TII subcells for the Sp(14,R) x SO(11,4) block of Sp14 # cell#0 , |C| = 1 special orbit = [14] special rep = [[7], []] , dim = 1 cell rep = phi[[7],[]] TII depth = 1 TII multiplicity polynomial = X TII subcells: tii[40,1] := {0} cell#1 , |C| = 1 special orbit = [14] special rep = [[7], []] , dim = 1 cell rep = phi[[7],[]] TII depth = 1 TII multiplicity polynomial = X TII subcells: tii[40,1] := {0} cell#2 , |C| = 13 special orbit = [12, 2] special rep = [[6], [1]] , dim = 7 cell rep = phi[[6, 1],[]]+phi[[6],[1]] TII depth = 1 TII multiplicity polynomial = X+6*X^2 TII subcells: tii[39,1] := {1, 12} tii[39,2] := {0, 11} tii[39,3] := {2, 10} tii[39,4] := {3, 9} tii[39,5] := {4, 8} tii[39,6] := {5, 7} tii[39,7] := {6} cell#3 , |C| = 13 special orbit = [12, 2] special rep = [[6], [1]] , dim = 7 cell rep = phi[[6, 1],[]]+phi[[6],[1]] TII depth = 1 TII multiplicity polynomial = X+6*X^2 TII subcells: tii[39,1] := {1, 12} tii[39,2] := {2, 10} tii[39,3] := {0, 7} tii[39,4] := {3, 4} tii[39,5] := {5, 6} tii[39,6] := {8, 9} tii[39,7] := {11} cell#4 , |C| = 35 special orbit = [10, 4] special rep = [[5], [2]] , dim = 21 cell rep = phi[[5, 2],[]]+phi[[5],[2]] TII depth = 1 TII multiplicity polynomial = 7*X+14*X^2 TII subcells: tii[38,1] := {1, 15} tii[38,2] := {11, 12} tii[38,3] := {24, 25} tii[38,4] := {30, 31} tii[38,5] := {33} tii[38,6] := {34} tii[38,7] := {0, 8} tii[38,8] := {2, 3} tii[38,9] := {6, 7} tii[38,10] := {13, 14} tii[38,11] := {20} tii[38,12] := {4, 5} tii[38,13] := {9, 10} tii[38,14] := {16, 17} tii[38,15] := {21} tii[38,16] := {18, 19} tii[38,17] := {22, 23} tii[38,18] := {26} tii[38,19] := {27, 28} tii[38,20] := {29} tii[38,21] := {32} cell#5 , |C| = 13 special orbit = [12, 2] special rep = [[6], [1]] , dim = 7 cell rep = phi[[6, 1],[]]+phi[[6],[1]] TII depth = 1 TII multiplicity polynomial = X+6*X^2 TII subcells: tii[39,1] := {1, 12} tii[39,2] := {0, 11} tii[39,3] := {2, 10} tii[39,4] := {3, 9} tii[39,5] := {4, 8} tii[39,6] := {5, 7} tii[39,7] := {6} cell#6 , |C| = 35 special orbit = [10, 4] special rep = [[5], [2]] , dim = 21 cell rep = phi[[5, 2],[]]+phi[[5],[2]] TII depth = 1 TII multiplicity polynomial = 7*X+14*X^2 TII subcells: tii[38,1] := {2, 29} tii[38,2] := {7, 33} tii[38,3] := {12, 32} tii[38,4] := {19, 31} tii[38,5] := {30} tii[38,6] := {34} tii[38,7] := {0, 24} tii[38,8] := {1, 23} tii[38,9] := {3, 18} tii[38,10] := {5, 14} tii[38,11] := {10} tii[38,12] := {4, 28} tii[38,13] := {6, 22} tii[38,14] := {8, 17} tii[38,15] := {13} tii[38,16] := {9, 27} tii[38,17] := {11, 21} tii[38,18] := {16} tii[38,19] := {15, 26} tii[38,20] := {20} tii[38,21] := {25} cell#7 , |C| = 35 special orbit = [10, 2, 2] special rep = [[5, 1], [1]] , dim = 35 cell rep = phi[[5, 1],[1]] TII depth = 5 TII multiplicity polynomial = 35*X TII subcells: tii[37,1] := {20} tii[37,2] := {9} tii[37,3] := {24} tii[37,4] := {31} tii[37,5] := {34} tii[37,6] := {6} tii[37,7] := {13} tii[37,8] := {1} tii[37,9] := {4} tii[37,10] := {5} tii[37,11] := {11} tii[37,12] := {12} tii[37,13] := {18} tii[37,14] := {19} tii[37,15] := {26} tii[37,16] := {0} tii[37,17] := {3} tii[37,18] := {2} tii[37,19] := {8} tii[37,20] := {7} tii[37,21] := {15} tii[37,22] := {14} tii[37,23] := {21} tii[37,24] := {10} tii[37,25] := {17} tii[37,26] := {16} tii[37,27] := {23} tii[37,28] := {22} tii[37,29] := {27} tii[37,30] := {25} tii[37,31] := {29} tii[37,32] := {28} tii[37,33] := {30} tii[37,34] := {32} tii[37,35] := {33} cell#8 , |C| = 13 special orbit = [12, 2] special rep = [[6], [1]] , dim = 7 cell rep = phi[[6, 1],[]]+phi[[6],[1]] TII depth = 1 TII multiplicity polynomial = X+6*X^2 TII subcells: tii[39,1] := {1, 12} tii[39,2] := {2, 10} tii[39,3] := {0, 7} tii[39,4] := {3, 4} tii[39,5] := {5, 6} tii[39,6] := {8, 9} tii[39,7] := {11} cell#9 , |C| = 35 special orbit = [10, 4] special rep = [[5], [2]] , dim = 21 cell rep = phi[[5, 2],[]]+phi[[5],[2]] TII depth = 1 TII multiplicity polynomial = 7*X+14*X^2 TII subcells: tii[38,1] := {1, 15} tii[38,2] := {11, 12} tii[38,3] := {24, 25} tii[38,4] := {30, 31} tii[38,5] := {33} tii[38,6] := {34} tii[38,7] := {0, 8} tii[38,8] := {2, 3} tii[38,9] := {6, 7} tii[38,10] := {13, 14} tii[38,11] := {20} tii[38,12] := {4, 5} tii[38,13] := {9, 10} tii[38,14] := {16, 17} tii[38,15] := {21} tii[38,16] := {18, 19} tii[38,17] := {22, 23} tii[38,18] := {26} tii[38,19] := {27, 28} tii[38,20] := {29} tii[38,21] := {32} cell#10 , |C| = 35 special orbit = [10, 2, 2] special rep = [[5, 1], [1]] , dim = 35 cell rep = phi[[5, 1],[1]] TII depth = 5 TII multiplicity polynomial = 35*X TII subcells: tii[37,1] := {30} tii[37,2] := {34} tii[37,3] := {33} tii[37,4] := {32} tii[37,5] := {31} tii[37,6] := {0} tii[37,7] := {25} tii[37,8] := {1} tii[37,9] := {24} tii[37,10] := {2} tii[37,11] := {19} tii[37,12] := {4} tii[37,13] := {15} tii[37,14] := {6} tii[37,15] := {11} tii[37,16] := {3} tii[37,17] := {5} tii[37,18] := {29} tii[37,19] := {7} tii[37,20] := {23} tii[37,21] := {9} tii[37,22] := {18} tii[37,23] := {14} tii[37,24] := {8} tii[37,25] := {10} tii[37,26] := {28} tii[37,27] := {12} tii[37,28] := {22} tii[37,29] := {17} tii[37,30] := {13} tii[37,31] := {16} tii[37,32] := {27} tii[37,33] := {21} tii[37,34] := {20} tii[37,35] := {26} cell#11 , |C| = 35 special orbit = [10, 2, 2] special rep = [[5, 1], [1]] , dim = 35 cell rep = phi[[5, 1],[1]] TII depth = 5 TII multiplicity polynomial = 35*X TII subcells: tii[37,1] := {20} tii[37,2] := {9} tii[37,3] := {24} tii[37,4] := {31} tii[37,5] := {34} tii[37,6] := {6} tii[37,7] := {13} tii[37,8] := {1} tii[37,9] := {4} tii[37,10] := {5} tii[37,11] := {11} tii[37,12] := {12} tii[37,13] := {18} tii[37,14] := {19} tii[37,15] := {26} tii[37,16] := {0} tii[37,17] := {3} tii[37,18] := {2} tii[37,19] := {8} tii[37,20] := {7} tii[37,21] := {15} tii[37,22] := {14} tii[37,23] := {21} tii[37,24] := {10} tii[37,25] := {17} tii[37,26] := {16} tii[37,27] := {23} tii[37,28] := {22} tii[37,29] := {27} tii[37,30] := {25} tii[37,31] := {29} tii[37,32] := {28} tii[37,33] := {30} tii[37,34] := {32} tii[37,35] := {33} cell#12 , |C| = 35 special orbit = [10, 2, 2] special rep = [[5, 1], [1]] , dim = 35 cell rep = phi[[5, 1],[1]] TII depth = 5 TII multiplicity polynomial = 35*X TII subcells: tii[37,1] := {30} tii[37,2] := {34} tii[37,3] := {33} tii[37,4] := {32} tii[37,5] := {31} tii[37,6] := {0} tii[37,7] := {25} tii[37,8] := {1} tii[37,9] := {24} tii[37,10] := {2} tii[37,11] := {19} tii[37,12] := {4} tii[37,13] := {15} tii[37,14] := {6} tii[37,15] := {11} tii[37,16] := {3} tii[37,17] := {5} tii[37,18] := {29} tii[37,19] := {7} tii[37,20] := {23} tii[37,21] := {9} tii[37,22] := {18} tii[37,23] := {14} tii[37,24] := {8} tii[37,25] := {10} tii[37,26] := {28} tii[37,27] := {12} tii[37,28] := {22} tii[37,29] := {17} tii[37,30] := {13} tii[37,31] := {16} tii[37,32] := {27} tii[37,33] := {21} tii[37,34] := {20} tii[37,35] := {26} cell#13 , |C| = 35 special orbit = [10, 2, 2] special rep = [[5, 1], [1]] , dim = 35 cell rep = phi[[5, 1],[1]] TII depth = 5 TII multiplicity polynomial = 35*X TII subcells: tii[37,1] := {34} tii[37,2] := {28} tii[37,3] := {7} tii[37,4] := {24} tii[37,5] := {33} tii[37,6] := {12} tii[37,7] := {32} tii[37,8] := {13} tii[37,9] := {29} tii[37,10] := {11} tii[37,11] := {20} tii[37,12] := {21} tii[37,13] := {26} tii[37,14] := {27} tii[37,15] := {31} tii[37,16] := {4} tii[37,17] := {3} tii[37,18] := {19} tii[37,19] := {10} tii[37,20] := {9} tii[37,21] := {18} tii[37,22] := {17} tii[37,23] := {23} tii[37,24] := {0} tii[37,25] := {2} tii[37,26] := {1} tii[37,27] := {6} tii[37,28] := {5} tii[37,29] := {14} tii[37,30] := {8} tii[37,31] := {16} tii[37,32] := {15} tii[37,33] := {22} tii[37,34] := {25} tii[37,35] := {30} cell#14 , |C| = 147 special orbit = [8, 4, 2] special rep = [[4, 1], [2]] , dim = 84 cell rep = phi[[4, 2],[1]]+phi[[4, 1],[2]] TII depth = 4 TII multiplicity polynomial = 21*X+63*X^2 TII subcells: tii[34,1] := {43, 142} tii[34,2] := {110, 113} tii[34,3] := {140, 141} tii[34,4] := {146} tii[34,5] := {14, 70} tii[34,6] := {53, 54} tii[34,7] := {8, 128} tii[34,8] := {101, 102} tii[34,9] := {34, 90} tii[34,10] := {79, 124} tii[34,11] := {131} tii[34,12] := {139} tii[34,13] := {4, 95} tii[34,14] := {22, 136} tii[34,15] := {3, 105} tii[34,16] := {27, 28} tii[34,17] := {73, 74} tii[34,18] := {10, 129} tii[34,19] := {9, 94} tii[34,20] := {59, 62} tii[34,21] := {103, 104} tii[34,22] := {19, 115} tii[34,23] := {18, 116} tii[34,24] := {117} tii[34,25] := {32, 127} tii[34,26] := {133} tii[34,27] := {51, 52} tii[34,28] := {86, 89} tii[34,29] := {41, 42} tii[34,30] := {99, 100} tii[34,31] := {64, 65} tii[34,32] := {63, 66} tii[34,33] := {122, 123} tii[34,34] := {130} tii[34,35] := {83, 84} tii[34,36] := {138} tii[34,37] := {120, 121} tii[34,38] := {134, 135} tii[34,39] := {111, 112} tii[34,40] := {137} tii[34,41] := {125, 126} tii[34,42] := {144} tii[34,43] := {143} tii[34,44] := {145} tii[34,45] := {11, 45} tii[34,46] := {23, 24} tii[34,47] := {39, 40} tii[34,48] := {58} tii[34,49] := {0, 80} tii[34,50] := {1, 69} tii[34,51] := {2, 114} tii[34,52] := {29, 30} tii[34,53] := {5, 93} tii[34,54] := {6, 92} tii[34,55] := {49, 50} tii[34,56] := {15, 109} tii[34,57] := {72} tii[34,58] := {7, 44} tii[34,59] := {16, 68} tii[34,60] := {17, 67} tii[34,61] := {77, 78} tii[34,62] := {31, 85} tii[34,63] := {98} tii[34,64] := {33, 91} tii[34,65] := {119} tii[34,66] := {55, 108} tii[34,67] := {12, 13} tii[34,68] := {25, 26} tii[34,69] := {46} tii[34,70] := {20, 21} tii[34,71] := {47, 48} tii[34,72] := {36, 37} tii[34,73] := {35, 38} tii[34,74] := {56, 57} tii[34,75] := {71} tii[34,76] := {60, 61} tii[34,77] := {96} tii[34,78] := {81, 82} tii[34,79] := {75, 76} tii[34,80] := {97} tii[34,81] := {87, 88} tii[34,82] := {118} tii[34,83] := {106, 107} tii[34,84] := {132} cell#15 , |C| = 154 special orbit = [8, 2, 2, 2] special rep = [[4, 1], [1, 1]] , dim = 84 cell rep = phi[[4, 1, 1],[1]]+phi[[4, 1],[1, 1]] TII depth = 4 TII multiplicity polynomial = 14*X+70*X^2 TII subcells: tii[32,1] := {5, 142} tii[32,2] := {19, 149} tii[32,3] := {45, 146} tii[32,4] := {71, 145} tii[32,5] := {12, 126} tii[32,6] := {34, 135} tii[32,7] := {15, 108} tii[32,8] := {63, 131} tii[32,9] := {26, 102} tii[32,10] := {93, 130} tii[32,11] := {37, 80} tii[32,12] := {60} tii[32,13] := {49, 141} tii[32,14] := {83, 147} tii[32,15] := {55, 125} tii[32,16] := {112, 144} tii[32,17] := {69, 119} tii[32,18] := {96} tii[32,19] := {103, 151} tii[32,20] := {129, 152} tii[32,21] := {109, 140} tii[32,22] := {134} tii[32,23] := {143, 153} tii[32,24] := {150} tii[32,25] := {0, 23} tii[32,26] := {1, 127} tii[32,27] := {2, 27} tii[32,28] := {3, 122} tii[32,29] := {4, 40} tii[32,30] := {8, 100} tii[32,31] := {9, 54} tii[32,32] := {16, 77} tii[32,33] := {6, 42} tii[32,34] := {7, 88} tii[32,35] := {14, 82} tii[32,36] := {11, 57} tii[32,37] := {10, 138} tii[32,38] := {24, 62} tii[32,39] := {18, 70} tii[32,40] := {17, 120} tii[32,41] := {41} tii[32,42] := {29, 97} tii[32,43] := {20, 73} tii[32,44] := {25, 87} tii[32,45] := {31, 92} tii[32,46] := {36, 81} tii[32,47] := {30, 137} tii[32,48] := {59} tii[32,49] := {43, 116} tii[32,50] := {46, 111} tii[32,51] := {51, 86} tii[32,52] := {78} tii[32,53] := {58, 133} tii[32,54] := {85} tii[32,55] := {13, 28} tii[32,56] := {21, 121} tii[32,57] := {22, 39} tii[32,58] := {32, 99} tii[32,59] := {33, 53} tii[32,60] := {44, 76} tii[32,61] := {35, 56} tii[32,62] := {38, 107} tii[32,63] := {48, 68} tii[32,64] := {47, 118} tii[32,65] := {52, 101} tii[32,66] := {61, 95} tii[32,67] := {75} tii[32,68] := {64, 89} tii[32,69] := {67, 106} tii[32,70] := {98} tii[32,71] := {74, 114} tii[32,72] := {105} tii[32,73] := {50, 72} tii[32,74] := {65, 136} tii[32,75] := {66, 91} tii[32,76] := {79, 115} tii[32,77] := {84, 110} tii[32,78] := {90, 124} tii[32,79] := {94, 132} tii[32,80] := {117} tii[32,81] := {123} tii[32,82] := {104, 128} tii[32,83] := {113, 148} tii[32,84] := {139} cell#16 , |C| = 35 special orbit = [10, 2, 2] special rep = [[5, 1], [1]] , dim = 35 cell rep = phi[[5, 1],[1]] TII depth = 5 TII multiplicity polynomial = 35*X TII subcells: tii[37,1] := {34} tii[37,2] := {28} tii[37,3] := {7} tii[37,4] := {24} tii[37,5] := {33} tii[37,6] := {12} tii[37,7] := {32} tii[37,8] := {13} tii[37,9] := {29} tii[37,10] := {11} tii[37,11] := {20} tii[37,12] := {21} tii[37,13] := {26} tii[37,14] := {27} tii[37,15] := {31} tii[37,16] := {4} tii[37,17] := {3} tii[37,18] := {19} tii[37,19] := {10} tii[37,20] := {9} tii[37,21] := {18} tii[37,22] := {17} tii[37,23] := {23} tii[37,24] := {0} tii[37,25] := {2} tii[37,26] := {1} tii[37,27] := {6} tii[37,28] := {5} tii[37,29] := {14} tii[37,30] := {8} tii[37,31] := {16} tii[37,32] := {15} tii[37,33] := {22} tii[37,34] := {25} tii[37,35] := {30} cell#17 , |C| = 147 special orbit = [8, 4, 2] special rep = [[4, 1], [2]] , dim = 84 cell rep = phi[[4, 2],[1]]+phi[[4, 1],[2]] TII depth = 4 TII multiplicity polynomial = 21*X+63*X^2 TII subcells: tii[34,1] := {43, 142} tii[34,2] := {110, 113} tii[34,3] := {140, 141} tii[34,4] := {146} tii[34,5] := {14, 70} tii[34,6] := {53, 54} tii[34,7] := {8, 128} tii[34,8] := {101, 102} tii[34,9] := {34, 90} tii[34,10] := {79, 124} tii[34,11] := {131} tii[34,12] := {139} tii[34,13] := {4, 95} tii[34,14] := {22, 136} tii[34,15] := {3, 105} tii[34,16] := {27, 28} tii[34,17] := {73, 74} tii[34,18] := {10, 129} tii[34,19] := {9, 94} tii[34,20] := {59, 62} tii[34,21] := {103, 104} tii[34,22] := {19, 115} tii[34,23] := {18, 116} tii[34,24] := {117} tii[34,25] := {32, 127} tii[34,26] := {133} tii[34,27] := {51, 52} tii[34,28] := {86, 89} tii[34,29] := {41, 42} tii[34,30] := {99, 100} tii[34,31] := {64, 65} tii[34,32] := {63, 66} tii[34,33] := {122, 123} tii[34,34] := {130} tii[34,35] := {83, 84} tii[34,36] := {138} tii[34,37] := {120, 121} tii[34,38] := {134, 135} tii[34,39] := {111, 112} tii[34,40] := {137} tii[34,41] := {125, 126} tii[34,42] := {144} tii[34,43] := {143} tii[34,44] := {145} tii[34,45] := {11, 45} tii[34,46] := {23, 24} tii[34,47] := {39, 40} tii[34,48] := {58} tii[34,49] := {0, 80} tii[34,50] := {1, 69} tii[34,51] := {2, 114} tii[34,52] := {29, 30} tii[34,53] := {5, 93} tii[34,54] := {6, 92} tii[34,55] := {49, 50} tii[34,56] := {15, 109} tii[34,57] := {72} tii[34,58] := {7, 44} tii[34,59] := {16, 68} tii[34,60] := {17, 67} tii[34,61] := {77, 78} tii[34,62] := {31, 85} tii[34,63] := {98} tii[34,64] := {33, 91} tii[34,65] := {119} tii[34,66] := {55, 108} tii[34,67] := {12, 13} tii[34,68] := {25, 26} tii[34,69] := {46} tii[34,70] := {20, 21} tii[34,71] := {47, 48} tii[34,72] := {36, 37} tii[34,73] := {35, 38} tii[34,74] := {56, 57} tii[34,75] := {71} tii[34,76] := {60, 61} tii[34,77] := {96} tii[34,78] := {81, 82} tii[34,79] := {75, 76} tii[34,80] := {97} tii[34,81] := {87, 88} tii[34,82] := {118} tii[34,83] := {106, 107} tii[34,84] := {132} cell#18 , |C| = 154 special orbit = [8, 2, 2, 2] special rep = [[4, 1], [1, 1]] , dim = 84 cell rep = phi[[4, 1, 1],[1]]+phi[[4, 1],[1, 1]] TII depth = 4 TII multiplicity polynomial = 14*X+70*X^2 TII subcells: tii[32,1] := {5, 142} tii[32,2] := {19, 149} tii[32,3] := {45, 146} tii[32,4] := {71, 145} tii[32,5] := {12, 126} tii[32,6] := {34, 135} tii[32,7] := {15, 108} tii[32,8] := {63, 131} tii[32,9] := {26, 102} tii[32,10] := {93, 130} tii[32,11] := {37, 80} tii[32,12] := {60} tii[32,13] := {49, 141} tii[32,14] := {83, 147} tii[32,15] := {55, 125} tii[32,16] := {112, 144} tii[32,17] := {69, 119} tii[32,18] := {96} tii[32,19] := {103, 151} tii[32,20] := {129, 152} tii[32,21] := {109, 140} tii[32,22] := {134} tii[32,23] := {143, 153} tii[32,24] := {150} tii[32,25] := {0, 23} tii[32,26] := {1, 127} tii[32,27] := {2, 27} tii[32,28] := {3, 122} tii[32,29] := {4, 40} tii[32,30] := {8, 100} tii[32,31] := {9, 54} tii[32,32] := {16, 77} tii[32,33] := {6, 42} tii[32,34] := {7, 88} tii[32,35] := {14, 82} tii[32,36] := {11, 57} tii[32,37] := {10, 138} tii[32,38] := {24, 62} tii[32,39] := {18, 70} tii[32,40] := {17, 120} tii[32,41] := {41} tii[32,42] := {29, 97} tii[32,43] := {20, 73} tii[32,44] := {25, 87} tii[32,45] := {31, 92} tii[32,46] := {36, 81} tii[32,47] := {30, 137} tii[32,48] := {59} tii[32,49] := {43, 116} tii[32,50] := {46, 111} tii[32,51] := {51, 86} tii[32,52] := {78} tii[32,53] := {58, 133} tii[32,54] := {85} tii[32,55] := {13, 28} tii[32,56] := {21, 121} tii[32,57] := {22, 39} tii[32,58] := {32, 99} tii[32,59] := {33, 53} tii[32,60] := {44, 76} tii[32,61] := {35, 56} tii[32,62] := {38, 107} tii[32,63] := {48, 68} tii[32,64] := {47, 118} tii[32,65] := {52, 101} tii[32,66] := {61, 95} tii[32,67] := {75} tii[32,68] := {64, 89} tii[32,69] := {67, 106} tii[32,70] := {98} tii[32,71] := {74, 114} tii[32,72] := {105} tii[32,73] := {50, 72} tii[32,74] := {65, 136} tii[32,75] := {66, 91} tii[32,76] := {79, 115} tii[32,77] := {84, 110} tii[32,78] := {90, 124} tii[32,79] := {94, 132} tii[32,80] := {117} tii[32,81] := {123} tii[32,82] := {104, 128} tii[32,83] := {113, 148} tii[32,84] := {139} cell#19 , |C| = 35 special orbit = [10, 2, 2] special rep = [[5, 1], [1]] , dim = 35 cell rep = phi[[5, 1],[1]] TII depth = 5 TII multiplicity polynomial = 35*X TII subcells: tii[37,1] := {34} tii[37,2] := {31} tii[37,3] := {30} tii[37,4] := {29} tii[37,5] := {28} tii[37,6] := {0} tii[37,7] := {33} tii[37,8] := {3} tii[37,9] := {32} tii[37,10] := {6} tii[37,11] := {26} tii[37,12] := {9} tii[37,13] := {21} tii[37,14] := {11} tii[37,15] := {16} tii[37,16] := {1} tii[37,17] := {2} tii[37,18] := {27} tii[37,19] := {4} tii[37,20] := {22} tii[37,21] := {7} tii[37,22] := {17} tii[37,23] := {13} tii[37,24] := {5} tii[37,25] := {8} tii[37,26] := {25} tii[37,27] := {10} tii[37,28] := {20} tii[37,29] := {15} tii[37,30] := {12} tii[37,31] := {14} tii[37,32] := {24} tii[37,33] := {19} tii[37,34] := {18} tii[37,35] := {23} cell#20 , |C| = 35 special orbit = [10, 2, 2] special rep = [[5, 1], [1]] , dim = 35 cell rep = phi[[5, 1],[1]] TII depth = 5 TII multiplicity polynomial = 35*X TII subcells: tii[37,1] := {34} tii[37,2] := {31} tii[37,3] := {30} tii[37,4] := {29} tii[37,5] := {28} tii[37,6] := {0} tii[37,7] := {33} tii[37,8] := {3} tii[37,9] := {32} tii[37,10] := {6} tii[37,11] := {26} tii[37,12] := {9} tii[37,13] := {21} tii[37,14] := {11} tii[37,15] := {16} tii[37,16] := {1} tii[37,17] := {2} tii[37,18] := {27} tii[37,19] := {4} tii[37,20] := {22} tii[37,21] := {7} tii[37,22] := {17} tii[37,23] := {13} tii[37,24] := {5} tii[37,25] := {8} tii[37,26] := {25} tii[37,27] := {10} tii[37,28] := {20} tii[37,29] := {15} tii[37,30] := {12} tii[37,31] := {14} tii[37,32] := {24} tii[37,33] := {19} tii[37,34] := {18} tii[37,35] := {23} cell#21 , |C| = 147 special orbit = [8, 4, 2] special rep = [[4, 1], [2]] , dim = 84 cell rep = phi[[4, 2],[1]]+phi[[4, 1],[2]] TII depth = 4 TII multiplicity polynomial = 21*X+63*X^2 TII subcells: tii[34,1] := {51, 139} tii[34,2] := {97, 143} tii[34,3] := {133, 145} tii[34,4] := {146} tii[34,5] := {8, 9} tii[34,6] := {31, 32} tii[34,7] := {14, 120} tii[34,8] := {61, 62} tii[34,9] := {42, 117} tii[34,10] := {75, 116} tii[34,11] := {92} tii[34,12] := {112} tii[34,13] := {20, 21} tii[34,14] := {33, 131} tii[34,15] := {7, 38} tii[34,16] := {53, 54} tii[34,17] := {80, 81} tii[34,18] := {16, 122} tii[34,19] := {17, 56} tii[34,20] := {63, 129} tii[34,21] := {93, 128} tii[34,22] := {27, 106} tii[34,23] := {28, 66} tii[34,24] := {108} tii[34,25] := {40, 90} tii[34,26] := {126} tii[34,27] := {71, 72} tii[34,28] := {82, 137} tii[34,29] := {52, 88} tii[34,30] := {99, 100} tii[34,31] := {68, 102} tii[34,32] := {67, 132} tii[34,33] := {109, 136} tii[34,34] := {123} tii[34,35] := {78, 119} tii[34,36] := {135} tii[34,37] := {113, 114} tii[34,38] := {124, 142} tii[34,39] := {98, 127} tii[34,40] := {134} tii[34,41] := {110, 138} tii[34,42] := {141} tii[34,43] := {140} tii[34,44] := {144} tii[34,45] := {1, 2} tii[34,46] := {5, 6} tii[34,47] := {12, 13} tii[34,48] := {24} tii[34,49] := {0, 22} tii[34,50] := {4, 35} tii[34,51] := {3, 107} tii[34,52] := {18, 19} tii[34,53] := {11, 44} tii[34,54] := {10, 91} tii[34,55] := {29, 30} tii[34,56] := {23, 74} tii[34,57] := {41} tii[34,58] := {15, 55} tii[34,59] := {26, 65} tii[34,60] := {25, 105} tii[34,61] := {45, 46} tii[34,62] := {39, 89} tii[34,63] := {58} tii[34,64] := {43, 84} tii[34,65] := {76} tii[34,66] := {57, 103} tii[34,67] := {36, 37} tii[34,68] := {49, 50} tii[34,69] := {60} tii[34,70] := {34, 73} tii[34,71] := {69, 70} tii[34,72] := {48, 85} tii[34,73] := {47, 121} tii[34,74] := {59, 104} tii[34,75] := {79} tii[34,76] := {64, 101} tii[34,77] := {94} tii[34,78] := {77, 118} tii[34,79] := {86, 87} tii[34,80] := {96} tii[34,81] := {83, 115} tii[34,82] := {111} tii[34,83] := {95, 130} tii[34,84] := {125} cell#22 , |C| = 147 special orbit = [8, 4, 2] special rep = [[4, 1], [2]] , dim = 84 cell rep = phi[[4, 2],[1]]+phi[[4, 1],[2]] TII depth = 4 TII multiplicity polynomial = 21*X+63*X^2 TII subcells: tii[34,1] := {51, 139} tii[34,2] := {97, 143} tii[34,3] := {133, 145} tii[34,4] := {146} tii[34,5] := {8, 9} tii[34,6] := {31, 32} tii[34,7] := {14, 120} tii[34,8] := {61, 62} tii[34,9] := {42, 117} tii[34,10] := {75, 116} tii[34,11] := {92} tii[34,12] := {112} tii[34,13] := {20, 21} tii[34,14] := {33, 131} tii[34,15] := {7, 38} tii[34,16] := {53, 54} tii[34,17] := {80, 81} tii[34,18] := {16, 122} tii[34,19] := {17, 56} tii[34,20] := {63, 129} tii[34,21] := {93, 128} tii[34,22] := {27, 106} tii[34,23] := {28, 66} tii[34,24] := {108} tii[34,25] := {40, 90} tii[34,26] := {126} tii[34,27] := {71, 72} tii[34,28] := {82, 137} tii[34,29] := {52, 88} tii[34,30] := {99, 100} tii[34,31] := {68, 102} tii[34,32] := {67, 132} tii[34,33] := {109, 136} tii[34,34] := {123} tii[34,35] := {78, 119} tii[34,36] := {135} tii[34,37] := {113, 114} tii[34,38] := {124, 142} tii[34,39] := {98, 127} tii[34,40] := {134} tii[34,41] := {110, 138} tii[34,42] := {141} tii[34,43] := {140} tii[34,44] := {144} tii[34,45] := {1, 2} tii[34,46] := {5, 6} tii[34,47] := {12, 13} tii[34,48] := {24} tii[34,49] := {0, 22} tii[34,50] := {4, 35} tii[34,51] := {3, 107} tii[34,52] := {18, 19} tii[34,53] := {11, 44} tii[34,54] := {10, 91} tii[34,55] := {29, 30} tii[34,56] := {23, 74} tii[34,57] := {41} tii[34,58] := {15, 55} tii[34,59] := {26, 65} tii[34,60] := {25, 105} tii[34,61] := {45, 46} tii[34,62] := {39, 89} tii[34,63] := {58} tii[34,64] := {43, 84} tii[34,65] := {76} tii[34,66] := {57, 103} tii[34,67] := {36, 37} tii[34,68] := {49, 50} tii[34,69] := {60} tii[34,70] := {34, 73} tii[34,71] := {69, 70} tii[34,72] := {48, 85} tii[34,73] := {47, 121} tii[34,74] := {59, 104} tii[34,75] := {79} tii[34,76] := {64, 101} tii[34,77] := {94} tii[34,78] := {77, 118} tii[34,79] := {86, 87} tii[34,80] := {96} tii[34,81] := {83, 115} tii[34,82] := {111} tii[34,83] := {95, 130} tii[34,84] := {125} cell#23 , |C| = 36 special orbit = [10, 2, 1, 1] special rep = [[5], [1, 1]] , dim = 21 cell rep = phi[[5, 1, 1],[]]+phi[[5],[1, 1]] TII depth = 1 TII multiplicity polynomial = 6*X+15*X^2 TII subcells: tii[36,1] := {8, 35} tii[36,2] := {4, 34} tii[36,3] := {9, 33} tii[36,4] := {12, 31} tii[36,5] := {15, 28} tii[36,6] := {19} tii[36,7] := {1, 32} tii[36,8] := {3, 30} tii[36,9] := {7, 29} tii[36,10] := {11, 21} tii[36,11] := {17} tii[36,12] := {0, 27} tii[36,13] := {2, 23} tii[36,14] := {5, 18} tii[36,15] := {13} tii[36,16] := {6, 26} tii[36,17] := {10, 22} tii[36,18] := {16} tii[36,19] := {14, 25} tii[36,20] := {20} tii[36,21] := {24} cell#24 , |C| = 36 special orbit = [10, 2, 1, 1] special rep = [[5], [1, 1]] , dim = 21 cell rep = phi[[5, 1, 1],[]]+phi[[5],[1, 1]] TII depth = 1 TII multiplicity polynomial = 6*X+15*X^2 TII subcells: tii[36,1] := {8, 35} tii[36,2] := {4, 34} tii[36,3] := {9, 33} tii[36,4] := {12, 31} tii[36,5] := {15, 28} tii[36,6] := {19} tii[36,7] := {1, 32} tii[36,8] := {3, 30} tii[36,9] := {7, 29} tii[36,10] := {11, 21} tii[36,11] := {17} tii[36,12] := {0, 27} tii[36,13] := {2, 23} tii[36,14] := {5, 18} tii[36,15] := {13} tii[36,16] := {6, 26} tii[36,17] := {10, 22} tii[36,18] := {16} tii[36,19] := {14, 25} tii[36,20] := {20} tii[36,21] := {24} cell#25 , |C| = 35 special orbit = [10, 2, 2] special rep = [[5, 1], [1]] , dim = 35 cell rep = phi[[5, 1],[1]] TII depth = 5 TII multiplicity polynomial = 35*X TII subcells: tii[37,1] := {34} tii[37,2] := {32} tii[37,3] := {28} tii[37,4] := {22} tii[37,5] := {14} tii[37,6] := {1} tii[37,7] := {33} tii[37,8] := {6} tii[37,9] := {31} tii[37,10] := {11} tii[37,11] := {29} tii[37,12] := {16} tii[37,13] := {26} tii[37,14] := {19} tii[37,15] := {23} tii[37,16] := {0} tii[37,17] := {5} tii[37,18] := {30} tii[37,19] := {10} tii[37,20] := {27} tii[37,21] := {15} tii[37,22] := {24} tii[37,23] := {20} tii[37,24] := {4} tii[37,25] := {8} tii[37,26] := {25} tii[37,27] := {12} tii[37,28] := {21} tii[37,29] := {17} tii[37,30] := {3} tii[37,31] := {7} tii[37,32] := {18} tii[37,33] := {13} tii[37,34] := {2} tii[37,35] := {9} cell#26 , |C| = 36 special orbit = [10, 2, 1, 1] special rep = [[5], [1, 1]] , dim = 21 cell rep = phi[[5, 1, 1],[]]+phi[[5],[1, 1]] TII depth = 1 TII multiplicity polynomial = 6*X+15*X^2 TII subcells: tii[36,1] := {3, 23} tii[36,2] := {12, 13} tii[36,3] := {21, 22} tii[36,4] := {29, 30} tii[36,5] := {33, 34} tii[36,6] := {35} tii[36,7] := {1, 2} tii[36,8] := {10, 11} tii[36,9] := {19, 20} tii[36,10] := {27, 28} tii[36,11] := {32} tii[36,12] := {8, 9} tii[36,13] := {17, 18} tii[36,14] := {25, 26} tii[36,15] := {31} tii[36,16] := {6, 7} tii[36,17] := {15, 16} tii[36,18] := {24} tii[36,19] := {4, 5} tii[36,20] := {14} tii[36,21] := {0} cell#27 , |C| = 154 special orbit = [8, 2, 2, 2] special rep = [[4, 1], [1, 1]] , dim = 84 cell rep = phi[[4, 1, 1],[1]]+phi[[4, 1],[1, 1]] TII depth = 4 TII multiplicity polynomial = 14*X+70*X^2 TII subcells: tii[32,1] := {38, 92} tii[32,2] := {36, 129} tii[32,3] := {33, 147} tii[32,4] := {32, 153} tii[32,5] := {53, 88} tii[32,6] := {49, 123} tii[32,7] := {69, 70} tii[32,8] := {45, 144} tii[32,9] := {86, 87} tii[32,10] := {42, 152} tii[32,11] := {103, 104} tii[32,12] := {116} tii[32,13] := {68, 105} tii[32,14] := {62, 134} tii[32,15] := {84, 85} tii[32,16] := {57, 149} tii[32,17] := {101, 102} tii[32,18] := {115} tii[32,19] := {83, 117} tii[32,20] := {76, 141} tii[32,21] := {99, 100} tii[32,22] := {114} tii[32,23] := {98, 128} tii[32,24] := {113} tii[32,25] := {0, 55} tii[32,26] := {30, 71} tii[32,27] := {1, 72} tii[32,28] := {22, 90} tii[32,29] := {2, 91} tii[32,30] := {15, 109} tii[32,31] := {4, 110} tii[32,32] := {10, 125} tii[32,33] := {3, 93} tii[32,34] := {50, 51} tii[32,35] := {65, 66} tii[32,36] := {5, 112} tii[32,37] := {29, 111} tii[32,38] := {81, 82} tii[32,39] := {7, 127} tii[32,40] := {21, 126} tii[32,41] := {97} tii[32,42] := {14, 138} tii[32,43] := {8, 130} tii[32,44] := {46, 47} tii[32,45] := {11, 140} tii[32,46] := {60, 61} tii[32,47] := {27, 139} tii[32,48] := {75} tii[32,49] := {19, 146} tii[32,50] := {16, 148} tii[32,51] := {43, 44} tii[32,52] := {56} tii[32,53] := {25, 151} tii[32,54] := {40} tii[32,55] := {6, 89} tii[32,56] := {39, 107} tii[32,57] := {9, 108} tii[32,58] := {28, 121} tii[32,59] := {12, 122} tii[32,60] := {20, 133} tii[32,61] := {13, 124} tii[32,62] := {63, 64} tii[32,63] := {17, 137} tii[32,64] := {37, 136} tii[32,65] := {79, 80} tii[32,66] := {26, 143} tii[32,67] := {96} tii[32,68] := {23, 145} tii[32,69] := {58, 59} tii[32,70] := {74} tii[32,71] := {34, 150} tii[32,72] := {54} tii[32,73] := {18, 106} tii[32,74] := {52, 119} tii[32,75] := {24, 120} tii[32,76] := {35, 132} tii[32,77] := {31, 135} tii[32,78] := {77, 78} tii[32,79] := {48, 142} tii[32,80] := {95} tii[32,81] := {73} tii[32,82] := {41, 118} tii[32,83] := {67, 131} tii[32,84] := {94} cell#28 , |C| = 36 special orbit = [10, 2, 1, 1] special rep = [[5], [1, 1]] , dim = 21 cell rep = phi[[5, 1, 1],[]]+phi[[5],[1, 1]] TII depth = 1 TII multiplicity polynomial = 6*X+15*X^2 TII subcells: tii[36,1] := {3, 23} tii[36,2] := {12, 13} tii[36,3] := {21, 22} tii[36,4] := {29, 30} tii[36,5] := {33, 34} tii[36,6] := {35} tii[36,7] := {1, 2} tii[36,8] := {10, 11} tii[36,9] := {19, 20} tii[36,10] := {27, 28} tii[36,11] := {32} tii[36,12] := {8, 9} tii[36,13] := {17, 18} tii[36,14] := {25, 26} tii[36,15] := {31} tii[36,16] := {6, 7} tii[36,17] := {15, 16} tii[36,18] := {24} tii[36,19] := {4, 5} tii[36,20] := {14} tii[36,21] := {0} cell#29 , |C| = 154 special orbit = [8, 2, 2, 2] special rep = [[4, 1], [1, 1]] , dim = 84 cell rep = phi[[4, 1, 1],[1]]+phi[[4, 1],[1, 1]] TII depth = 4 TII multiplicity polynomial = 14*X+70*X^2 TII subcells: tii[32,1] := {38, 92} tii[32,2] := {36, 129} tii[32,3] := {33, 147} tii[32,4] := {32, 153} tii[32,5] := {53, 88} tii[32,6] := {49, 123} tii[32,7] := {69, 70} tii[32,8] := {45, 144} tii[32,9] := {86, 87} tii[32,10] := {42, 152} tii[32,11] := {103, 104} tii[32,12] := {116} tii[32,13] := {68, 105} tii[32,14] := {62, 134} tii[32,15] := {84, 85} tii[32,16] := {57, 149} tii[32,17] := {101, 102} tii[32,18] := {115} tii[32,19] := {83, 117} tii[32,20] := {76, 141} tii[32,21] := {99, 100} tii[32,22] := {114} tii[32,23] := {98, 128} tii[32,24] := {113} tii[32,25] := {0, 55} tii[32,26] := {30, 71} tii[32,27] := {1, 72} tii[32,28] := {22, 90} tii[32,29] := {2, 91} tii[32,30] := {15, 109} tii[32,31] := {4, 110} tii[32,32] := {10, 125} tii[32,33] := {3, 93} tii[32,34] := {50, 51} tii[32,35] := {65, 66} tii[32,36] := {5, 112} tii[32,37] := {29, 111} tii[32,38] := {81, 82} tii[32,39] := {7, 127} tii[32,40] := {21, 126} tii[32,41] := {97} tii[32,42] := {14, 138} tii[32,43] := {8, 130} tii[32,44] := {46, 47} tii[32,45] := {11, 140} tii[32,46] := {60, 61} tii[32,47] := {27, 139} tii[32,48] := {75} tii[32,49] := {19, 146} tii[32,50] := {16, 148} tii[32,51] := {43, 44} tii[32,52] := {56} tii[32,53] := {25, 151} tii[32,54] := {40} tii[32,55] := {6, 89} tii[32,56] := {39, 107} tii[32,57] := {9, 108} tii[32,58] := {28, 121} tii[32,59] := {12, 122} tii[32,60] := {20, 133} tii[32,61] := {13, 124} tii[32,62] := {63, 64} tii[32,63] := {17, 137} tii[32,64] := {37, 136} tii[32,65] := {79, 80} tii[32,66] := {26, 143} tii[32,67] := {96} tii[32,68] := {23, 145} tii[32,69] := {58, 59} tii[32,70] := {74} tii[32,71] := {34, 150} tii[32,72] := {54} tii[32,73] := {18, 106} tii[32,74] := {52, 119} tii[32,75] := {24, 120} tii[32,76] := {35, 132} tii[32,77] := {31, 135} tii[32,78] := {77, 78} tii[32,79] := {48, 142} tii[32,80] := {95} tii[32,81] := {73} tii[32,82] := {41, 118} tii[32,83] := {67, 131} tii[32,84] := {94} cell#30 , |C| = 105 special orbit = [8, 4, 1, 1] special rep = [[4], [2, 1]] , dim = 70 cell rep = phi[[4, 2, 1],[]]+phi[[4],[2, 1]] TII depth = 2 TII multiplicity polynomial = 35*X+35*X^2 TII subcells: tii[33,1] := {14, 88} tii[33,2] := {30, 95} tii[33,3] := {59, 92} tii[33,4] := {90} tii[33,5] := {100} tii[33,6] := {6, 73} tii[33,7] := {19, 83} tii[33,8] := {2, 57} tii[33,9] := {42, 79} tii[33,10] := {5, 53} tii[33,11] := {9, 35} tii[33,12] := {76} tii[33,13] := {23} tii[33,14] := {94} tii[33,15] := {29, 87} tii[33,16] := {58, 93} tii[33,17] := {20, 72} tii[33,18] := {27, 67} tii[33,19] := {89} tii[33,20] := {47} tii[33,21] := {99} tii[33,22] := {75, 97} tii[33,23] := {60, 86} tii[33,24] := {98} tii[33,25] := {80} tii[33,26] := {102} tii[33,27] := {101} tii[33,28] := {96} tii[33,29] := {103} tii[33,30] := {104} tii[33,31] := {7, 74} tii[33,32] := {12, 69} tii[33,33] := {18, 51} tii[33,34] := {33} tii[33,35] := {0, 41} tii[33,36] := {1, 37} tii[33,37] := {21, 84} tii[33,38] := {3, 24} tii[33,39] := {28, 66} tii[33,40] := {13} tii[33,41] := {48} tii[33,42] := {4, 40} tii[33,43] := {8, 36} tii[33,44] := {45, 81} tii[33,45] := {22} tii[33,46] := {63} tii[33,47] := {15, 39} tii[33,48] := {78} tii[33,49] := {34} tii[33,50] := {38} tii[33,51] := {11, 68} tii[33,52] := {17, 50} tii[33,53] := {32} tii[33,54] := {10, 56} tii[33,55] := {26, 65} tii[33,56] := {16, 52} tii[33,57] := {31} tii[33,58] := {46} tii[33,59] := {25, 55} tii[33,60] := {61} tii[33,61] := {49} tii[33,62] := {54} tii[33,63] := {44, 82} tii[33,64] := {62} tii[33,65] := {43, 71} tii[33,66] := {77} tii[33,67] := {64} tii[33,68] := {70} tii[33,69] := {91} tii[33,70] := {85} cell#31 , |C| = 154 special orbit = [8, 2, 2, 2] special rep = [[4, 1], [1, 1]] , dim = 84 cell rep = phi[[4, 1, 1],[1]]+phi[[4, 1],[1, 1]] TII depth = 4 TII multiplicity polynomial = 14*X+70*X^2 TII subcells: tii[32,1] := {53, 152} tii[32,2] := {26, 141} tii[32,3] := {65, 138} tii[32,4] := {97, 137} tii[32,5] := {76, 153} tii[32,6] := {8, 125} tii[32,7] := {67, 151} tii[32,8] := {40, 120} tii[32,9] := {77, 147} tii[32,10] := {75, 119} tii[32,11] := {95, 142} tii[32,12] := {124} tii[32,13] := {24, 133} tii[32,14] := {63, 139} tii[32,15] := {33, 113} tii[32,16] := {96, 136} tii[32,17] := {50, 107} tii[32,18] := {81} tii[32,19] := {87, 145} tii[32,20] := {118, 148} tii[32,21] := {92, 132} tii[32,22] := {123} tii[32,23] := {135, 150} tii[32,24] := {144} tii[32,25] := {16, 17} tii[32,26] := {32, 149} tii[32,27] := {4, 37} tii[32,28] := {14, 143} tii[32,29] := {15, 57} tii[32,30] := {30, 129} tii[32,31] := {31, 74} tii[32,32] := {47, 103} tii[32,33] := {3, 18} tii[32,34] := {46, 146} tii[32,35] := {54, 134} tii[32,36] := {11, 36} tii[32,37] := {10, 130} tii[32,38] := {73, 128} tii[32,39] := {23, 52} tii[32,40] := {22, 108} tii[32,41] := {102} tii[32,42] := {39, 83} tii[32,43] := {27, 56} tii[32,44] := {35, 116} tii[32,45] := {45, 72} tii[32,46] := {51, 109} tii[32,47] := {44, 127} tii[32,48] := {82} tii[32,49] := {62, 101} tii[32,50] := {66, 94} tii[32,51] := {70, 115} tii[32,52] := {105} tii[32,53] := {79, 122} tii[32,54] := {114} tii[32,55] := {0, 5} tii[32,56] := {1, 110} tii[32,57] := {2, 13} tii[32,58] := {6, 85} tii[32,59] := {7, 29} tii[32,60] := {19, 60} tii[32,61] := {9, 34} tii[32,62] := {12, 91} tii[32,63] := {21, 49} tii[32,64] := {20, 106} tii[32,65] := {28, 86} tii[32,66] := {38, 80} tii[32,67] := {59} tii[32,68] := {41, 68} tii[32,69] := {48, 90} tii[32,70] := {84} tii[32,71] := {58, 99} tii[32,72] := {89} tii[32,73] := {25, 55} tii[32,74] := {42, 126} tii[32,75] := {43, 71} tii[32,76] := {61, 100} tii[32,77] := {64, 93} tii[32,78] := {69, 112} tii[32,79] := {78, 121} tii[32,80] := {104} tii[32,81] := {111} tii[32,82] := {88, 117} tii[32,83] := {98, 140} tii[32,84] := {131} cell#32 , |C| = 154 special orbit = [8, 2, 2, 2] special rep = [[4, 1], [1, 1]] , dim = 84 cell rep = phi[[4, 1, 1],[1]]+phi[[4, 1],[1, 1]] TII depth = 4 TII multiplicity polynomial = 14*X+70*X^2 TII subcells: tii[32,1] := {53, 152} tii[32,2] := {26, 141} tii[32,3] := {65, 138} tii[32,4] := {97, 137} tii[32,5] := {76, 153} tii[32,6] := {8, 125} tii[32,7] := {67, 151} tii[32,8] := {40, 120} tii[32,9] := {77, 147} tii[32,10] := {75, 119} tii[32,11] := {95, 142} tii[32,12] := {124} tii[32,13] := {24, 133} tii[32,14] := {63, 139} tii[32,15] := {33, 113} tii[32,16] := {96, 136} tii[32,17] := {50, 107} tii[32,18] := {81} tii[32,19] := {87, 145} tii[32,20] := {118, 148} tii[32,21] := {92, 132} tii[32,22] := {123} tii[32,23] := {135, 150} tii[32,24] := {144} tii[32,25] := {16, 17} tii[32,26] := {32, 149} tii[32,27] := {4, 37} tii[32,28] := {14, 143} tii[32,29] := {15, 57} tii[32,30] := {30, 129} tii[32,31] := {31, 74} tii[32,32] := {47, 103} tii[32,33] := {3, 18} tii[32,34] := {46, 146} tii[32,35] := {54, 134} tii[32,36] := {11, 36} tii[32,37] := {10, 130} tii[32,38] := {73, 128} tii[32,39] := {23, 52} tii[32,40] := {22, 108} tii[32,41] := {102} tii[32,42] := {39, 83} tii[32,43] := {27, 56} tii[32,44] := {35, 116} tii[32,45] := {45, 72} tii[32,46] := {51, 109} tii[32,47] := {44, 127} tii[32,48] := {82} tii[32,49] := {62, 101} tii[32,50] := {66, 94} tii[32,51] := {70, 115} tii[32,52] := {105} tii[32,53] := {79, 122} tii[32,54] := {114} tii[32,55] := {0, 5} tii[32,56] := {1, 110} tii[32,57] := {2, 13} tii[32,58] := {6, 85} tii[32,59] := {7, 29} tii[32,60] := {19, 60} tii[32,61] := {9, 34} tii[32,62] := {12, 91} tii[32,63] := {21, 49} tii[32,64] := {20, 106} tii[32,65] := {28, 86} tii[32,66] := {38, 80} tii[32,67] := {59} tii[32,68] := {41, 68} tii[32,69] := {48, 90} tii[32,70] := {84} tii[32,71] := {58, 99} tii[32,72] := {89} tii[32,73] := {25, 55} tii[32,74] := {42, 126} tii[32,75] := {43, 71} tii[32,76] := {61, 100} tii[32,77] := {64, 93} tii[32,78] := {69, 112} tii[32,79] := {78, 121} tii[32,80] := {104} tii[32,81] := {111} tii[32,82] := {88, 117} tii[32,83] := {98, 140} tii[32,84] := {131} cell#33 , |C| = 154 special orbit = [8, 2, 2, 2] special rep = [[4, 1], [1, 1]] , dim = 84 cell rep = phi[[4, 1, 1],[1]]+phi[[4, 1],[1, 1]] TII depth = 4 TII multiplicity polynomial = 14*X+70*X^2 TII subcells: tii[32,1] := {38, 153} tii[32,2] := {36, 148} tii[32,3] := {33, 137} tii[32,4] := {32, 109} tii[32,5] := {53, 152} tii[32,6] := {50, 143} tii[32,7] := {72, 150} tii[32,8] := {47, 127} tii[32,9] := {86, 144} tii[32,10] := {44, 93} tii[32,11] := {103, 135} tii[32,12] := {121} tii[32,13] := {71, 149} tii[32,14] := {67, 132} tii[32,15] := {85, 145} tii[32,16] := {63, 110} tii[32,17] := {102, 134} tii[32,18] := {120} tii[32,19] := {84, 142} tii[32,20] := {83, 116} tii[32,21] := {101, 136} tii[32,22] := {119} tii[32,23] := {100, 131} tii[32,24] := {122} tii[32,25] := {0, 57} tii[32,26] := {30, 151} tii[32,27] := {1, 78} tii[32,28] := {22, 147} tii[32,29] := {2, 96} tii[32,30] := {15, 140} tii[32,31] := {4, 114} tii[32,32] := {10, 129} tii[32,33] := {3, 56} tii[32,34] := {49, 146} tii[32,35] := {65, 138} tii[32,36] := {5, 77} tii[32,37] := {29, 141} tii[32,38] := {80, 124} tii[32,39] := {7, 95} tii[32,40] := {21, 130} tii[32,41] := {105} tii[32,42] := {14, 115} tii[32,43] := {8, 64} tii[32,44] := {46, 128} tii[32,45] := {11, 79} tii[32,46] := {61, 112} tii[32,47] := {27, 123} tii[32,48] := {90} tii[32,49] := {19, 104} tii[32,50] := {16, 58} tii[32,51] := {43, 94} tii[32,52] := {70} tii[32,53] := {25, 87} tii[32,54] := {52} tii[32,55] := {6, 40} tii[32,56] := {39, 133} tii[32,57] := {9, 55} tii[32,58] := {28, 118} tii[32,59] := {12, 76} tii[32,60] := {20, 99} tii[32,61] := {13, 45} tii[32,62] := {66, 139} tii[32,63] := {17, 60} tii[32,64] := {37, 111} tii[32,65] := {81, 125} tii[32,66] := {26, 89} tii[32,67] := {106} tii[32,68] := {23, 42} tii[32,69] := {62, 113} tii[32,70] := {91} tii[32,71] := {34, 69} tii[32,72] := {73} tii[32,73] := {18, 54} tii[32,74] := {51, 117} tii[32,75] := {24, 75} tii[32,76] := {35, 98} tii[32,77] := {31, 59} tii[32,78] := {82, 126} tii[32,79] := {48, 88} tii[32,80] := {107} tii[32,81] := {92} tii[32,82] := {41, 74} tii[32,83] := {68, 97} tii[32,84] := {108} cell#34 , |C| = 105 special orbit = [6, 4, 4] special rep = [[3, 2], [2]] , dim = 105 cell rep = phi[[3, 2],[2]] TII depth = 4 TII multiplicity polynomial = 105*X TII subcells: tii[27,1] := {96} tii[27,2] := {104} tii[27,3] := {32} tii[27,4] := {72} tii[27,5] := {71} tii[27,6] := {92} tii[27,7] := {13} tii[27,8] := {50} tii[27,9] := {40} tii[27,10] := {41} tii[27,11] := {83} tii[27,12] := {82} tii[27,13] := {58} tii[27,14] := {98} tii[27,15] := {66} tii[27,16] := {81} tii[27,17] := {64} tii[27,18] := {90} tii[27,19] := {69} tii[27,20] := {91} tii[27,21] := {70} tii[27,22] := {101} tii[27,23] := {84} tii[27,24] := {63} tii[27,25] := {87} tii[27,26] := {75} tii[27,27] := {94} tii[27,28] := {97} tii[27,29] := {103} tii[27,30] := {99} tii[27,31] := {102} tii[27,32] := {7} tii[27,33] := {26} tii[27,34] := {4} tii[27,35] := {18} tii[27,36] := {3} tii[27,37] := {22} tii[27,38] := {23} tii[27,39] := {9} tii[27,40] := {8} tii[27,41] := {42} tii[27,42] := {43} tii[27,43] := {51} tii[27,44] := {15} tii[27,45] := {68} tii[27,46] := {38} tii[27,47] := {39} tii[27,48] := {57} tii[27,49] := {30} tii[27,50] := {56} tii[27,51] := {31} tii[27,52] := {65} tii[27,53] := {45} tii[27,54] := {80} tii[27,55] := {44} tii[27,56] := {77} tii[27,57] := {89} tii[27,58] := {10} tii[27,59] := {35} tii[27,60] := {59} tii[27,61] := {19} tii[27,62] := {20} tii[27,63] := {29} tii[27,64] := {54} tii[27,65] := {55} tii[27,66] := {74} tii[27,67] := {49} tii[27,68] := {73} tii[27,69] := {48} tii[27,70] := {24} tii[27,71] := {25} tii[27,72] := {78} tii[27,73] := {60} tii[27,74] := {61} tii[27,75] := {37} tii[27,76] := {88} tii[27,77] := {34} tii[27,78] := {86} tii[27,79] := {53} tii[27,80] := {95} tii[27,81] := {46} tii[27,82] := {62} tii[27,83] := {85} tii[27,84] := {76} tii[27,85] := {93} tii[27,86] := {79} tii[27,87] := {100} tii[27,88] := {0} tii[27,89] := {1} tii[27,90] := {2} tii[27,91] := {5} tii[27,92] := {6} tii[27,93] := {14} tii[27,94] := {11} tii[27,95] := {12} tii[27,96] := {21} tii[27,97] := {16} tii[27,98] := {17} tii[27,99] := {36} tii[27,100] := {28} tii[27,101] := {27} tii[27,102] := {52} tii[27,103] := {33} tii[27,104] := {47} tii[27,105] := {67} cell#35 , |C| = 126 special orbit = [6, 2, 2, 2, 2] special rep = [[3, 1, 1], [1, 1]] , dim = 126 cell rep = phi[[3, 1, 1],[1, 1]] TII depth = 4 TII multiplicity polynomial = 126*X TII subcells: tii[24,1] := {101} tii[24,2] := {107} tii[24,3] := {105} tii[24,4] := {120} tii[24,5] := {122} tii[24,6] := {125} tii[24,7] := {5} tii[24,8] := {16} tii[24,9] := {36} tii[24,10] := {82} tii[24,11] := {11} tii[24,12] := {92} tii[24,13] := {29} tii[24,14] := {65} tii[24,15] := {14} tii[24,16] := {90} tii[24,17] := {54} tii[24,18] := {60} tii[24,19] := {23} tii[24,20] := {39} tii[24,21] := {98} tii[24,22] := {43} tii[24,23] := {106} tii[24,24] := {69} tii[24,25] := {81} tii[24,26] := {50} tii[24,27] := {73} tii[24,28] := {110} tii[24,29] := {86} tii[24,30] := {97} tii[24,31] := {20} tii[24,32] := {45} tii[24,33] := {85} tii[24,34] := {24} tii[24,35] := {70} tii[24,36] := {77} tii[24,37] := {35} tii[24,38] := {58} tii[24,39] := {37} tii[24,40] := {112} tii[24,41] := {61} tii[24,42] := {89} tii[24,43] := {66} tii[24,44] := {100} tii[24,45] := {53} tii[24,46] := {96} tii[24,47] := {116} tii[24,48] := {95} tii[24,49] := {74} tii[24,50] := {68} tii[24,51] := {118} tii[24,52] := {102} tii[24,53] := {111} tii[24,54] := {94} tii[24,55] := {78} tii[24,56] := {104} tii[24,57] := {114} tii[24,58] := {87} tii[24,59] := {109} tii[24,60] := {103} tii[24,61] := {123} tii[24,62] := {115} tii[24,63] := {119} tii[24,64] := {117} tii[24,65] := {121} tii[24,66] := {124} tii[24,67] := {0} tii[24,68] := {1} tii[24,69] := {2} tii[24,70] := {3} tii[24,71] := {4} tii[24,72] := {8} tii[24,73] := {6} tii[24,74] := {49} tii[24,75] := {7} tii[24,76] := {10} tii[24,77] := {9} tii[24,78] := {42} tii[24,79] := {13} tii[24,80] := {15} tii[24,81] := {27} tii[24,82] := {17} tii[24,83] := {48} tii[24,84] := {22} tii[24,85] := {26} tii[24,86] := {40} tii[24,87] := {47} tii[24,88] := {25} tii[24,89] := {12} tii[24,90] := {76} tii[24,91] := {18} tii[24,92] := {34} tii[24,93] := {19} tii[24,94] := {57} tii[24,95] := {28} tii[24,96] := {51} tii[24,97] := {30} tii[24,98] := {64} tii[24,99] := {33} tii[24,100] := {72} tii[24,101] := {38} tii[24,102] := {59} tii[24,103] := {63} tii[24,104] := {67} tii[24,105] := {44} tii[24,106] := {93} tii[24,107] := {55} tii[24,108] := {80} tii[24,109] := {21} tii[24,110] := {31} tii[24,111] := {32} tii[24,112] := {41} tii[24,113] := {46} tii[24,114] := {52} tii[24,115] := {84} tii[24,116] := {56} tii[24,117] := {75} tii[24,118] := {83} tii[24,119] := {88} tii[24,120] := {62} tii[24,121] := {108} tii[24,122] := {71} tii[24,123] := {99} tii[24,124] := {79} tii[24,125] := {91} tii[24,126] := {113} cell#36 , |C| = 105 special orbit = [6, 4, 4] special rep = [[3, 2], [2]] , dim = 105 cell rep = phi[[3, 2],[2]] TII depth = 4 TII multiplicity polynomial = 105*X TII subcells: tii[27,1] := {96} tii[27,2] := {104} tii[27,3] := {32} tii[27,4] := {72} tii[27,5] := {71} tii[27,6] := {92} tii[27,7] := {13} tii[27,8] := {50} tii[27,9] := {40} tii[27,10] := {41} tii[27,11] := {83} tii[27,12] := {82} tii[27,13] := {58} tii[27,14] := {98} tii[27,15] := {66} tii[27,16] := {81} tii[27,17] := {64} tii[27,18] := {90} tii[27,19] := {69} tii[27,20] := {91} tii[27,21] := {70} tii[27,22] := {101} tii[27,23] := {84} tii[27,24] := {63} tii[27,25] := {87} tii[27,26] := {75} tii[27,27] := {94} tii[27,28] := {97} tii[27,29] := {103} tii[27,30] := {99} tii[27,31] := {102} tii[27,32] := {7} tii[27,33] := {26} tii[27,34] := {4} tii[27,35] := {18} tii[27,36] := {3} tii[27,37] := {22} tii[27,38] := {23} tii[27,39] := {9} tii[27,40] := {8} tii[27,41] := {42} tii[27,42] := {43} tii[27,43] := {51} tii[27,44] := {15} tii[27,45] := {68} tii[27,46] := {38} tii[27,47] := {39} tii[27,48] := {57} tii[27,49] := {30} tii[27,50] := {56} tii[27,51] := {31} tii[27,52] := {65} tii[27,53] := {45} tii[27,54] := {80} tii[27,55] := {44} tii[27,56] := {77} tii[27,57] := {89} tii[27,58] := {10} tii[27,59] := {35} tii[27,60] := {59} tii[27,61] := {19} tii[27,62] := {20} tii[27,63] := {29} tii[27,64] := {54} tii[27,65] := {55} tii[27,66] := {74} tii[27,67] := {49} tii[27,68] := {73} tii[27,69] := {48} tii[27,70] := {24} tii[27,71] := {25} tii[27,72] := {78} tii[27,73] := {60} tii[27,74] := {61} tii[27,75] := {37} tii[27,76] := {88} tii[27,77] := {34} tii[27,78] := {86} tii[27,79] := {53} tii[27,80] := {95} tii[27,81] := {46} tii[27,82] := {62} tii[27,83] := {85} tii[27,84] := {76} tii[27,85] := {93} tii[27,86] := {79} tii[27,87] := {100} tii[27,88] := {0} tii[27,89] := {1} tii[27,90] := {2} tii[27,91] := {5} tii[27,92] := {6} tii[27,93] := {14} tii[27,94] := {11} tii[27,95] := {12} tii[27,96] := {21} tii[27,97] := {16} tii[27,98] := {17} tii[27,99] := {36} tii[27,100] := {28} tii[27,101] := {27} tii[27,102] := {52} tii[27,103] := {33} tii[27,104] := {47} tii[27,105] := {67} cell#37 , |C| = 126 special orbit = [6, 2, 2, 2, 2] special rep = [[3, 1, 1], [1, 1]] , dim = 126 cell rep = phi[[3, 1, 1],[1, 1]] TII depth = 4 TII multiplicity polynomial = 126*X TII subcells: tii[24,1] := {101} tii[24,2] := {107} tii[24,3] := {105} tii[24,4] := {120} tii[24,5] := {122} tii[24,6] := {125} tii[24,7] := {5} tii[24,8] := {16} tii[24,9] := {36} tii[24,10] := {82} tii[24,11] := {11} tii[24,12] := {92} tii[24,13] := {29} tii[24,14] := {65} tii[24,15] := {14} tii[24,16] := {90} tii[24,17] := {54} tii[24,18] := {60} tii[24,19] := {23} tii[24,20] := {39} tii[24,21] := {98} tii[24,22] := {43} tii[24,23] := {106} tii[24,24] := {69} tii[24,25] := {81} tii[24,26] := {50} tii[24,27] := {73} tii[24,28] := {110} tii[24,29] := {86} tii[24,30] := {97} tii[24,31] := {20} tii[24,32] := {45} tii[24,33] := {85} tii[24,34] := {24} tii[24,35] := {70} tii[24,36] := {77} tii[24,37] := {35} tii[24,38] := {58} tii[24,39] := {37} tii[24,40] := {112} tii[24,41] := {61} tii[24,42] := {89} tii[24,43] := {66} tii[24,44] := {100} tii[24,45] := {53} tii[24,46] := {96} tii[24,47] := {116} tii[24,48] := {95} tii[24,49] := {74} tii[24,50] := {68} tii[24,51] := {118} tii[24,52] := {102} tii[24,53] := {111} tii[24,54] := {94} tii[24,55] := {78} tii[24,56] := {104} tii[24,57] := {114} tii[24,58] := {87} tii[24,59] := {109} tii[24,60] := {103} tii[24,61] := {123} tii[24,62] := {115} tii[24,63] := {119} tii[24,64] := {117} tii[24,65] := {121} tii[24,66] := {124} tii[24,67] := {0} tii[24,68] := {1} tii[24,69] := {2} tii[24,70] := {3} tii[24,71] := {4} tii[24,72] := {8} tii[24,73] := {6} tii[24,74] := {49} tii[24,75] := {7} tii[24,76] := {10} tii[24,77] := {9} tii[24,78] := {42} tii[24,79] := {13} tii[24,80] := {15} tii[24,81] := {27} tii[24,82] := {17} tii[24,83] := {48} tii[24,84] := {22} tii[24,85] := {26} tii[24,86] := {40} tii[24,87] := {47} tii[24,88] := {25} tii[24,89] := {12} tii[24,90] := {76} tii[24,91] := {18} tii[24,92] := {34} tii[24,93] := {19} tii[24,94] := {57} tii[24,95] := {28} tii[24,96] := {51} tii[24,97] := {30} tii[24,98] := {64} tii[24,99] := {33} tii[24,100] := {72} tii[24,101] := {38} tii[24,102] := {59} tii[24,103] := {63} tii[24,104] := {67} tii[24,105] := {44} tii[24,106] := {93} tii[24,107] := {55} tii[24,108] := {80} tii[24,109] := {21} tii[24,110] := {31} tii[24,111] := {32} tii[24,112] := {41} tii[24,113] := {46} tii[24,114] := {52} tii[24,115] := {84} tii[24,116] := {56} tii[24,117] := {75} tii[24,118] := {83} tii[24,119] := {88} tii[24,120] := {62} tii[24,121] := {108} tii[24,122] := {71} tii[24,123] := {99} tii[24,124] := {79} tii[24,125] := {91} tii[24,126] := {113} cell#38 , |C| = 553 special orbit = [6, 4, 2, 2] special rep = [[3, 1], [2, 1]] , dim = 210 cell rep = phi[[3, 2, 1],[1]]+phi[[3, 1, 1],[2]]+phi[[3, 2],[1, 1]]+phi[[3, 1],[2, 1]] TII depth = 3 TII multiplicity polynomial = 49*X+70*X^2+91*X^4 TII subcells: tii[26,1] := {137, 138, 450, 451} tii[26,2] := {343, 344, 485, 486} tii[26,3] := {504, 505} tii[26,4] := {125, 408} tii[26,5] := {210, 211, 491, 492} tii[26,6] := {262, 425} tii[26,7] := {116, 117, 392, 393} tii[26,8] := {410, 411, 517, 518} tii[26,9] := {234, 235, 386, 387} tii[26,10] := {529, 530} tii[26,11] := {416} tii[26,12] := {481} tii[26,13] := {292, 293, 509, 511} tii[26,14] := {409, 497} tii[26,15] := {463, 464, 534, 535} tii[26,16] := {254, 255, 474, 476} tii[26,17] := {382, 383, 489, 490} tii[26,18] := {541, 542} tii[26,19] := {302, 303, 437, 439} tii[26,20] := {503} tii[26,21] := {400, 401} tii[26,22] := {533} tii[26,23] := {499, 500, 539, 540} tii[26,24] := {547, 548} tii[26,25] := {483, 484, 527, 528} tii[26,26] := {536} tii[26,27] := {508, 510} tii[26,28] := {545} tii[26,29] := {549, 550} tii[26,30] := {552} tii[26,31] := {19, 20, 21, 22} tii[26,32] := {78, 79, 80, 81} tii[26,33] := {35, 36, 318, 319} tii[26,34] := {123, 124, 314, 315} tii[26,35] := {190, 191} tii[26,36] := {279, 280} tii[26,37] := {49, 50, 51, 52} tii[26,38] := {69, 338} tii[26,39] := {82, 83, 390, 391} tii[26,40] := {186, 359} tii[26,41] := {17, 18, 104, 105} tii[26,42] := {59, 60, 320, 321} tii[26,43] := {141, 142, 143, 144} tii[26,44] := {30, 260} tii[26,45] := {165, 166, 312, 313} tii[26,46] := {39, 40, 332, 333} tii[26,47] := {41, 42, 157, 158} tii[26,48] := {192, 193, 384, 385} tii[26,49] := {348} tii[26,50] := {68, 205} tii[26,51] := {264, 265} tii[26,52] := {74, 75, 244, 245} tii[26,53] := {433} tii[26,54] := {130} tii[26,55] := {365, 366} tii[26,56] := {214, 215, 216, 217} tii[26,57] := {261, 405} tii[26,58] := {112, 113, 361, 363} tii[26,59] := {266, 267, 444, 445} tii[26,60] := {139, 140, 304, 305} tii[26,61] := {187, 337} tii[26,62] := {232, 233, 388, 389} tii[26,63] := {149, 150, 284, 286} tii[26,64] := {417} tii[26,65] := {346, 347} tii[26,66] := {278} tii[26,67] := {194, 195, 394, 395} tii[26,68] := {242, 243} tii[26,69] := {431, 432} tii[26,70] := {482} tii[26,71] := {412, 413} tii[26,72] := {300, 301, 420, 421} tii[26,73] := {458} tii[26,74] := {360, 362} tii[26,75] := {404} tii[26,76] := {477, 478} tii[26,77] := {498} tii[26,78] := {524} tii[26,79] := {100, 101, 102, 103} tii[26,80] := {70, 341} tii[26,81] := {145, 146, 452, 453} tii[26,82] := {218, 219, 220, 221} tii[26,83] := {47, 48, 169, 170} tii[26,84] := {122, 287} tii[26,85] := {268, 269, 446, 447} tii[26,86] := {92, 93, 402, 403} tii[26,87] := {94, 95, 230, 231} tii[26,88] := {349, 350} tii[26,89] := {201} tii[26,90] := {132, 133, 330, 331} tii[26,91] := {434, 435} tii[26,92] := {179, 180, 427, 429} tii[26,93] := {27, 28, 106, 107} tii[26,94] := {296, 297, 298, 299} tii[26,95] := {342, 460} tii[26,96] := {351, 352, 487, 488} tii[26,97] := {222, 223, 369, 371} tii[26,98] := {212, 213, 378, 379} tii[26,99] := {65, 66, 159, 160} tii[26,100] := {189, 367} tii[26,101] := {63, 64, 334, 335} tii[26,102] := {310, 311, 448, 449} tii[26,103] := {263, 407} tii[26,104] := {469} tii[26,105] := {414, 415} tii[26,106] := {328, 329} tii[26,107] := {110, 111, 246, 247} tii[26,108] := {270, 271, 454, 455} tii[26,109] := {277} tii[26,110] := {364} tii[26,111] := {479, 480} tii[26,112] := {516} tii[26,113] := {155, 156, 289, 291} tii[26,114] := {118, 119, 228, 229} tii[26,115] := {465, 466} tii[26,116] := {495} tii[26,117] := {376, 377, 470, 471} tii[26,118] := {357} tii[26,119] := {248, 249} tii[26,120] := {459} tii[26,121] := {512, 513} tii[26,122] := {426, 428} tii[26,123] := {523} tii[26,124] := {171, 172, 326, 327} tii[26,125] := {288, 290} tii[26,126] := {538} tii[26,127] := {372, 373, 374, 375} tii[26,128] := {345, 462} tii[26,129] := {418, 419, 519, 520} tii[26,130] := {294, 295, 442, 443} tii[26,131] := {467, 468} tii[26,132] := {430} tii[26,133] := {353, 354, 493, 494} tii[26,134] := {514, 515} tii[26,135] := {440, 441, 506, 507} tii[26,136] := {256, 257, 380, 381} tii[26,137] := {501, 502} tii[26,138] := {521} tii[26,139] := {472} tii[26,140] := {473, 475} tii[26,141] := {531, 532} tii[26,142] := {316, 317, 456, 457} tii[26,143] := {496} tii[26,144] := {537} tii[26,145] := {436, 438} tii[26,146] := {546} tii[26,147] := {525, 526} tii[26,148] := {522} tii[26,149] := {543, 544} tii[26,150] := {551} tii[26,151] := {2, 3, 4, 5} tii[26,152] := {13, 14, 15, 16} tii[26,153] := {33, 34} tii[26,154] := {0, 1, 55, 56} tii[26,155] := {8, 185} tii[26,156] := {11, 12, 90, 91} tii[26,157] := {29, 136} tii[26,158] := {9, 10, 252, 253} tii[26,159] := {43, 44, 45, 46} tii[26,160] := {31, 32, 175, 176} tii[26,161] := {73} tii[26,162] := {76, 77} tii[26,163] := {37, 38, 153, 154} tii[26,164] := {67, 184} tii[26,165] := {126, 127} tii[26,166] := {131} tii[26,167] := {71, 72, 240, 241} tii[26,168] := {183} tii[26,169] := {6, 7, 53, 54} tii[26,170] := {121, 282} tii[26,171] := {96, 97, 98, 99} tii[26,172] := {25, 26, 88, 89} tii[26,173] := {23, 24, 250, 251} tii[26,174] := {200} tii[26,175] := {134, 135} tii[26,176] := {57, 58, 173, 174} tii[26,177] := {84, 85, 226, 227} tii[26,178] := {61, 62, 151, 152} tii[26,179] := {120, 259} tii[26,180] := {86, 87, 207, 209} tii[26,181] := {274} tii[26,182] := {196, 197} tii[26,183] := {177, 178} tii[26,184] := {202} tii[26,185] := {108, 109, 238, 239} tii[26,186] := {128, 129, 324, 325} tii[26,187] := {206, 208} tii[26,188] := {258} tii[26,189] := {114, 115, 224, 225} tii[26,190] := {358} tii[26,191] := {272, 273} tii[26,192] := {167, 168, 322, 323} tii[26,193] := {336} tii[26,194] := {283, 285} tii[26,195] := {161, 162, 163, 164} tii[26,196] := {203, 204} tii[26,197] := {147, 148, 308, 309} tii[26,198] := {188, 340} tii[26,199] := {275, 276} tii[26,200] := {198, 199, 398, 399} tii[26,201] := {281} tii[26,202] := {339} tii[26,203] := {181, 182, 306, 307} tii[26,204] := {424} tii[26,205] := {355, 356} tii[26,206] := {236, 237, 396, 397} tii[26,207] := {406} tii[26,208] := {368, 370} tii[26,209] := {422, 423} tii[26,210] := {461} cell#39 , |C| = 126 special orbit = [6, 2, 2, 2, 2] special rep = [[3, 1, 1], [1, 1]] , dim = 126 cell rep = phi[[3, 1, 1],[1, 1]] TII depth = 4 TII multiplicity polynomial = 126*X TII subcells: tii[24,1] := {125} tii[24,2] := {112} tii[24,3] := {89} tii[24,4] := {124} tii[24,5] := {109} tii[24,6] := {123} tii[24,7] := {24} tii[24,8] := {21} tii[24,9] := {20} tii[24,10] := {122} tii[24,11] := {35} tii[24,12] := {98} tii[24,13] := {32} tii[24,14] := {116} tii[24,15] := {49} tii[24,16] := {72} tii[24,17] := {30} tii[24,18] := {103} tii[24,19] := {62} tii[24,20] := {85} tii[24,21] := {113} tii[24,22] := {48} tii[24,23] := {79} tii[24,24] := {46} tii[24,25] := {104} tii[24,26] := {61} tii[24,27] := {84} tii[24,28] := {97} tii[24,29] := {60} tii[24,30] := {87} tii[24,31] := {41} tii[24,32] := {50} tii[24,33] := {120} tii[24,34] := {57} tii[24,35] := {47} tii[24,36] := {110} tii[24,37] := {75} tii[24,38] := {94} tii[24,39] := {40} tii[24,40] := {121} tii[24,41] := {65} tii[24,42] := {64} tii[24,43] := {82} tii[24,44] := {115} tii[24,45] := {56} tii[24,46] := {96} tii[24,47] := {95} tii[24,48] := {100} tii[24,49] := {78} tii[24,50] := {43} tii[24,51] := {111} tii[24,52] := {81} tii[24,53] := {101} tii[24,54] := {67} tii[24,55] := {76} tii[24,56] := {83} tii[24,57] := {118} tii[24,58] := {92} tii[24,59] := {108} tii[24,60] := {74} tii[24,61] := {119} tii[24,62] := {99} tii[24,63] := {114} tii[24,64] := {93} tii[24,65] := {107} tii[24,66] := {117} tii[24,67] := {0} tii[24,68] := {17} tii[24,69] := {1} tii[24,70] := {11} tii[24,71] := {2} tii[24,72] := {6} tii[24,73] := {3} tii[24,74] := {106} tii[24,75] := {31} tii[24,76] := {4} tii[24,77] := {16} tii[24,78] := {90} tii[24,79] := {44} tii[24,80] := {10} tii[24,81] := {68} tii[24,82] := {7} tii[24,83] := {73} tii[24,84] := {29} tii[24,85] := {14} tii[24,86] := {53} tii[24,87] := {37} tii[24,88] := {26} tii[24,89] := {5} tii[24,90] := {80} tii[24,91] := {25} tii[24,92] := {39} tii[24,93] := {8} tii[24,94] := {59} tii[24,95] := {15} tii[24,96] := {28} tii[24,97] := {12} tii[24,98] := {91} tii[24,99] := {45} tii[24,100] := {52} tii[24,101] := {22} tii[24,102] := {69} tii[24,103] := {54} tii[24,104] := {38} tii[24,105] := {18} tii[24,106] := {58} tii[24,107] := {33} tii[24,108] := {71} tii[24,109] := {9} tii[24,110] := {36} tii[24,111] := {13} tii[24,112] := {23} tii[24,113] := {19} tii[24,114] := {63} tii[24,115] := {105} tii[24,116] := {34} tii[24,117] := {86} tii[24,118] := {70} tii[24,119] := {55} tii[24,120] := {27} tii[24,121] := {77} tii[24,122] := {51} tii[24,123] := {88} tii[24,124] := {42} tii[24,125] := {66} tii[24,126] := {102} cell#40 , |C| = 55 special orbit = [8, 2, 1, 1, 1, 1] special rep = [[4], [1, 1, 1]] , dim = 35 cell rep = phi[[4, 1, 1, 1],[]]+phi[[4],[1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 15*X+20*X^2 TII subcells: tii[31,1] := {15, 49} tii[31,2] := {33, 34} tii[31,3] := {47, 48} tii[31,4] := {52, 53} tii[31,5] := {54} tii[31,6] := {11, 12} tii[31,7] := {31, 32} tii[31,8] := {45, 46} tii[31,9] := {51} tii[31,10] := {23, 24} tii[31,11] := {39, 40} tii[31,12] := {50} tii[31,13] := {17, 18} tii[31,14] := {36} tii[31,15] := {14} tii[31,16] := {0, 1} tii[31,17] := {8, 10} tii[31,18] := {27, 30} tii[31,19] := {44} tii[31,20] := {5, 6} tii[31,21] := {21, 22} tii[31,22] := {38} tii[31,23] := {3, 4} tii[31,24] := {16} tii[31,25] := {2} tii[31,26] := {7, 9} tii[31,27] := {26, 29} tii[31,28] := {43} tii[31,29] := {19, 20} tii[31,30] := {37} tii[31,31] := {13} tii[31,32] := {25, 28} tii[31,33] := {42} tii[31,34] := {35} tii[31,35] := {41} cell#41 , |C| = 175 special orbit = [6, 2, 2, 2, 1, 1] special rep = [[3, 1], [1, 1, 1]] , dim = 105 cell rep = phi[[3, 1, 1, 1],[1]]+phi[[3, 1],[1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 35*X+70*X^2 TII subcells: tii[23,1] := {24, 109} tii[23,2] := {21, 154} tii[23,3] := {20, 174} tii[23,4] := {41, 96} tii[23,5] := {36, 146} tii[23,6] := {66, 67} tii[23,7] := {31, 170} tii[23,8] := {91, 92} tii[23,9] := {117} tii[23,10] := {65, 120} tii[23,11] := {57, 160} tii[23,12] := {88, 89} tii[23,13] := {114} tii[23,14] := {87, 137} tii[23,15] := {113} tii[23,16] := {49, 108} tii[23,17] := {68, 153} tii[23,18] := {77, 79} tii[23,19] := {58, 173} tii[23,20] := {103, 106} tii[23,21] := {129} tii[23,22] := {47, 48} tii[23,23] := {95, 144} tii[23,24] := {90, 169} tii[23,25] := {122, 123} tii[23,26] := {74, 76} tii[23,27] := {140} tii[23,28] := {101} tii[23,29] := {61, 62} tii[23,30] := {119, 159} tii[23,31] := {138} tii[23,32] := {85} tii[23,33] := {52} tii[23,34] := {110, 152} tii[23,35] := {126, 172} tii[23,36] := {131, 134} tii[23,37] := {149} tii[23,38] := {102, 105} tii[23,39] := {143, 168} tii[23,40] := {161} tii[23,41] := {128} tii[23,42] := {116} tii[23,43] := {155, 171} tii[23,44] := {164} tii[23,45] := {148} tii[23,46] := {0, 50} tii[23,47] := {17, 78} tii[23,48] := {1, 80} tii[23,49] := {11, 104} tii[23,50] := {2, 107} tii[23,51] := {6, 130} tii[23,52] := {3, 112} tii[23,53] := {37, 38} tii[23,54] := {4, 136} tii[23,55] := {16, 133} tii[23,56] := {63, 64} tii[23,57] := {10, 151} tii[23,58] := {86} tii[23,59] := {7, 158} tii[23,60] := {32, 33} tii[23,61] := {14, 167} tii[23,62] := {54} tii[23,63] := {29} tii[23,64] := {26, 27} tii[23,65] := {5, 97} tii[23,66] := {25, 124} tii[23,67] := {44, 46} tii[23,68] := {8, 125} tii[23,69] := {72} tii[23,70] := {15, 141} tii[23,71] := {34, 35} tii[23,72] := {12, 147} tii[23,73] := {59, 60} tii[23,74] := {55} tii[23,75] := {22, 163} tii[23,76] := {84} tii[23,77] := {28} tii[23,78] := {51} tii[23,79] := {43, 45} tii[23,80] := {18, 121} tii[23,81] := {71} tii[23,82] := {39, 139} tii[23,83] := {53} tii[23,84] := {81} tii[23,85] := {70} tii[23,86] := {9, 111} tii[23,87] := {42, 132} tii[23,88] := {13, 135} tii[23,89] := {23, 150} tii[23,90] := {19, 157} tii[23,91] := {93, 94} tii[23,92] := {40, 166} tii[23,93] := {118} tii[23,94] := {82} tii[23,95] := {73, 75} tii[23,96] := {30, 145} tii[23,97] := {100} tii[23,98] := {69, 162} tii[23,99] := {115} tii[23,100] := {83} tii[23,101] := {99} tii[23,102] := {56, 156} tii[23,103] := {98, 165} tii[23,104] := {142} tii[23,105] := {127} cell#42 , |C| = 55 special orbit = [8, 2, 1, 1, 1, 1] special rep = [[4], [1, 1, 1]] , dim = 35 cell rep = phi[[4, 1, 1, 1],[]]+phi[[4],[1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 15*X+20*X^2 TII subcells: tii[31,1] := {15, 49} tii[31,2] := {33, 34} tii[31,3] := {47, 48} tii[31,4] := {52, 53} tii[31,5] := {54} tii[31,6] := {11, 12} tii[31,7] := {31, 32} tii[31,8] := {45, 46} tii[31,9] := {51} tii[31,10] := {23, 24} tii[31,11] := {39, 40} tii[31,12] := {50} tii[31,13] := {17, 18} tii[31,14] := {36} tii[31,15] := {14} tii[31,16] := {0, 1} tii[31,17] := {8, 10} tii[31,18] := {27, 30} tii[31,19] := {44} tii[31,20] := {5, 6} tii[31,21] := {21, 22} tii[31,22] := {38} tii[31,23] := {3, 4} tii[31,24] := {16} tii[31,25] := {2} tii[31,26] := {7, 9} tii[31,27] := {26, 29} tii[31,28] := {43} tii[31,29] := {19, 20} tii[31,30] := {37} tii[31,31] := {13} tii[31,32] := {25, 28} tii[31,33] := {42} tii[31,34] := {35} tii[31,35] := {41} cell#43 , |C| = 175 special orbit = [6, 2, 2, 2, 1, 1] special rep = [[3, 1], [1, 1, 1]] , dim = 105 cell rep = phi[[3, 1, 1, 1],[1]]+phi[[3, 1],[1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 35*X+70*X^2 TII subcells: tii[23,1] := {24, 109} tii[23,2] := {21, 154} tii[23,3] := {20, 174} tii[23,4] := {41, 96} tii[23,5] := {36, 146} tii[23,6] := {66, 67} tii[23,7] := {31, 170} tii[23,8] := {91, 92} tii[23,9] := {117} tii[23,10] := {65, 120} tii[23,11] := {57, 160} tii[23,12] := {88, 89} tii[23,13] := {114} tii[23,14] := {87, 137} tii[23,15] := {113} tii[23,16] := {49, 108} tii[23,17] := {68, 153} tii[23,18] := {77, 79} tii[23,19] := {58, 173} tii[23,20] := {103, 106} tii[23,21] := {129} tii[23,22] := {47, 48} tii[23,23] := {95, 144} tii[23,24] := {90, 169} tii[23,25] := {122, 123} tii[23,26] := {74, 76} tii[23,27] := {140} tii[23,28] := {101} tii[23,29] := {61, 62} tii[23,30] := {119, 159} tii[23,31] := {138} tii[23,32] := {85} tii[23,33] := {52} tii[23,34] := {110, 152} tii[23,35] := {126, 172} tii[23,36] := {131, 134} tii[23,37] := {149} tii[23,38] := {102, 105} tii[23,39] := {143, 168} tii[23,40] := {161} tii[23,41] := {128} tii[23,42] := {116} tii[23,43] := {155, 171} tii[23,44] := {164} tii[23,45] := {148} tii[23,46] := {0, 50} tii[23,47] := {17, 78} tii[23,48] := {1, 80} tii[23,49] := {11, 104} tii[23,50] := {2, 107} tii[23,51] := {6, 130} tii[23,52] := {3, 112} tii[23,53] := {37, 38} tii[23,54] := {4, 136} tii[23,55] := {16, 133} tii[23,56] := {63, 64} tii[23,57] := {10, 151} tii[23,58] := {86} tii[23,59] := {7, 158} tii[23,60] := {32, 33} tii[23,61] := {14, 167} tii[23,62] := {54} tii[23,63] := {29} tii[23,64] := {26, 27} tii[23,65] := {5, 97} tii[23,66] := {25, 124} tii[23,67] := {44, 46} tii[23,68] := {8, 125} tii[23,69] := {72} tii[23,70] := {15, 141} tii[23,71] := {34, 35} tii[23,72] := {12, 147} tii[23,73] := {59, 60} tii[23,74] := {55} tii[23,75] := {22, 163} tii[23,76] := {84} tii[23,77] := {28} tii[23,78] := {51} tii[23,79] := {43, 45} tii[23,80] := {18, 121} tii[23,81] := {71} tii[23,82] := {39, 139} tii[23,83] := {53} tii[23,84] := {81} tii[23,85] := {70} tii[23,86] := {9, 111} tii[23,87] := {42, 132} tii[23,88] := {13, 135} tii[23,89] := {23, 150} tii[23,90] := {19, 157} tii[23,91] := {93, 94} tii[23,92] := {40, 166} tii[23,93] := {118} tii[23,94] := {82} tii[23,95] := {73, 75} tii[23,96] := {30, 145} tii[23,97] := {100} tii[23,98] := {69, 162} tii[23,99] := {115} tii[23,100] := {83} tii[23,101] := {99} tii[23,102] := {56, 156} tii[23,103] := {98, 165} tii[23,104] := {142} tii[23,105] := {127} cell#44 , |C| = 55 special orbit = [8, 2, 1, 1, 1, 1] special rep = [[4], [1, 1, 1]] , dim = 35 cell rep = phi[[4, 1, 1, 1],[]]+phi[[4],[1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 15*X+20*X^2 TII subcells: tii[31,1] := {0, 54} tii[31,2] := {1, 45} tii[31,3] := {3, 35} tii[31,4] := {7, 24} tii[31,5] := {15} tii[31,6] := {4, 53} tii[31,7] := {8, 44} tii[31,8] := {13, 34} tii[31,9] := {23} tii[31,10] := {14, 52} tii[31,11] := {22, 43} tii[31,12] := {33} tii[31,13] := {32, 51} tii[31,14] := {42} tii[31,15] := {50} tii[31,16] := {2, 49} tii[31,17] := {6, 41} tii[31,18] := {11, 30} tii[31,19] := {20} tii[31,20] := {12, 48} tii[31,21] := {18, 40} tii[31,22] := {28} tii[31,23] := {27, 47} tii[31,24] := {39} tii[31,25] := {46} tii[31,26] := {5, 38} tii[31,27] := {10, 31} tii[31,28] := {19} tii[31,29] := {17, 37} tii[31,30] := {29} tii[31,31] := {36} tii[31,32] := {9, 26} tii[31,33] := {21} tii[31,34] := {25} tii[31,35] := {16} cell#45 , |C| = 50 special orbit = [6, 2, 1, 1, 1, 1, 1, 1] special rep = [[3], [1, 1, 1, 1]] , dim = 35 cell rep = phi[[3, 1, 1, 1, 1],[]]+phi[[3],[1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 20*X+15*X^2 TII subcells: tii[22,1] := {0, 49} tii[22,2] := {1, 34} tii[22,3] := {3, 21} tii[22,4] := {10} tii[22,5] := {5, 48} tii[22,6] := {9, 32} tii[22,7] := {20} tii[22,8] := {18, 46} tii[22,9] := {30} tii[22,10] := {44} tii[22,11] := {2, 39} tii[22,12] := {7, 27} tii[22,13] := {14} tii[22,14] := {13, 38} tii[22,15] := {26} tii[22,16] := {37} tii[22,17] := {6, 24} tii[22,18] := {15} tii[22,19] := {23} tii[22,20] := {11} tii[22,21] := {4, 47} tii[22,22] := {8, 31} tii[22,23] := {19} tii[22,24] := {17, 45} tii[22,25] := {29} tii[22,26] := {42} tii[22,27] := {12, 36} tii[22,28] := {25} tii[22,29] := {35} tii[22,30] := {22} tii[22,31] := {16, 43} tii[22,32] := {28} tii[22,33] := {41} tii[22,34] := {33} tii[22,35] := {40}