TII subcells for the PSp(14,R) x Spin(13,2) block of PSp14 # cell#0 , |C| = 1 special orbit = [14] special rep = [[7], []] , dim = 1 cell rep = phi[[7],[]] TII depth = 1 TII multiplicity polynomial = X TII subcells: tii[40,1] := {0} cell#1 , |C| = 13 special orbit = [12, 2] special rep = [[6], [1]] , dim = 7 cell rep = phi[[6, 1],[]]+phi[[6],[1]] TII depth = 1 TII multiplicity polynomial = 6*X^2+X TII subcells: tii[39,1] := {0, 5} tii[39,2] := {1, 2} tii[39,3] := {3, 4} tii[39,4] := {6, 7} tii[39,5] := {8, 9} tii[39,6] := {10, 11} tii[39,7] := {12} cell#2 , |C| = 13 special orbit = [12, 2] special rep = [[6], [1]] , dim = 7 cell rep = phi[[6, 1],[]]+phi[[6],[1]] TII depth = 1 TII multiplicity polynomial = 6*X^2+X TII subcells: tii[39,1] := {0, 12} tii[39,2] := {1, 11} tii[39,3] := {2, 10} tii[39,4] := {3, 9} tii[39,5] := {4, 8} tii[39,6] := {5, 7} tii[39,7] := {6} cell#3 , |C| = 13 special orbit = [12, 2] special rep = [[6], [1]] , dim = 7 cell rep = phi[[6, 1],[]]+phi[[6],[1]] TII depth = 1 TII multiplicity polynomial = 6*X^2+X TII subcells: tii[39,1] := {0, 12} tii[39,2] := {1, 11} tii[39,3] := {2, 10} tii[39,4] := {3, 9} tii[39,5] := {4, 8} tii[39,6] := {5, 7} tii[39,7] := {6} cell#4 , |C| = 35 special orbit = [10, 2, 2] special rep = [[5, 1], [1]] , dim = 35 cell rep = phi[[5, 1],[1]] TII depth = 5 TII multiplicity polynomial = 35*X TII subcells: tii[37,1] := {5} tii[37,2] := {15} tii[37,3] := {25} tii[37,4] := {31} tii[37,5] := {34} tii[37,6] := {0} tii[37,7] := {1} tii[37,8] := {2} tii[37,9] := {3} tii[37,10] := {4} tii[37,11] := {7} tii[37,12] := {8} tii[37,13] := {11} tii[37,14] := {12} tii[37,15] := {17} tii[37,16] := {6} tii[37,17] := {10} tii[37,18] := {9} tii[37,19] := {14} tii[37,20] := {13} tii[37,21] := {19} tii[37,22] := {18} tii[37,23] := {22} tii[37,24] := {16} tii[37,25] := {21} tii[37,26] := {20} tii[37,27] := {24} tii[37,28] := {23} tii[37,29] := {27} tii[37,30] := {26} tii[37,31] := {29} tii[37,32] := {28} tii[37,33] := {30} tii[37,34] := {32} tii[37,35] := {33} cell#5 , |C| = 36 special orbit = [10, 2, 1, 1] special rep = [[5], [1, 1]] , dim = 21 cell rep = phi[[5, 1, 1],[]]+phi[[5],[1, 1]] TII depth = 1 TII multiplicity polynomial = 15*X^2+6*X TII subcells: tii[36,1] := {0, 35} tii[36,2] := {1, 29} tii[36,3] := {2, 24} tii[36,4] := {4, 19} tii[36,5] := {6, 15} tii[36,6] := {11} tii[36,7] := {3, 34} tii[36,8] := {5, 28} tii[36,9] := {7, 23} tii[36,10] := {9, 18} tii[36,11] := {14} tii[36,12] := {8, 33} tii[36,13] := {10, 27} tii[36,14] := {12, 22} tii[36,15] := {17} tii[36,16] := {13, 32} tii[36,17] := {16, 26} tii[36,18] := {21} tii[36,19] := {20, 31} tii[36,20] := {25} tii[36,21] := {30} cell#6 , |C| = 36 special orbit = [10, 2, 1, 1] special rep = [[5], [1, 1]] , dim = 21 cell rep = phi[[5, 1, 1],[]]+phi[[5],[1, 1]] TII depth = 1 TII multiplicity polynomial = 15*X^2+6*X TII subcells: tii[36,1] := {0, 35} tii[36,2] := {1, 29} tii[36,3] := {2, 24} tii[36,4] := {4, 19} tii[36,5] := {6, 15} tii[36,6] := {11} tii[36,7] := {3, 34} tii[36,8] := {5, 28} tii[36,9] := {7, 23} tii[36,10] := {9, 18} tii[36,11] := {14} tii[36,12] := {8, 33} tii[36,13] := {10, 27} tii[36,14] := {12, 22} tii[36,15] := {17} tii[36,16] := {13, 32} tii[36,17] := {16, 26} tii[36,18] := {21} tii[36,19] := {20, 31} tii[36,20] := {25} tii[36,21] := {30}