TII subcells for the PSp(4,3) x Spin(8,7) block of PSp14 # cell#0 , |C| = 35 special orbit = [7, 7] special rep = [[3], [4]] , dim = 35 cell rep = phi[[3],[4]] TII depth = 4 TII multiplicity polynomial = 35*X TII subcells: tii[30,1] := {34} tii[30,2] := {29} tii[30,3] := {16} tii[30,4] := {0} tii[30,5] := {30} tii[30,6] := {19} tii[30,7] := {7} tii[30,8] := {31} tii[30,9] := {22} tii[30,10] := {23} tii[30,11] := {8} tii[30,12] := {11} tii[30,13] := {33} tii[30,14] := {32} tii[30,15] := {18} tii[30,16] := {27} tii[30,17] := {28} tii[30,18] := {6} tii[30,19] := {24} tii[30,20] := {14} tii[30,21] := {12} tii[30,22] := {3} tii[30,23] := {17} tii[30,24] := {1} tii[30,25] := {25} tii[30,26] := {13} tii[30,27] := {15} tii[30,28] := {4} tii[30,29] := {26} tii[30,30] := {20} tii[30,31] := {21} tii[30,32] := {10} tii[30,33] := {9} tii[30,34] := {2} tii[30,35] := {5} cell#1 , |C| = 189 special orbit = [6, 6, 1, 1] special rep = [[3], [3, 1]] , dim = 105 cell rep = phi[[3],[3, 1]]+phi[[2],[4, 1]] TII depth = 4 TII multiplicity polynomial = 84*X^2+21*X TII subcells: tii[28,1] := {178} tii[28,2] := {112, 173} tii[28,3] := {45, 176} tii[28,4] := {12, 184} tii[28,5] := {185} tii[28,6] := {167} tii[28,7] := {84, 153} tii[28,8] := {113, 174} tii[28,9] := {32, 162} tii[28,10] := {74, 183} tii[28,11] := {0, 177} tii[28,12] := {188} tii[28,13] := {123, 124} tii[28,14] := {186} tii[28,15] := {181} tii[28,16] := {48, 138} tii[28,17] := {49, 137} tii[28,18] := {165, 187} tii[28,19] := {20, 164} tii[28,20] := {21, 163} tii[28,21] := {154, 155} tii[28,22] := {127, 128} tii[28,23] := {34, 104} tii[28,24] := {81, 159} tii[28,25] := {82, 158} tii[28,26] := {3, 139} tii[28,27] := {63, 66} tii[28,28] := {28, 109} tii[28,29] := {31, 106} tii[28,30] := {9, 67} tii[28,31] := {143} tii[28,32] := {85, 86} tii[28,33] := {51, 54} tii[28,34] := {166} tii[28,35] := {142} tii[28,36] := {144} tii[28,37] := {47, 125} tii[28,38] := {72, 157} tii[28,39] := {118, 119} tii[28,40] := {19, 98} tii[28,41] := {36, 175} tii[28,42] := {168} tii[28,43] := {73, 156} tii[28,44] := {146} tii[28,45] := {46, 129} tii[28,46] := {110, 171} tii[28,47] := {40, 134} tii[28,48] := {39, 135} tii[28,49] := {13, 160} tii[28,50] := {90, 91} tii[28,51] := {16, 161} tii[28,52] := {41, 131} tii[28,53] := {42, 130} tii[28,54] := {17, 94} tii[28,55] := {179} tii[28,56] := {169} tii[28,57] := {35, 87} tii[28,58] := {150, 151} tii[28,59] := {11, 55} tii[28,60] := {180} tii[28,61] := {170} tii[28,62] := {145} tii[28,63] := {50, 126} tii[28,64] := {33, 105} tii[28,65] := {141, 182} tii[28,66] := {120, 121} tii[28,67] := {27, 100} tii[28,68] := {26, 101} tii[28,69] := {1, 140} tii[28,70] := {147} tii[28,71] := {64, 65} tii[28,72] := {76, 152} tii[28,73] := {6, 136} tii[28,74] := {29, 108} tii[28,75] := {111, 172} tii[28,76] := {30, 107} tii[28,77] := {75, 149} tii[28,78] := {7, 68} tii[28,79] := {88, 89} tii[28,80] := {57, 60} tii[28,81] := {58, 59} tii[28,82] := {92, 93} tii[28,83] := {23, 103} tii[28,84] := {25, 102} tii[28,85] := {43, 133} tii[28,86] := {44, 132} tii[28,87] := {22, 97} tii[28,88] := {24, 96} tii[28,89] := {10, 61} tii[28,90] := {2, 70} tii[28,91] := {114} tii[28,92] := {77, 78} tii[28,93] := {52, 53} tii[28,94] := {115} tii[28,95] := {79, 80} tii[28,96] := {116} tii[28,97] := {14, 99} tii[28,98] := {38, 122} tii[28,99] := {71, 148} tii[28,100] := {37, 117} tii[28,101] := {18, 83} tii[28,102] := {15, 95} tii[28,103] := {4, 56} tii[28,104] := {8, 62} tii[28,105] := {5, 69} cell#2 , |C| = 315 special orbit = [5, 5, 2, 2] special rep = [[2, 1], [3, 1]] , dim = 210 cell rep = phi[[2, 1],[3, 1]]+phi[[2],[3, 2]] TII depth = 4 TII multiplicity polynomial = 105*X^2+105*X TII subcells: tii[20,1] := {313} tii[20,2] := {290} tii[20,3] := {122, 286} tii[20,4] := {309} tii[20,5] := {262} tii[20,6] := {261} tii[20,7] := {153, 311} tii[20,8] := {202, 314} tii[20,9] := {213, 214} tii[20,10] := {299} tii[20,11] := {251} tii[20,12] := {226} tii[20,13] := {127, 288} tii[20,14] := {128, 287} tii[20,15] := {188, 306} tii[20,16] := {189, 305} tii[20,17] := {278} tii[20,18] := {180} tii[20,19] := {250} tii[20,20] := {63, 222} tii[20,21] := {209, 284} tii[20,22] := {108, 272} tii[20,23] := {133} tii[20,24] := {89, 195} tii[20,25] := {167} tii[20,26] := {291} tii[20,27] := {199} tii[20,28] := {245} tii[20,29] := {78, 256} tii[20,30] := {204} tii[20,31] := {227} tii[20,32] := {218} tii[20,33] := {301} tii[20,34] := {106, 303} tii[20,35] := {19, 173} tii[20,36] := {219} tii[20,37] := {268} tii[20,38] := {156, 312} tii[20,39] := {9, 234} tii[20,40] := {269} tii[20,41] := {246} tii[20,42] := {123, 215} tii[20,43] := {310} tii[20,44] := {279} tii[20,45] := {81, 172} tii[20,46] := {181} tii[20,47] := {62, 223} tii[20,48] := {64, 289} tii[20,49] := {198} tii[20,50] := {302} tii[20,51] := {116, 137} tii[20,52] := {38, 233} tii[20,53] := {107, 273} tii[20,54] := {244} tii[20,55] := {109, 307} tii[20,56] := {220} tii[20,57] := {134} tii[20,58] := {32, 260} tii[20,59] := {90, 196} tii[20,60] := {13, 230} tii[20,61] := {270} tii[20,62] := {67, 296} tii[20,63] := {36, 308} tii[20,64] := {157} tii[20,65] := {44, 217} tii[20,66] := {281} tii[20,67] := {174} tii[20,68] := {175} tii[20,69] := {23, 267} tii[20,70] := {235} tii[20,71] := {236} tii[20,72] := {203} tii[20,73] := {168, 169} tii[20,74] := {80, 257} tii[20,75] := {300} tii[20,76] := {82, 259} tii[20,77] := {248} tii[20,78] := {208} tii[20,79] := {151} tii[20,80] := {125, 126} tii[20,81] := {83, 258} tii[20,82] := {152} tii[20,83] := {57, 212} tii[20,84] := {138, 295} tii[20,85] := {282} tii[20,86] := {58, 293} tii[20,87] := {200} tii[20,88] := {72, 187} tii[20,89] := {73, 186} tii[20,90] := {201} tii[20,91] := {139, 294} tii[20,92] := {46, 225} tii[20,93] := {177} tii[20,94] := {176} tii[20,95] := {47, 224} tii[20,96] := {160} tii[20,97] := {103, 304} tii[20,98] := {16, 185} tii[20,99] := {91, 275} tii[20,100] := {17, 184} tii[20,101] := {238} tii[20,102] := {237} tii[20,103] := {112, 211} tii[20,104] := {92, 274} tii[20,105] := {49, 298} tii[20,106] := {50, 297} tii[20,107] := {247} tii[20,108] := {170, 171} tii[20,109] := {280} tii[20,110] := {205} tii[20,111] := {105} tii[20,112] := {117, 232} tii[20,113] := {118, 231} tii[20,114] := {252} tii[20,115] := {155} tii[20,116] := {207} tii[20,117] := {159} tii[20,118] := {131} tii[20,119] := {31, 178} tii[20,120] := {75, 264} tii[20,121] := {76, 263} tii[20,122] := {161, 254} tii[20,123] := {191} tii[20,124] := {210} tii[20,125] := {12, 135} tii[20,126] := {66, 239} tii[20,127] := {113, 285} tii[20,128] := {35, 276} tii[20,129] := {87} tii[20,130] := {28, 182} tii[20,131] := {140} tii[20,132] := {52, 241} tii[20,133] := {79} tii[20,134] := {56} tii[20,135] := {124} tii[20,136] := {15, 129} tii[20,137] := {197} tii[20,138] := {99} tii[20,139] := {243} tii[20,140] := {3, 190} tii[20,141] := {100} tii[20,142] := {221} tii[20,143] := {33, 84} tii[20,144] := {150} tii[20,145] := {14, 142} tii[20,146] := {39, 68} tii[20,147] := {271} tii[20,148] := {5, 94} tii[20,149] := {45, 216} tii[20,150] := {158} tii[20,151] := {104} tii[20,152] := {25, 163} tii[20,153] := {26, 266} tii[20,154] := {114} tii[20,155] := {115} tii[20,156] := {154} tii[20,157] := {30, 179} tii[20,158] := {249} tii[20,159] := {48, 130} tii[20,160] := {132} tii[20,161] := {165} tii[20,162] := {61, 292} tii[20,163] := {8, 119} tii[20,164] := {166} tii[20,165] := {65, 240} tii[20,166] := {192} tii[20,167] := {74, 93} tii[20,168] := {18, 193} tii[20,169] := {283} tii[20,170] := {11, 136} tii[20,171] := {51, 54} tii[20,172] := {34, 277} tii[20,173] := {10, 145} tii[20,174] := {88} tii[20,175] := {29, 265} tii[20,176] := {149} tii[20,177] := {141} tii[20,178] := {27, 183} tii[20,179] := {4, 194} tii[20,180] := {53, 242} tii[20,181] := {110} tii[20,182] := {70} tii[20,183] := {71} tii[20,184] := {206} tii[20,185] := {85, 86} tii[20,186] := {22, 164} tii[20,187] := {120} tii[20,188] := {121} tii[20,189] := {253} tii[20,190] := {40, 144} tii[20,191] := {41, 143} tii[20,192] := {21, 96} tii[20,193] := {24, 95} tii[20,194] := {111} tii[20,195] := {42, 229} tii[20,196] := {101} tii[20,197] := {43, 228} tii[20,198] := {102} tii[20,199] := {162} tii[20,200] := {6, 147} tii[20,201] := {7, 146} tii[20,202] := {69, 255} tii[20,203] := {60} tii[20,204] := {2, 97} tii[20,205] := {55} tii[20,206] := {1, 77} tii[20,207] := {148} tii[20,208] := {20, 37} tii[20,209] := {59} tii[20,210] := {0, 98} cell#3 , |C| = 126 special orbit = [5, 5, 1, 1, 1, 1] special rep = [[2], [3, 1, 1]] , dim = 126 cell rep = phi[[2],[3, 1, 1]] TII depth = 6 TII multiplicity polynomial = 126*X TII subcells: tii[19,1] := {111} tii[19,2] := {114} tii[19,3] := {123} tii[19,4] := {96} tii[19,5] := {51} tii[19,6] := {106} tii[19,7] := {35} tii[19,8] := {121} tii[19,9] := {113} tii[19,10] := {99} tii[19,11] := {115} tii[19,12] := {72} tii[19,13] := {118} tii[19,14] := {124} tii[19,15] := {107} tii[19,16] := {87} tii[19,17] := {122} tii[19,18] := {125} tii[19,19] := {75} tii[19,20] := {32} tii[19,21] := {88} tii[19,22] := {19} tii[19,23] := {109} tii[19,24] := {97} tii[19,25] := {77} tii[19,26] := {15} tii[19,27] := {100} tii[19,28] := {47} tii[19,29] := {102} tii[19,30] := {5} tii[19,31] := {119} tii[19,32] := {33} tii[19,33] := {89} tii[19,34] := {56} tii[19,35] := {63} tii[19,36] := {14} tii[19,37] := {110} tii[19,38] := {6} tii[19,39] := {120} tii[19,40] := {112} tii[19,41] := {98} tii[19,42] := {79} tii[19,43] := {73} tii[19,44] := {117} tii[19,45] := {104} tii[19,46] := {78} tii[19,47] := {64} tii[19,48] := {41} tii[19,49] := {49} tii[19,50] := {103} tii[19,51] := {92} tii[19,52] := {27} tii[19,53] := {116} tii[19,54] := {108} tii[19,55] := {42} tii[19,56] := {23} tii[19,57] := {67} tii[19,58] := {9} tii[19,59] := {90} tii[19,60] := {65} tii[19,61] := {69} tii[19,62] := {45} tii[19,63] := {93} tii[19,64] := {31} tii[19,65] := {71} tii[19,66] := {70} tii[19,67] := {16} tii[19,68] := {54} tii[19,69] := {94} tii[19,70] := {83} tii[19,71] := {28} tii[19,72] := {17} tii[19,73] := {76} tii[19,74] := {12} tii[19,75] := {0} tii[19,76] := {60} tii[19,77] := {59} tii[19,78] := {25} tii[19,79] := {80} tii[19,80] := {37} tii[19,81] := {44} tii[19,82] := {86} tii[19,83] := {11} tii[19,84] := {48} tii[19,85] := {105} tii[19,86] := {1} tii[19,87] := {85} tii[19,88] := {36} tii[19,89] := {43} tii[19,90] := {95} tii[19,91] := {68} tii[19,92] := {24} tii[19,93] := {91} tii[19,94] := {10} tii[19,95] := {61} tii[19,96] := {4} tii[19,97] := {52} tii[19,98] := {38} tii[19,99] := {39} tii[19,100] := {55} tii[19,101] := {21} tii[19,102] := {62} tii[19,103] := {29} tii[19,104] := {84} tii[19,105] := {58} tii[19,106] := {20} tii[19,107] := {53} tii[19,108] := {7} tii[19,109] := {74} tii[19,110] := {30} tii[19,111] := {82} tii[19,112] := {34} tii[19,113] := {40} tii[19,114] := {13} tii[19,115] := {101} tii[19,116] := {81} tii[19,117] := {8} tii[19,118] := {50} tii[19,119] := {22} tii[19,120] := {3} tii[19,121] := {46} tii[19,122] := {18} tii[19,123] := {57} tii[19,124] := {2} tii[19,125] := {26} tii[19,126] := {66} cell#4 , |C| = 126 special orbit = [5, 5, 1, 1, 1, 1] special rep = [[2], [3, 1, 1]] , dim = 126 cell rep = phi[[2],[3, 1, 1]] TII depth = 6 TII multiplicity polynomial = 126*X TII subcells: tii[19,1] := {125} tii[19,2] := {121} tii[19,3] := {112} tii[19,4] := {123} tii[19,5] := {111} tii[19,6] := {110} tii[19,7] := {104} tii[19,8] := {101} tii[19,9] := {117} tii[19,10] := {107} tii[19,11] := {99} tii[19,12] := {96} tii[19,13] := {95} tii[19,14] := {86} tii[19,15] := {80} tii[19,16] := {70} tii[19,17] := {68} tii[19,18] := {49} tii[19,19] := {116} tii[19,20] := {98} tii[19,21] := {97} tii[19,22] := {85} tii[19,23] := {82} tii[19,24] := {105} tii[19,25] := {91} tii[19,26] := {79} tii[19,27] := {78} tii[19,28] := {75} tii[19,29] := {74} tii[19,30] := {67} tii[19,31] := {64} tii[19,32] := {61} tii[19,33] := {60} tii[19,34] := {46} tii[19,35] := {47} tii[19,36] := {48} tii[19,37] := {45} tii[19,38] := {33} tii[19,39] := {30} tii[19,40] := {90} tii[19,41] := {72} tii[19,42] := {58} tii[19,43] := {55} tii[19,44] := {54} tii[19,45] := {41} tii[19,46] := {53} tii[19,47] := {37} tii[19,48] := {28} tii[19,49] := {36} tii[19,50] := {35} tii[19,51] := {26} tii[19,52] := {25} tii[19,53] := {24} tii[19,54] := {16} tii[19,55] := {22} tii[19,56] := {14} tii[19,57] := {12} tii[19,58] := {8} tii[19,59] := {6} tii[19,60] := {0} tii[19,61] := {122} tii[19,62] := {115} tii[19,63] := {124} tii[19,64] := {100} tii[19,65] := {119} tii[19,66] := {120} tii[19,67] := {89} tii[19,68] := {81} tii[19,69] := {114} tii[19,70] := {69} tii[19,71] := {71} tii[19,72] := {52} tii[19,73] := {118} tii[19,74] := {59} tii[19,75] := {44} tii[19,76] := {108} tii[19,77] := {109} tii[19,78] := {38} tii[19,79] := {92} tii[19,80] := {102} tii[19,81] := {27} tii[19,82] := {103} tii[19,83] := {29} tii[19,84] := {77} tii[19,85] := {76} tii[19,86] := {19} tii[19,87] := {62} tii[19,88] := {63} tii[19,89] := {23} tii[19,90] := {88} tii[19,91] := {13} tii[19,92] := {15} tii[19,93] := {7} tii[19,94] := {9} tii[19,95] := {51} tii[19,96] := {3} tii[19,97] := {106} tii[19,98] := {94} tii[19,99] := {93} tii[19,100] := {73} tii[19,101] := {83} tii[19,102] := {84} tii[19,103] := {57} tii[19,104] := {56} tii[19,105] := {39} tii[19,106] := {40} tii[19,107] := {34} tii[19,108] := {65} tii[19,109] := {66} tii[19,110] := {21} tii[19,111] := {20} tii[19,112] := {31} tii[19,113] := {32} tii[19,114] := {11} tii[19,115] := {10} tii[19,116] := {4} tii[19,117] := {5} tii[19,118] := {43} tii[19,119] := {18} tii[19,120] := {2} tii[19,121] := {113} tii[19,122] := {87} tii[19,123] := {50} tii[19,124] := {42} tii[19,125] := {17} tii[19,126] := {1} cell#5 , |C| = 245 special orbit = [4, 4, 3, 3] special rep = [[2, 1], [2, 2]] , dim = 140 cell rep = phi[[2, 1],[2, 2]]+phi[[1, 1],[3, 2]] TII depth = 4 TII multiplicity polynomial = 105*X^2+35*X TII subcells: tii[17,1] := {198} tii[17,2] := {131, 239} tii[17,3] := {197} tii[17,4] := {90, 220} tii[17,5] := {154, 229} tii[17,6] := {189, 240} tii[17,7] := {89, 181} tii[17,8] := {121, 211} tii[17,9] := {115} tii[17,10] := {176} tii[17,11] := {103, 232} tii[17,12] := {130} tii[17,13] := {60, 171} tii[17,14] := {93, 196} tii[17,15] := {150} tii[17,16] := {75, 219} tii[17,17] := {125} tii[17,18] := {21, 153} tii[17,19] := {99, 201} tii[17,20] := {105, 162} tii[17,21] := {43, 188} tii[17,22] := {138, 226} tii[17,23] := {50, 231} tii[17,24] := {84, 242} tii[17,25] := {31, 223} tii[17,26] := {144} tii[17,27] := {157} tii[17,28] := {88, 195} tii[17,29] := {120, 214} tii[17,30] := {149} tii[17,31] := {175} tii[17,32] := {182} tii[17,33] := {124} tii[17,34] := {127, 216} tii[17,35] := {152} tii[17,36] := {15, 126} tii[17,37] := {63, 203} tii[17,38] := {61, 200} tii[17,39] := {161} tii[17,40] := {164, 234} tii[17,41] := {132, 187} tii[17,42] := {29, 163} tii[17,43] := {94, 225} tii[17,44] := {72, 215} tii[17,45] := {101, 230} tii[17,46] := {41, 218} tii[17,47] := {78, 222} tii[17,48] := {111, 233} tii[17,49] := {70, 236} tii[17,50] := {24, 206} tii[17,51] := {140, 241} tii[17,52] := {169, 244} tii[17,53] := {179} tii[17,54] := {28, 155} tii[17,55] := {158, 209} tii[17,56] := {47, 190} tii[17,57] := {62, 202} tii[17,58] := {40, 178} tii[17,59] := {134, 221} tii[17,60] := {95, 227} tii[17,61] := {42, 185} tii[17,62] := {67, 208} tii[17,63] := {122, 238} tii[17,64] := {64, 160} tii[17,65] := {86} tii[17,66] := {104} tii[17,67] := {38, 145} tii[17,68] := {59} tii[17,69] := {66, 173} tii[17,70] := {34, 92} tii[17,71] := {22, 117} tii[17,72] := {74} tii[17,73] := {8, 91} tii[17,74] := {52, 113} tii[17,75] := {45, 148} tii[17,76] := {26, 174} tii[17,77] := {123} tii[17,78] := {87} tii[17,79] := {156} tii[17,80] := {97} tii[17,81] := {37, 180} tii[17,82] := {57, 119} tii[17,83] := {136} tii[17,84] := {65, 210} tii[17,85] := {100} tii[17,86] := {48, 199} tii[17,87] := {10, 129} tii[17,88] := {73, 217} tii[17,89] := {71} tii[17,90] := {35, 146} tii[17,91] := {77, 139} tii[17,92] := {80, 224} tii[17,93] := {112, 235} tii[17,94] := {51, 205} tii[17,95] := {3, 109} tii[17,96] := {25, 166} tii[17,97] := {110} tii[17,98] := {142, 243} tii[17,99] := {11, 194} tii[17,100] := {54, 168} tii[17,101] := {30, 177} tii[17,102] := {9, 133} tii[17,103] := {76, 184} tii[17,104] := {53, 207} tii[17,105] := {114, 237} tii[17,106] := {17, 213} tii[17,107] := {116} tii[17,108] := {85, 147} tii[17,109] := {98} tii[17,110] := {128} tii[17,111] := {6, 102} tii[17,112] := {58, 172} tii[17,113] := {137} tii[17,114] := {108, 165} tii[17,115] := {16, 141} tii[17,116] := {2, 79} tii[17,117] := {7, 170} tii[17,118] := {82, 193} tii[17,119] := {23, 151} tii[17,120] := {107, 204} tii[17,121] := {5, 106} tii[17,122] := {36, 183} tii[17,123] := {44, 186} tii[17,124] := {55, 212} tii[17,125] := {12, 192} tii[17,126] := {96, 228} tii[17,127] := {14, 135} tii[17,128] := {27, 167} tii[17,129] := {39} tii[17,130] := {18, 68} tii[17,131] := {13, 46} tii[17,132] := {49} tii[17,133] := {20, 118} tii[17,134] := {81} tii[17,135] := {4, 69} tii[17,136] := {32, 143} tii[17,137] := {19, 159} tii[17,138] := {1, 83} tii[17,139] := {33, 191} tii[17,140] := {0, 56} cell#6 , |C| = 553 special orbit = [4, 4, 2, 2, 1, 1] special rep = [[2, 1], [2, 1, 1]] , dim = 210 cell rep = phi[[2, 1],[2, 1, 1]]+phi[[1, 1],[3, 1, 1]]+phi[[2],[2, 2, 1]]+phi[[1],[3, 2, 1]] TII depth = 3 TII multiplicity polynomial = 70*X^2+49*X+91*X^4 TII subcells: tii[15,1] := {499} tii[15,2] := {321, 480} tii[15,3] := {229, 546} tii[15,4] := {533} tii[15,5] := {457} tii[15,6] := {284, 428} tii[15,7] := {233, 391, 500, 549} tii[15,8] := {325, 463, 466, 552} tii[15,9] := {547} tii[15,10] := {362, 363} tii[15,11] := {535} tii[15,12] := {121, 272, 419, 518} tii[15,13] := {495, 548} tii[15,14] := {215, 374, 378, 544} tii[15,15] := {424, 425} tii[15,16] := {343, 344, 491, 492} tii[15,17] := {307, 530} tii[15,18] := {498} tii[15,19] := {206, 361} tii[15,20] := {393} tii[15,21] := {161, 447, 454, 539} tii[15,22] := {246, 406, 511, 550} tii[15,23] := {252, 497} tii[15,24] := {531} tii[15,25] := {322} tii[15,26] := {182, 449} tii[15,27] := {285, 286} tii[15,28] := {502} tii[15,29] := {69, 192, 346, 476} tii[15,30] := {102, 385, 426, 517} tii[15,31] := {109, 288, 408, 409} tii[15,32] := {444, 536} tii[15,33] := {144, 297, 302, 525} tii[15,34] := {170, 334, 493, 543} tii[15,35] := {390} tii[15,36] := {68, 316, 477, 478} tii[15,37] := {353, 354} tii[15,38] := {33, 260, 414, 415} tii[15,39] := {309, 462} tii[15,40] := {261, 262, 438, 439} tii[15,41] := {143, 259, 526, 527} tii[15,42] := {201, 202, 541, 542} tii[15,43] := {496} tii[15,44] := {207, 208} tii[15,45] := {448} tii[15,46] := {36, 263, 271, 420} tii[15,47] := {380, 508} tii[15,48] := {85, 221, 373, 487} tii[15,49] := {387} tii[15,50] := {23, 191, 348, 349} tii[15,51] := {269, 270} tii[15,52] := {11, 149, 253, 254} tii[15,53] := {178, 179, 371, 372} tii[15,54] := {308, 461} tii[15,55] := {52, 148, 434, 435} tii[15,56] := {241, 506} tii[15,57] := {92, 93, 481, 482} tii[15,58] := {189, 190} tii[15,59] := {113, 114, 295, 296} tii[15,60] := {73, 74, 364, 365} tii[15,61] := {157} tii[15,62] := {394} tii[15,63] := {183, 184} tii[15,64] := {289, 290} tii[15,65] := {228} tii[15,66] := {158, 532} tii[15,67] := {456} tii[15,68] := {312} tii[15,69] := {395} tii[15,70] := {120, 264} tii[15,71] := {162, 318, 450, 540} tii[15,72] := {101, 503} tii[15,73] := {399} tii[15,74] := {214, 367} tii[15,75] := {247, 403, 410, 551} tii[15,76] := {53, 169, 470, 471} tii[15,77] := {163, 347} tii[15,78] := {119, 240, 389, 519} tii[15,79] := {453} tii[15,80] := {248, 433} tii[15,81] := {63, 168, 342, 474} tii[15,82] := {383, 510} tii[15,83] := {213, 330, 341, 545} tii[15,84] := {278, 279, 405, 529} tii[15,85] := {173, 445} tii[15,86] := {306} tii[15,87] := {160, 534} tii[15,88] := {505} tii[15,89] := {243} tii[15,90] := {117, 384} tii[15,91] := {386} tii[15,92] := {55, 311, 355, 475} tii[15,93] := {91, 185} tii[15,94] := {97, 245, 513, 514} tii[15,95] := {61, 211, 332, 333} tii[15,96] := {460} tii[15,97] := {106, 250, 440, 524} tii[15,98] := {154, 291} tii[15,99] := {35, 238, 421, 422} tii[15,100] := {504} tii[15,101] := {313} tii[15,102] := {123, 265} tii[15,103] := {90, 193, 352, 479} tii[15,104] := {317} tii[15,105] := {67, 315} tii[15,106] := {156, 323, 467, 538} tii[15,107] := {446, 537} tii[15,108] := {16, 177, 337, 338} tii[15,109] := {217, 368} tii[15,110] := {231, 402} tii[15,111] := {84, 176, 488, 489} tii[15,112] := {400} tii[15,113] := {45, 141, 305, 418} tii[15,114] := {153, 298, 304, 528} tii[15,115] := {32, 142, 257, 258} tii[15,116] := {130, 131, 520, 521} tii[15,117] := {392, 512} tii[15,118] := {14, 198, 199, 200} tii[15,119] := {225, 226, 377, 494} tii[15,120] := {19, 165, 350, 351} tii[15,121] := {237} tii[15,122] := {187, 188} tii[15,123] := {65, 210, 379, 473} tii[15,124] := {9, 116, 255, 256} tii[15,125] := {293, 294} tii[15,126] := {43, 115, 436, 437} tii[15,127] := {159, 329} tii[15,128] := {104, 396} tii[15,129] := {75, 76, 483, 484} tii[15,130] := {281, 282, 442, 443} tii[15,131] := {3, 77, 196, 197} tii[15,132] := {38, 39, 522, 523} tii[15,133] := {381} tii[15,134] := {455} tii[15,135] := {232, 501} tii[15,136] := {310} tii[15,137] := {48, 122} tii[15,138] := {398} tii[15,139] := {155, 324, 468, 469} tii[15,140] := {96, 216} tii[15,141] := {70, 186} tii[15,142] := {118, 388} tii[15,143] := {234} tii[15,144] := {47, 127, 268, 423} tii[15,145] := {451} tii[15,146] := {98, 397, 407, 515} tii[15,147] := {145, 292} tii[15,148] := {62, 212, 339, 340} tii[15,149] := {382, 509} tii[15,150] := {326} tii[15,151] := {21, 83, 224, 345} tii[15,152] := {95, 220, 223, 490} tii[15,153] := {30, 275, 276, 277} tii[15,154] := {319, 464} tii[15,155] := {150, 151, 301, 441} tii[15,156] := {314} tii[15,157] := {164} tii[15,158] := {12, 126, 266, 267} tii[15,159] := {124, 125} tii[15,160] := {54, 335, 366, 472} tii[15,161] := {34, 140, 303, 413} tii[15,162] := {230, 401} tii[15,163] := {6, 89, 174, 175} tii[15,164] := {249} tii[15,165] := {218, 219} tii[15,166] := {27, 88, 369, 370} tii[15,167] := {166, 458} tii[15,168] := {15, 203, 356, 357} tii[15,169] := {242, 404} tii[15,170] := {204, 205, 375, 376} tii[15,171] := {49, 50, 429, 430} tii[15,172] := {2, 51, 128, 129} tii[15,173] := {105, 507} tii[15,174] := {24, 25, 485, 486} tii[15,175] := {71, 72} tii[15,176] := {18, 209, 222, 336} tii[15,177] := {146, 147} tii[15,178] := {5, 94, 194, 195} tii[15,179] := {133, 134, 299, 300} tii[15,180] := {41, 42, 431, 432} tii[15,181] := {100} tii[15,182] := {59, 60} tii[15,183] := {235} tii[15,184] := {56, 452} tii[15,185] := {110, 111} tii[15,186] := {327} tii[15,187] := {28, 107, 416, 417} tii[15,188] := {13, 58, 358, 359} tii[15,189] := {236} tii[15,190] := {37, 239} tii[15,191] := {64, 172} tii[15,192] := {99, 244, 411, 516} tii[15,193] := {328} tii[15,194] := {17, 86, 180, 181} tii[15,195] := {31, 108, 280, 427} tii[15,196] := {7, 135, 136, 137} tii[15,197] := {320, 465} tii[15,198] := {4, 78, 79, 80} tii[15,199] := {103} tii[15,200] := {29, 251, 287, 412} tii[15,201] := {46, 112} tii[15,202] := {171} tii[15,203] := {8, 132, 273, 274} tii[15,204] := {20, 87, 227, 360} tii[15,205] := {167, 331} tii[15,206] := {1, 40, 138, 139} tii[15,207] := {57, 459} tii[15,208] := {22, 66} tii[15,209] := {10, 44, 152, 283} tii[15,210] := {0, 26, 81, 82} cell#7 , |C| = 154 special orbit = [4, 4, 1, 1, 1, 1, 1, 1] special rep = [[2], [2, 1, 1, 1]] , dim = 84 cell rep = phi[[2],[2, 1, 1, 1]]+phi[[1],[3, 1, 1, 1]] TII depth = 4 TII multiplicity polynomial = 70*X^2+14*X TII subcells: tii[14,1] := {144} tii[14,2] := {114, 149} tii[14,3] := {96, 153} tii[14,4] := {151} tii[14,5] := {146} tii[14,6] := {102, 140} tii[14,7] := {131, 152} tii[14,8] := {85, 150} tii[14,9] := {124, 125} tii[14,10] := {99, 143} tii[14,11] := {100, 142} tii[14,12] := {87, 129} tii[14,13] := {145} tii[14,14] := {134} tii[14,15] := {74, 123} tii[14,16] := {112, 147} tii[14,17] := {60, 141} tii[14,18] := {116} tii[14,19] := {104, 105} tii[14,20] := {71, 128} tii[14,21] := {90, 137} tii[14,22] := {72, 127} tii[14,23] := {70, 119} tii[14,24] := {62, 110} tii[14,25] := {77, 78} tii[14,26] := {49, 109} tii[14,27] := {50, 108} tii[14,28] := {39, 84} tii[14,29] := {40, 83} tii[14,30] := {22, 58} tii[14,31] := {132} tii[14,32] := {115} tii[14,33] := {51, 103} tii[14,34] := {89, 136} tii[14,35] := {35, 126} tii[14,36] := {91} tii[14,37] := {75, 76} tii[14,38] := {47, 107} tii[14,39] := {64, 117} tii[14,40] := {48, 106} tii[14,41] := {45, 94} tii[14,42] := {37, 81} tii[14,43] := {66} tii[14,44] := {52, 53} tii[14,45] := {41, 93} tii[14,46] := {26, 80} tii[14,47] := {27, 79} tii[14,48] := {19, 57} tii[14,49] := {25, 68} tii[14,50] := {20, 56} tii[14,51] := {16, 44} tii[14,52] := {11, 33} tii[14,53] := {29, 30} tii[14,54] := {14, 55} tii[14,55] := {15, 54} tii[14,56] := {8, 32} tii[14,57] := {9, 31} tii[14,58] := {3, 18} tii[14,59] := {4, 17} tii[14,60] := {1, 6} tii[14,61] := {133} tii[14,62] := {120, 121} tii[14,63] := {135} tii[14,64] := {98, 139} tii[14,65] := {113, 148} tii[14,66] := {97, 138} tii[14,67] := {92} tii[14,68] := {88, 122} tii[14,69] := {65, 118} tii[14,70] := {86, 130} tii[14,71] := {46, 95} tii[14,72] := {28, 69} tii[14,73] := {42} tii[14,74] := {63, 101} tii[14,75] := {23, 67} tii[14,76] := {13, 43} tii[14,77] := {61, 111} tii[14,78] := {21, 59} tii[14,79] := {5, 24} tii[14,80] := {2, 12} tii[14,81] := {38, 73} tii[14,82] := {36, 82} tii[14,83] := {10, 34} tii[14,84] := {0, 7} cell#8 , |C| = 105 special orbit = [3, 3, 3, 3, 1, 1] special rep = [[1, 1], [2, 2, 1]] , dim = 105 cell rep = phi[[1, 1],[2, 2, 1]] TII depth = 4 TII multiplicity polynomial = 105*X TII subcells: tii[9,1] := {57} tii[9,2] := {85} tii[9,3] := {97} tii[9,4] := {74} tii[9,5] := {86} tii[9,6] := {34} tii[9,7] := {69} tii[9,8] := {62} tii[9,9] := {88} tii[9,10] := {93} tii[9,11] := {82} tii[9,12] := {102} tii[9,13] := {52} tii[9,14] := {77} tii[9,15] := {68} tii[9,16] := {50} tii[9,17] := {87} tii[9,18] := {94} tii[9,19] := {38} tii[9,20] := {10} tii[9,21] := {21} tii[9,22] := {54} tii[9,23] := {79} tii[9,24] := {44} tii[9,25] := {24} tii[9,26] := {73} tii[9,27] := {18} tii[9,28] := {45} tii[9,29] := {31} tii[9,30] := {25} tii[9,31] := {70} tii[9,32] := {17} tii[9,33] := {84} tii[9,34] := {8} tii[9,35] := {46} tii[9,36] := {89} tii[9,37] := {67} tii[9,38] := {96} tii[9,39] := {61} tii[9,40] := {30} tii[9,41] := {80} tii[9,42] := {39} tii[9,43] := {92} tii[9,44] := {75} tii[9,45] := {81} tii[9,46] := {101} tii[9,47] := {103} tii[9,48] := {71} tii[9,49] := {27} tii[9,50] := {48} tii[9,51] := {36} tii[9,52] := {26} tii[9,53] := {53} tii[9,54] := {64} tii[9,55] := {47} tii[9,56] := {15} tii[9,57] := {78} tii[9,58] := {43} tii[9,59] := {58} tii[9,60] := {91} tii[9,61] := {83} tii[9,62] := {51} tii[9,63] := {23} tii[9,64] := {60} tii[9,65] := {66} tii[9,66] := {76} tii[9,67] := {95} tii[9,68] := {99} tii[9,69] := {72} tii[9,70] := {98} tii[9,71] := {55} tii[9,72] := {104} tii[9,73] := {42} tii[9,74] := {37} tii[9,75] := {5} tii[9,76] := {13} tii[9,77] := {3} tii[9,78] := {22} tii[9,79] := {16} tii[9,80] := {9} tii[9,81] := {7} tii[9,82] := {20} tii[9,83] := {4} tii[9,84] := {29} tii[9,85] := {65} tii[9,86] := {33} tii[9,87] := {28} tii[9,88] := {2} tii[9,89] := {41} tii[9,90] := {35} tii[9,91] := {14} tii[9,92] := {12} tii[9,93] := {63} tii[9,94] := {49} tii[9,95] := {6} tii[9,96] := {56} tii[9,97] := {90} tii[9,98] := {100} tii[9,99] := {59} tii[9,100] := {19} tii[9,101] := {11} tii[9,102] := {32} tii[9,103] := {40} tii[9,104] := {1} tii[9,105] := {0} cell#9 , |C| = 147 special orbit = [3, 3, 2, 2, 1, 1, 1, 1] special rep = [[1, 1], [2, 1, 1, 1]] , dim = 84 cell rep = phi[[1, 1],[2, 1, 1, 1]]+phi[[1],[2, 2, 1, 1]] TII depth = 3 TII multiplicity polynomial = 63*X^2+21*X TII subcells: tii[7,1] := {98} tii[7,2] := {93} tii[7,3] := {48, 127} tii[7,4] := {67, 139} tii[7,5] := {104} tii[7,6] := {89, 124} tii[7,7] := {80} tii[7,8] := {37, 137} tii[7,9] := {53, 145} tii[7,10] := {27, 131} tii[7,11] := {92} tii[7,12] := {17, 115} tii[7,13] := {76, 109} tii[7,14] := {40, 144} tii[7,15] := {50, 146} tii[7,16] := {103} tii[7,17] := {88, 123} tii[7,18] := {72, 133} tii[7,19] := {66} tii[7,20] := {28, 126} tii[7,21] := {41, 138} tii[7,22] := {78} tii[7,23] := {19, 117} tii[7,24] := {12, 100} tii[7,25] := {62, 95} tii[7,26] := {29, 135} tii[7,27] := {39, 142} tii[7,28] := {14, 102} tii[7,29] := {91} tii[7,30] := {9, 87} tii[7,31] := {23, 122} tii[7,32] := {74, 108} tii[7,33] := {5, 71} tii[7,34] := {58, 120} tii[7,35] := {31, 132} tii[7,36] := {42, 140} tii[7,37] := {77} tii[7,38] := {59, 94} tii[7,39] := {45, 105} tii[7,40] := {34, 116} tii[7,41] := {56} tii[7,42] := {70} tii[7,43] := {69} tii[7,44] := {36, 113} tii[7,45] := {84} tii[7,46] := {52, 128} tii[7,47] := {24, 97} tii[7,48] := {64, 114} tii[7,49] := {63} tii[7,50] := {21, 118} tii[7,51] := {33, 112} tii[7,52] := {81} tii[7,53] := {13, 101} tii[7,54] := {32, 136} tii[7,55] := {79, 110} tii[7,56] := {43, 143} tii[7,57] := {8, 86} tii[7,58] := {55, 134} tii[7,59] := {49} tii[7,60] := {10, 90} tii[7,61] := {25, 125} tii[7,62] := {68} tii[7,63] := {6, 73} tii[7,64] := {15, 107} tii[7,65] := {11, 99} tii[7,66] := {3, 57} tii[7,67] := {22, 119} tii[7,68] := {65, 96} tii[7,69] := {30, 129} tii[7,70] := {61, 121} tii[7,71] := {1, 46} tii[7,72] := {20, 141} tii[7,73] := {38} tii[7,74] := {18, 111} tii[7,75] := {54} tii[7,76] := {7, 85} tii[7,77] := {51, 82} tii[7,78] := {2, 60} tii[7,79] := {47, 106} tii[7,80] := {26, 130} tii[7,81] := {44} tii[7,82] := {16, 83} tii[7,83] := {4, 75} tii[7,84] := {0, 35} cell#10 , |C| = 105 special orbit = [3, 3, 3, 3, 1, 1] special rep = [[1, 1], [2, 2, 1]] , dim = 105 cell rep = phi[[1, 1],[2, 2, 1]] TII depth = 4 TII multiplicity polynomial = 105*X TII subcells: tii[9,1] := {85} tii[9,2] := {101} tii[9,3] := {104} tii[9,4] := {73} tii[9,5] := {61} tii[9,6] := {22} tii[9,7] := {93} tii[9,8] := {37} tii[9,9] := {102} tii[9,10] := {71} tii[9,11] := {55} tii[9,12] := {89} tii[9,13] := {82} tii[9,14] := {97} tii[9,15] := {70} tii[9,16] := {54} tii[9,17] := {88} tii[9,18] := {95} tii[9,19] := {74} tii[9,20] := {32} tii[9,21] := {50} tii[9,22] := {84} tii[9,23] := {99} tii[9,24] := {68} tii[9,25] := {14} tii[9,26] := {49} tii[9,27] := {43} tii[9,28] := {26} tii[9,29] := {62} tii[9,30] := {56} tii[9,31] := {94} tii[9,32] := {10} tii[9,33] := {58} tii[9,34] := {5} tii[9,35] := {76} tii[9,36] := {103} tii[9,37] := {42} tii[9,38] := {78} tii[9,39] := {81} tii[9,40] := {19} tii[9,41] := {100} tii[9,42] := {28} tii[9,43] := {46} tii[9,44] := {92} tii[9,45] := {31} tii[9,46] := {65} tii[9,47] := {75} tii[9,48] := {24} tii[9,49] := {33} tii[9,50] := {51} tii[9,51] := {44} tii[9,52] := {17} tii[9,53] := {83} tii[9,54] := {63} tii[9,55] := {29} tii[9,56] := {9} tii[9,57] := {98} tii[9,58] := {69} tii[9,59] := {39} tii[9,60] := {90} tii[9,61] := {57} tii[9,62] := {34} tii[9,63] := {13} tii[9,64] := {80} tii[9,65] := {41} tii[9,66] := {52} tii[9,67] := {77} tii[9,68] := {86} tii[9,69] := {48} tii[9,70] := {79} tii[9,71] := {35} tii[9,72] := {96} tii[9,73] := {67} tii[9,74] := {47} tii[9,75] := {27} tii[9,76] := {40} tii[9,77] := {16} tii[9,78] := {53} tii[9,79] := {45} tii[9,80] := {6} tii[9,81] := {20} tii[9,82] := {12} tii[9,83] := {3} tii[9,84] := {64} tii[9,85] := {91} tii[9,86] := {59} tii[9,87] := {18} tii[9,88] := {1} tii[9,89] := {11} tii[9,90] := {23} tii[9,91] := {7} tii[9,92] := {30} tii[9,93] := {38} tii[9,94] := {72} tii[9,95] := {2} tii[9,96] := {36} tii[9,97] := {66} tii[9,98] := {87} tii[9,99] := {15} tii[9,100] := {21} tii[9,101] := {4} tii[9,102] := {60} tii[9,103] := {25} tii[9,104] := {8} tii[9,105] := {0} cell#11 , |C| = 140 special orbit = [3, 3, 2, 2, 2, 2] special rep = [[1, 1, 1], [2, 1, 1]] , dim = 105 cell rep = phi[[1, 1, 1],[2, 1, 1]]+phi[[1],[2, 2, 2]] TII depth = 3 TII multiplicity polynomial = 35*X^2+70*X TII subcells: tii[8,1] := {130} tii[8,2] := {104} tii[8,3] := {119} tii[8,4] := {82} tii[8,5] := {103} tii[8,6] := {44, 135} tii[8,7] := {76, 131} tii[8,8] := {117} tii[8,9] := {108, 109} tii[8,10] := {58} tii[8,11] := {80} tii[8,12] := {65, 66} tii[8,13] := {32} tii[8,14] := {120} tii[8,15] := {38} tii[8,16] := {68} tii[8,17] := {99} tii[8,18] := {105} tii[8,19] := {57} tii[8,20] := {86} tii[8,21] := {30, 139} tii[8,22] := {25} tii[8,23] := {81} tii[8,24] := {91} tii[8,25] := {52, 137} tii[8,26] := {116} tii[8,27] := {100} tii[8,28] := {83} tii[8,29] := {19, 136} tii[8,30] := {101} tii[8,31] := {37} tii[8,32] := {9, 134} tii[8,33] := {121} tii[8,34] := {87, 88} tii[8,35] := {62} tii[8,36] := {34, 133} tii[8,37] := {48, 126} tii[8,38] := {56} tii[8,39] := {118} tii[8,40] := {85} tii[8,41] := {110, 111} tii[8,42] := {94, 95} tii[8,43] := {15} tii[8,44] := {67} tii[8,45] := {98} tii[8,46] := {78} tii[8,47] := {31, 128} tii[8,48] := {59} tii[8,49] := {24} tii[8,50] := {106} tii[8,51] := {53, 122} tii[8,52] := {18, 123} tii[8,53] := {40} tii[8,54] := {73, 112} tii[8,55] := {36} tii[8,56] := {102} tii[8,57] := {55} tii[8,58] := {28, 132} tii[8,59] := {61} tii[8,60] := {89, 90} tii[8,61] := {84} tii[8,62] := {92, 93} tii[8,63] := {71, 72} tii[8,64] := {23} tii[8,65] := {39} tii[8,66] := {46, 47} tii[8,67] := {5} tii[8,68] := {13} tii[8,69] := {10} tii[8,70] := {45} tii[8,71] := {21} tii[8,72] := {77} tii[8,73] := {29} tii[8,74] := {54} tii[8,75] := {11, 129} tii[8,76] := {79} tii[8,77] := {14} tii[8,78] := {43} tii[8,79] := {22, 124} tii[8,80] := {4, 125} tii[8,81] := {107} tii[8,82] := {26} tii[8,83] := {63} tii[8,84] := {33, 114} tii[8,85] := {2, 115} tii[8,86] := {51, 96} tii[8,87] := {7} tii[8,88] := {35} tii[8,89] := {17, 138} tii[8,90] := {64} tii[8,91] := {16} tii[8,92] := {60} tii[8,93] := {6, 127} tii[8,94] := {41} tii[8,95] := {69, 70} tii[8,96] := {74, 75} tii[8,97] := {3} tii[8,98] := {42} tii[8,99] := {8} tii[8,100] := {12, 113} tii[8,101] := {27} tii[8,102] := {49, 50} tii[8,103] := {1} tii[8,104] := {20} tii[8,105] := {0, 97} cell#12 , |C| = 147 special orbit = [3, 3, 2, 2, 1, 1, 1, 1] special rep = [[1, 1], [2, 1, 1, 1]] , dim = 84 cell rep = phi[[1, 1],[2, 1, 1, 1]]+phi[[1],[2, 2, 1, 1]] TII depth = 3 TII multiplicity polynomial = 63*X^2+21*X TII subcells: tii[7,1] := {140} tii[7,2] := {128} tii[7,3] := {86, 139} tii[7,4] := {107, 145} tii[7,5] := {111} tii[7,6] := {96, 133} tii[7,7] := {112} tii[7,8] := {66, 126} tii[7,9] := {87, 141} tii[7,10] := {51, 110} tii[7,11] := {91} tii[7,12] := {33, 95} tii[7,13] := {76, 117} tii[7,14] := {69, 132} tii[7,15] := {54, 143} tii[7,16] := {74} tii[7,17] := {60, 101} tii[7,18] := {46, 123} tii[7,19] := {93} tii[7,20] := {50, 109} tii[7,21] := {68, 131} tii[7,22] := {72} tii[7,23] := {35, 90} tii[7,24] := {21, 75} tii[7,25] := {58, 99} tii[7,26] := {52, 116} tii[7,27] := {38, 136} tii[7,28] := {23, 73} tii[7,29] := {57} tii[7,30] := {12, 59} tii[7,31] := {37, 100} tii[7,32] := {43, 82} tii[7,33] := {8, 45} tii[7,34] := {30, 104} tii[7,35] := {25, 122} tii[7,36] := {15, 134} tii[7,37] := {41} tii[7,38] := {28, 64} tii[7,39] := {18, 83} tii[7,40] := {10, 102} tii[7,41] := {106} tii[7,42] := {125} tii[7,43] := {108} tii[7,44] := {67, 127} tii[7,45] := {130} tii[7,46] := {88, 142} tii[7,47] := {48, 114} tii[7,48] := {70, 146} tii[7,49] := {89} tii[7,50] := {36, 92} tii[7,51] := {65, 129} tii[7,52] := {115} tii[7,53] := {22, 77} tii[7,54] := {53, 118} tii[7,55] := {79, 144} tii[7,56] := {39, 138} tii[7,57] := {17, 63} tii[7,58] := {26, 124} tii[7,59] := {71} tii[7,60] := {13, 56} tii[7,61] := {49, 113} tii[7,62] := {97} tii[7,63] := {6, 42} tii[7,64] := {24, 81} tii[7,65] := {27, 80} tii[7,66] := {3, 29} tii[7,67] := {14, 103} tii[7,68] := {62, 137} tii[7,69] := {7, 119} tii[7,70] := {32, 105} tii[7,71] := {1, 19} tii[7,72] := {2, 135} tii[7,73] := {55} tii[7,74] := {34, 94} tii[7,75] := {78} tii[7,76] := {16, 61} tii[7,77] := {44, 121} tii[7,78] := {4, 31} tii[7,79] := {20, 84} tii[7,80] := {5, 120} tii[7,81] := {85} tii[7,82] := {40, 98} tii[7,83] := {9, 47} tii[7,84] := {0, 11} cell#13 , |C| = 35 special orbit = [3, 3, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [2, 1, 1, 1, 1]] , dim = 35 cell rep = phi[[1],[2, 1, 1, 1, 1]] TII depth = 5 TII multiplicity polynomial = 35*X TII subcells: tii[6,1] := {30} tii[6,2] := {33} tii[6,3] := {26} tii[6,4] := {20} tii[6,5] := {32} tii[6,6] := {34} tii[6,7] := {21} tii[6,8] := {15} tii[6,9] := {29} tii[6,10] := {10} tii[6,11] := {31} tii[6,12] := {28} tii[6,13] := {16} tii[6,14] := {11} tii[6,15] := {24} tii[6,16] := {6} tii[6,17] := {27} tii[6,18] := {5} tii[6,19] := {23} tii[6,20] := {18} tii[6,21] := {12} tii[6,22] := {7} tii[6,23] := {19} tii[6,24] := {4} tii[6,25] := {22} tii[6,26] := {2} tii[6,27] := {17} tii[6,28] := {1} tii[6,29] := {13} tii[6,30] := {8} tii[6,31] := {25} tii[6,32] := {14} tii[6,33] := {9} tii[6,34] := {3} tii[6,35] := {0} cell#14 , |C| = 49 special orbit = [2, 2, 2, 2, 2, 2, 1, 1] special rep = [[1, 1, 1], [1, 1, 1, 1]] , dim = 35 cell rep = phi[[1, 1, 1],[1, 1, 1, 1]]+phi[[],[2, 2, 2, 1]] TII depth = 2 TII multiplicity polynomial = 14*X^2+21*X TII subcells: tii[4,1] := {21} tii[4,2] := {30} tii[4,3] := {38} tii[4,4] := {27, 46} tii[4,5] := {20} tii[4,6] := {28} tii[4,7] := {17, 39} tii[4,8] := {37} tii[4,9] := {26, 45} tii[4,10] := {24, 41} tii[4,11] := {2} tii[4,12] := {12} tii[4,13] := {3} tii[4,14] := {8} tii[4,15] := {6} tii[4,16] := {29} tii[4,17] := {14} tii[4,18] := {18, 40} tii[4,19] := {11, 34} tii[4,20] := {44} tii[4,21] := {9} tii[4,22] := {36, 48} tii[4,23] := {22} tii[4,24] := {35, 47} tii[4,25] := {19, 43} tii[4,26] := {25, 42} tii[4,27] := {5} tii[4,28] := {13} tii[4,29] := {10, 33} tii[4,30] := {15, 31} tii[4,31] := {0} tii[4,32] := {1} tii[4,33] := {4} tii[4,34] := {7, 23} tii[4,35] := {16, 32} cell#15 , |C| = 35 special orbit = [3, 3, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [2, 1, 1, 1, 1]] , dim = 35 cell rep = phi[[1],[2, 1, 1, 1, 1]] TII depth = 5 TII multiplicity polynomial = 35*X TII subcells: tii[6,1] := {34} tii[6,2] := {32} tii[6,3] := {31} tii[6,4] := {30} tii[6,5] := {29} tii[6,6] := {26} tii[6,7] := {28} tii[6,8] := {25} tii[6,9] := {24} tii[6,10] := {22} tii[6,11] := {21} tii[6,12] := {16} tii[6,13] := {23} tii[6,14] := {20} tii[6,15] := {19} tii[6,16] := {15} tii[6,17] := {14} tii[6,18] := {11} tii[6,19] := {10} tii[6,20] := {6} tii[6,21] := {18} tii[6,22] := {13} tii[6,23] := {12} tii[6,24] := {9} tii[6,25] := {8} tii[6,26] := {5} tii[6,27] := {4} tii[6,28] := {3} tii[6,29] := {2} tii[6,30] := {0} tii[6,31] := {33} tii[6,32] := {27} tii[6,33] := {17} tii[6,34] := {7} tii[6,35] := {1} cell#16 , |C| = 35 special orbit = [2, 2, 2, 2, 1, 1, 1, 1, 1, 1] special rep = [[1, 1], [1, 1, 1, 1, 1]] , dim = 21 cell rep = phi[[1, 1],[1, 1, 1, 1, 1]]+phi[[],[2, 2, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 14*X^2+7*X TII subcells: tii[3,1] := {20} tii[3,2] := {23} tii[3,3] := {18, 32} tii[3,4] := {19} tii[3,5] := {13, 27} tii[3,6] := {12, 29} tii[3,7] := {14} tii[3,8] := {9, 22} tii[3,9] := {7, 24} tii[3,10] := {5, 31} tii[3,11] := {11} tii[3,12] := {6, 17} tii[3,13] := {4, 21} tii[3,14] := {2, 25} tii[3,15] := {1, 30} tii[3,16] := {10} tii[3,17] := {16} tii[3,18] := {15, 28} tii[3,19] := {8, 34} tii[3,20] := {3, 26} tii[3,21] := {0, 33} cell#17 , |C| = 13 special orbit = [2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [1, 1, 1, 1, 1, 1]] , dim = 7 cell rep = phi[[1],[1, 1, 1, 1, 1, 1]]+phi[[],[2, 1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 6*X^2+X TII subcells: tii[2,1] := {10} tii[2,2] := {8, 12} tii[2,3] := {7, 11} tii[2,4] := {5, 9} tii[2,5] := {3, 6} tii[2,6] := {1, 4} tii[2,7] := {0, 2} cell#18 , |C| = 1 special orbit = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [1, 1, 1, 1, 1, 1, 1]] , dim = 1 cell rep = phi[[],[1, 1, 1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = X TII subcells: tii[1,1] := {0}