := {217, 480} tii[26,39] := {85, 385, 399, 539} tii[26,40] := {346, 466} tii[26,41] := {17, 105, 220, 381} tii[26,42] := {7, 175, 416, 525} tii[26,43] := {150, 151, 152, 153} tii[26,44] := {183, 432} tii[26,45] := {48, 168, 320, 457} tii[26,46] := {40, 321, 339, 526} tii[26,47] := {41, 163, 185, 451} tii[26,48] := {197, 198, 395, 396} tii[26,49] := {473} tii[26,50] := {233, 377} tii[26,51] := {275, 276} tii[26,52] := {70, 248, 257, 500} tii[26,53] := {521} tii[26,54] := {338} tii[26,55] := {374, 375} tii[26,56] := {225, 226, 227, 228} tii[26,57] := {269, 411} tii[26,58] := {24, 208, 469, 533} tii[26,59] := {279, 280, 455, 456} tii[26,60] := {143, 144, 316, 317} tii[26,61] := {191, 345} tii[26,62] := {100, 243, 246, 397} tii[26,63] := {36, 136, 444, 511} tii[26,64] := {422} tii[26,65] := {356, 357} tii[26,66] := {293} tii[26,67] := {201, 202, 402, 403} tii[26,68] := {109, 479} tii[26,69] := {438, 439} tii[26,70] := {489} tii[26,71] := {419, 420} tii[26,72] := {155, 281, 311, 426} tii[26,73] := {464} tii[26,74] := {207, 369} tii[26,75] := {410} tii[26,76] := {486, 487} tii[26,77] := {505} tii[26,78] := {531} tii[26,79] := {19, 20, 263, 378} tii[26,80] := {260, 483} tii[26,81] := {33, 329, 448, 548} tii[26,82] := {79, 80, 81, 82} tii[26,83] := {4, 53, 305, 446} tii[26,84] := {313, 443} tii[26,85] := {122, 123, 322, 323} tii[26,86] := {15, 258, 390, 541} tii[26,87] := {16, 92, 262, 496} tii[26,88] := {192, 193} tii[26,89] := {406} tii[26,90] := {32, 179, 328, 528} tii[26,91] := {294, 295} tii[26,92] := {60, 291, 507, 545} tii[26,93] := {3, 21, 382, 383} tii[26,94] := {145, 146, 147, 148} tii[26,95] := {189, 341} tii[26,96] := {195, 196, 391, 392} tii[26,97] := {88, 214, 490, 534} tii[26,98] := {77, 78, 234, 235} tii[26,99] := {10, 39, 303, 452} tii[26,100] := {351, 468} tii[26,101] := {9, 182, 423, 527} tii[26,102] := {166, 167, 325, 326} tii[26,103] := {120, 265} tii[26,104] := {358} tii[26,105] := {273, 274} tii[26,106] := {178, 517} tii[26,107] := {23, 110, 363, 501} tii[26,108] := {124, 125, 331, 332} tii[26,109] := {435} tii[26,110] := {209} tii[26,111] := {372, 373} tii[26,112] := {440} tii[26,113] := {38, 138, 447, 516} tii[26,114] := {27, 90, 261, 388} tii[26,115] := {352, 353} tii[26,116] := {407} tii[26,117] := {231, 232, 361, 362} tii[26,118] := {481} tii[26,119] := {111, 482} tii[26,120] := {340} tii[26,121] := {433, 434} tii[26,122] := {289, 290} tii[26,123] := {467} tii[26,124] := {55, 177, 327, 462} tii[26,125] := {137, 442} tii[26,126] := {506} tii[26,127] := {221, 222, 223, 224} tii[26,128] := {190, 343} tii[26,129] := {277, 278, 453, 454} tii[26,130] := {140, 141, 314, 315} tii[26,131] := {354, 355} tii[26,132] := {292} tii[26,133] := {199, 200, 400, 401} tii[26,134] := {436, 437} tii[26,135] := {309, 310, 424, 425} tii[26,136] := {114, 115, 236, 237} tii[26,137] := {417, 418} tii[26,138] := {463} tii[26,139] := {364} tii[26,140] := {366, 367} tii[26,141] := {484, 485} tii[26,142] := {171, 172, 333, 334} tii[26,143] := {408} tii[26,144] := {504} tii[26,145] := {297, 298} tii[26,146] := {530} tii[26,147] := {471, 472} tii[26,148] := {465} tii[26,149] := {519, 520} tii[26,150] := {544} tii[26,151] := {12, 49, 66, 154} tii[26,152] := {30, 31, 94, 95} tii[26,153] := {59, 132} tii[26,154] := {11, 54, 149, 308} tii[26,155] := {116, 370} tii[26,156] := {29, 93, 118, 387} tii[26,157] := {157, 301} tii[26,158] := {28, 244, 259, 498} tii[26,159] := {42, 43, 164, 165} tii[26,160] := {58, 174, 180, 461} tii[26,161] := {256} tii[26,162] := {71, 211} tii[26,163] := {64, 65, 162, 319} tii[26,164] := {91, 216} tii[26,165] := {128, 288} tii[26,166] := {181} tii[26,167] := {106, 107, 254, 405} tii[26,168] := {215} tii[26,169] := {0, 5, 306, 307} tii[26,170] := {272, 412} tii[26,171] := {96, 97, 98, 99} tii[26,172] := {2, 14, 218, 386} tii[26,173] := {1, 112, 360, 497} tii[26,174] := {371} tii[26,175] := {133, 134} tii[26,176] := {6, 56, 282, 460} tii[26,177] := {86, 87, 239, 240} tii[26,178] := {8, 37, 184, 318} tii[26,179] := {121, 267} tii[26,180] := {13, 75, 384, 478} tii[26,181] := {430} tii[26,182] := {205, 206} tii[26,183] := {57, 431} tii[26,184] := {210} tii[26,185] := {22, 108, 247, 404} tii[26,186] := {129, 130, 336, 337} tii[26,187] := {74, 376} tii[26,188] := {266} tii[26,189] := {25, 89, 117, 238} tii[26,190] := {365} tii[26,191] := {285, 286} tii[26,192] := {52, 173, 176, 335} tii[26,193] := {344} tii[26,194] := {135, 300} tii[26,195] := {44, 45, 46, 47} tii[26,196] := {72, 73} tii[26,197] := {34, 35, 160, 161} tii[26,198] := {67, 188} tii[26,199] := {126, 127} tii[26,200] := {68, 69, 252, 253} tii[26,201] := {131} tii[26,202] := {187} tii[26,203] := {61, 62, 158, 159} tii[26,204] := {287} tii[26,205] := {203, 204} tii[26,206] := {103, 104, 250, 251} tii[26,207] := {264} tii[26,208] := {212, 213} tii[26,209] := {283, 284} tii[26,210] := {342} cell#30 , |C| = 553 special orbit = [6, 4, 2, 2] special rep = [[3, 1], [2, 1]] , dim = 210 cell rep = phi[[3, 2, 1],[1]]+phi[[3, 1, 1],[2]]+phi[[3, 2],[1, 1]]+phi[[3, 1],[2, 1]] TII depth = 3 TII multiplicity polynomial = 91*X^4+70*X^2+49*X TII subcells: tii[26,1] := {89, 325, 410, 551} tii[26,2] := {224, 377, 444, 548} tii[26,3] := {409, 535} tii[26,4] := {73, 280} tii[26,5] := {143, 358, 379, 545} tii[26,6] := {162, 304} tii[26,7] := {52, 245, 366, 513} tii[26,8] := {285, 396, 427, 537} tii[26,9] := {121, 238, 355, 468} tii[26,10] := {455, 517} tii[26,11] := {292} tii[26,12] := {372} tii[26,13] := {200, 386, 429, 552} tii[26,14] := {282, 388} tii[26,15] := {344, 445, 470, 543} tii[26,16] := {141, 336, 456, 546} tii[26,17] := {236, 357, 454, 509} tii[26,18] := {489, 536} tii[26,19] := {164, 277, 488, 540} tii[26,20] := {401} tii[26,21] := {250, 521} tii[26,22] := {460} tii[26,23] := {395, 471, 503, 550} tii[26,24] := {516, 541} tii[26,25] := {341, 434, 515, 544} tii[26,26] := {472} tii[26,27] := {385, 538} tii[26,28] := {505} tii[26,29] := {534, 549} tii[26,30] := {542} tii[26,31] := {13, 14, 123, 340} tii[26,32] := {50, 51, 223, 364} tii[26,33] := {23, 207, 307, 532} tii[26,34] := {72, 206, 298, 500} tii[26,35] := {119, 349} tii[26,36] := {195, 420} tii[26,37] := {32, 33, 180, 394} tii[26,38] := {39, 215} tii[26,39] := {54, 266, 365, 547} tii[26,40] := {108, 244} tii[26,41] := {12, 63, 127, 437} tii[26,42] := {21, 185, 306, 483} tii[26,43] := {93, 94, 284, 415} tii[26,44] := {16, 160} tii[26,45] := {71, 177, 296, 426} tii[26,46] := {27, 210, 320, 529} tii[26,47] := {28, 98, 172, 474} tii[26,48] := {122, 265, 356, 524} tii[26,49] := {234} tii[26,50] := {38, 140} tii[26,51] := {174, 402} tii[26,52] := {46, 152, 254, 507} tii[26,53] := {316} tii[26,54] := {83} tii[26,55] := {256, 461} tii[26,56] := {145, 146, 343, 457} tii[26,57] := {161, 272} tii[26,58] := {48, 212, 359, 514} tii[26,59] := {175, 323, 406, 539} tii[26,60] := {90, 204, 288, 487} tii[26,61] := {109, 214} tii[26,62] := {120, 239, 354, 442} tii[26,63] := {64, 155, 400, 501} tii[26,64] := {293} tii[26,65] := {233, 451} tii[26,66] := {189} tii[26,67] := {125, 267, 368, 520} tii[26,68] := {133, 462} tii[26,69] := {315, 494} tii[26,70] := {373} tii[26,71] := {290, 484} tii[26,72] := {163, 270, 398, 482} tii[26,73] := {328} tii[26,74] := {211, 466} tii[26,75] := {271} tii[26,76] := {370, 518} tii[26,77] := {391} tii[26,78] := {441} tii[26,79] := {61, 62, 124, 339} tii[26,80] := {40, 220} tii[26,81] := {95, 305, 326, 531} tii[26,82] := {147, 148, 222, 363} tii[26,83] := {31, 76, 101, 389} tii[26,84] := {70, 199} tii[26,85] := {178, 297, 324, 499} tii[26,86] := {57, 258, 269, 510} tii[26,87] := {58, 115, 150, 432} tii[26,88] := {235, 348} tii[26,89] := {135} tii[26,90] := {86, 191, 209, 477} tii[26,91] := {317, 419} tii[26,92] := {91, 275, 412, 533} tii[26,93] := {11, 41, 128, 334} tii[26,94] := {202, 203, 283, 411} tii[26,95] := {221, 333} tii[26,96] := {237, 353, 378, 523} tii[26,97] := {110, 217, 452, 525} tii[26,98] := {144, 227, 264, 449} tii[26,99] := {26, 69, 173, 383} tii[26,100] := {114, 257} tii[26,101] := {25, 198, 321, 481} tii[26,102] := {176, 299, 408, 480} tii[26,103] := {165, 279} tii[26,104] := {350} tii[26,105] := {291, 399} tii[26,106] := {190, 495} tii[26,107] := {45, 134, 255, 440} tii[26,108] := {181, 308, 327, 492} tii[26,109] := {188} tii[26,110] := {253} tii[26,111] := {371, 459} tii[26,112] := {421} tii[26,113] := {66, 157, 405, 502} tii[26,114] := {53, 112, 230, 351} tii[26,115] := {346, 447} tii[26,116] := {381} tii[26,117] := {225, 331, 448, 512} tii[26,118] := {242} tii[26,119] := {136, 465} tii[26,120] := {332} tii[26,121] := {417, 491} tii[26,122] := {274, 497} tii[26,123] := {438} tii[26,124] := {80, 187, 311, 422} tii[26,125] := {156, 424} tii[26,126] := {479} tii[26,127] := {262, 263, 342, 436} tii[26,128] := {226, 338} tii[26,129] := {295, 407, 428, 528} tii[26,130] := {201, 287, 322, 473} tii[26,131] := {347, 450} tii[26,132] := {313} tii[26,133] := {240, 367, 380, 506} tii[26,134] := {418, 493} tii[26,135] := {286, 384, 486, 530} tii[26,136] := {142, 228, 345, 431} tii[26,137] := {397, 485} tii[26,138] := {430} tii[26,139] := {361} tii[26,140] := {335, 522} tii[26,141] := {458, 519} tii[26,142] := {179, 310, 416, 476} tii[26,143] := {387} tii[26,144] := {475} tii[26,145] := {276, 498} tii[26,146] := {508} tii[26,147] := {446, 504} tii[26,148] := {435} tii[26,149] := {490, 526} tii[26,150] := {527} tii[26,151] := {2, 3, 75, 281} tii[26,152] := {9, 10, 118, 261} tii[26,153] := {20, 194} tii[26,154] := {1, 34, 77, 390} tii[26,155] := {4, 107} tii[26,156] := {8, 56, 117, 433} tii[26,157] := {15, 88} tii[26,158] := {7, 153, 260, 511} tii[26,159] := {29, 30, 171, 319} tii[26,160] := {19, 102, 193, 478} tii[26,161] := {44} tii[26,162] := {47, 252} tii[26,163] := {24, 97, 169, 404} tii[26,164] := {36, 106} tii[26,165] := {79, 302} tii[26,166] := {85} tii[26,167] := {43, 151, 249, 464} tii[26,168] := {105} tii[26,169] := {0, 17, 78, 273} tii[26,170] := {68, 197} tii[26,171] := {59, 60, 232, 375} tii[26,172] := {6, 37, 116, 330} tii[26,173] := {5, 139, 259, 443} tii[26,174] := {132} tii[26,175] := {87, 314} tii[26,176] := {18, 82, 192, 393} tii[26,177] := {55, 149, 231, 453} tii[26,178] := {22, 65, 167, 294} tii[26,179] := {67, 159} tii[26,180] := {35, 104, 352, 469} tii[26,181] := {183} tii[26,182] := {129, 362} tii[26,183] := {84, 423} tii[26,184] := {137} tii[26,185] := {42, 131, 246, 374} tii[26,186] := {81, 208, 312, 496} tii[26,187] := {103, 376} tii[26,188] := {158} tii[26,189] := {49, 111, 229, 329} tii[26,190] := {243} tii[26,191] := {182, 414} tii[26,192] := {74, 186, 309, 392} tii[26,193] := {213} tii[26,194] := {154, 425} tii[26,195] := {99, 100, 170, 318} tii[26,196] := {138, 251} tii[26,197] := {96, 168, 205, 403} tii[26,198] := {113, 219} tii[26,199] := {184, 301} tii[26,200] := {130, 248, 268, 463} tii[26,201] := {196} tii[26,202] := {218} tii[26,203] := {92, 166, 289, 382} tii[26,204] := {303} tii[26,205] := {241, 360} tii[26,206] := {126, 247, 369, 439} tii[26,207] := {278} tii[26,208] := {216, 467} tii[26,209] := {300, 413} tii[26,210] := {337} cell#31 , |C| = 126 special orbit = [6, 2, 2, 2, 2] special rep = [[3, 1, 1], [1, 1]] , dim = 126 cell rep = phi[[3, 1, 1],[1, 1]] TII depth = 4 TII multiplicity polynomial = 126*X TII subcells: tii[24,1] := {87} tii[24,2] := {115} tii[24,3] := {125} tii[24,4] := {113} tii[24,5] := {124} tii[24,6] := {123} tii[24,7] := {24} tii[24,8] := {21} tii[24,9] := {20} tii[24,10] := {66} tii[24,11] := {36} tii[24,12] := {99} tii[24,13] := {31} tii[24,14] := {48} tii[24,15] := {49} tii[24,16] := {119} tii[24,17] := {28} tii[24,18] := {61} tii[24,19] := {62} tii[24,20] := {74} tii[24,21] := {77} tii[24,22] := {47} tii[24,23] := {106} tii[24,24] := {41} tii[24,25] := {58} tii[24,26] := {59} tii[24,27] := {72} tii[24,28] := {89} tii[24,29] := {57} tii[24,30] := {71} tii[24,31] := {52} tii[24,32] := {50} tii[24,33] := {68} tii[24,34] := {69} tii[24,35] := {42} tii[24,36] := {84} tii[24,37] := {85} tii[24,38] := {95} tii[24,39] := {88} tii[24,40] := {97} tii[24,41] := {65} tii[24,42] := {60} tii[24,43] := {80} tii[24,44] := {79} tii[24,45] := {104} tii[24,46] := {103} tii[24,47] := {118} tii[24,48] := {92} tii[24,49] := {111} tii[24,50] := {116} tii[24,51] := {105} tii[24,52] := {76} tii[24,53] := {90} tii[24,54] := {122} tii[24,55] := {86} tii[24,56] := {83} tii[24,57] := {101} tii[24,58] := {102} tii[24,59] := {110} tii[24,60] := {114} tii[24,61] := {117} tii[24,62] := {96} tii[24,63] := {107} tii[24,64] := {121} tii[24,65] := {112} tii[24,66] := {120} tii[24,67] := {0} tii[24,68] := {17} tii[24,69] := {1} tii[24,70] := {11} tii[24,71] := {2} tii[24,72] := {6} tii[24,73] := {3} tii[24,74] := {32} tii[24,75] := {33} tii[24,76] := {4} tii[24,77] := {16} tii[24,78] := {45} tii[24,79] := {46} tii[24,80] := {10} tii[24,81] := {56} tii[24,82] := {7} tii[24,83] := {29} tii[24,84] := {30} tii[24,85] := {14} tii[24,86] := {39} tii[24,87] := {26} tii[24,88] := {67} tii[24,89] := {5} tii[24,90] := {81} tii[24,91] := {25} tii[24,92] := {82} tii[24,93] := {8} tii[24,94] := {93} tii[24,95] := {15} tii[24,96] := {100} tii[24,97] := {12} tii[24,98] := {43} tii[24,99] := {44} tii[24,100] := {109} tii[24,101] := {22} tii[24,102] := {55} tii[24,103] := {38} tii[24,104] := {78} tii[24,105] := {18} tii[24,106] := {91} tii[24,107] := {34} tii[24,108] := {53} tii[24,109] := {9} tii[24,110] := {37} tii[24,111] := {13} tii[24,112] := {23} tii[24,113] := {19} tii[24,114] := {64} tii[24,115] := {63} tii[24,116] := {35} tii[24,117] := {75} tii[24,118] := {54} tii[24,119] := {98} tii[24,120] := {27} tii[24,121] := {108} tii[24,122] := {51} tii[24,123] := {73} tii[24,124] := {40} tii[24,125] := {70} tii[24,126] := {94} cell#32 , |C| = 126 special orbit = [6, 2, 2, 2, 2] special rep = [[3, 1, 1], [1, 1]] , dim = 126 cell rep = phi[[3, 1, 1],[1, 1]] TII depth = 4 TII multiplicity polynomial = 126*X TII subcells: tii[24,1] := {125} tii[24,2] := {121} tii[24,3] := {122} tii[24,4] := {96} tii[24,5] := {104} tii[24,6] := {120} tii[24,7] := {61} tii[24,8] := {21} tii[24,9] := {54} tii[24,10] := {123} tii[24,11] := {83} tii[24,12] := {113} tii[24,13] := {18} tii[24,14] := {118} tii[24,15] := {60} tii[24,16] := {116} tii[24,17] := {47} tii[24,18] := {109} tii[24,19] := {74} tii[24,20] := {99} tii[24,21] := {98} tii[24,22] := {34} tii[24,23] := {105} tii[24,24] := {67} tii[24,25] := {81} tii[24,26] := {44} tii[24,27] := {70} tii[24,28] := {111} tii[24,29] := {85} tii[24,30] := {97} tii[24,31] := {101} tii[24,32] := {6} tii[24,33] := {124} tii[24,34] := {82} tii[24,35] := {27} tii[24,36] := {119} tii[24,37] := {93} tii[24,38] := {114} tii[24,39] := {71} tii[24,40] := {76} tii[24,41] := {16} tii[24,42] := {46} tii[24,43] := {23} tii[24,44] := {57} tii[24,45] := {86} tii[24,46] := {115} tii[24,47] := {88} tii[24,48] := {50} tii[24,49] := {107} tii[24,50] := {103} tii[24,51] := {94} tii[24,52] := {62} tii[24,53] := {75} tii[24,54] := {117} tii[24,55] := {32} tii[24,56] := {66} tii[24,57] := {79} tii[24,58] := {43} tii[24,59] := {69} tii[24,60] := {64} tii[24,61] := {110} tii[24,62] := {84} tii[24,63] := {95} tii[24,64] := {89} tii[24,65] := {102} tii[24,66] := {112} tii[24,67] := {28} tii[24,68] := {42} tii[24,69] := {13} tii[24,70] := {25} tii[24,71] := {26} tii[24,72] := {38} tii[24,73] := {4} tii[24,74] := {108} tii[24,75] := {41} tii[24,76] := {12} tii[24,77] := {11} tii[24,78] := {92} tii[24,79] := {53} tii[24,80] := {20} tii[24,81] := {77} tii[24,82] := {22} tii[24,83] := {73} tii[24,84] := {36} tii[24,85] := {37} tii[24,86] := {55} tii[24,87] := {72} tii[24,88] := {52} tii[24,89] := {3} tii[24,90] := {100} tii[24,91] := {8} tii[24,92] := {63} tii[24,93] := {9} tii[24,94] := {91} tii[24,95] := {15} tii[24,96] := {87} tii[24,97] := {19} tii[24,98] := {59} tii[24,99] := {24} tii[24,100] := {106} tii[24,101] := {30} tii[24,102] := {51} tii[24,103] := {58} tii[24,104] := {65} tii[24,105] := {35} tii[24,106] := {90} tii[24,107] := {49} tii[24,108] := {80} tii[24,109] := {0} tii[24,110] := {1} tii[24,111] := {2} tii[24,112] := {5} tii[24,113] := {7} tii[24,114] := {10} tii[24,115] := {40} tii[24,116] := {14} tii[24,117] := {31} tii[24,118] := {39} tii[24,119] := {45} tii[24,120] := {17} tii[24,121] := {68} tii[24,122] := {29} tii[24,123] := {56} tii[24,124] := {33} tii[24,125] := {48} tii[24,126] := {78} cell#33 , |C| = 455 special orbit = [6, 4, 2, 2] special rep = [[3, 1], [2, 1]] , dim = 210 cell rep = phi[[3, 1, 1],[2]]+phi[[3, 1],[2, 1]]+phi[[1, 1, 1],[4]]+phi[[1, 1],[4, 1]] TII depth = 3 TII multiplicity polynomial = 140*X^2+35*X^4+35*X TII subcells: tii[26,1] := {118, 376} tii[26,2] := {150, 434} tii[26,3] := {175, 176, 453, 454} tii[26,4] := {200} tii[26,5] := {156, 347} tii[26,6] := {293} tii[26,7] := {97, 260} tii[26,8] := {193, 427} tii[26,9] := {93, 344} tii[26,10] := {221, 222, 451, 452} tii[26,11] := {360, 361} tii[26,12] := {402, 403} tii[26,13] := {199, 306} tii[26,14] := {292} tii[26,15] := {243, 406} tii[26,16] := {171, 258} tii[26,17] := {170, 343} tii[26,18] := {271, 272, 445, 446} tii[26,19] := {212, 213} tii[26,20] := {358, 359} tii[26,21] := {255} tii[26,22] := {400, 401} tii[26,23] := {291, 379} tii[26,24] := {320, 321, 432, 433} tii[26,25] := {257, 342} tii[26,26] := {356, 357} tii[26,27] := {302} tii[26,28] := {398, 399} tii[26,29] := {354, 355, 414, 415} tii[26,30] := {404, 405} tii[26,31] := {2, 224} tii[26,32] := {11, 312} tii[26,33] := {61, 294} tii[26,34] := {60, 362} tii[26,35] := {31, 32, 383, 384} tii[26,36] := {55, 56, 412, 413} tii[26,37] := {6, 273} tii[26,38] := {155} tii[26,39] := {85, 340} tii[26,40] := {241} tii[26,41] := {15, 250} tii[26,42] := {67, 210} tii[26,43] := {22, 353} tii[26,44] := {119} tii[26,45] := {66, 301} tii[26,46] := {64, 296} tii[26,47] := {24, 297} tii[26,48] := {83, 394} tii[26,49] := {313, 314} tii[26,50] := {153} tii[26,51] := {49, 50, 408, 409} tii[26,52] := {42, 333} tii[26,53] := {368, 369} tii[26,54] := {188, 189} tii[26,55] := {77, 78, 430, 431} tii[26,56] := {37, 387} tii[26,57] := {192} tii[26,58] := {96, 164} tii[26,59] := {114, 420} tii[26,60] := {58, 377} tii[26,61] := {151} tii[26,62] := {92, 249} tii[26,63] := {126, 127} tii[26,64] := {266, 267} tii[26,65] := {71, 72, 428, 429} tii[26,66] := {184, 185} tii[26,67] := {87, 395} tii[26,68] := {160} tii[26,69] := {105, 106, 443, 444} tii[26,70] := {329, 330} tii[26,71] := {99, 100, 441, 442} tii[26,72] := {125, 198} tii[26,73] := {219, 220} tii[26,74] := {158} tii[26,75] := {178, 179} tii[26,76] := {138, 139, 449, 450} tii[26,77] := {282, 283} tii[26,78] := {237, 238} tii[26,79] := {14, 251} tii[26,80] := {157} tii[26,81] := {120, 308} tii[26,82] := {38, 339} tii[26,83] := {26, 216} tii[26,84] := {197} tii[26,85] := {115, 381} tii[26,86] := {89, 262} tii[26,87] := {40, 263} tii[26,88] := {73, 74, 392, 393} tii[26,89] := {239, 240} tii[26,90] := {63, 305} tii[26,91] := {107, 108, 423, 424} tii[26,92] := {131, 208} tii[26,93] := {17, 172} tii[26,94] := {57, 378} tii[26,95] := {242} tii[26,96] := {152, 407} tii[26,97] := {166, 167} tii[26,98] := {82, 348} tii[26,99] := {29, 215} tii[26,100] := {245} tii[26,101] := {70, 214} tii[26,102] := {128, 300} tii[26,103] := {195} tii[26,104] := {315, 316} tii[26,105] := {101, 102, 418, 419} tii[26,106] := {204} tii[26,107] := {47, 256} tii[26,108] := {121, 382} tii[26,109] := {286, 287} tii[26,110] := {233, 234} tii[26,111] := {140, 141, 437, 438} tii[26,112] := {370, 371} tii[26,113] := {129, 130} tii[26,114] := {45, 261} tii[26,115] := {134, 135, 435, 436} tii[26,116] := {268, 269} tii[26,117] := {163, 248} tii[26,118] := {326, 327} tii[26,119] := {162} tii[26,120] := {227, 228} tii[26,121] := {180, 181, 447, 448} tii[26,122] := {202} tii[26,123] := {331, 332} tii[26,124] := {69, 304} tii[26,125] := {123} tii[26,126] := {289, 290} tii[26,127] := {81, 338} tii[26,128] := {244} tii[26,129] := {196, 380} tii[26,130] := {113, 307} tii[26,131] := {136, 137, 390, 391} tii[26,132] := {284, 285} tii[26,133] := {159, 345} tii[26,134] := {182, 183, 421, 422} tii[26,135] := {207, 299} tii[26,136] := {91, 259} tii[26,137] := {173, 174, 416, 417} tii[26,138] := {317, 318} tii[26,139] := {324, 325} tii[26,140] := {252} tii[26,141] := {229, 230, 439, 440} tii[26,142] := {133, 303} tii[26,143] := {278, 279} tii[26,144] := {372, 373} tii[26,145] := {206} tii[26,146] := {336, 337} tii[26,147] := {217, 218, 388, 389} tii[26,148] := {322, 323} tii[26,149] := {280, 281, 425, 426} tii[26,150] := {374, 375} tii[26,151] := {0, 177} tii[26,152] := {1, 223} tii[26,153] := {3, 4, 264, 265} tii[26,154] := {7, 201} tii[26,155] := {86} tii[26,156] := {12, 247} tii[26,157] := {117} tii[26,158] := {43, 246} tii[26,159] := {5, 270} tii[26,160] := {27, 288} tii[26,161] := {148, 149} tii[26,162] := {9, 10, 310, 311} tii[26,163] := {23, 295} tii[26,164] := {84} tii[26,165] := {18, 19, 349, 350} tii[26,166] := {111, 112} tii[26,167] := {41, 328} tii[26,168] := {79, 80} tii[26,169] := {8, 132} tii[26,170] := {194} tii[26,171] := {13, 319} tii[26,172] := {16, 169} tii[26,173] := {48, 168} tii[26,174] := {231, 232} tii[26,175] := {20, 21, 351, 352} tii[26,176] := {30, 205} tii[26,177] := {39, 341} tii[26,178] := {28, 211} tii[26,179] := {116} tii[26,180] := {94, 95} tii[26,181] := {274, 275} tii[26,182] := {33, 34, 385, 386} tii[26,183] := {124} tii[26,184] := {146, 147} tii[26,185] := {46, 254} tii[26,186] := {62, 367} tii[26,187] := {90} tii[26,188] := {109, 110} tii[26,189] := {44, 165} tii[26,190] := {225, 226} tii[26,191] := {51, 52, 410, 411} tii[26,192] := {68, 203} tii[26,193] := {142, 143} tii[26,194] := {122} tii[26,195] := {25, 298} tii[26,196] := {35, 36, 334, 335} tii[26,197] := {59, 309} tii[26,198] := {154} tii[26,199] := {53, 54, 365, 366} tii[26,200] := {88, 346} tii[26,201] := {190, 191} tii[26,202] := {144, 145} tii[26,203] := {65, 209} tii[26,204] := {276, 277} tii[26,205] := {75, 76, 396, 397} tii[26,206] := {98, 253} tii[26,207] := {186, 187} tii[26,208] := {161} tii[26,209] := {103, 104, 363, 364} tii[26,210] := {235, 236} cell#34 , |C| = 126 special orbit = [6, 2, 2, 2, 2] special rep = [[3, 1, 1], [1, 1]] , dim = 126 cell rep = phi[[3, 1, 1],[1, 1]] TII depth = 4 TII multiplicity polynomial = 126*X TII subcells: tii[24,1] := {125} tii[24,2] := {120} tii[24,3] := {110} tii[24,4] := {107} tii[24,5] := {80} tii[24,6] := {106} tii[24,7] := {54} tii[24,8] := {50} tii[24,9] := {48} tii[24,10] := {124} tii[24,11] := {73} tii[24,12] := {115} tii[24,13] := {32} tii[24,14] := {122} tii[24,15] := {85} tii[24,16] := {97} tii[24,17] := {30} tii[24,18] := {119} tii[24,19] := {102} tii[24,20] := {113} tii[24,21] := {112} tii[24,22] := {49} tii[24,23] := {81} tii[24,24] := {47} tii[24,25] := {104} tii[24,26] := {63} tii[24,27] := {86} tii[24,28] := {99} tii[24,29] := {61} tii[24,30] := {88} tii[24,31] := {84} tii[24,32] := {21} tii[24,33] := {123} tii[24,34] := {93} tii[24,35] := {20} tii[24,36] := {121} tii[24,37] := {108} tii[24,38] := {116} tii[24,39] := {77} tii[24,40] := {101} tii[24,41] := {31} tii[24,42] := {29} tii[24,43] := {44} tii[24,44] := {90} tii[24,45] := {92} tii[24,46] := {117} tii[24,47] := {60} tii[24,48] := {66} tii[24,49] := {109} tii[24,50] := {76} tii[24,51] := {82} tii[24,52] := {43} tii[24,53] := {68} tii[24,54] := {95} tii[24,55] := {41} tii[24,56] := {46} tii[24,57] := {98} tii[24,58] := {55} tii[24,59] := {78} tii[24,60] := {39} tii[24,61] := {100} tii[24,62] := {62} tii[24,63] := {89} tii[24,64] := {58} tii[24,65] := {74} tii[24,66] := {96} tii[24,67] := {1} tii[24,68] := {38} tii[24,69] := {4} tii[24,70] := {26} tii[24,71] := {9} tii[24,72] := {16} tii[24,73] := {7} tii[24,74] := {118} tii[24,75] := {65} tii[24,76] := {12} tii[24,77] := {36} tii[24,78] := {114} tii[24,79] := {83} tii[24,80] := {24} tii[24,81] := {103} tii[24,82] := {19} tii[24,83] := {105} tii[24,84] := {64} tii[24,85] := {35} tii[24,86] := {87} tii[24,87] := {69} tii[24,88] := {57} tii[24,89] := {3} tii[24,90] := {111} tii[24,91] := {25} tii[24,92] := {75} tii[24,93] := {6} tii[24,94] := {94} tii[24,95] := {14} tii[24,96] := {56} tii[24,97] := {11} tii[24,98] := {91} tii[24,99] := {45} tii[24,100] := {79} tii[24,101] := {23} tii[24,102] := {67} tii[24,103] := {52} tii[24,104] := {40} tii[24,105] := {18} tii[24,106] := {59} tii[24,107] := {34} tii[24,108] := {71} tii[24,109] := {0} tii[24,110] := {15} tii[24,111] := {2} tii[24,112] := {8} tii[24,113] := {5} tii[24,114] := {28} tii[24,115] := {72} tii[24,116] := {13} tii[24,117] := {51} tii[24,118] := {37} tii[24,119] := {27} tii[24,120] := {10} tii[24,121] := {42} tii[24,122] := {22} tii[24,123] := {53} tii[24,124] := {17} tii[24,125] := {33} tii[24,126] := {70} cell#35 , |C| = 175 special orbit = [6, 2, 2, 2, 1, 1] special rep = [[3, 1], [1, 1, 1]] , dim = 105 cell rep = phi[[3, 1, 1, 1],[1]]+phi[[3, 1],[1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 70*X^2+35*X TII subcells: tii[23,1] := {35, 143} tii[23,2] := {46, 169} tii[23,3] := {42, 174} tii[23,4] := {61, 114} tii[23,5] := {73, 156} tii[23,6] := {88, 89} tii[23,7] := {67, 172} tii[23,8] := {112, 113} tii[23,9] := {132} tii[23,10] := {103, 149} tii[23,11] := {100, 171} tii[23,12] := {127, 128} tii[23,13] := {148} tii[23,14] := {123, 160} tii[23,15] := {145} tii[23,16] := {34, 85} tii[23,17] := {45, 134} tii[23,18] := {57, 58} tii[23,19] := {41, 166} tii[23,20] := {80, 82} tii[23,21] := {106} tii[23,22] := {32, 33} tii[23,23] := {72, 125} tii[23,24] := {66, 162} tii[23,25] := {97, 98} tii[23,26] := {54, 56} tii[23,27] := {119} tii[23,28] := {78} tii[23,29] := {43, 44} tii[23,30] := {96, 142} tii[23,31] := {118} tii[23,32] := {65} tii[23,33] := {36} tii[23,34] := {86, 133} tii[23,35] := {99, 165} tii[23,36] := {108, 110} tii[23,37] := {130} tii[23,38] := {79, 81} tii[23,39] := {124, 161} tii[23,40] := {146} tii[23,41] := {105} tii[23,42] := {92} tii[23,43] := {135, 164} tii[23,44] := {151} tii[23,45] := {129} tii[23,46] := {0, 90} tii[23,47] := {18, 116} tii[23,48] := {1, 117} tii[23,49] := {14, 140} tii[23,50] := {2, 141} tii[23,51] := {8, 155} tii[23,52] := {4, 144} tii[23,53] := {59, 60} tii[23,54] := {6, 159} tii[23,55] := {27, 158} tii[23,56] := {83, 84} tii[23,57] := {13, 168} tii[23,58] := {107} tii[23,59] := {10, 170} tii[23,60] := {70, 71} tii[23,61] := {24, 173} tii[23,62] := {95} tii[23,63] := {63} tii[23,64] := {15, 16} tii[23,65] := {7, 115} tii[23,66] := {49, 138} tii[23,67] := {29, 31} tii[23,68] := {11, 139} tii[23,69] := {52} tii[23,70] := {25, 154} tii[23,71] := {21, 22} tii[23,72] := {20, 157} tii[23,73] := {101, 102} tii[23,74] := {38} tii[23,75] := {48, 167} tii[23,76] := {122} tii[23,77] := {17} tii[23,78] := {93} tii[23,79] := {28, 30} tii[23,80] := {40, 150} tii[23,81] := {51} tii[23,82] := {75, 163} tii[23,83] := {37} tii[23,84] := {121} tii[23,85] := {50} tii[23,86] := {3, 87} tii[23,87] := {26, 109} tii[23,88] := {5, 111} tii[23,89] := {12, 131} tii[23,90] := {9, 137} tii[23,91] := {68, 69} tii[23,92] := {23, 153} tii[23,93] := {94} tii[23,94] := {62} tii[23,95] := {53, 55} tii[23,96] := {19, 126} tii[23,97] := {77} tii[23,98] := {47, 147} tii[23,99] := {91} tii[23,100] := {64} tii[23,101] := {76} tii[23,102] := {39, 136} tii[23,103] := {74, 152} tii[23,104] := {120} tii[23,105] := {104} cell#36 , |C| = 70 special orbit = [5, 5, 4] special rep = [[2, 2], [3]] , dim = 70 cell rep = phi[[2, 2],[3]] TII depth = 3 TII multiplicity polynomial = 70*X TII subcells: tii[21,1] := {69} tii[21,2] := {38} tii[21,3] := {61} tii[21,4] := {24} tii[21,5] := {47} tii[21,6] := {65} tii[21,7] := {41} tii[21,8] := {51} tii[21,9] := {40} tii[21,10] := {54} tii[21,11] := {67} tii[21,12] := {56} tii[21,13] := {62} tii[21,14] := {59} tii[21,15] := {68} tii[21,16] := {63} tii[21,17] := {66} tii[21,18] := {14} tii[21,19] := {15} tii[21,20] := {34} tii[21,21] := {4} tii[21,22] := {22} tii[21,23] := {45} tii[21,24] := {12} tii[21,25] := {23} tii[21,26] := {30} tii[21,27] := {16} tii[21,28] := {42} tii[21,29] := {28} tii[21,30] := {52} tii[21,31] := {46} tii[21,32] := {55} tii[21,33] := {10} tii[21,34] := {31} tii[21,35] := {20} tii[21,36] := {32} tii[21,37] := {18} tii[21,38] := {39} tii[21,39] := {25} tii[21,40] := {49} tii[21,41] := {11} tii[21,42] := {37} tii[21,43] := {27} tii[21,44] := {57} tii[21,45] := {53} tii[21,46] := {35} tii[21,47] := {60} tii[21,48] := {33} tii[21,49] := {48} tii[21,50] := {44} tii[21,51] := {58} tii[21,52] := {50} tii[21,53] := {64} tii[21,54] := {1} tii[21,55] := {7} tii[21,56] := {3} tii[21,57] := {13} tii[21,58] := {9} tii[21,59] := {5} tii[21,60] := {19} tii[21,61] := {8} tii[21,62] := {26} tii[21,63] := {2} tii[21,64] := {21} tii[21,65] := {36} tii[21,66] := {17} tii[21,67] := {6} tii[21,68] := {29} tii[21,69] := {43} tii[21,70] := {0} cell#37 , |C| = 70 special orbit = [5, 5, 4] special rep = [[2, 2], [3]] , dim = 70 cell rep = phi[[2, 2],[3]] TII depth = 3 TII multiplicity polynomial = 70*X TII subcells: tii[21,1] := {69} tii[21,2] := {38} tii[21,3] := {61} tii[21,4] := {24} tii[21,5] := {47} tii[21,6] := {65} tii[21,7] := {41} tii[21,8] := {51} tii[21,9] := {40} tii[21,10] := {54} tii[21,11] := {67} tii[21,12] := {56} tii[21,13] := {62} tii[21,14] := {59} tii[21,15] := {68} tii[21,16] := {63} tii[21,17] := {66} tii[21,18] := {14} tii[21,19] := {15} tii[21,20] := {34} tii[21,21] := {4} tii[21,22] := {22} tii[21,23] := {45} tii[21,24] := {12} tii[21,25] := {23} tii[21,26] := {30} tii[21,27] := {16} tii[21,28] := {42} tii[21,29] := {28} tii[21,30] := {52} tii[21,31] := {46} tii[21,32] := {55} tii[21,33] := {10} tii[21,34] := {31} tii[21,35] := {20} tii[21,36] := {32} tii[21,37] := {18} tii[21,38] := {39} tii[21,39] := {25} tii[21,40] := {49} tii[21,41] := {11} tii[21,42] := {37} tii[21,43] := {27} tii[21,44] := {57} tii[21,45] := {53} tii[21,46] := {35} tii[21,47] := {60} tii[21,48] := {33} tii[21,49] := {48} tii[21,50] := {44} tii[21,51] := {58} tii[21,52] := {50} tii[21,53] := {64} tii[21,54] := {1} tii[21,55] := {7} tii[21,56] := {3} tii[21,57] := {13} tii[21,58] := {9} tii[21,59] := {5} tii[21,60] := {19} tii[21,61] := {8} tii[21,62] := {26} tii[21,63] := {2} tii[21,64] := {21} tii[21,65] := {36} tii[21,66] := {17} tii[21,67] := {6} tii[21,68] := {29} tii[21,69] := {43} tii[21,70] := {0} cell#38 , |C| = 245 special orbit = [4, 4, 4, 2] special rep = [[2, 2], [2, 1]] , dim = 140 cell rep = phi[[2, 2, 1],[2]]+phi[[2, 2],[2, 1]] TII depth = 4 TII multiplicity polynomial = 105*X^2+35*X TII subcells: tii[18,1] := {183, 227} tii[18,2] := {101, 180} tii[18,3] := {207, 237} tii[18,4] := {195, 196} tii[18,5] := {160, 212} tii[18,6] := {224, 242} tii[18,7] := {229, 230} tii[18,8] := {204} tii[18,9] := {225} tii[18,10] := {235, 244} tii[18,11] := {240, 241} tii[18,12] := {243} tii[18,13] := {36, 70} tii[18,14] := {98, 171} tii[18,15] := {15, 57} tii[18,16] := {69, 152} tii[18,17] := {61, 100} tii[18,18] := {169, 170} tii[18,19] := {38, 93} tii[18,20] := {128, 194} tii[18,21] := {44, 107} tii[18,22] := {84, 146} tii[18,23] := {88, 129} tii[18,24] := {99, 162} tii[18,25] := {158, 214} tii[18,26] := {197, 198} tii[18,27] := {102, 164} tii[18,28] := {87, 139} tii[18,29] := {154} tii[18,30] := {112} tii[18,31] := {145, 199} tii[18,32] := {184} tii[18,33] := {205, 206} tii[18,34] := {221} tii[18,35] := {31, 89} tii[18,36] := {91, 131} tii[18,37] := {64, 123} tii[18,38] := {159, 215} tii[18,39] := {75, 138} tii[18,40] := {118, 179} tii[18,41] := {58, 59} tii[18,42] := {121, 161} tii[18,43] := {130, 189} tii[18,44] := {76, 153} tii[18,45] := {29, 92} tii[18,46] := {186, 228} tii[18,47] := {181} tii[18,48] := {132, 190} tii[18,49] := {216, 217} tii[18,50] := {108, 109} tii[18,51] := {120, 168} tii[18,52] := {47, 124} tii[18,53] := {208} tii[18,54] := {178, 218} tii[18,55] := {147, 148} tii[18,56] := {141} tii[18,57] := {136, 137} tii[18,58] := {155} tii[18,59] := {222, 223} tii[18,60] := {127} tii[18,61] := {176, 177} tii[18,62] := {232} tii[18,63] := {185} tii[18,64] := {210} tii[18,65] := {151, 188} tii[18,66] := {150, 193} tii[18,67] := {209, 238} tii[18,68] := {163, 213} tii[18,69] := {172} tii[18,70] := {203, 231} tii[18,71] := {233, 234} tii[18,72] := {191, 192} tii[18,73] := {182} tii[18,74] := {239} tii[18,75] := {219, 220} tii[18,76] := {236} tii[18,77] := {6, 24} tii[18,78] := {4, 34} tii[18,79] := {18, 46} tii[18,80] := {3, 14} tii[18,81] := {17, 66} tii[18,82] := {23, 74} tii[18,83] := {8, 26} tii[18,84] := {54, 117} tii[18,85] := {43, 105} tii[18,86] := {35, 78} tii[18,87] := {85, 144} tii[18,88] := {53} tii[18,89] := {32, 33} tii[18,90] := {45, 122} tii[18,91] := {10, 30} tii[18,92] := {39, 77} tii[18,93] := {13, 62} tii[18,94] := {72, 73} tii[18,95] := {25, 94} tii[18,96] := {20, 48} tii[18,97] := {115, 116} tii[18,98] := {71, 135} tii[18,99] := {60, 111} tii[18,100] := {125} tii[18,101] := {103, 104} tii[18,102] := {9, 37} tii[18,103] := {27, 80} tii[18,104] := {83} tii[18,105] := {142, 143} tii[18,106] := {119, 175} tii[18,107] := {157} tii[18,108] := {96} tii[18,109] := {19, 67} tii[18,110] := {187} tii[18,111] := {55} tii[18,112] := {133, 134} tii[18,113] := {173, 174} tii[18,114] := {126} tii[18,115] := {211} tii[18,116] := {22, 56} tii[18,117] := {65, 110} tii[18,118] := {41, 79} tii[18,119] := {21, 63} tii[18,120] := {106, 167} tii[18,121] := {90, 140} tii[18,122] := {49, 113} tii[18,123] := {40, 95} tii[18,124] := {114} tii[18,125] := {149, 202} tii[18,126] := {86} tii[18,127] := {165, 166} tii[18,128] := {156} tii[18,129] := {81, 82} tii[18,130] := {200, 201} tii[18,131] := {97} tii[18,132] := {226} tii[18,133] := {0, 5} tii[18,134] := {1, 12} tii[18,135] := {2, 16} tii[18,136] := {11, 52} tii[18,137] := {7, 42} tii[18,138] := {28} tii[18,139] := {50, 51} tii[18,140] := {68} cell#39 , |C| = 315 special orbit = [4, 4, 2, 2, 2] special rep = [[2, 1, 1], [2, 1]] , dim = 210 cell rep = phi[[2, 2, 1],[1, 1]]+phi[[2, 1, 1],[2, 1]] TII depth = 4 TII multiplicity polynomial = 105*X^2+105*X TII subcells: tii[16,1] := {205, 298} tii[16,2] := {292} tii[16,3] := {254, 312} tii[16,4] := {211, 294} tii[16,5] := {307} tii[16,6] := {314} tii[16,7] := {58, 152} tii[16,8] := {179} tii[16,9] := {57, 124} tii[16,10] := {168, 282} tii[16,11] := {94, 188} tii[16,12] := {38, 177} tii[16,13] := {272} tii[16,14] := {103, 237} tii[16,15] := {213} tii[16,16] := {135} tii[16,17] := {185} tii[16,18] := {190, 299} tii[16,19] := {129, 222} tii[16,20] := {137, 253} tii[16,21] := {280} tii[16,22] := {244} tii[16,23] := {157, 286} tii[16,24] := {91, 240} tii[16,25] := {192} tii[16,26] := {122, 275} tii[16,27] := {231} tii[16,28] := {296} tii[16,29] := {269} tii[16,30] := {281} tii[16,31] := {131, 223} tii[16,32] := {92, 163} tii[16,33] := {245} tii[16,34] := {66, 212} tii[16,35] := {140, 265} tii[16,36] := {174} tii[16,37] := {217} tii[16,38] := {130, 199} tii[16,39] := {224, 310} tii[16,40] := {167, 252} tii[16,41] := {175, 288} tii[16,42] := {176, 277} tii[16,43] := {51, 178} tii[16,44] := {96, 228} tii[16,45] := {271} tii[16,46] := {196, 302} tii[16,47] := {128, 270} tii[16,48] := {227} tii[16,49] := {295} tii[16,50] := {210} tii[16,51] := {145, 260} tii[16,52] := {159, 293} tii[16,53] := {259} tii[16,54] := {248} tii[16,55] := {80, 209} tii[16,56] := {242} tii[16,57] := {141, 267} tii[16,58] := {308} tii[16,59] := {290} tii[16,60] := {108, 250} tii[16,61] := {274} tii[16,62] := {297} tii[16,63] := {204, 268} tii[16,64] := {291} tii[16,65] := {229, 305} tii[16,66] := {166, 278} tii[16,67] := {257} tii[16,68] := {284} tii[16,69] := {197, 301} tii[16,70] := {151, 256} tii[16,71] := {279} tii[16,72] := {313} tii[16,73] := {304} tii[16,74] := {300} tii[16,75] := {309} tii[16,76] := {180, 285} tii[16,77] := {306} tii[16,78] := {311} tii[16,79] := {11, 12} tii[16,80] := {18, 82} tii[16,81] := {37} tii[16,82] := {75} tii[16,83] := {25, 26} tii[16,84] := {33, 86} tii[16,85] := {39, 117} tii[16,86] := {10, 50} tii[16,87] := {68, 203} tii[16,88] := {17, 139} tii[16,89] := {65} tii[16,90] := {101} tii[16,91] := {15, 56} tii[16,92] := {20, 83} tii[16,93] := {114} tii[16,94] := {150} tii[16,95] := {44} tii[16,96] := {99} tii[16,97] := {84, 238} tii[16,98] := {119} tii[16,99] := {34, 171} tii[16,100] := {148} tii[16,101] := {53, 218} tii[16,102] := {164} tii[16,103] := {85} tii[16,104] := {202} tii[16,105] := {93, 161} tii[16,106] := {47, 48} tii[16,107] := {35, 90} tii[16,108] := {136, 263} tii[16,109] := {67, 153} tii[16,110] := {28, 138} tii[16,111] := {61, 193} tii[16,112] := {24, 81} tii[16,113] := {173} tii[16,114] := {100} tii[16,115] := {74} tii[16,116] := {109, 232} tii[16,117] := {41, 118} tii[16,118] := {216} tii[16,119] := {149} tii[16,120] := {121, 266} tii[16,121] := {59, 208} tii[16,122] := {9, 97} tii[16,123] := {207} tii[16,124] := {133} tii[16,125] := {155} tii[16,126] := {49, 172} tii[16,127] := {104, 239} tii[16,128] := {36, 156} tii[16,129] := {107} tii[16,130] := {87, 249} tii[16,131] := {247} tii[16,132] := {183} tii[16,133] := {19, 146} tii[16,134] := {72, 219} tii[16,135] := {123} tii[16,136] := {200} tii[16,137] := {73, 201} tii[16,138] := {54, 220} tii[16,139] := {236} tii[16,140] := {77, 191} tii[16,141] := {225} tii[16,142] := {169} tii[16,143] := {160} tii[16,144] := {258} tii[16,145] := {214} tii[16,146] := {105, 235} tii[16,147] := {262} tii[16,148] := {78, 79} tii[16,149] := {102, 189} tii[16,150] := {60, 127} tii[16,151] := {46, 116} tii[16,152] := {134} tii[16,153] := {69, 154} tii[16,154] := {113} tii[16,155] := {184} tii[16,156] := {170} tii[16,157] := {62, 195} tii[16,158] := {23, 132} tii[16,159] := {95, 243} tii[16,160] := {158, 289} tii[16,161] := {194} tii[16,162] := {144} tii[16,163] := {215} tii[16,164] := {125, 276} tii[16,165] := {112, 234} tii[16,166] := {40, 182} tii[16,167] := {233} tii[16,168] := {162} tii[16,169] := {264} tii[16,170] := {88, 251} tii[16,171] := {115, 226} tii[16,172] := {14, 98} tii[16,173] := {255} tii[16,174] := {206} tii[16,175] := {198} tii[16,176] := {181} tii[16,177] := {142, 261} tii[16,178] := {29, 147} tii[16,179] := {283} tii[16,180] := {246} tii[16,181] := {76, 221} tii[16,182] := {287} tii[16,183] := {241} tii[16,184] := {273} tii[16,185] := {230} tii[16,186] := {303} tii[16,187] := {2, 3} tii[16,188] := {8} tii[16,189] := {1, 27} tii[16,190] := {5, 32} tii[16,191] := {21} tii[16,192] := {7, 52} tii[16,193] := {22} tii[16,194] := {31} tii[16,195] := {0, 64} tii[16,196] := {16, 120} tii[16,197] := {42} tii[16,198] := {71} tii[16,199] := {6, 111} tii[16,200] := {43, 165} tii[16,201] := {30, 187} tii[16,202] := {55} tii[16,203] := {4, 63} tii[16,204] := {143} tii[16,205] := {70} tii[16,206] := {13, 110} tii[16,207] := {89} tii[16,208] := {45, 186} tii[16,209] := {106} tii[16,210] := {126} cell#40 , |C| = 189 special orbit = [4, 2, 2, 2, 2, 2] special rep = [[2, 1, 1], [1, 1, 1]] , dim = 105 cell rep = phi[[2, 1, 1, 1],[1, 1]]+phi[[2, 1, 1],[1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 84*X^2+21*X TII subcells: tii[13,1] := {56, 156} tii[13,2] := {64, 181} tii[13,3] := {94, 180} tii[13,4] := {78, 165} tii[13,5] := {85, 185} tii[13,6] := {100, 142} tii[13,7] := {122, 187} tii[13,8] := {111, 176} tii[13,9] := {121, 123} tii[13,10] := {141} tii[13,11] := {132, 169} tii[13,12] := {151} tii[13,13] := {146, 188} tii[13,14] := {166, 184} tii[13,15] := {177} tii[13,16] := {4, 66} tii[13,17] := {11, 65} tii[13,18] := {39, 133} tii[13,19] := {8, 88} tii[13,20] := {47, 170} tii[13,21] := {22, 84} tii[13,22] := {28, 108} tii[13,23] := {10, 109} tii[13,24] := {24, 128} tii[13,25] := {53, 148} tii[13,26] := {29, 106} tii[13,27] := {38, 126} tii[13,28] := {76, 118} tii[13,29] := {15, 112} tii[13,30] := {93, 95} tii[13,31] := {33, 110} tii[13,32] := {41, 135} tii[13,33] := {19, 136} tii[13,34] := {83, 160} tii[13,35] := {115} tii[13,36] := {36, 153} tii[13,37] := {31, 157} tii[13,38] := {73, 168} tii[13,39] := {107, 149} tii[13,40] := {42, 131} tii[13,41] := {72, 74} tii[13,42] := {127} tii[13,43] := {55, 150} tii[13,44] := {92} tii[13,45] := {48, 172} tii[13,46] := {79} tii[13,47] := {60, 155} tii[13,48] := {119, 159} tii[13,49] := {75, 171} tii[13,50] := {138} tii[13,51] := {114} tii[13,52] := {25, 125} tii[13,53] := {58, 145} tii[13,54] := {46, 137} tii[13,55] := {30, 147} tii[13,56] := {50, 164} tii[13,57] := {45, 167} tii[13,58] := {96, 98} tii[13,59] := {97, 182} tii[13,60] := {61, 158} tii[13,61] := {117} tii[13,62] := {69, 178} tii[13,63] := {77, 173} tii[13,64] := {103} tii[13,65] := {81, 174} tii[13,66] := {143, 175} tii[13,67] := {63, 144} tii[13,68] := {99, 183} tii[13,69] := {161} tii[13,70] := {90, 162} tii[13,71] := {130} tii[13,72] := {140} tii[13,73] := {105, 179} tii[13,74] := {124, 186} tii[13,75] := {163} tii[13,76] := {0, 13} tii[13,77] := {1, 51} tii[13,78] := {2, 21} tii[13,79] := {3, 37} tii[13,80] := {5, 32} tii[13,81] := {18, 86} tii[13,82] := {6, 87} tii[13,83] := {7, 49} tii[13,84] := {14, 104} tii[13,85] := {17, 80} tii[13,86] := {20, 134} tii[13,87] := {9, 44} tii[13,88] := {52, 54} tii[13,89] := {71} tii[13,90] := {35, 152} tii[13,91] := {12, 68} tii[13,92] := {27, 102} tii[13,93] := {59} tii[13,94] := {70} tii[13,95] := {16, 62} tii[13,96] := {43, 120} tii[13,97] := {23, 89} tii[13,98] := {67, 139} tii[13,99] := {40, 129} tii[13,100] := {101} tii[13,101] := {91} tii[13,102] := {26, 82} tii[13,103] := {34, 113} tii[13,104] := {57, 154} tii[13,105] := {116} cell#41 , |C| = 98 special orbit = [8, 2, 2, 2] special rep = [[4, 1], [1, 1]] , dim = 84 cell rep = phi[[4, 1],[1, 1]]+phi[[],[5, 2]] TII depth = 4 TII multiplicity polynomial = 70*X+14*X^2 TII subcells: tii[32,1] := {63} tii[32,2] := {61} tii[32,3] := {59} tii[32,4] := {57} tii[32,5] := {69} tii[32,6] := {45} tii[32,7] := {79} tii[32,8] := {43} tii[32,9] := {87} tii[32,10] := {42} tii[32,11] := {93} tii[32,12] := {96, 97} tii[32,13] := {62} tii[32,14] := {41} tii[32,15] := {75} tii[32,16] := {39} tii[32,17] := {85} tii[32,18] := {90, 91} tii[32,19] := {54} tii[32,20] := {27} tii[32,21] := {66} tii[32,22] := {77, 78} tii[32,23] := {40} tii[32,24] := {50, 51} tii[32,25] := {0} tii[32,26] := {52} tii[32,27] := {2} tii[32,28] := {38} tii[32,29] := {4} tii[32,30] := {26} tii[32,31] := {8} tii[32,32] := {17} tii[32,33] := {5} tii[32,34] := {76} tii[32,35] := {86} tii[32,36] := {10} tii[32,37] := {49} tii[32,38] := {92} tii[32,39] := {14} tii[32,40] := {34} tii[32,41] := {94, 95} tii[32,42] := {24} tii[32,43] := {15} tii[32,44] := {74} tii[32,45] := {22} tii[32,46] := {84} tii[32,47] := {46} tii[32,48] := {88, 89} tii[32,49] := {32} tii[32,50] := {30} tii[32,51] := {72} tii[32,52] := {80, 81} tii[32,53] := {44} tii[32,54] := {67, 68} tii[32,55] := {1} tii[32,56] := {37} tii[32,57] := {3} tii[32,58] := {25} tii[32,59] := {7} tii[32,60] := {16} tii[32,61] := {9} tii[32,62] := {60} tii[32,63] := {13} tii[32,64] := {33} tii[32,65] := {73} tii[32,66] := {23} tii[32,67] := {82, 83} tii[32,68] := {21} tii[32,69] := {58} tii[32,70] := {70, 71} tii[32,71] := {31} tii[32,72] := {55, 56} tii[32,73] := {6} tii[32,74] := {29} tii[32,75] := {12} tii[32,76] := {20} tii[32,77] := {18} tii[32,78] := {53} tii[32,79] := {28} tii[32,80] := {64, 65} tii[32,81] := {47, 48} tii[32,82] := {11} tii[32,83] := {19} tii[32,84] := {35, 36} cell#42 , |C| = 126 special orbit = [6, 2, 2, 2, 2] special rep = [[3, 1, 1], [1, 1]] , dim = 126 cell rep = phi[[3, 1, 1],[1, 1]] TII depth = 4 TII multiplicity polynomial = 126*X TII subcells: tii[24,1] := {125} tii[24,2] := {123} tii[24,3] := {121} tii[24,4] := {124} tii[24,5] := {120} tii[24,6] := {122} tii[24,7] := {24} tii[24,8] := {21} tii[24,9] := {20} tii[24,10] := {116} tii[24,11] := {33} tii[24,12] := {111} tii[24,13] := {30} tii[24,14] := {107} tii[24,15] := {42} tii[24,16] := {108} tii[24,17] := {28} tii[24,18] := {90} tii[24,19] := {50} tii[24,20] := {72} tii[24,21] := {98} tii[24,22] := {41} tii[24,23] := {96} tii[24,24] := {39} tii[24,25] := {88} tii[24,26] := {49} tii[24,27] := {71} tii[24,28] := {82} tii[24,29] := {48} tii[24,30] := {70} tii[24,31] := {46} tii[24,32] := {43} tii[24,33] := {119} tii[24,34] := {55} tii[24,35] := {40} tii[24,36] := {106} tii[24,37] := {66} tii[24,38] := {87} tii[24,39] := {69} tii[24,40] := {112} tii[24,41] := {54} tii[24,42] := {52} tii[24,43] := {65} tii[24,44] := {105} tii[24,45] := {81} tii[24,46] := {118} tii[24,47] := {109} tii[24,48] := {86} tii[24,49] := {103} tii[24,50] := {95} tii[24,51] := {97} tii[24,52] := {63} tii[24,53] := {84} tii[24,54] := {115} tii[24,55] := {68} tii[24,56] := {67} tii[24,57] := {117} tii[24,58] := {80} tii[24,59] := {102} tii[24,60] := {94} tii[24,61] := {110} tii[24,62] := {79} tii[24,63] := {101} tii[24,64] := {114} tii[24,65] := {93} tii[24,66] := {113} tii[24,67] := {0} tii[24,68] := {17} tii[24,69] := {1} tii[24,70] := {11} tii[24,71] := {2} tii[24,72] := {6} tii[24,73] := {3} tii[24,74] := {92} tii[24,75] := {29} tii[24,76] := {4} tii[24,77] := {16} tii[24,78] := {75} tii[24,79] := {37} tii[24,80] := {10} tii[24,81] := {57} tii[24,82] := {7} tii[24,83] := {61} tii[24,84] := {27} tii[24,85] := {14} tii[24,86] := {45} tii[24,87] := {35} tii[24,88] := {53} tii[24,89] := {5} tii[24,90] := {104} tii[24,91] := {25} tii[24,92] := {64} tii[24,93] := {8} tii[24,94] := {85} tii[24,95] := {15} tii[24,96] := {77} tii[24,97] := {12} tii[24,98] := {76} tii[24,99] := {38} tii[24,100] := {99} tii[24,101] := {22} tii[24,102] := {58} tii[24,103] := {47} tii[24,104] := {62} tii[24,105] := {18} tii[24,106] := {83} tii[24,107] := {31} tii[24,108] := {59} tii[24,109] := {9} tii[24,110] := {34} tii[24,111] := {13} tii[24,112] := {23} tii[24,113] := {19} tii[24,114] := {51} tii[24,115] := {91} tii[24,116] := {32} tii[24,117] := {73} tii[24,118] := {60} tii[24,119] := {78} tii[24,120] := {26} tii[24,121] := {100} tii[24,122] := {44} tii[24,123] := {74} tii[24,124] := {36} tii[24,125] := {56} tii[24,126] := {89} cell#43 , |C| = 55 special orbit = [8, 2, 1, 1, 1, 1] special rep = [[4], [1, 1, 1]] , dim = 35 cell rep = phi[[4, 1, 1, 1],[]]+phi[[4],[1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 20*X^2+15*X TII subcells: tii[31,1] := {41, 54} tii[31,2] := {39, 52} tii[31,3] := {47, 48} tii[31,4] := {50, 51} tii[31,5] := {53} tii[31,6] := {26, 46} tii[31,7] := {37, 38} tii[31,8] := {44, 45} tii[31,9] := {49} tii[31,10] := {24, 25} tii[31,11] := {34, 35} tii[31,12] := {43} tii[31,13] := {29, 30} tii[31,14] := {40} tii[31,15] := {27} tii[31,16] := {11, 36} tii[31,17] := {22, 23} tii[31,18] := {32, 33} tii[31,19] := {42} tii[31,20] := {9, 10} tii[31,21] := {20, 21} tii[31,22] := {31} tii[31,23] := {15, 16} tii[31,24] := {28} tii[31,25] := {12} tii[31,26] := {0, 1} tii[31,27] := {6, 8} tii[31,28] := {19} tii[31,29] := {3, 4} tii[31,30] := {14} tii[31,31] := {2} tii[31,32] := {5, 7} tii[31,33] := {18} tii[31,34] := {13} tii[31,35] := {17} cell#44 , |C| = 175 special orbit = [6, 4, 1, 1, 1, 1] special rep = [[3], [2, 1, 1]] , dim = 105 cell rep = phi[[3],[2, 1, 1]]+phi[[1],[4, 1, 1]] TII depth = 3 TII multiplicity polynomial = 70*X^2+35*X TII subcells: tii[25,1] := {96} tii[25,2] := {138} tii[25,3] := {165, 166} tii[25,4] := {171, 172} tii[25,5] := {68} tii[25,6] := {116} tii[25,7] := {44} tii[25,8] := {67} tii[25,9] := {149, 150} tii[25,10] := {88, 89} tii[25,11] := {167, 168} tii[25,12] := {105} tii[25,13] := {81} tii[25,14] := {139, 140} tii[25,15] := {103, 104} tii[25,16] := {159, 160} tii[25,17] := {117, 118} tii[25,18] := {97, 98} tii[25,19] := {141, 142} tii[25,20] := {161, 162} tii[25,21] := {43} tii[25,22] := {91} tii[25,23] := {22} tii[25,24] := {41} tii[25,25] := {131, 133} tii[25,26] := {60, 62} tii[25,27] := {156, 158} tii[25,28] := {6} tii[25,29] := {80} tii[25,30] := {55} tii[25,31] := {21} tii[25,32] := {121, 122} tii[25,33] := {76, 77} tii[25,34] := {37, 39} tii[25,35] := {145, 146} tii[25,36] := {13} tii[25,37] := {92, 93} tii[25,38] := {69, 70} tii[25,39] := {30, 31} tii[25,40] := {126, 127} tii[25,41] := {7, 8} tii[25,42] := {147, 148} tii[25,43] := {90} tii[25,44] := {65} tii[25,45] := {129, 132} tii[25,46] := {83, 86} tii[25,47] := {154, 157} tii[25,48] := {40} tii[25,49] := {119, 120} tii[25,50] := {99, 100} tii[25,51] := {58, 61} tii[25,52] := {143, 144} tii[25,53] := {49, 50} tii[25,54] := {163, 164} tii[25,55] := {128, 130} tii[25,56] := {106, 108} tii[25,57] := {153, 155} tii[25,58] := {82, 84} tii[25,59] := {169, 170} tii[25,60] := {173, 174} tii[25,61] := {71} tii[25,62] := {95} tii[25,63] := {114, 115} tii[25,64] := {23} tii[25,65] := {123} tii[25,66] := {42} tii[25,67] := {136, 137} tii[25,68] := {63, 64} tii[25,69] := {33} tii[25,70] := {151, 152} tii[25,71] := {53, 54} tii[25,72] := {26, 27} tii[25,73] := {0} tii[25,74] := {94} tii[25,75] := {5} tii[25,76] := {17, 19} tii[25,77] := {112, 113} tii[25,78] := {3} tii[25,79] := {56} tii[25,80] := {134, 135} tii[25,81] := {11, 12} tii[25,82] := {78, 79} tii[25,83] := {1, 2} tii[25,84] := {47, 48} tii[25,85] := {4} tii[25,86] := {124, 125} tii[25,87] := {15, 18} tii[25,88] := {72, 73} tii[25,89] := {9, 10} tii[25,90] := {14, 16} tii[25,91] := {66} tii[25,92] := {85, 87} tii[25,93] := {32} tii[25,94] := {109, 111} tii[25,95] := {51, 52} tii[25,96] := {24, 25} tii[25,97] := {20} tii[25,98] := {101, 102} tii[25,99] := {35, 38} tii[25,100] := {45, 46} tii[25,101] := {28, 29} tii[25,102] := {34, 36} tii[25,103] := {107, 110} tii[25,104] := {74, 75} tii[25,105] := {57, 59} cell#45 , |C| = 175 special orbit = [6, 2, 2, 2, 1, 1] special rep = [[3, 1], [1, 1, 1]] , dim = 105 cell rep = phi[[3, 1, 1, 1],[1]]+phi[[3, 1],[1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 70*X^2+35*X TII subcells: tii[23,1] := {111, 174} tii[23,2] := {63, 156} tii[23,3] := {59, 172} tii[23,4] := {141, 171} tii[23,5] := {35, 130} tii[23,6] := {122, 164} tii[23,7] := {31, 165} tii[23,8] := {145, 146} tii[23,9] := {163} tii[23,10] := {62, 118} tii[23,11] := {58, 162} tii[23,12] := {88, 89} tii[23,13] := {115} tii[23,14] := {84, 136} tii[23,15] := {112} tii[23,16] := {150, 173} tii[23,17] := {20, 98} tii[23,18] := {139, 169} tii[23,19] := {19, 149} tii[23,20] := {158, 160} tii[23,21] := {167} tii[23,22] := {109, 155} tii[23,23] := {34, 86} tii[23,24] := {30, 138} tii[23,25] := {55, 56} tii[23,26] := {132, 134} tii[23,27] := {78} tii[23,28] := {153} tii[23,29] := {106, 107} tii[23,30] := {54, 108} tii[23,31] := {77} tii[23,32] := {128} tii[23,33] := {116} tii[23,34] := {46, 97} tii[23,35] := {57, 148} tii[23,36] := {68, 70} tii[23,37] := {94} tii[23,38] := {42, 43} tii[23,39] := {85, 137} tii[23,40] := {113} tii[23,41] := {65} tii[23,42] := {50} tii[23,43] := {99, 147} tii[23,44] := {123} tii[23,45] := {93} tii[23,46] := {3, 151} tii[23,47] := {76, 170} tii[23,48] := {8, 140} tii[23,49] := {48, 159} tii[23,50] := {15, 161} tii[23,51] := {27, 168} tii[23,52] := {6, 110} tii[23,53] := {92, 144} tii[23,54] := {11, 135} tii[23,55] := {39, 133} tii[23,56] := {120, 121} tii[23,57] := {23, 154} tii[23,58] := {143} tii[23,59] := {18, 157} tii[23,60] := {90, 91} tii[23,61] := {38, 166} tii[23,62] := {117} tii[23,63] := {82} tii[23,64] := {74, 129} tii[23,65] := {2, 75} tii[23,66] := {24, 103} tii[23,67] := {102, 104} tii[23,68] := {5, 105} tii[23,69] := {126} tii[23,70] := {13, 127} tii[23,71] := {72, 73} tii[23,72] := {10, 131} tii[23,73] := {60, 61} tii[23,74] := {96} tii[23,75] := {22, 152} tii[23,76] := {83} tii[23,77] := {81} tii[23,78] := {51} tii[23,79] := {44, 45} tii[23,80] := {17, 119} tii[23,81] := {67} tii[23,82] := {37, 142} tii[23,83] := {52} tii[23,84] := {80} tii[23,85] := {66} tii[23,86] := {0, 47} tii[23,87] := {14, 69} tii[23,88] := {1, 71} tii[23,89] := {7, 95} tii[23,90] := {4, 101} tii[23,91] := {32, 33} tii[23,92] := {12, 125} tii[23,93] := {53} tii[23,94] := {28} tii[23,95] := {25, 26} tii[23,96] := {9, 87} tii[23,97] := {41} tii[23,98] := {21, 114} tii[23,99] := {49} tii[23,100] := {29} tii[23,101] := {40} tii[23,102] := {16, 100} tii[23,103] := {36, 124} tii[23,104] := {79} tii[23,105] := {64} cell#46 , |C| = 455 special orbit = [4, 4, 2, 2, 1, 1] special rep = [[2, 1], [2, 1, 1]] , dim = 210 cell rep = phi[[2, 1, 1, 1],[2]]+phi[[1, 1, 1, 1],[3]]+phi[[2, 1],[2, 1, 1]]+phi[[1, 1],[3, 1, 1]] TII depth = 3 TII multiplicity polynomial = 140*X^2+35*X^4+35*X TII subcells: tii[15,1] := {92, 384} tii[15,2] := {120, 121, 451, 454} tii[15,3] := {195} tii[15,4] := {140, 363} tii[15,5] := {65, 261} tii[15,6] := {171, 172, 443, 444} tii[15,7] := {286, 287} tii[15,8] := {352, 353} tii[15,9] := {194, 316} tii[15,10] := {232, 233, 421, 422} tii[15,11] := {151, 260} tii[15,12] := {284, 285} tii[15,13] := {203} tii[15,14] := {350, 351} tii[15,15] := {282, 283, 379, 381} tii[15,16] := {356, 357} tii[15,17] := {222} tii[15,18] := {199, 383} tii[15,19] := {234, 235, 447, 452} tii[15,20] := {105, 293} tii[15,21] := {320, 323} tii[15,22] := {371, 374} tii[15,23] := {162} tii[15,24] := {258, 362} tii[15,25] := {66, 237} tii[15,26] := {119} tii[15,27] := {290, 291, 441, 442} tii[15,28] := {206, 317} tii[15,29] := {341, 342} tii[15,30] := {266, 268} tii[15,31] := {159, 161} tii[15,32] := {263} tii[15,33] := {391, 392} tii[15,34] := {332, 334} tii[15,35] := {103, 201} tii[15,36] := {226, 227} tii[15,37] := {337, 338, 418, 420} tii[15,38] := {175, 176} tii[15,39] := {148} tii[15,40] := {395, 396} tii[15,41] := {304, 305} tii[15,42] := {360, 361} tii[15,43] := {279, 382} tii[15,44] := {348, 349, 446, 450} tii[15,45] := {255, 345} tii[15,46] := {364, 366} tii[15,47] := {295} tii[15,48] := {409, 411} tii[15,49] := {196, 292} tii[15,50] := {319, 321} tii[15,51] := {385, 386, 438, 440} tii[15,52] := {269, 271} tii[15,53] := {423, 424} tii[15,54] := {242} tii[15,55] := {370, 372} tii[15,56] := {187} tii[15,57] := {415, 416} tii[15,58] := {403, 407, 448, 453} tii[15,59] := {431, 435} tii[15,60] := {445, 449} tii[15,61] := {3, 223} tii[15,62] := {32, 294} tii[15,63] := {10, 11, 322, 324} tii[15,64] := {26, 27, 373, 375} tii[15,65] := {6, 281} tii[15,66] := {139} tii[15,67] := {58, 347} tii[15,68] := {15, 257} tii[15,69] := {36, 202} tii[15,70] := {21, 22, 367, 369} tii[15,71] := {228, 229} tii[15,72] := {95} tii[15,73] := {33, 297} tii[15,74] := {50, 51, 412, 414} tii[15,75] := {306, 307} tii[15,76] := {135, 136} tii[15,77] := {43, 44, 405, 408} tii[15,78] := {167, 168} tii[15,79] := {63, 145} tii[15,80] := {78, 79, 433, 436} tii[15,81] := {124, 125} tii[15,82] := {97} tii[15,83] := {251, 252} tii[15,84] := {192, 193} tii[15,85] := {114} tii[15,86] := {14, 259} tii[15,87] := {143} tii[15,88] := {96, 318} tii[15,89] := {35, 174} tii[15,90] := {76} tii[15,91] := {31, 207} tii[15,92] := {209, 211} tii[15,93] := {45, 46, 343, 344} tii[15,94] := {188, 189} tii[15,95] := {107, 109} tii[15,96] := {60, 264} tii[15,97] := {276, 278} tii[15,98] := {80, 81, 393, 394} tii[15,99] := {165, 166} tii[15,100] := {102, 200} tii[15,101] := {17, 152} tii[15,102] := {72, 73, 389, 390} tii[15,103] := {230, 231} tii[15,104] := {64, 146} tii[15,105] := {47} tii[15,106] := {240, 241} tii[15,107] := {147} tii[15,108] := {122, 123} tii[15,109] := {128, 129, 427, 428} tii[15,110] := {98} tii[15,111] := {249, 250} tii[15,112] := {37, 204} tii[15,113] := {179, 180} tii[15,114] := {308, 309} tii[15,115] := {69, 71} tii[15,116] := {314, 315} tii[15,117] := {100} tii[15,118] := {52, 53} tii[15,119] := {253, 254} tii[15,120] := {208, 210} tii[15,121] := {93, 173} tii[15,122] := {115, 116, 339, 340} tii[15,123] := {238, 239} tii[15,124] := {154, 156} tii[15,125] := {183, 184, 397, 398} tii[15,126] := {275, 277} tii[15,127] := {126} tii[15,128] := {84} tii[15,129] := {335, 336} tii[15,130] := {312, 313} tii[15,131] := {106, 108} tii[15,132] := {378, 380} tii[15,133] := {30, 280} tii[15,134] := {144, 346} tii[15,135] := {169} tii[15,136] := {57, 256} tii[15,137] := {74, 75, 365, 368} tii[15,138] := {99, 296} tii[15,139] := {217, 220} tii[15,140] := {130, 131, 410, 413} tii[15,141] := {117, 118, 402, 406} tii[15,142] := {77} tii[15,143] := {34, 197} tii[15,144] := {288, 289} tii[15,145] := {153, 262} tii[15,146] := {270, 273} tii[15,147] := {185, 186, 430, 434} tii[15,148] := {111, 113} tii[15,149] := {205} tii[15,150] := {67, 243} tii[15,151] := {245, 246} tii[15,152] := {354, 355} tii[15,153] := {87, 88} tii[15,154] := {150} tii[15,155] := {310, 311} tii[15,156] := {141, 236} tii[15,157] := {18, 142} tii[15,158] := {265, 267} tii[15,159] := {163, 164, 387, 388} tii[15,160] := {213, 215} tii[15,161] := {298, 299} tii[15,162] := {181} tii[15,163] := {212, 214} tii[15,164] := {38, 182} tii[15,165] := {247, 248, 425, 426} tii[15,166] := {331, 333} tii[15,167] := {134} tii[15,168] := {132, 133} tii[15,169] := {101} tii[15,170] := {358, 359} tii[15,171] := {376, 377} tii[15,172] := {158, 160} tii[15,173] := {89} tii[15,174] := {417, 419} tii[15,175] := {224, 225, 401, 404} tii[15,176] := {325, 327} tii[15,177] := {302, 303, 429, 432} tii[15,178] := {216, 218} tii[15,179] := {399, 400} tii[15,180] := {437, 439} tii[15,181] := {0, 170} tii[15,182] := {1, 2, 219, 221} tii[15,183] := {7, 198} tii[15,184] := {59} tii[15,185] := {4, 5, 272, 274} tii[15,186] := {16, 244} tii[15,187] := {90, 91} tii[15,188] := {54, 55} tii[15,189] := {9, 104} tii[15,190] := {23} tii[15,191] := {12, 13, 328, 330} tii[15,192] := {177, 178} tii[15,193] := {20, 149} tii[15,194] := {40, 42} tii[15,195] := {85, 86} tii[15,196] := {28, 29} tii[15,197] := {62} tii[15,198] := {39, 41} tii[15,199] := {8, 94} tii[15,200] := {155, 157} tii[15,201] := {24, 25, 300, 301} tii[15,202] := {19, 127} tii[15,203] := {82, 83} tii[15,204] := {137, 138} tii[15,205] := {61} tii[15,206] := {68, 70} tii[15,207] := {56} tii[15,208] := {48, 49, 326, 329} tii[15,209] := {190, 191} tii[15,210] := {110, 112} cell#47 , |C| = 140 special orbit = [6, 2, 2, 2, 1, 1] special rep = [[3, 1], [1, 1, 1]] , dim = 105 cell rep = phi[[3, 1],[1, 1, 1]]+phi[[],[4, 2, 1]] TII depth = 3 TII multiplicity polynomial = 70*X+35*X^2 TII subcells: tii[23,1] := {83} tii[23,2] := {80} tii[23,3] := {76} tii[23,4] := {101} tii[23,5] := {49} tii[23,6] := {122} tii[23,7] := {46} tii[23,8] := {133} tii[23,9] := {138, 139} tii[23,10] := {81} tii[23,11] := {39} tii[23,12] := {111} tii[23,13] := {125, 126} tii[23,14] := {66} tii[23,15] := {91, 92} tii[23,16] := {84} tii[23,17] := {28} tii[23,18] := {114} tii[23,19] := {27} tii[23,20] := {130} tii[23,21] := {136, 137} tii[23,22] := {100} tii[23,23] := {50} tii[23,24] := {23} tii[23,25] := {79} tii[23,26] := {121} tii[23,27] := {108, 109} tii[23,28] := {131, 132} tii[23,29] := {97} tii[23,30] := {40} tii[23,31] := {62, 63} tii[23,32] := {115, 116} tii[23,33] := {87, 88} tii[23,34] := {82} tii[23,35] := {26} tii[23,36] := {112} tii[23,37] := {127, 128} tii[23,38] := {98} tii[23,39] := {47} tii[23,40] := {72, 74} tii[23,41] := {117, 118} tii[23,42] := {85, 86} tii[23,43] := {78} tii[23,44] := {106, 107} tii[23,45] := {89, 90} tii[23,46] := {1} tii[23,47] := {59} tii[23,48] := {4} tii[23,49] := {32} tii[23,50] := {9} tii[23,51] := {19} tii[23,52] := {10} tii[23,53] := {113} tii[23,54] := {15} tii[23,55] := {52} tii[23,56] := {129} tii[23,57] := {30} tii[23,58] := {134, 135} tii[23,59] := {25} tii[23,60] := {110} tii[23,61] := {51} tii[23,62] := {123, 124} tii[23,63] := {102, 103} tii[23,64] := {69} tii[23,65] := {3} tii[23,66] := {31} tii[23,67] := {99} tii[23,68] := {8} tii[23,69] := {119, 120} tii[23,70] := {18} tii[23,71] := {67} tii[23,72] := {14} tii[23,73] := {77} tii[23,74] := {93, 94} tii[23,75] := {29} tii[23,76] := {104, 105} tii[23,77] := {55, 56} tii[23,78] := {70, 71} tii[23,79] := {41} tii[23,80] := {12} tii[23,81] := {64, 65} tii[23,82] := {24} tii[23,83] := {35, 36} tii[23,84] := {53, 54} tii[23,85] := {21, 22} tii[23,86] := {0} tii[23,87] := {20} tii[23,88] := {2} tii[23,89] := {11} tii[23,90] := {7} tii[23,91] := {48} tii[23,92] := {17} tii[23,93] := {73, 75} tii[23,94] := {43, 45} tii[23,95] := {68} tii[23,96] := {5} tii[23,97] := {95, 96} tii[23,98] := {13} tii[23,99] := {33, 34} tii[23,100] := {57, 58} tii[23,101] := {37, 38} tii[23,102] := {6} tii[23,103] := {16} tii[23,104] := {42, 44} tii[23,105] := {60, 61} cell#48 , |C| = 126 special orbit = [4, 2, 2, 2, 2, 2] special rep = [[2, 1, 1], [1, 1, 1]] , dim = 105 cell rep = phi[[2, 1, 1],[1, 1, 1]]+phi[[],[3, 2, 2]] TII depth = 3 TII multiplicity polynomial = 84*X+21*X^2 TII subcells: tii[13,1] := {75} tii[13,2] := {71} tii[13,3] := {72} tii[13,4] := {84} tii[13,5] := {81} tii[13,6] := {97} tii[13,7] := {95} tii[13,8] := {63} tii[13,9] := {113} tii[13,10] := {124, 125} tii[13,11] := {82} tii[13,12] := {100, 101} tii[13,13] := {104} tii[13,14] := {112} tii[13,15] := {122, 123} tii[13,16] := {9} tii[13,17] := {8} tii[13,18] := {55} tii[13,19] := {14} tii[13,20] := {53} tii[13,21] := {13} tii[13,22] := {44} tii[13,23] := {18} tii[13,24] := {31} tii[13,25] := {40} tii[13,26] := {17} tii[13,27] := {30} tii[13,28] := {85} tii[13,29] := {20} tii[13,30] := {107} tii[13,31] := {19} tii[13,32] := {59} tii[13,33] := {28} tii[13,34] := {47} tii[13,35] := {120, 121} tii[13,36] := {43} tii[13,37] := {38} tii[13,38] := {54} tii[13,39] := {64} tii[13,40] := {27} tii[13,41] := {96} tii[13,42] := {79, 80} tii[13,43] := {42} tii[13,44] := {110, 111} tii[13,45] := {57} tii[13,46] := {87, 88} tii[13,47] := {37} tii[13,48] := {83} tii[13,49] := {56} tii[13,50] := {102, 103} tii[13,51] := {89, 90} tii[13,52] := {25} tii[13,53] := {66} tii[13,54] := {29} tii[13,55] := {35} tii[13,56] := {49} tii[13,57] := {46} tii[13,58] := {105} tii[13,59] := {73} tii[13,60] := {39} tii[13,61] := {116, 117} tii[13,62] := {65} tii[13,63] := {58} tii[13,64] := {98, 99} tii[13,65] := {52} tii[13,66] := {106} tii[13,67] := {34} tii[13,68] := {76} tii[13,69] := {118, 119} tii[13,70] := {48} tii[13,71] := {77, 78} tii[13,72] := {108, 109} tii[13,73] := {62} tii[13,74] := {86} tii[13,75] := {114, 115} tii[13,76] := {0} tii[13,77] := {6} tii[13,78] := {1} tii[13,79] := {3} tii[13,80] := {2} tii[13,81] := {33} tii[13,82] := {12} tii[13,83] := {5} tii[13,84] := {22} tii[13,85] := {16} tii[13,86] := {26} tii[13,87] := {4} tii[13,88] := {74} tii[13,89] := {93, 94} tii[13,90] := {41} tii[13,91] := {10} tii[13,92] := {23} tii[13,93] := {67, 68} tii[13,94] := {50, 51} tii[13,95] := {7} tii[13,96] := {24} tii[13,97] := {15} tii[13,98] := {36} tii[13,99] := {32} tii[13,100] := {60, 61} tii[13,101] := {69, 70} tii[13,102] := {11} tii[13,103] := {21} tii[13,104] := {45} tii[13,105] := {91, 92} cell#49 , |C| = 55 special orbit = [8, 2, 1, 1, 1, 1] special rep = [[4], [1, 1, 1]] , dim = 35 cell rep = phi[[4, 1, 1, 1],[]]+phi[[4],[1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 20*X^2+15*X TII subcells: tii[31,1] := {4, 54} tii[31,2] := {8, 53} tii[31,3] := {14, 52} tii[31,4] := {22, 45} tii[31,5] := {32} tii[31,6] := {2, 51} tii[31,7] := {7, 47} tii[31,8] := {12, 34} tii[31,9] := {24} tii[31,10] := {13, 50} tii[31,11] := {21, 46} tii[31,12] := {31} tii[31,13] := {30, 49} tii[31,14] := {44} tii[31,15] := {48} tii[31,16] := {0, 43} tii[31,17] := {1, 36} tii[31,18] := {5, 25} tii[31,19] := {15} tii[31,20] := {6, 42} tii[31,21] := {11, 35} tii[31,22] := {23} tii[31,23] := {20, 41} tii[31,24] := {33} tii[31,25] := {40} tii[31,26] := {3, 39} tii[31,27] := {10, 29} tii[31,28] := {18} tii[31,29] := {17, 38} tii[31,30] := {28} tii[31,31] := {37} tii[31,32] := {9, 27} tii[31,33] := {19} tii[31,34] := {26} tii[31,35] := {16} cell#50 , |C| = 175 special orbit = [6, 2, 2, 2, 1, 1] special rep = [[3, 1], [1, 1, 1]] , dim = 105 cell rep = phi[[3, 1, 1, 1],[1]]+phi[[3, 1],[1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 70*X^2+35*X TII subcells: tii[23,1] := {9, 149} tii[23,2] := {38, 144} tii[23,3] := {85, 142} tii[23,4] := {23, 161} tii[23,5] := {69, 165} tii[23,6] := {32, 139} tii[23,7] := {116, 163} tii[23,8] := {57, 125} tii[23,9] := {88} tii[23,10] := {98, 171} tii[23,11] := {141, 172} tii[23,12] := {114, 160} tii[23,13] := {148} tii[23,14] := {162, 174} tii[23,15] := {170} tii[23,16] := {12, 152} tii[23,17] := {53, 157} tii[23,18] := {25, 128} tii[23,19] := {105, 155} tii[23,20] := {42, 110} tii[23,21] := {76} tii[23,22] := {11, 97} tii[23,23] := {80, 167} tii[23,24] := {132, 169} tii[23,25] := {101, 151} tii[23,26] := {20, 79} tii[23,27] := {135} tii[23,28] := {46} tii[23,29] := {41, 96} tii[23,30] := {154, 173} tii[23,31] := {166} tii[23,32] := {78} tii[23,33] := {95} tii[23,34] := {51, 146} tii[23,35] := {104, 156} tii[23,36] := {71, 123} tii[23,37] := {107} tii[23,38] := {40, 94} tii[23,39] := {130, 164} tii[23,40] := {145} tii[23,41] := {77} tii[23,42] := {93} tii[23,43] := {100, 143} tii[23,44] := {118} tii[23,45] := {90} tii[23,46] := {0, 4} tii[23,47] := {2, 129} tii[23,48] := {3, 15} tii[23,49] := {7, 91} tii[23,50] := {8, 31} tii[23,51] := {16, 61} tii[23,52] := {10, 33} tii[23,53] := {14, 113} tii[23,54] := {22, 56} tii[23,55] := {21, 124} tii[23,56] := {30, 92} tii[23,57] := {34, 87} tii[23,58] := {60} tii[23,59] := {39, 82} tii[23,60] := {55, 112} tii[23,61] := {59, 119} tii[23,62] := {89} tii[23,63] := {111} tii[23,64] := {1, 68} tii[23,65] := {24, 58} tii[23,66] := {43, 153} tii[23,67] := {6, 50} tii[23,68] := {44, 84} tii[23,69] := {26} tii[23,70] := {62, 120} tii[23,71] := {19, 67} tii[23,72] := {70, 115} tii[23,73] := {83, 138} tii[23,74] := {48} tii[23,75] := {86, 147} tii[23,76] := {121} tii[23,77] := {66} tii[23,78] := {137} tii[23,79] := {5, 37} tii[23,80] := {99, 140} tii[23,81] := {27} tii[23,82] := {117, 168} tii[23,83] := {36} tii[23,84] := {159} tii[23,85] := {17} tii[23,86] := {13, 45} tii[23,87] := {28, 136} tii[23,88] := {29, 73} tii[23,89] := {49, 108} tii[23,90] := {54, 103} tii[23,91] := {72, 127} tii[23,92] := {75, 134} tii[23,93] := {109} tii[23,94] := {126} tii[23,95] := {18, 65} tii[23,96] := {81, 131} tii[23,97] := {47} tii[23,98] := {106, 158} tii[23,99] := {150} tii[23,100] := {64} tii[23,101] := {35} tii[23,102] := {52, 102} tii[23,103] := {74, 133} tii[23,104] := {122} tii[23,105] := {63} cell#51 , |C| = 50 special orbit = [6, 2, 1, 1, 1, 1, 1, 1] special rep = [[3], [1, 1, 1, 1]] , dim = 35 cell rep = phi[[3, 1, 1, 1, 1],[]]+phi[[3],[1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 15*X^2+20*X TII subcells: tii[22,1] := {11, 49} tii[22,2] := {15, 48} tii[22,3] := {32, 47} tii[22,4] := {41} tii[22,5] := {7, 46} tii[22,6] := {14, 43} tii[22,7] := {33} tii[22,8] := {31, 45} tii[22,9] := {42} tii[22,10] := {44} tii[22,11] := {2, 40} tii[22,12] := {6, 35} tii[22,13] := {16} tii[22,14] := {13, 39} tii[22,15] := {34} tii[22,16] := {38} tii[22,17] := {10, 37} tii[22,18] := {24} tii[22,19] := {36} tii[22,20] := {20} tii[22,21] := {0, 30} tii[22,22] := {1, 19} tii[22,23] := {8} tii[22,24] := {5, 29} tii[22,25] := {18} tii[22,26] := {27} tii[22,27] := {3, 23} tii[22,28] := {12} tii[22,29] := {22} tii[22,30] := {9} tii[22,31] := {4, 28} tii[22,32] := {17} tii[22,33] := {26} tii[22,34] := {21} tii[22,35] := {25} cell#52 , |C| = 105 special orbit = [4, 2, 2, 2, 1, 1, 1, 1] special rep = [[2, 1], [1, 1, 1, 1]] , dim = 70 cell rep = phi[[2, 1, 1, 1, 1],[1]]+phi[[2, 1],[1, 1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 35*X^2+35*X TII subcells: tii[12,1] := {11, 86} tii[12,2] := {42, 84} tii[12,3] := {30, 97} tii[12,4] := {64, 99} tii[12,5] := {40, 80} tii[12,6] := {68} tii[12,7] := {83, 104} tii[12,8] := {95} tii[12,9] := {15, 89} tii[12,10] := {54, 92} tii[12,11] := {33, 71} tii[12,12] := {55} tii[12,13] := {13, 50} tii[12,14] := {74, 101} tii[12,15] := {88} tii[12,16] := {35} tii[12,17] := {49} tii[12,18] := {52, 85} tii[12,19] := {65} tii[12,20] := {48} tii[12,21] := {29, 96} tii[12,22] := {63, 98} tii[12,23] := {39, 79} tii[12,24] := {67} tii[12,25] := {82, 103} tii[12,26] := {20, 59} tii[12,27] := {94} tii[12,28] := {46} tii[12,29] := {57} tii[12,30] := {5, 38} tii[12,31] := {73, 100} tii[12,32] := {24} tii[12,33] := {87} tii[12,34] := {69} tii[12,35] := {37} tii[12,36] := {26} tii[12,37] := {81, 102} tii[12,38] := {93} tii[12,39] := {76} tii[12,40] := {56} tii[12,41] := {0, 6} tii[12,42] := {3, 72} tii[12,43] := {4, 22} tii[12,44] := {8, 45} tii[12,45] := {12, 41} tii[12,46] := {21, 60} tii[12,47] := {23, 66} tii[12,48] := {47} tii[12,49] := {58} tii[12,50] := {32, 62} tii[12,51] := {2, 28} tii[12,52] := {44, 91} tii[12,53] := {14} tii[12,54] := {78} tii[12,55] := {27} tii[12,56] := {9} tii[12,57] := {16, 53} tii[12,58] := {1, 19} tii[12,59] := {7} tii[12,60] := {34, 75} tii[12,61] := {18} tii[12,62] := {70} tii[12,63] := {10} tii[12,64] := {25} tii[12,65] := {17} tii[12,66] := {31, 61} tii[12,67] := {43, 90} tii[12,68] := {77} tii[12,69] := {51} tii[12,70] := {36} cell#53 , |C| = 55 special orbit = [6, 2, 1, 1, 1, 1, 1, 1] special rep = [[3], [1, 1, 1, 1]] , dim = 35 cell rep = phi[[3],[1, 1, 1, 1]]+phi[[],[4, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 20*X^2+15*X TII subcells: tii[22,1] := {0} tii[22,2] := {15} tii[22,3] := {34} tii[22,4] := {52, 54} tii[22,5] := {7} tii[22,6] := {25} tii[22,7] := {39, 40} tii[22,8] := {5} tii[22,9] := {18, 19} tii[22,10] := {1, 2} tii[22,11] := {14} tii[22,12] := {33} tii[22,13] := {50, 53} tii[22,14] := {24} tii[22,15] := {37, 38} tii[22,16] := {16, 17} tii[22,17] := {32} tii[22,18] := {48, 51} tii[22,19] := {35, 36} tii[22,20] := {47, 49} tii[22,21] := {8} tii[22,22] := {27} tii[22,23] := {44, 46} tii[22,24] := {13} tii[22,25] := {30, 31} tii[22,26] := {9, 10} tii[22,27] := {26} tii[22,28] := {42, 45} tii[22,29] := {28, 29} tii[22,30] := {41, 43} tii[22,31] := {6} tii[22,32] := {21, 23} tii[22,33] := {11, 12} tii[22,34] := {20, 22} tii[22,35] := {3, 4} cell#54 , |C| = 36 special orbit = [4, 2, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[2], [1, 1, 1, 1, 1]] , dim = 21 cell rep = phi[[2],[1, 1, 1, 1, 1]]+phi[[],[3, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 15*X^2+6*X TII subcells: tii[11,1] := {0} tii[11,2] := {11} tii[11,3] := {33, 35} tii[11,4] := {5} tii[11,5] := {16, 17} tii[11,6] := {1, 2} tii[11,7] := {10} tii[11,8] := {30, 34} tii[11,9] := {13, 15} tii[11,10] := {27, 31} tii[11,11] := {6} tii[11,12] := {21, 23} tii[11,13] := {7, 8} tii[11,14] := {20, 22} tii[11,15] := {3, 4} tii[11,16] := {9} tii[11,17] := {28, 32} tii[11,18] := {12, 14} tii[11,19] := {25, 29} tii[11,20] := {18, 19} tii[11,21] := {24, 26}