TII subcells for the Sp(14,R) x SO(8,7) block of Sp14 # cell#0 , |C| = 1 special orbit = [14] special rep = [[7], []] , dim = 1 cell rep = phi[[7],[]] TII depth = 1 TII multiplicity polynomial = X TII subcells: tii[40,1] := {0} cell#1 , |C| = 1 special orbit = [14] special rep = [[7], []] , dim = 1 cell rep = phi[[7],[]] TII depth = 1 TII multiplicity polynomial = X TII subcells: tii[40,1] := {0} cell#2 , |C| = 13 special orbit = [12, 2] special rep = [[6], [1]] , dim = 7 cell rep = phi[[6, 1],[]]+phi[[6],[1]] TII depth = 1 TII multiplicity polynomial = 6*X^2+X TII subcells: tii[39,1] := {3, 12} tii[39,2] := {0, 11} tii[39,3] := {4, 10} tii[39,4] := {1, 9} tii[39,5] := {5, 8} tii[39,6] := {2, 7} tii[39,7] := {6} cell#3 , |C| = 13 special orbit = [12, 2] special rep = [[6], [1]] , dim = 7 cell rep = phi[[6, 1],[]]+phi[[6],[1]] TII depth = 1 TII multiplicity polynomial = 6*X^2+X TII subcells: tii[39,1] := {2, 12} tii[39,2] := {3, 11} tii[39,3] := {1, 10} tii[39,4] := {4, 9} tii[39,5] := {0, 8} tii[39,6] := {5, 7} tii[39,7] := {6} cell#4 , |C| = 35 special orbit = [10, 4] special rep = [[5], [2]] , dim = 21 cell rep = phi[[5, 2],[]]+phi[[5],[2]] TII depth = 1 TII multiplicity polynomial = 14*X^2+7*X TII subcells: tii[38,1] := {3, 34} tii[38,2] := {14, 33} tii[38,3] := {5, 28} tii[38,4] := {15, 25} tii[38,5] := {27} tii[38,6] := {32} tii[38,7] := {0, 31} tii[38,8] := {6, 29} tii[38,9] := {2, 24} tii[38,10] := {8, 19} tii[38,11] := {13} tii[38,12] := {9, 30} tii[38,13] := {4, 26} tii[38,14] := {10, 20} tii[38,15] := {16} tii[38,16] := {1, 23} tii[38,17] := {7, 18} tii[38,18] := {12} tii[38,19] := {11, 21} tii[38,20] := {17} tii[38,21] := {22} cell#5 , |C| = 13 special orbit = [12, 2] special rep = [[6], [1]] , dim = 7 cell rep = phi[[6, 1],[]]+phi[[6],[1]] TII depth = 1 TII multiplicity polynomial = 6*X^2+X TII subcells: tii[39,1] := {3, 12} tii[39,2] := {2, 11} tii[39,3] := {4, 10} tii[39,4] := {1, 9} tii[39,5] := {5, 8} tii[39,6] := {0, 7} tii[39,7] := {6} cell#6 , |C| = 35 special orbit = [10, 4] special rep = [[5], [2]] , dim = 21 cell rep = phi[[5, 2],[]]+phi[[5],[2]] TII depth = 1 TII multiplicity polynomial = 14*X^2+7*X TII subcells: tii[38,1] := {19, 34} tii[38,2] := {5, 32} tii[38,3] := {20, 30} tii[38,4] := {7, 24} tii[38,5] := {21} tii[38,6] := {28} tii[38,7] := {11, 33} tii[38,8] := {3, 31} tii[38,9] := {12, 26} tii[38,10] := {4, 22} tii[38,11] := {14} tii[38,12] := {0, 29} tii[38,13] := {8, 25} tii[38,14] := {2, 18} tii[38,15] := {10} tii[38,16] := {13, 27} tii[38,17] := {6, 23} tii[38,18] := {15} tii[38,19] := {1, 17} tii[38,20] := {9} tii[38,21] := {16} cell#7 , |C| = 35 special orbit = [10, 4] special rep = [[5], [2]] , dim = 21 cell rep = phi[[5, 2],[]]+phi[[5],[2]] TII depth = 1 TII multiplicity polynomial = 14*X^2+7*X TII subcells: tii[38,1] := {19, 34} tii[38,2] := {6, 32} tii[38,3] := {20, 30} tii[38,4] := {8, 25} tii[38,5] := {21} tii[38,6] := {28} tii[38,7] := {11, 33} tii[38,8] := {4, 31} tii[38,9] := {12, 26} tii[38,10] := {3, 22} tii[38,11] := {14} tii[38,12] := {2, 29} tii[38,13] := {7, 24} tii[38,14] := {0, 17} tii[38,15] := {9} tii[38,16] := {13, 27} tii[38,17] := {5, 23} tii[38,18] := {15} tii[38,19] := {1, 18} tii[38,20] := {10} tii[38,21] := {16} cell#8 , |C| = 49 special orbit = [8, 6] special rep = [[4], [3]] , dim = 35 cell rep = phi[[4, 3],[]]+phi[[4],[3]] TII depth = 2 TII multiplicity polynomial = 14*X^2+21*X TII subcells: tii[35,1] := {39, 46} tii[35,2] := {17, 38} tii[35,3] := {41} tii[35,4] := {47} tii[35,5] := {48} tii[35,6] := {22, 40} tii[35,7] := {6, 29} tii[35,8] := {24} tii[35,9] := {36} tii[35,10] := {32, 44} tii[35,11] := {23, 42} tii[35,12] := {3, 21} tii[35,13] := {16, 35} tii[35,14] := {18} tii[35,15] := {27} tii[35,16] := {31} tii[35,17] := {7, 30} tii[35,18] := {2, 20} tii[35,19] := {25} tii[35,20] := {9} tii[35,21] := {37} tii[35,22] := {34} tii[35,23] := {43} tii[35,24] := {28} tii[35,25] := {45} tii[35,26] := {12, 33} tii[35,27] := {5, 26} tii[35,28] := {13} tii[35,29] := {1, 19} tii[35,30] := {8} tii[35,31] := {14} tii[35,32] := {0, 11} tii[35,33] := {4} tii[35,34] := {10} tii[35,35] := {15} cell#9 , |C| = 35 special orbit = [10, 2, 2] special rep = [[5, 1], [1]] , dim = 35 cell rep = phi[[5, 1],[1]] TII depth = 5 TII multiplicity polynomial = 35*X TII subcells: tii[37,1] := {34} tii[37,2] := {31} tii[37,3] := {26} tii[37,4] := {19} tii[37,5] := {13} tii[37,6] := {0} tii[37,7] := {33} tii[37,8] := {5} tii[37,9] := {32} tii[37,10] := {10} tii[37,11] := {30} tii[37,12] := {15} tii[37,13] := {28} tii[37,14] := {20} tii[37,15] := {25} tii[37,16] := {1} tii[37,17] := {6} tii[37,18] := {29} tii[37,19] := {11} tii[37,20] := {27} tii[37,21] := {16} tii[37,22] := {24} tii[37,23] := {22} tii[37,24] := {2} tii[37,25] := {7} tii[37,26] := {23} tii[37,27] := {12} tii[37,28] := {21} tii[37,29] := {18} tii[37,30] := {3} tii[37,31] := {8} tii[37,32] := {17} tii[37,33] := {14} tii[37,34] := {4} tii[37,35] := {9} cell#10 , |C| = 35 special orbit = [10, 2, 2] special rep = [[5, 1], [1]] , dim = 35 cell rep = phi[[5, 1],[1]] TII depth = 5 TII multiplicity polynomial = 35*X TII subcells: tii[37,1] := {34} tii[37,2] := {32} tii[37,3] := {30} tii[37,4] := {25} tii[37,5] := {26} tii[37,6] := {12} tii[37,7] := {33} tii[37,8] := {4} tii[37,9] := {31} tii[37,10] := {9} tii[37,11] := {27} tii[37,12] := {3} tii[37,13] := {22} tii[37,14] := {10} tii[37,15] := {17} tii[37,16] := {2} tii[37,17] := {6} tii[37,18] := {29} tii[37,19] := {0} tii[37,20] := {24} tii[37,21] := {7} tii[37,22] := {19} tii[37,23] := {15} tii[37,24] := {13} tii[37,25] := {5} tii[37,26] := {28} tii[37,27] := {11} tii[37,28] := {23} tii[37,29] := {18} tii[37,30] := {1} tii[37,31] := {8} tii[37,32] := {20} tii[37,33] := {16} tii[37,34] := {14} tii[37,35] := {21} cell#11 , |C| = 35 special orbit = [10, 2, 2] special rep = [[5, 1], [1]] , dim = 35 cell rep = phi[[5, 1],[1]] TII depth = 5 TII multiplicity polynomial = 35*X TII subcells: tii[37,1] := {34} tii[37,2] := {31} tii[37,3] := {26} tii[37,4] := {19} tii[37,5] := {11} tii[37,6] := {13} tii[37,7] := {33} tii[37,8] := {15} tii[37,9] := {32} tii[37,10] := {12} tii[37,11] := {30} tii[37,12] := {16} tii[37,13] := {28} tii[37,14] := {20} tii[37,15] := {24} tii[37,16] := {8} tii[37,17] := {6} tii[37,18] := {29} tii[37,19] := {9} tii[37,20] := {27} tii[37,21] := {14} tii[37,22] := {25} tii[37,23] := {21} tii[37,24] := {2} tii[37,25] := {4} tii[37,26] := {23} tii[37,27] := {7} tii[37,28] := {22} tii[37,29] := {17} tii[37,30] := {1} tii[37,31] := {3} tii[37,32] := {18} tii[37,33] := {10} tii[37,34] := {0} tii[37,35] := {5} cell#12 , |C| = 147 special orbit = [8, 4, 2] special rep = [[4, 1], [2]] , dim = 84 cell rep = phi[[4, 2],[1]]+phi[[4, 1],[2]] TII depth = 4 TII multiplicity polynomial = 63*X^2+21*X TII subcells: tii[34,1] := {139, 146} tii[34,2] := {113, 141} tii[34,3] := {92, 138} tii[34,4] := {133} tii[34,5] := {31, 105} tii[34,6] := {4, 68} tii[34,7] := {123, 143} tii[34,8] := {27, 65} tii[34,9] := {93, 134} tii[34,10] := {57, 117} tii[34,11] := {66} tii[34,12] := {90} tii[34,13] := {52, 118} tii[34,14] := {132, 145} tii[34,15] := {32, 104} tii[34,16] := {2, 59} tii[34,17] := {16, 48} tii[34,18] := {124, 144} tii[34,19] := {53, 115} tii[34,20] := {80, 129} tii[34,21] := {44, 108} tii[34,22] := {111, 142} tii[34,23] := {72, 126} tii[34,24] := {56} tii[34,25] := {96, 135} tii[34,26] := {79} tii[34,27] := {8, 76} tii[34,28] := {98, 137} tii[34,29] := {24, 88} tii[34,30] := {34, 70} tii[34,31] := {43, 103} tii[34,32] := {81, 131} tii[34,33] := {58, 121} tii[34,34] := {73} tii[34,35] := {64, 120} tii[34,36] := {97} tii[34,37] := {54, 89} tii[34,38] := {74, 130} tii[34,39] := {35, 102} tii[34,40] := {94} tii[34,41] := {61, 119} tii[34,42] := {112} tii[34,43] := {110} tii[34,44] := {125} tii[34,45] := {13, 87} tii[34,46] := {7, 71} tii[34,47] := {17, 50} tii[34,48] := {41} tii[34,49] := {14, 86} tii[34,50] := {33, 100} tii[34,51] := {109, 140} tii[34,52] := {1, 49} tii[34,53] := {55, 114} tii[34,54] := {95, 136} tii[34,55] := {5, 29} tii[34,56] := {78, 127} tii[34,57] := {21} tii[34,58] := {15, 83} tii[34,59] := {36, 99} tii[34,60] := {75, 128} tii[34,61] := {12, 46} tii[34,62] := {62, 116} tii[34,63] := {28} tii[34,64] := {19, 82} tii[34,65] := {47} tii[34,66] := {39, 101} tii[34,67] := {0, 38} tii[34,68] := {3, 23} tii[34,69] := {11} tii[34,70] := {9, 69} tii[34,71] := {6, 30} tii[34,72] := {25, 84} tii[34,73] := {63, 122} tii[34,74] := {45, 106} tii[34,75] := {22} tii[34,76] := {10, 67} tii[34,77] := {37} tii[34,78] := {26, 91} tii[34,79] := {18, 51} tii[34,80] := {42} tii[34,81] := {20, 85} tii[34,82] := {60} tii[34,83] := {40, 107} tii[34,84] := {77} cell#13 , |C| = 49 special orbit = [8, 6] special rep = [[4], [3]] , dim = 35 cell rep = phi[[4, 3],[]]+phi[[4],[3]] TII depth = 2 TII multiplicity polynomial = 14*X^2+21*X TII subcells: tii[35,1] := {9, 38} tii[35,2] := {31, 41} tii[35,3] := {44} tii[35,4] := {47} tii[35,5] := {48} tii[35,6] := {2, 28} tii[35,7] := {10, 24} tii[35,8] := {27} tii[35,9] := {35} tii[35,10] := {4, 33} tii[35,11] := {1, 25} tii[35,12] := {14, 29} tii[35,13] := {5, 17} tii[35,14] := {32} tii[35,15] := {11} tii[35,16] := {40} tii[35,17] := {22, 36} tii[35,18] := {15, 30} tii[35,19] := {37} tii[35,20] := {26} tii[35,21] := {43} tii[35,22] := {42} tii[35,23] := {45} tii[35,24] := {39} tii[35,25] := {46} tii[35,26] := {0, 20} tii[35,27] := {3, 13} tii[35,28] := {7} tii[35,29] := {6, 18} tii[35,30] := {12} tii[35,31] := {19} tii[35,32] := {8, 21} tii[35,33] := {16} tii[35,34] := {23} tii[35,35] := {34} cell#14 , |C| = 49 special orbit = [8, 6] special rep = [[4], [3]] , dim = 35 cell rep = phi[[4, 3],[]]+phi[[4],[3]] TII depth = 2 TII multiplicity polynomial = 14*X^2+21*X TII subcells: tii[35,1] := {39, 46} tii[35,2] := {17, 38} tii[35,3] := {41} tii[35,4] := {47} tii[35,5] := {48} tii[35,6] := {22, 40} tii[35,7] := {6, 29} tii[35,8] := {24} tii[35,9] := {36} tii[35,10] := {32, 44} tii[35,11] := {23, 42} tii[35,12] := {3, 21} tii[35,13] := {16, 35} tii[35,14] := {18} tii[35,15] := {27} tii[35,16] := {31} tii[35,17] := {7, 30} tii[35,18] := {2, 20} tii[35,19] := {25} tii[35,20] := {9} tii[35,21] := {37} tii[35,22] := {34} tii[35,23] := {43} tii[35,24] := {28} tii[35,25] := {45} tii[35,26] := {12, 33} tii[35,27] := {5, 26} tii[35,28] := {13} tii[35,29] := {1, 19} tii[35,30] := {8} tii[35,31] := {14} tii[35,32] := {0, 11} tii[35,33] := {4} tii[35,34] := {10} tii[35,35] := {15} cell#15 , |C| = 35 special orbit = [10, 2, 2] special rep = [[5, 1], [1]] , dim = 35 cell rep = phi[[5, 1],[1]] TII depth = 5 TII multiplicity polynomial = 35*X TII subcells: tii[37,1] := {34} tii[37,2] := {31} tii[37,3] := {26} tii[37,4] := {17} tii[37,5] := {5} tii[37,6] := {19} tii[37,7] := {33} tii[37,8] := {16} tii[37,9] := {32} tii[37,10] := {20} tii[37,11] := {30} tii[37,12] := {15} tii[37,13] := {28} tii[37,14] := {21} tii[37,15] := {25} tii[37,16] := {10} tii[37,17] := {12} tii[37,18] := {29} tii[37,19] := {9} tii[37,20] := {27} tii[37,21] := {13} tii[37,22] := {24} tii[37,23] := {22} tii[37,24] := {6} tii[37,25] := {4} tii[37,26] := {23} tii[37,27] := {7} tii[37,28] := {18} tii[37,29] := {14} tii[37,30] := {1} tii[37,31] := {2} tii[37,32] := {11} tii[37,33] := {8} tii[37,34] := {0} tii[37,35] := {3} cell#16 , |C| = 147 special orbit = [8, 4, 2] special rep = [[4, 1], [2]] , dim = 84 cell rep = phi[[4, 2],[1]]+phi[[4, 1],[2]] TII depth = 4 TII multiplicity polynomial = 63*X^2+21*X TII subcells: tii[34,1] := {82, 146} tii[34,2] := {94, 140} tii[34,3] := {52, 125} tii[34,4] := {103} tii[34,5] := {43, 95} tii[34,6] := {67, 97} tii[34,7] := {63, 143} tii[34,8] := {80, 99} tii[34,9] := {53, 137} tii[34,10] := {28, 128} tii[34,11] := {102} tii[34,12] := {115} tii[34,13] := {22, 106} tii[34,14] := {69, 145} tii[34,15] := {6, 116} tii[34,16] := {49, 83} tii[34,17] := {64, 86} tii[34,18] := {54, 144} tii[34,19] := {14, 124} tii[34,20] := {65, 131} tii[34,21] := {35, 121} tii[34,22] := {34, 142} tii[34,23] := {4, 132} tii[34,24] := {89} tii[34,25] := {15, 139} tii[34,26] := {105} tii[34,27] := {68, 96} tii[34,28] := {81, 136} tii[34,29] := {51, 108} tii[34,30] := {45, 70} tii[34,31] := {30, 118} tii[34,32] := {66, 133} tii[34,33] := {27, 112} tii[34,34] := {74} tii[34,35] := {48, 129} tii[34,36] := {93} tii[34,37] := {24, 85} tii[34,38] := {36, 120} tii[34,39] := {7, 100} tii[34,40] := {55} tii[34,41] := {17, 113} tii[34,42] := {79} tii[34,43] := {73} tii[34,44] := {92} tii[34,45] := {20, 84} tii[34,46] := {31, 71} tii[34,47] := {19, 56} tii[34,48] := {38} tii[34,49] := {3, 107} tii[34,50] := {9, 117} tii[34,51] := {46, 141} tii[34,52] := {50, 87} tii[34,53] := {0, 126} tii[34,54] := {26, 138} tii[34,55] := {42, 75} tii[34,56] := {10, 135} tii[34,57] := {59} tii[34,58] := {25, 109} tii[34,59] := {8, 119} tii[34,60] := {37, 134} tii[34,61] := {62, 90} tii[34,62] := {18, 130} tii[34,63] := {77} tii[34,64] := {2, 111} tii[34,65] := {91} tii[34,66] := {12, 123} tii[34,67] := {32, 72} tii[34,68] := {21, 57} tii[34,69] := {39} tii[34,70] := {33, 98} tii[34,71] := {44, 76} tii[34,72] := {13, 110} tii[34,73] := {47, 127} tii[34,74] := {29, 122} tii[34,75] := {60} tii[34,76] := {5, 101} tii[34,77] := {78} tii[34,78] := {16, 114} tii[34,79] := {23, 58} tii[34,80] := {40} tii[34,81] := {1, 88} tii[34,82] := {61} tii[34,83] := {11, 104} tii[34,84] := {41} cell#17 , |C| = 35 special orbit = [7, 7] special rep = [[3], [4]] , dim = 35 cell rep = phi[[3],[4]] TII depth = 4 TII multiplicity polynomial = 35*X TII subcells: tii[30,1] := {21} tii[30,2] := {30} tii[30,3] := {33} tii[30,4] := {34} tii[30,5] := {8} tii[30,6] := {18} tii[30,7] := {24} tii[30,8] := {13} tii[30,9] := {5} tii[30,10] := {22} tii[30,11] := {12} tii[30,12] := {27} tii[30,13] := {17} tii[30,14] := {14} tii[30,15] := {25} tii[30,16] := {20} tii[30,17] := {10} tii[30,18] := {29} tii[30,19] := {28} tii[30,20] := {31} tii[30,21] := {26} tii[30,22] := {32} tii[30,23] := {1} tii[30,24] := {7} tii[30,25] := {4} tii[30,26] := {11} tii[30,27] := {2} tii[30,28] := {15} tii[30,29] := {9} tii[30,30] := {16} tii[30,31] := {6} tii[30,32] := {3} tii[30,33] := {19} tii[30,34] := {23} tii[30,35] := {0} cell#18 , |C| = 140 special orbit = [6, 6, 2] special rep = [[3, 1], [3]] , dim = 105 cell rep = phi[[3, 3],[1]]+phi[[3, 1],[3]] TII depth = 3 TII multiplicity polynomial = 35*X^2+70*X TII subcells: tii[29,1] := {124, 131} tii[29,2] := {132} tii[29,3] := {139} tii[29,4] := {53, 100} tii[29,5] := {106} tii[29,6] := {86, 110} tii[29,7] := {103} tii[29,8] := {127} tii[29,9] := {135} tii[29,10] := {30, 80} tii[29,11] := {4, 33} tii[29,12] := {101, 116} tii[29,13] := {88} tii[29,14] := {62, 87} tii[29,15] := {108} tii[29,16] := {26} tii[29,17] := {119} tii[29,18] := {52} tii[29,19] := {130} tii[29,20] := {54, 99} tii[29,21] := {115, 125} tii[29,22] := {32, 79} tii[29,23] := {105} tii[29,24] := {102, 117} tii[29,25] := {59, 89} tii[29,26] := {70} tii[29,27] := {120} tii[29,28] := {126} tii[29,29] := {83, 112} tii[29,30] := {96} tii[29,31] := {134} tii[29,32] := {118} tii[29,33] := {128} tii[29,34] := {107} tii[29,35] := {133} tii[29,36] := {123} tii[29,37] := {137} tii[29,38] := {136} tii[29,39] := {138} tii[29,40] := {13, 56} tii[29,41] := {47} tii[29,42] := {75} tii[29,43] := {31, 81} tii[29,44] := {2, 23} tii[29,45] := {22, 61} tii[29,46] := {43, 78} tii[29,47] := {71} tii[29,48] := {17} tii[29,49] := {39} tii[29,50] := {97} tii[29,51] := {41} tii[29,52] := {9, 42} tii[29,53] := {92} tii[29,54] := {66, 98} tii[29,55] := {24, 58} tii[29,56] := {36} tii[29,57] := {114} tii[29,58] := {44, 85} tii[29,59] := {72} tii[29,60] := {64} tii[29,61] := {60} tii[29,62] := {122} tii[29,63] := {84} tii[29,64] := {14, 57} tii[29,65] := {8, 38} tii[29,66] := {48} tii[29,67] := {20} tii[29,68] := {76} tii[29,69] := {15, 55} tii[29,70] := {34, 67} tii[29,71] := {82, 104} tii[29,72] := {1, 18} tii[29,73] := {69} tii[29,74] := {46} tii[29,75] := {63, 95} tii[29,76] := {5} tii[29,77] := {94} tii[29,78] := {49} tii[29,79] := {74} tii[29,80] := {16, 45} tii[29,81] := {68} tii[29,82] := {12} tii[29,83] := {109} tii[29,84] := {40, 77} tii[29,85] := {93} tii[29,86] := {91} tii[29,87] := {113} tii[29,88] := {73} tii[29,89] := {90} tii[29,90] := {51} tii[29,91] := {121} tii[29,92] := {111} tii[29,93] := {129} tii[29,94] := {7, 37} tii[29,95] := {19} tii[29,96] := {27} tii[29,97] := {0, 11} tii[29,98] := {3} tii[29,99] := {10, 35} tii[29,100] := {50} tii[29,101] := {6} tii[29,102] := {25, 65} tii[29,103] := {21} tii[29,104] := {28} tii[29,105] := {29} cell#19 , |C| = 147 special orbit = [8, 4, 2] special rep = [[4, 1], [2]] , dim = 84 cell rep = phi[[4, 2],[1]]+phi[[4, 1],[2]] TII depth = 4 TII multiplicity polynomial = 63*X^2+21*X TII subcells: tii[34,1] := {103, 146} tii[34,2] := {64, 140} tii[34,3] := {85, 126} tii[34,4] := {123} tii[34,5] := {31, 93} tii[34,6] := {43, 95} tii[34,7] := {76, 143} tii[34,8] := {70, 97} tii[34,9] := {46, 137} tii[34,10] := {56, 130} tii[34,11] := {100} tii[34,12] := {114} tii[34,13] := {52, 106} tii[34,14] := {90, 145} tii[34,15] := {32, 117} tii[34,16] := {25, 79} tii[34,17] := {53, 82} tii[34,18] := {77, 144} tii[34,19] := {13, 125} tii[34,20] := {37, 132} tii[34,21] := {44, 122} tii[34,22] := {63, 142} tii[34,23] := {27, 131} tii[34,24] := {87} tii[34,25] := {48, 138} tii[34,26] := {102} tii[34,27] := {9, 94} tii[34,28] := {47, 136} tii[34,29] := {2, 108} tii[34,30] := {33, 65} tii[34,31] := {6, 115} tii[34,32] := {30, 134} tii[34,33] := {57, 112} tii[34,34] := {71} tii[34,35] := {22, 127} tii[34,36] := {89} tii[34,37] := {54, 81} tii[34,38] := {72, 121} tii[34,39] := {36, 91} tii[34,40] := {86} tii[34,41] := {59, 110} tii[34,42] := {101} tii[34,43] := {99} tii[34,44] := {113} tii[34,45] := {14, 80} tii[34,46] := {7, 66} tii[34,47] := {16, 49} tii[34,48] := {40} tii[34,49] := {15, 107} tii[34,50] := {4, 118} tii[34,51] := {62, 141} tii[34,52] := {24, 83} tii[34,53] := {12, 124} tii[34,54] := {45, 139} tii[34,55] := {34, 68} tii[34,56] := {28, 133} tii[34,57] := {60} tii[34,58] := {1, 109} tii[34,59] := {5, 116} tii[34,60] := {29, 135} tii[34,61] := {55, 84} tii[34,62] := {21, 128} tii[34,63] := {75} tii[34,64] := {19, 105} tii[34,65] := {88} tii[34,66] := {38, 120} tii[34,67] := {8, 67} tii[34,68] := {17, 50} tii[34,69] := {41} tii[34,70] := {0, 96} tii[34,71] := {35, 69} tii[34,72] := {3, 104} tii[34,73] := {23, 129} tii[34,74] := {11, 119} tii[34,75] := {61} tii[34,76] := {10, 92} tii[34,77] := {74} tii[34,78] := {26, 111} tii[34,79] := {18, 51} tii[34,80] := {42} tii[34,81] := {20, 78} tii[34,82] := {58} tii[34,83] := {39, 98} tii[34,84] := {73} cell#20 , |C| = 35 special orbit = [10, 2, 2] special rep = [[5, 1], [1]] , dim = 35 cell rep = phi[[5, 1],[1]] TII depth = 5 TII multiplicity polynomial = 35*X TII subcells: tii[37,1] := {34} tii[37,2] := {33} tii[37,3] := {29} tii[37,4] := {27} tii[37,5] := {20} tii[37,6] := {5} tii[37,7] := {32} tii[37,8] := {8} tii[37,9] := {30} tii[37,10] := {4} tii[37,11] := {26} tii[37,12] := {11} tii[37,13] := {22} tii[37,14] := {2} tii[37,15] := {14} tii[37,16] := {18} tii[37,17] := {7} tii[37,18] := {31} tii[37,19] := {15} tii[37,20] := {28} tii[37,21] := {6} tii[37,22] := {23} tii[37,23] := {16} tii[37,24] := {3} tii[37,25] := {10} tii[37,26] := {25} tii[37,27] := {1} tii[37,28] := {21} tii[37,29] := {13} tii[37,30] := {19} tii[37,31] := {9} tii[37,32] := {24} tii[37,33] := {17} tii[37,34] := {0} tii[37,35] := {12} cell#21 , |C| = 13 special orbit = [12, 2] special rep = [[6], [1]] , dim = 7 cell rep = phi[[6, 1],[]]+phi[[6],[1]] TII depth = 1 TII multiplicity polynomial = 6*X^2+X TII subcells: tii[39,1] := {2, 12} tii[39,2] := {3, 11} tii[39,3] := {1, 10} tii[39,4] := {4, 9} tii[39,5] := {0, 8} tii[39,6] := {5, 7} tii[39,7] := {6} cell#22 , |C| = 35 special orbit = [10, 4] special rep = [[5], [2]] , dim = 21 cell rep = phi[[5, 2],[]]+phi[[5],[2]] TII depth = 1 TII multiplicity polynomial = 14*X^2+7*X TII subcells: tii[38,1] := {3, 34} tii[38,2] := {14, 33} tii[38,3] := {5, 28} tii[38,4] := {15, 25} tii[38,5] := {27} tii[38,6] := {32} tii[38,7] := {0, 31} tii[38,8] := {6, 29} tii[38,9] := {2, 24} tii[38,10] := {8, 19} tii[38,11] := {13} tii[38,12] := {9, 30} tii[38,13] := {4, 26} tii[38,14] := {10, 20} tii[38,15] := {16} tii[38,16] := {1, 23} tii[38,17] := {7, 18} tii[38,18] := {12} tii[38,19] := {11, 21} tii[38,20] := {17} tii[38,21] := {22} cell#23 , |C| = 35 special orbit = [10, 2, 2] special rep = [[5, 1], [1]] , dim = 35 cell rep = phi[[5, 1],[1]] TII depth = 5 TII multiplicity polynomial = 35*X TII subcells: tii[37,1] := {34} tii[37,2] := {31} tii[37,3] := {26} tii[37,4] := {19} tii[37,5] := {13} tii[37,6] := {0} tii[37,7] := {33} tii[37,8] := {5} tii[37,9] := {32} tii[37,10] := {10} tii[37,11] := {30} tii[37,12] := {15} tii[37,13] := {28} tii[37,14] := {20} tii[37,15] := {25} tii[37,16] := {1} tii[37,17] := {6} tii[37,18] := {29} tii[37,19] := {11} tii[37,20] := {27} tii[37,21] := {16} tii[37,22] := {24} tii[37,23] := {22} tii[37,24] := {2} tii[37,25] := {7} tii[37,26] := {23} tii[37,27] := {12} tii[37,28] := {21} tii[37,29] := {18} tii[37,30] := {3} tii[37,31] := {8} tii[37,32] := {17} tii[37,33] := {14} tii[37,34] := {4} tii[37,35] := {9} cell#24 , |C| = 35 special orbit = [10, 2, 2] special rep = [[5, 1], [1]] , dim = 35 cell rep = phi[[5, 1],[1]] TII depth = 5 TII multiplicity polynomial = 35*X TII subcells: tii[37,1] := {34} tii[37,2] := {31} tii[37,3] := {26} tii[37,4] := {17} tii[37,5] := {5} tii[37,6] := {19} tii[37,7] := {33} tii[37,8] := {15} tii[37,9] := {32} tii[37,10] := {20} tii[37,11] := {30} tii[37,12] := {16} tii[37,13] := {28} tii[37,14] := {21} tii[37,15] := {25} tii[37,16] := {9} tii[37,17] := {12} tii[37,18] := {29} tii[37,19] := {10} tii[37,20] := {27} tii[37,21] := {13} tii[37,22] := {24} tii[37,23] := {22} tii[37,24] := {6} tii[37,25] := {4} tii[37,26] := {23} tii[37,27] := {7} tii[37,28] := {18} tii[37,29] := {14} tii[37,30] := {1} tii[37,31] := {2} tii[37,32] := {11} tii[37,33] := {8} tii[37,34] := {0} tii[37,35] := {3} cell#25 , |C| = 49 special orbit = [8, 6] special rep = [[4], [3]] , dim = 35 cell rep = phi[[4, 3],[]]+phi[[4],[3]] TII depth = 2 TII multiplicity polynomial = 14*X^2+21*X TII subcells: tii[35,1] := {9, 38} tii[35,2] := {31, 41} tii[35,3] := {44} tii[35,4] := {47} tii[35,5] := {48} tii[35,6] := {2, 28} tii[35,7] := {10, 24} tii[35,8] := {27} tii[35,9] := {35} tii[35,10] := {4, 33} tii[35,11] := {1, 25} tii[35,12] := {14, 29} tii[35,13] := {5, 17} tii[35,14] := {32} tii[35,15] := {11} tii[35,16] := {40} tii[35,17] := {22, 36} tii[35,18] := {15, 30} tii[35,19] := {37} tii[35,20] := {26} tii[35,21] := {43} tii[35,22] := {42} tii[35,23] := {45} tii[35,24] := {39} tii[35,25] := {46} tii[35,26] := {0, 20} tii[35,27] := {3, 13} tii[35,28] := {7} tii[35,29] := {6, 18} tii[35,30] := {12} tii[35,31] := {19} tii[35,32] := {8, 21} tii[35,33] := {16} tii[35,34] := {23} tii[35,35] := {34} cell#26 , |C| = 147 special orbit = [8, 4, 2] special rep = [[4, 1], [2]] , dim = 84 cell rep = phi[[4, 2],[1]]+phi[[4, 1],[2]] TII depth = 4 TII multiplicity polynomial = 63*X^2+21*X TII subcells: tii[34,1] := {82, 146} tii[34,2] := {94, 140} tii[34,3] := {52, 125} tii[34,4] := {103} tii[34,5] := {42, 95} tii[34,6] := {67, 97} tii[34,7] := {63, 143} tii[34,8] := {80, 99} tii[34,9] := {53, 137} tii[34,10] := {28, 128} tii[34,11] := {102} tii[34,12] := {115} tii[34,13] := {21, 106} tii[34,14] := {69, 145} tii[34,15] := {4, 116} tii[34,16] := {49, 83} tii[34,17] := {64, 86} tii[34,18] := {54, 144} tii[34,19] := {14, 124} tii[34,20] := {65, 131} tii[34,21] := {35, 121} tii[34,22] := {34, 142} tii[34,23] := {5, 132} tii[34,24] := {89} tii[34,25] := {15, 139} tii[34,26] := {105} tii[34,27] := {68, 96} tii[34,28] := {81, 136} tii[34,29] := {51, 108} tii[34,30] := {45, 70} tii[34,31] := {30, 118} tii[34,32] := {66, 133} tii[34,33] := {27, 112} tii[34,34] := {74} tii[34,35] := {48, 129} tii[34,36] := {93} tii[34,37] := {24, 85} tii[34,38] := {36, 120} tii[34,39] := {7, 100} tii[34,40] := {55} tii[34,41] := {17, 113} tii[34,42] := {79} tii[34,43] := {73} tii[34,44] := {92} tii[34,45] := {19, 84} tii[34,46] := {31, 71} tii[34,47] := {20, 56} tii[34,48] := {38} tii[34,49] := {0, 107} tii[34,50] := {9, 117} tii[34,51] := {46, 141} tii[34,52] := {50, 87} tii[34,53] := {1, 126} tii[34,54] := {26, 138} tii[34,55] := {43, 75} tii[34,56] := {10, 135} tii[34,57] := {59} tii[34,58] := {25, 109} tii[34,59] := {8, 119} tii[34,60] := {37, 134} tii[34,61] := {62, 90} tii[34,62] := {18, 130} tii[34,63] := {77} tii[34,64] := {3, 111} tii[34,65] := {91} tii[34,66] := {12, 123} tii[34,67] := {32, 72} tii[34,68] := {22, 57} tii[34,69] := {39} tii[34,70] := {33, 98} tii[34,71] := {44, 76} tii[34,72] := {13, 110} tii[34,73] := {47, 127} tii[34,74] := {29, 122} tii[34,75] := {60} tii[34,76] := {6, 101} tii[34,77] := {78} tii[34,78] := {16, 114} tii[34,79] := {23, 58} tii[34,80] := {40} tii[34,81] := {2, 88} tii[34,82] := {61} tii[34,83] := {11, 104} tii[34,84] := {41} cell#27 , |C| = 147 special orbit = [8, 4, 2] special rep = [[4, 1], [2]] , dim = 84 cell rep = phi[[4, 2],[1]]+phi[[4, 1],[2]] TII depth = 4 TII multiplicity polynomial = 63*X^2+21*X TII subcells: tii[34,1] := {105, 146} tii[34,2] := {71, 140} tii[34,3] := {47, 123} tii[34,4] := {98} tii[34,5] := {68, 116} tii[34,6] := {44, 101} tii[34,7] := {79, 143} tii[34,8] := {69, 95} tii[34,9] := {48, 137} tii[34,10] := {18, 129} tii[34,11] := {99} tii[34,12] := {113} tii[34,13] := {51, 125} tii[34,14] := {93, 145} tii[34,15] := {34, 122} tii[34,16] := {28, 87} tii[34,17] := {53, 81} tii[34,18] := {82, 144} tii[34,19] := {27, 126} tii[34,20] := {39, 131} tii[34,21] := {12, 120} tii[34,22] := {66, 142} tii[34,23] := {36, 132} tii[34,24] := {86} tii[34,25] := {59, 138} tii[34,26] := {102} tii[34,27] := {14, 100} tii[34,28] := {58, 136} tii[34,29] := {7, 107} tii[34,30] := {35, 64} tii[34,31] := {15, 114} tii[34,32] := {42, 134} tii[34,33] := {19, 111} tii[34,34] := {70} tii[34,35] := {30, 127} tii[34,36] := {90} tii[34,37] := {21, 80} tii[34,38] := {32, 121} tii[34,39] := {8, 91} tii[34,40] := {56} tii[34,41] := {24, 109} tii[34,42] := {76} tii[34,43] := {63} tii[34,44] := {83} tii[34,45] := {52, 106} tii[34,46] := {43, 96} tii[34,47] := {54, 84} tii[34,48] := {74} tii[34,49] := {20, 112} tii[34,50] := {13, 117} tii[34,51] := {65, 141} tii[34,52] := {31, 89} tii[34,53] := {22, 124} tii[34,54] := {49, 139} tii[34,55] := {45, 77} tii[34,56] := {40, 133} tii[34,57] := {62} tii[34,58] := {4, 108} tii[34,59] := {9, 115} tii[34,60] := {33, 135} tii[34,61] := {55, 85} tii[34,62] := {25, 128} tii[34,63] := {75} tii[34,64] := {2, 104} tii[34,65] := {88} tii[34,66] := {10, 119} tii[34,67] := {17, 73} tii[34,68] := {29, 61} tii[34,69] := {46} tii[34,70] := {1, 94} tii[34,71] := {37, 67} tii[34,72] := {5, 103} tii[34,73] := {26, 130} tii[34,74] := {16, 118} tii[34,75] := {60} tii[34,76] := {0, 92} tii[34,77] := {72} tii[34,78] := {6, 110} tii[34,79] := {23, 50} tii[34,80] := {41} tii[34,81] := {3, 78} tii[34,82] := {57} tii[34,83] := {11, 97} tii[34,84] := {38} cell#28 , |C| = 140 special orbit = [6, 6, 2] special rep = [[3, 1], [3]] , dim = 105 cell rep = phi[[3, 3],[1]]+phi[[3, 1],[3]] TII depth = 3 TII multiplicity polynomial = 35*X^2+70*X TII subcells: tii[29,1] := {100, 132} tii[29,2] := {133} tii[29,3] := {139} tii[29,4] := {30, 63} tii[29,5] := {85} tii[29,6] := {50, 109} tii[29,7] := {104} tii[29,8] := {114} tii[29,9] := {126} tii[29,10] := {48, 80} tii[29,11] := {15, 46} tii[29,12] := {68, 119} tii[29,13] := {101} tii[29,14] := {37, 99} tii[29,15] := {115} tii[29,16] := {53} tii[29,17] := {122} tii[29,18] := {78} tii[29,19] := {131} tii[29,20] := {67, 96} tii[29,21] := {86, 127} tii[29,22] := {49, 81} tii[29,23] := {112} tii[29,24] := {73, 120} tii[29,25] := {33, 95} tii[29,26] := {89} tii[29,27] := {123} tii[29,28] := {128} tii[29,29] := {58, 110} tii[29,30] := {108} tii[29,31] := {135} tii[29,32] := {121} tii[29,33] := {129} tii[29,34] := {113} tii[29,35] := {134} tii[29,36] := {125} tii[29,37] := {137} tii[29,38] := {136} tii[29,39] := {138} tii[29,40] := {4, 27} tii[29,41] := {35} tii[29,42] := {60} tii[29,43] := {14, 45} tii[29,44] := {3, 26} tii[29,45] := {5, 28} tii[29,46] := {19, 84} tii[29,47] := {52} tii[29,48] := {34} tii[29,49] := {24} tii[29,50] := {77} tii[29,51] := {59} tii[29,52] := {16, 44} tii[29,53] := {70} tii[29,54] := {36, 98} tii[29,55] := {7, 61} tii[29,56] := {51} tii[29,57] := {92} tii[29,58] := {22, 82} tii[29,59] := {55} tii[29,60] := {76} tii[29,61] := {69} tii[29,62] := {105} tii[29,63] := {91} tii[29,64] := {31, 65} tii[29,65] := {17, 47} tii[29,66] := {72} tii[29,67] := {42} tii[29,68] := {94} tii[29,69] := {32, 64} tii[29,70] := {18, 79} tii[29,71] := {54, 111} tii[29,72] := {6, 29} tii[29,73] := {88} tii[29,74] := {71} tii[29,75] := {41, 97} tii[29,76] := {25} tii[29,77] := {107} tii[29,78] := {74} tii[29,79] := {93} tii[29,80] := {8, 62} tii[29,81] := {87} tii[29,82] := {40} tii[29,83] := {116} tii[29,84] := {23, 83} tii[29,85] := {106} tii[29,86] := {103} tii[29,87] := {118} tii[29,88] := {90} tii[29,89] := {102} tii[29,90] := {75} tii[29,91] := {124} tii[29,92] := {117} tii[29,93] := {130} tii[29,94] := {0, 12} tii[29,95] := {10} tii[29,96] := {21} tii[29,97] := {1, 13} tii[29,98] := {11} tii[29,99] := {2, 43} tii[29,100] := {39} tii[29,101] := {20} tii[29,102] := {9, 66} tii[29,103] := {38} tii[29,104] := {57} tii[29,105] := {56} cell#29 , |C| = 147 special orbit = [8, 4, 2] special rep = [[4, 1], [2]] , dim = 84 cell rep = phi[[4, 2],[1]]+phi[[4, 1],[2]] TII depth = 4 TII multiplicity polynomial = 63*X^2+21*X TII subcells: tii[34,1] := {105, 146} tii[34,2] := {71, 140} tii[34,3] := {47, 123} tii[34,4] := {98} tii[34,5] := {68, 116} tii[34,6] := {44, 101} tii[34,7] := {79, 143} tii[34,8] := {69, 95} tii[34,9] := {48, 137} tii[34,10] := {18, 129} tii[34,11] := {99} tii[34,12] := {113} tii[34,13] := {51, 125} tii[34,14] := {93, 145} tii[34,15] := {34, 122} tii[34,16] := {28, 87} tii[34,17] := {53, 81} tii[34,18] := {82, 144} tii[34,19] := {27, 126} tii[34,20] := {39, 131} tii[34,21] := {12, 120} tii[34,22] := {66, 142} tii[34,23] := {36, 132} tii[34,24] := {86} tii[34,25] := {59, 138} tii[34,26] := {102} tii[34,27] := {14, 100} tii[34,28] := {58, 136} tii[34,29] := {7, 107} tii[34,30] := {35, 64} tii[34,31] := {15, 114} tii[34,32] := {42, 134} tii[34,33] := {19, 111} tii[34,34] := {70} tii[34,35] := {30, 127} tii[34,36] := {90} tii[34,37] := {21, 80} tii[34,38] := {32, 121} tii[34,39] := {8, 91} tii[34,40] := {56} tii[34,41] := {24, 109} tii[34,42] := {76} tii[34,43] := {63} tii[34,44] := {83} tii[34,45] := {52, 106} tii[34,46] := {43, 96} tii[34,47] := {54, 84} tii[34,48] := {74} tii[34,49] := {20, 112} tii[34,50] := {13, 117} tii[34,51] := {65, 141} tii[34,52] := {31, 89} tii[34,53] := {22, 124} tii[34,54] := {49, 139} tii[34,55] := {45, 77} tii[34,56] := {40, 133} tii[34,57] := {62} tii[34,58] := {4, 108} tii[34,59] := {9, 115} tii[34,60] := {33, 135} tii[34,61] := {55, 85} tii[34,62] := {25, 128} tii[34,63] := {75} tii[34,64] := {2, 104} tii[34,65] := {88} tii[34,66] := {10, 119} tii[34,67] := {17, 73} tii[34,68] := {29, 61} tii[34,69] := {46} tii[34,70] := {1, 94} tii[34,71] := {37, 67} tii[34,72] := {5, 103} tii[34,73] := {26, 130} tii[34,74] := {16, 118} tii[34,75] := {60} tii[34,76] := {0, 92} tii[34,77] := {72} tii[34,78] := {6, 110} tii[34,79] := {23, 50} tii[34,80] := {41} tii[34,81] := {3, 78} tii[34,82] := {57} tii[34,83] := {11, 97} tii[34,84] := {38} cell#30 , |C| = 140 special orbit = [6, 6, 2] special rep = [[3, 1], [3]] , dim = 105 cell rep = phi[[3, 3],[1]]+phi[[3, 1],[3]] TII depth = 3 TII multiplicity polynomial = 35*X^2+70*X TII subcells: tii[29,1] := {68, 136} tii[29,2] := {126} tii[29,3] := {139} tii[29,4] := {76, 104} tii[29,5] := {120} tii[29,6] := {19, 115} tii[29,7] := {75} tii[29,8] := {134} tii[29,9] := {138} tii[29,10] := {55, 86} tii[29,11] := {23, 51} tii[29,12] := {33, 124} tii[29,13] := {110} tii[29,14] := {11, 108} tii[29,15] := {93} tii[29,16] := {58} tii[29,17] := {128} tii[29,18] := {83} tii[29,19] := {135} tii[29,20] := {36, 103} tii[29,21] := {50, 131} tii[29,22] := {22, 87} tii[29,23] := {94} tii[29,24] := {34, 127} tii[29,25] := {14, 102} tii[29,26] := {57} tii[29,27] := {107} tii[29,28] := {121} tii[29,29] := {29, 117} tii[29,30] := {82} tii[29,31] := {130} tii[29,32] := {101} tii[29,33] := {118} tii[29,34] := {84} tii[29,35] := {125} tii[29,36] := {105} tii[29,37] := {133} tii[29,38] := {132} tii[29,39] := {137} tii[29,40] := {38, 71} tii[29,41] := {79} tii[29,42] := {100} tii[29,43] := {56, 88} tii[29,44] := {12, 32} tii[29,45] := {39, 74} tii[29,46] := {4, 92} tii[29,47] := {96} tii[29,48] := {40} tii[29,49] := {62} tii[29,50] := {114} tii[29,51] := {63} tii[29,52] := {5, 49} tii[29,53] := {111} tii[29,54] := {10, 109} tii[29,55] := {1, 65} tii[29,56] := {26} tii[29,57] := {123} tii[29,58] := {8, 89} tii[29,59] := {97} tii[29,60] := {46} tii[29,61] := {31} tii[29,62] := {129} tii[29,63] := {52} tii[29,64] := {37, 70} tii[29,65] := {24, 53} tii[29,66] := {78} tii[29,67] := {44} tii[29,68] := {99} tii[29,69] := {13, 69} tii[29,70] := {7, 85} tii[29,71] := {21, 119} tii[29,72] := {15, 35} tii[29,73] := {95} tii[29,74] := {41} tii[29,75] := {18, 106} tii[29,76] := {30} tii[29,77] := {113} tii[29,78] := {80} tii[29,79] := {64} tii[29,80] := {2, 67} tii[29,81] := {48} tii[29,82] := {43} tii[29,83] := {122} tii[29,84] := {9, 91} tii[29,85] := {73} tii[29,86] := {77} tii[29,87] := {98} tii[29,88] := {59} tii[29,89] := {66} tii[29,90] := {42} tii[29,91] := {112} tii[29,92] := {90} tii[29,93] := {116} tii[29,94] := {25, 54} tii[29,95] := {45} tii[29,96] := {61} tii[29,97] := {6, 20} tii[29,98] := {17} tii[29,99] := {0, 47} tii[29,100] := {81} tii[29,101] := {27} tii[29,102] := {3, 72} tii[29,103] := {16} tii[29,104] := {60} tii[29,105] := {28} cell#31 , |C| = 105 special orbit = [6, 4, 4] special rep = [[3, 2], [2]] , dim = 105 cell rep = phi[[3, 2],[2]] TII depth = 4 TII multiplicity polynomial = 105*X TII subcells: tii[27,1] := {104} tii[27,2] := {97} tii[27,3] := {75} tii[27,4] := {34} tii[27,5] := {98} tii[27,6] := {80} tii[27,7] := {71} tii[27,8] := {85} tii[27,9] := {43} tii[27,10] := {65} tii[27,11] := {29} tii[27,12] := {101} tii[27,13] := {95} tii[27,14] := {73} tii[27,15] := {67} tii[27,16] := {82} tii[27,17] := {92} tii[27,18] := {103} tii[27,19] := {20} tii[27,20] := {44} tii[27,21] := {86} tii[27,22] := {83} tii[27,23] := {102} tii[27,24] := {93} tii[27,25] := {46} tii[27,26] := {100} tii[27,27] := {62} tii[27,28] := {59} tii[27,29] := {91} tii[27,30] := {72} tii[27,31] := {84} tii[27,32] := {49} tii[27,33] := {31} tii[27,34] := {57} tii[27,35] := {64} tii[27,36] := {42} tii[27,37] := {27} tii[27,38] := {48} tii[27,39] := {52} tii[27,40] := {25} tii[27,41] := {88} tii[27,42] := {15} tii[27,43] := {51} tii[27,44] := {38} tii[27,45] := {70} tii[27,46] := {14} tii[27,47] := {63} tii[27,48] := {21} tii[27,49] := {4} tii[27,50] := {94} tii[27,51] := {78} tii[27,52] := {35} tii[27,53] := {11} tii[27,54] := {56} tii[27,55] := {89} tii[27,56] := {50} tii[27,57] := {69} tii[27,58] := {58} tii[27,59] := {77} tii[27,60] := {10} tii[27,61] := {41} tii[27,62] := {68} tii[27,63] := {54} tii[27,64] := {9} tii[27,65] := {76} tii[27,66] := {16} tii[27,67] := {87} tii[27,68] := {99} tii[27,69] := {2} tii[27,70] := {26} tii[27,71] := {53} tii[27,72] := {30} tii[27,73] := {96} tii[27,74] := {6} tii[27,75] := {39} tii[27,76] := {47} tii[27,77] := {79} tii[27,78] := {45} tii[27,79] := {55} tii[27,80] := {61} tii[27,81] := {90} tii[27,82] := {8} tii[27,83] := {32} tii[27,84] := {18} tii[27,85] := {60} tii[27,86] := {33} tii[27,87] := {74} tii[27,88] := {28} tii[27,89] := {12} tii[27,90] := {36} tii[27,91] := {22} tii[27,92] := {7} tii[27,93] := {17} tii[27,94] := {13} tii[27,95] := {37} tii[27,96] := {23} tii[27,97] := {1} tii[27,98] := {66} tii[27,99] := {40} tii[27,100] := {5} tii[27,101] := {81} tii[27,102] := {24} tii[27,103] := {0} tii[27,104] := {3} tii[27,105] := {19} cell#32 , |C| = 36 special orbit = [10, 2, 1, 1] special rep = [[5], [1, 1]] , dim = 21 cell rep = phi[[5, 1, 1],[]]+phi[[5],[1, 1]] TII depth = 1 TII multiplicity polynomial = 15*X^2+6*X TII subcells: tii[36,1] := {21, 35} tii[36,2] := {22, 34} tii[36,3] := {20, 33} tii[36,4] := {23, 31} tii[36,5] := {19, 29} tii[36,6] := {26} tii[36,7] := {14, 32} tii[36,8] := {13, 30} tii[36,9] := {15, 28} tii[36,10] := {12, 25} tii[36,11] := {18} tii[36,12] := {8, 27} tii[36,13] := {9, 24} tii[36,14] := {7, 17} tii[36,15] := {11} tii[36,16] := {4, 16} tii[36,17] := {3, 10} tii[36,18] := {6} tii[36,19] := {1, 5} tii[36,20] := {2} tii[36,21] := {0} cell#33 , |C| = 154 special orbit = [8, 2, 2, 2] special rep = [[4, 1], [1, 1]] , dim = 84 cell rep = phi[[4, 1, 1],[1]]+phi[[4, 1],[1, 1]] TII depth = 4 TII multiplicity polynomial = 70*X^2+14*X TII subcells: tii[32,1] := {97, 153} tii[32,2] := {61, 150} tii[32,3] := {56, 148} tii[32,4] := {29, 139} tii[32,5] := {118, 151} tii[32,6] := {55, 145} tii[32,7] := {96, 147} tii[32,8] := {45, 141} tii[32,9] := {109, 142} tii[32,10] := {23, 124} tii[32,11] := {95, 130} tii[32,12] := {114} tii[32,13] := {71, 135} tii[32,14] := {63, 128} tii[32,15] := {81, 122} tii[32,16] := {31, 103} tii[32,17] := {69, 102} tii[32,18] := {85} tii[32,19] := {82, 110} tii[32,20] := {24, 84} tii[32,21] := {59, 91} tii[32,22] := {75} tii[32,23] := {40, 66} tii[32,24] := {52} tii[32,25] := {37, 134} tii[32,26] := {80, 152} tii[32,27] := {20, 117} tii[32,28] := {64, 149} tii[32,29] := {27, 127} tii[32,30] := {49, 143} tii[32,31] := {19, 116} tii[32,32] := {33, 132} tii[32,33] := {6, 108} tii[32,34] := {78, 140} tii[32,35] := {90, 129} tii[32,36] := {14, 120} tii[32,37] := {47, 146} tii[32,38] := {77, 112} tii[32,39] := {5, 106} tii[32,40] := {30, 138} tii[32,41] := {93} tii[32,42] := {16, 125} tii[32,43] := {28, 136} tii[32,44] := {72, 111} tii[32,45] := {13, 119} tii[32,46] := {60, 92} tii[32,47] := {42, 144} tii[32,48] := {76} tii[32,49] := {26, 133} tii[32,50] := {4, 107} tii[32,51] := {46, 73} tii[32,52] := {57} tii[32,53] := {15, 126} tii[32,54] := {43} tii[32,55] := {3, 89} tii[32,56] := {41, 137} tii[32,57] := {9, 99} tii[32,58] := {25, 123} tii[32,59] := {2, 87} tii[32,60] := {12, 104} tii[32,61] := {22, 121} tii[32,62] := {62, 101} tii[32,63] := {8, 98} tii[32,64] := {32, 131} tii[32,65] := {53, 83} tii[32,66] := {18, 115} tii[32,67] := {67} tii[32,68] := {0, 88} tii[32,69] := {39, 65} tii[32,70] := {51} tii[32,71] := {10, 105} tii[32,72] := {35} tii[32,73] := {38, 100} tii[32,74] := {50, 113} tii[32,75] := {21, 79} tii[32,76] := {34, 94} tii[32,77] := {7, 70} tii[32,78] := {48, 74} tii[32,79] := {17, 86} tii[32,80] := {58} tii[32,81] := {44} tii[32,82] := {1, 54} tii[32,83] := {11, 68} tii[32,84] := {36} cell#34 , |C| = 147 special orbit = [8, 4, 2] special rep = [[4, 1], [2]] , dim = 84 cell rep = phi[[4, 2],[1]]+phi[[4, 1],[2]] TII depth = 4 TII multiplicity polynomial = 63*X^2+21*X TII subcells: tii[34,1] := {143, 146} tii[34,2] := {138, 144} tii[34,3] := {107, 126} tii[34,4] := {121} tii[34,5] := {5, 87} tii[34,6] := {30, 74} tii[34,7] := {132, 141} tii[34,8] := {8, 43} tii[34,9] := {108, 127} tii[34,10] := {68, 95} tii[34,11] := {35} tii[34,12] := {61} tii[34,13] := {19, 106} tii[34,14] := {139, 145} tii[34,15] := {40, 116} tii[34,16] := {50, 98} tii[34,17] := {13, 52} tii[34,18] := {133, 142} tii[34,19] := {65, 105} tii[34,20] := {118, 134} tii[34,21] := {81, 111} tii[34,22] := {124, 137} tii[34,23] := {88, 119} tii[34,24] := {49} tii[34,25] := {110, 131} tii[34,26] := {72} tii[34,27] := {73, 117} tii[34,28] := {130, 140} tii[34,29] := {51, 96} tii[34,30] := {7, 42} tii[34,31] := {79, 112} tii[34,32] := {120, 135} tii[34,33] := {67, 94} tii[34,34] := {34} tii[34,35] := {101, 128} tii[34,36] := {60} tii[34,37] := {22, 62} tii[34,38] := {89, 114} tii[34,39] := {45, 77} tii[34,40] := {57} tii[34,41] := {69, 103} tii[34,42] := {83} tii[34,43] := {80} tii[34,44] := {102} tii[34,45] := {1, 64} tii[34,46] := {9, 44} tii[34,47] := {3, 28} tii[34,48] := {12} tii[34,49] := {21, 97} tii[34,50] := {41, 86} tii[34,51] := {123, 136} tii[34,52] := {14, 53} tii[34,53] := {66, 99} tii[34,54] := {109, 129} tii[34,55] := {6, 37} tii[34,56] := {91, 122} tii[34,57] := {16} tii[34,58] := {23, 63} tii[34,59] := {46, 78} tii[34,60] := {90, 115} tii[34,61] := {2, 27} tii[34,62] := {70, 104} tii[34,63] := {11} tii[34,64] := {25, 56} tii[34,65] := {18} tii[34,66] := {48, 85} tii[34,67] := {31, 76} tii[34,68] := {20, 58} tii[34,69] := {38} tii[34,70] := {32, 75} tii[34,71] := {4, 36} tii[34,72] := {54, 92} tii[34,73] := {100, 125} tii[34,74] := {82, 113} tii[34,75] := {15} tii[34,76] := {33, 71} tii[34,77] := {29} tii[34,78] := {59, 93} tii[34,79] := {0, 26} tii[34,80] := {10} tii[34,81] := {24, 55} tii[34,82] := {17} tii[34,83] := {47, 84} tii[34,84] := {39} cell#35 , |C| = 140 special orbit = [6, 6, 2] special rep = [[3, 1], [3]] , dim = 105 cell rep = phi[[3, 3],[1]]+phi[[3, 1],[3]] TII depth = 3 TII multiplicity polynomial = 35*X^2+70*X TII subcells: tii[29,1] := {85, 138} tii[29,2] := {129} tii[29,3] := {139} tii[29,4] := {22, 61} tii[29,5] := {69} tii[29,6] := {43, 126} tii[29,7] := {97} tii[29,8] := {102} tii[29,9] := {117} tii[29,10] := {41, 78} tii[29,11] := {51, 80} tii[29,12] := {52, 132} tii[29,13] := {86} tii[29,14] := {26, 120} tii[29,15] := {103} tii[29,16] := {82} tii[29,17] := {113} tii[29,18] := {99} tii[29,19] := {125} tii[29,20] := {60, 93} tii[29,21] := {70, 136} tii[29,22] := {42, 107} tii[29,23] := {100} tii[29,24] := {56, 133} tii[29,25] := {21, 118} tii[29,26] := {73} tii[29,27] := {114} tii[29,28] := {122} tii[29,29] := {37, 128} tii[29,30] := {92} tii[29,31] := {131} tii[29,32] := {112} tii[29,33] := {123} tii[29,34] := {101} tii[29,35] := {130} tii[29,36] := {116} tii[29,37] := {135} tii[29,38] := {134} tii[29,39] := {137} tii[29,40] := {5, 34} tii[29,41] := {25} tii[29,42] := {50} tii[29,43] := {9, 44} tii[29,44] := {33, 62} tii[29,45] := {3, 27} tii[29,46] := {17, 109} tii[29,47] := {35} tii[29,48] := {65} tii[29,49] := {11} tii[29,50] := {59} tii[29,51] := {84} tii[29,52] := {16, 79} tii[29,53] := {53} tii[29,54] := {28, 119} tii[29,55] := {4, 95} tii[29,56] := {45} tii[29,57] := {75} tii[29,58] := {12, 110} tii[29,59] := {38} tii[29,60] := {68} tii[29,61] := {64} tii[29,62] := {89} tii[29,63] := {83} tii[29,64] := {23, 63} tii[29,65] := {14, 46} tii[29,66] := {55} tii[29,67] := {29} tii[29,68] := {77} tii[29,69] := {24, 94} tii[29,70] := {8, 108} tii[29,71] := {36, 127} tii[29,72] := {32, 66} tii[29,73] := {72} tii[29,74] := {54} tii[29,75] := {19, 121} tii[29,76] := {48} tii[29,77] := {91} tii[29,78] := {57} tii[29,79] := {76} tii[29,80] := {2, 96} tii[29,81] := {71} tii[29,82] := {67} tii[29,83] := {104} tii[29,84] := {10, 111} tii[29,85] := {90} tii[29,86] := {88} tii[29,87] := {106} tii[29,88] := {74} tii[29,89] := {87} tii[29,90] := {58} tii[29,91] := {115} tii[29,92] := {105} tii[29,93] := {124} tii[29,94] := {1, 18} tii[29,95] := {7} tii[29,96] := {13} tii[29,97] := {15, 47} tii[29,98] := {30} tii[29,99] := {0, 81} tii[29,100] := {20} tii[29,101] := {49} tii[29,102] := {6, 98} tii[29,103] := {31} tii[29,104] := {39} tii[29,105] := {40} cell#36 , |C| = 147 special orbit = [8, 4, 2] special rep = [[4, 1], [2]] , dim = 84 cell rep = phi[[4, 2],[1]]+phi[[4, 1],[2]] TII depth = 4 TII multiplicity polynomial = 63*X^2+21*X TII subcells: tii[34,1] := {92, 146} tii[34,2] := {70, 140} tii[34,3] := {62, 129} tii[34,4] := {105} tii[34,5] := {27, 104} tii[34,6] := {48, 98} tii[34,7] := {66, 143} tii[34,8] := {72, 101} tii[34,9] := {40, 138} tii[34,10] := {17, 130} tii[34,11] := {99} tii[34,12] := {112} tii[34,13] := {14, 114} tii[34,14] := {80, 145} tii[34,15] := {8, 120} tii[34,16] := {34, 84} tii[34,17] := {58, 89} tii[34,18] := {68, 144} tii[34,19] := {15, 125} tii[34,20] := {44, 135} tii[34,21] := {25, 123} tii[34,22] := {56, 141} tii[34,23] := {26, 131} tii[34,24] := {86} tii[34,25] := {42, 136} tii[34,26] := {102} tii[34,27] := {21, 97} tii[34,28] := {57, 139} tii[34,29] := {11, 107} tii[34,30] := {45, 76} tii[34,31] := {20, 116} tii[34,32] := {53, 133} tii[34,33] := {38, 115} tii[34,34] := {73} tii[34,35] := {37, 126} tii[34,36] := {90} tii[34,37] := {31, 83} tii[34,38] := {52, 121} tii[34,39] := {19, 95} tii[34,40] := {60} tii[34,41] := {36, 109} tii[34,42] := {78} tii[34,43] := {74} tii[34,44] := {91} tii[34,45] := {18, 94} tii[34,46] := {28, 82} tii[34,47] := {41, 69} tii[34,48] := {55} tii[34,49] := {2, 110} tii[34,50] := {6, 118} tii[34,51] := {54, 142} tii[34,52] := {35, 85} tii[34,53] := {13, 124} tii[34,54] := {43, 137} tii[34,55] := {47, 81} tii[34,56] := {29, 132} tii[34,57] := {64} tii[34,58] := {1, 108} tii[34,59] := {5, 117} tii[34,60] := {30, 134} tii[34,61] := {59, 93} tii[34,62] := {16, 127} tii[34,63] := {77} tii[34,64] := {0, 111} tii[34,65] := {88} tii[34,66] := {7, 122} tii[34,67] := {22, 71} tii[34,68] := {33, 67} tii[34,69] := {51} tii[34,70] := {4, 96} tii[34,71] := {46, 79} tii[34,72] := {9, 106} tii[34,73] := {39, 128} tii[34,74] := {23, 119} tii[34,75] := {63} tii[34,76] := {3, 100} tii[34,77] := {75} tii[34,78] := {12, 113} tii[34,79] := {32, 65} tii[34,80] := {50} tii[34,81] := {10, 87} tii[34,82] := {61} tii[34,83] := {24, 103} tii[34,84] := {49} cell#37 , |C| = 105 special orbit = [6, 4, 4] special rep = [[3, 2], [2]] , dim = 105 cell rep = phi[[3, 2],[2]] TII depth = 4 TII multiplicity polynomial = 105*X TII subcells: tii[27,1] := {103} tii[27,2] := {104} tii[27,3] := {36} tii[27,4] := {53} tii[27,5] := {91} tii[27,6] := {88} tii[27,7] := {13} tii[27,8] := {49} tii[27,9] := {28} tii[27,10] := {51} tii[27,11] := {65} tii[27,12] := {97} tii[27,13] := {85} tii[27,14] := {95} tii[27,15] := {55} tii[27,16] := {71} tii[27,17] := {62} tii[27,18] := {101} tii[27,19] := {52} tii[27,20] := {77} tii[27,21] := {73} tii[27,22] := {99} tii[27,23] := {98} tii[27,24] := {82} tii[27,25] := {79} tii[27,26] := {92} tii[27,27] := {90} tii[27,28] := {86} tii[27,29] := {102} tii[27,30] := {94} tii[27,31] := {100} tii[27,32] := {20} tii[27,33] := {24} tii[27,34] := {5} tii[27,35] := {25} tii[27,36] := {1} tii[27,37] := {16} tii[27,38] := {37} tii[27,39] := {15} tii[27,40] := {3} tii[27,41] := {76} tii[27,42] := {31} tii[27,43] := {42} tii[27,44] := {11} tii[27,45] := {59} tii[27,46] := {29} tii[27,47] := {50} tii[27,48] := {43} tii[27,49] := {18} tii[27,50] := {84} tii[27,51] := {60} tii[27,52] := {54} tii[27,53] := {33} tii[27,54] := {70} tii[27,55] := {74} tii[27,56] := {66} tii[27,57] := {80} tii[27,58] := {4} tii[27,59] := {38} tii[27,60] := {44} tii[27,61] := {8} tii[27,62] := {26} tii[27,63] := {22} tii[27,64] := {40} tii[27,65] := {63} tii[27,66] := {56} tii[27,67] := {72} tii[27,68] := {93} tii[27,69] := {30} tii[27,70] := {17} tii[27,71] := {39} tii[27,72] := {67} tii[27,73] := {83} tii[27,74] := {47} tii[27,75] := {35} tii[27,76] := {81} tii[27,77] := {61} tii[27,78] := {78} tii[27,79] := {46} tii[27,80] := {89} tii[27,81] := {75} tii[27,82] := {41} tii[27,83] := {68} tii[27,84] := {58} tii[27,85] := {87} tii[27,86] := {69} tii[27,87] := {96} tii[27,88] := {0} tii[27,89] := {2} tii[27,90] := {12} tii[27,91] := {7} tii[27,92] := {6} tii[27,93] := {14} tii[27,94] := {9} tii[27,95] := {27} tii[27,96] := {23} tii[27,97] := {10} tii[27,98] := {48} tii[27,99] := {32} tii[27,100] := {21} tii[27,101] := {64} tii[27,102] := {45} tii[27,103] := {19} tii[27,104] := {34} tii[27,105] := {57} cell#38 , |C| = 35 special orbit = [10, 2, 2] special rep = [[5, 1], [1]] , dim = 35 cell rep = phi[[5, 1],[1]] TII depth = 5 TII multiplicity polynomial = 35*X TII subcells: tii[37,1] := {34} tii[37,2] := {32} tii[37,3] := {30} tii[37,4] := {24} tii[37,5] := {26} tii[37,6] := {12} tii[37,7] := {33} tii[37,8] := {4} tii[37,9] := {31} tii[37,10] := {9} tii[37,11] := {27} tii[37,12] := {3} tii[37,13] := {22} tii[37,14] := {10} tii[37,15] := {17} tii[37,16] := {2} tii[37,17] := {6} tii[37,18] := {29} tii[37,19] := {1} tii[37,20] := {25} tii[37,21] := {8} tii[37,22] := {20} tii[37,23] := {16} tii[37,24] := {13} tii[37,25] := {5} tii[37,26] := {28} tii[37,27] := {11} tii[37,28] := {23} tii[37,29] := {18} tii[37,30] := {0} tii[37,31] := {7} tii[37,32] := {19} tii[37,33] := {15} tii[37,34] := {14} tii[37,35] := {21} cell#39 , |C| = 35 special orbit = [10, 2, 2] special rep = [[5, 1], [1]] , dim = 35 cell rep = phi[[5, 1],[1]] TII depth = 5 TII multiplicity polynomial = 35*X TII subcells: tii[37,1] := {34} tii[37,2] := {31} tii[37,3] := {26} tii[37,4] := {19} tii[37,5] := {11} tii[37,6] := {13} tii[37,7] := {33} tii[37,8] := {15} tii[37,9] := {32} tii[37,10] := {12} tii[37,11] := {30} tii[37,12] := {16} tii[37,13] := {28} tii[37,14] := {20} tii[37,15] := {24} tii[37,16] := {8} tii[37,17] := {6} tii[37,18] := {29} tii[37,19] := {9} tii[37,20] := {27} tii[37,21] := {14} tii[37,22] := {25} tii[37,23] := {21} tii[37,24] := {2} tii[37,25] := {4} tii[37,26] := {23} tii[37,27] := {7} tii[37,28] := {22} tii[37,29] := {17} tii[37,30] := {1} tii[37,31] := {3} tii[37,32] := {18} tii[37,33] := {10} tii[37,34] := {0} tii[37,35] := {5} cell#40 , |C| = 147 special orbit = [8, 4, 2] special rep = [[4, 1], [2]] , dim = 84 cell rep = phi[[4, 2],[1]]+phi[[4, 1],[2]] TII depth = 4 TII multiplicity polynomial = 63*X^2+21*X TII subcells: tii[34,1] := {139, 146} tii[34,2] := {113, 141} tii[34,3] := {92, 138} tii[34,4] := {133} tii[34,5] := {31, 105} tii[34,6] := {4, 68} tii[34,7] := {123, 143} tii[34,8] := {27, 65} tii[34,9] := {93, 134} tii[34,10] := {57, 117} tii[34,11] := {66} tii[34,12] := {90} tii[34,13] := {52, 118} tii[34,14] := {132, 145} tii[34,15] := {32, 104} tii[34,16] := {2, 59} tii[34,17] := {16, 48} tii[34,18] := {124, 144} tii[34,19] := {53, 115} tii[34,20] := {80, 129} tii[34,21] := {44, 108} tii[34,22] := {111, 142} tii[34,23] := {72, 126} tii[34,24] := {56} tii[34,25] := {96, 135} tii[34,26] := {79} tii[34,27] := {8, 76} tii[34,28] := {98, 137} tii[34,29] := {24, 88} tii[34,30] := {34, 70} tii[34,31] := {43, 103} tii[34,32] := {81, 131} tii[34,33] := {58, 121} tii[34,34] := {73} tii[34,35] := {64, 120} tii[34,36] := {97} tii[34,37] := {54, 89} tii[34,38] := {74, 130} tii[34,39] := {35, 102} tii[34,40] := {94} tii[34,41] := {61, 119} tii[34,42] := {112} tii[34,43] := {110} tii[34,44] := {125} tii[34,45] := {13, 87} tii[34,46] := {7, 71} tii[34,47] := {17, 50} tii[34,48] := {41} tii[34,49] := {14, 86} tii[34,50] := {33, 100} tii[34,51] := {109, 140} tii[34,52] := {1, 49} tii[34,53] := {55, 114} tii[34,54] := {95, 136} tii[34,55] := {5, 29} tii[34,56] := {78, 127} tii[34,57] := {21} tii[34,58] := {15, 83} tii[34,59] := {36, 99} tii[34,60] := {75, 128} tii[34,61] := {12, 46} tii[34,62] := {62, 116} tii[34,63] := {28} tii[34,64] := {19, 82} tii[34,65] := {47} tii[34,66] := {39, 101} tii[34,67] := {0, 38} tii[34,68] := {3, 23} tii[34,69] := {11} tii[34,70] := {9, 69} tii[34,71] := {6, 30} tii[34,72] := {25, 84} tii[34,73] := {63, 122} tii[34,74] := {45, 106} tii[34,75] := {22} tii[34,76] := {10, 67} tii[34,77] := {37} tii[34,78] := {26, 91} tii[34,79] := {18, 51} tii[34,80] := {42} tii[34,81] := {20, 85} tii[34,82] := {60} tii[34,83] := {40, 107} tii[34,84] := {77} cell#41 , |C| = 147 special orbit = [8, 4, 2] special rep = [[4, 1], [2]] , dim = 84 cell rep = phi[[4, 2],[1]]+phi[[4, 1],[2]] TII depth = 4 TII multiplicity polynomial = 63*X^2+21*X TII subcells: tii[34,1] := {103, 146} tii[34,2] := {64, 140} tii[34,3] := {85, 126} tii[34,4] := {123} tii[34,5] := {31, 93} tii[34,6] := {43, 95} tii[34,7] := {76, 143} tii[34,8] := {70, 97} tii[34,9] := {46, 137} tii[34,10] := {56, 130} tii[34,11] := {100} tii[34,12] := {114} tii[34,13] := {52, 106} tii[34,14] := {90, 145} tii[34,15] := {32, 117} tii[34,16] := {25, 79} tii[34,17] := {53, 82} tii[34,18] := {77, 144} tii[34,19] := {13, 125} tii[34,20] := {37, 132} tii[34,21] := {44, 122} tii[34,22] := {63, 142} tii[34,23] := {27, 131} tii[34,24] := {87} tii[34,25] := {48, 138} tii[34,26] := {102} tii[34,27] := {9, 94} tii[34,28] := {47, 136} tii[34,29] := {2, 108} tii[34,30] := {33, 65} tii[34,31] := {6, 115} tii[34,32] := {30, 134} tii[34,33] := {57, 112} tii[34,34] := {71} tii[34,35] := {22, 127} tii[34,36] := {89} tii[34,37] := {54, 81} tii[34,38] := {72, 121} tii[34,39] := {36, 91} tii[34,40] := {86} tii[34,41] := {59, 110} tii[34,42] := {101} tii[34,43] := {99} tii[34,44] := {113} tii[34,45] := {14, 80} tii[34,46] := {7, 66} tii[34,47] := {16, 49} tii[34,48] := {40} tii[34,49] := {15, 107} tii[34,50] := {4, 118} tii[34,51] := {62, 141} tii[34,52] := {24, 83} tii[34,53] := {12, 124} tii[34,54] := {45, 139} tii[34,55] := {34, 68} tii[34,56] := {28, 133} tii[34,57] := {60} tii[34,58] := {1, 109} tii[34,59] := {5, 116} tii[34,60] := {29, 135} tii[34,61] := {55, 84} tii[34,62] := {21, 128} tii[34,63] := {75} tii[34,64] := {19, 105} tii[34,65] := {88} tii[34,66] := {38, 120} tii[34,67] := {8, 67} tii[34,68] := {17, 50} tii[34,69] := {41} tii[34,70] := {0, 96} tii[34,71] := {35, 69} tii[34,72] := {3, 104} tii[34,73] := {23, 129} tii[34,74] := {11, 119} tii[34,75] := {61} tii[34,76] := {10, 92} tii[34,77] := {74} tii[34,78] := {26, 111} tii[34,79] := {18, 51} tii[34,80] := {42} tii[34,81] := {20, 78} tii[34,82] := {58} tii[34,83] := {39, 98} tii[34,84] := {73} cell#42 , |C| = 140 special orbit = [6, 6, 2] special rep = [[3, 1], [3]] , dim = 105 cell rep = phi[[3, 3],[1]]+phi[[3, 1],[3]] TII depth = 3 TII multiplicity polynomial = 35*X^2+70*X TII subcells: tii[29,1] := {100, 132} tii[29,2] := {133} tii[29,3] := {139} tii[29,4] := {30, 63} tii[29,5] := {85} tii[29,6] := {50, 109} tii[29,7] := {104} tii[29,8] := {114} tii[29,9] := {126} tii[29,10] := {48, 80} tii[29,11] := {15, 46} tii[29,12] := {68, 119} tii[29,13] := {101} tii[29,14] := {37, 99} tii[29,15] := {115} tii[29,16] := {53} tii[29,17] := {122} tii[29,18] := {78} tii[29,19] := {131} tii[29,20] := {67, 96} tii[29,21] := {86, 127} tii[29,22] := {49, 81} tii[29,23] := {112} tii[29,24] := {73, 120} tii[29,25] := {33, 95} tii[29,26] := {89} tii[29,27] := {123} tii[29,28] := {128} tii[29,29] := {58, 110} tii[29,30] := {108} tii[29,31] := {135} tii[29,32] := {121} tii[29,33] := {129} tii[29,34] := {113} tii[29,35] := {134} tii[29,36] := {125} tii[29,37] := {137} tii[29,38] := {136} tii[29,39] := {138} tii[29,40] := {4, 27} tii[29,41] := {35} tii[29,42] := {60} tii[29,43] := {14, 45} tii[29,44] := {3, 26} tii[29,45] := {5, 28} tii[29,46] := {19, 84} tii[29,47] := {52} tii[29,48] := {34} tii[29,49] := {24} tii[29,50] := {77} tii[29,51] := {59} tii[29,52] := {16, 44} tii[29,53] := {70} tii[29,54] := {36, 98} tii[29,55] := {7, 61} tii[29,56] := {51} tii[29,57] := {92} tii[29,58] := {22, 82} tii[29,59] := {55} tii[29,60] := {76} tii[29,61] := {69} tii[29,62] := {105} tii[29,63] := {91} tii[29,64] := {31, 65} tii[29,65] := {17, 47} tii[29,66] := {72} tii[29,67] := {42} tii[29,68] := {94} tii[29,69] := {32, 64} tii[29,70] := {18, 79} tii[29,71] := {54, 111} tii[29,72] := {6, 29} tii[29,73] := {88} tii[29,74] := {71} tii[29,75] := {41, 97} tii[29,76] := {25} tii[29,77] := {107} tii[29,78] := {74} tii[29,79] := {93} tii[29,80] := {8, 62} tii[29,81] := {87} tii[29,82] := {40} tii[29,83] := {116} tii[29,84] := {23, 83} tii[29,85] := {106} tii[29,86] := {103} tii[29,87] := {118} tii[29,88] := {90} tii[29,89] := {102} tii[29,90] := {75} tii[29,91] := {124} tii[29,92] := {117} tii[29,93] := {130} tii[29,94] := {0, 12} tii[29,95] := {10} tii[29,96] := {21} tii[29,97] := {1, 13} tii[29,98] := {11} tii[29,99] := {2, 43} tii[29,100] := {39} tii[29,101] := {20} tii[29,102] := {9, 66} tii[29,103] := {38} tii[29,104] := {57} tii[29,105] := {56} cell#43 , |C| = 105 special orbit = [6, 4, 4] special rep = [[3, 2], [2]] , dim = 105 cell rep = phi[[3, 2],[2]] TII depth = 4 TII multiplicity polynomial = 105*X TII subcells: tii[27,1] := {104} tii[27,2] := {97} tii[27,3] := {75} tii[27,4] := {34} tii[27,5] := {98} tii[27,6] := {80} tii[27,7] := {71} tii[27,8] := {85} tii[27,9] := {43} tii[27,10] := {65} tii[27,11] := {29} tii[27,12] := {101} tii[27,13] := {95} tii[27,14] := {73} tii[27,15] := {67} tii[27,16] := {82} tii[27,17] := {92} tii[27,18] := {103} tii[27,19] := {20} tii[27,20] := {44} tii[27,21] := {86} tii[27,22] := {83} tii[27,23] := {102} tii[27,24] := {93} tii[27,25] := {46} tii[27,26] := {100} tii[27,27] := {62} tii[27,28] := {59} tii[27,29] := {91} tii[27,30] := {72} tii[27,31] := {84} tii[27,32] := {49} tii[27,33] := {31} tii[27,34] := {57} tii[27,35] := {64} tii[27,36] := {42} tii[27,37] := {27} tii[27,38] := {48} tii[27,39] := {52} tii[27,40] := {25} tii[27,41] := {88} tii[27,42] := {15} tii[27,43] := {51} tii[27,44] := {38} tii[27,45] := {70} tii[27,46] := {14} tii[27,47] := {63} tii[27,48] := {21} tii[27,49] := {4} tii[27,50] := {94} tii[27,51] := {78} tii[27,52] := {35} tii[27,53] := {11} tii[27,54] := {56} tii[27,55] := {89} tii[27,56] := {50} tii[27,57] := {69} tii[27,58] := {58} tii[27,59] := {77} tii[27,60] := {10} tii[27,61] := {41} tii[27,62] := {68} tii[27,63] := {54} tii[27,64] := {9} tii[27,65] := {76} tii[27,66] := {16} tii[27,67] := {87} tii[27,68] := {99} tii[27,69] := {2} tii[27,70] := {26} tii[27,71] := {53} tii[27,72] := {30} tii[27,73] := {96} tii[27,74] := {6} tii[27,75] := {39} tii[27,76] := {47} tii[27,77] := {79} tii[27,78] := {45} tii[27,79] := {55} tii[27,80] := {61} tii[27,81] := {90} tii[27,82] := {8} tii[27,83] := {32} tii[27,84] := {18} tii[27,85] := {60} tii[27,86] := {33} tii[27,87] := {74} tii[27,88] := {28} tii[27,89] := {12} tii[27,90] := {36} tii[27,91] := {22} tii[27,92] := {7} tii[27,93] := {17} tii[27,94] := {13} tii[27,95] := {37} tii[27,96] := {23} tii[27,97] := {1} tii[27,98] := {66} tii[27,99] := {40} tii[27,100] := {5} tii[27,101] := {81} tii[27,102] := {24} tii[27,103] := {0} tii[27,104] := {3} tii[27,105] := {19} cell#44 , |C| = 105 special orbit = [8, 4, 1, 1] special rep = [[4], [2, 1]] , dim = 70 cell rep = phi[[4, 2, 1],[]]+phi[[4],[2, 1]] TII depth = 2 TII multiplicity polynomial = 35*X^2+35*X TII subcells: tii[33,1] := {66, 104} tii[33,2] := {89, 103} tii[33,3] := {68, 96} tii[33,4] := {92} tii[33,5] := {100} tii[33,6] := {44, 101} tii[33,7] := {76, 98} tii[33,8] := {35, 95} tii[33,9] := {46, 85} tii[33,10] := {47, 86} tii[33,11] := {37, 73} tii[33,12] := {79} tii[33,13] := {53} tii[33,14] := {94} tii[33,15] := {57, 90} tii[33,16] := {29, 70} tii[33,17] := {38, 78} tii[33,18] := {28, 61} tii[33,19] := {60} tii[33,20] := {41} tii[33,21] := {83} tii[33,22] := {14, 48} tii[33,23] := {9, 31} tii[33,24] := {39} tii[33,25] := {18} tii[33,26] := {64} tii[33,27] := {24} tii[33,28] := {11} tii[33,29] := {43} tii[33,30] := {65} tii[33,31] := {54, 102} tii[33,32] := {69, 97} tii[33,33] := {56, 88} tii[33,34] := {75} tii[33,35] := {20, 84} tii[33,36] := {30, 71} tii[33,37] := {77, 99} tii[33,38] := {22, 51} tii[33,39] := {67, 93} tii[33,40] := {34} tii[33,41] := {81} tii[33,42] := {15, 49} tii[33,43] := {10, 32} tii[33,44] := {55, 87} tii[33,45] := {19} tii[33,46] := {74} tii[33,47] := {3, 17} tii[33,48] := {82} tii[33,49] := {8} tii[33,50] := {1} tii[33,51] := {58, 91} tii[33,52] := {45, 80} tii[33,53] := {62} tii[33,54] := {23, 59} tii[33,55] := {36, 72} tii[33,56] := {13, 40} tii[33,57] := {26} tii[33,58] := {52} tii[33,59] := {6, 25} tii[33,60] := {63} tii[33,61] := {12} tii[33,62] := {4} tii[33,63] := {21, 50} tii[33,64] := {33} tii[33,65] := {2, 16} tii[33,66] := {42} tii[33,67] := {7} tii[33,68] := {0} tii[33,69] := {27} tii[33,70] := {5} cell#45 , |C| = 105 special orbit = [6, 4, 4] special rep = [[3, 2], [2]] , dim = 105 cell rep = phi[[3, 2],[2]] TII depth = 4 TII multiplicity polynomial = 105*X TII subcells: tii[27,1] := {104} tii[27,2] := {93} tii[27,3] := {56} tii[27,4] := {46} tii[27,5] := {98} tii[27,6] := {83} tii[27,7] := {20} tii[27,8] := {68} tii[27,9] := {44} tii[27,10] := {70} tii[27,11] := {33} tii[27,12] := {101} tii[27,13] := {96} tii[27,14] := {74} tii[27,15] := {73} tii[27,16] := {86} tii[27,17] := {78} tii[27,18] := {103} tii[27,19] := {21} tii[27,20] := {45} tii[27,21] := {87} tii[27,22] := {82} tii[27,23] := {102} tii[27,24] := {94} tii[27,25] := {49} tii[27,26] := {100} tii[27,27] := {66} tii[27,28] := {57} tii[27,29] := {89} tii[27,30] := {71} tii[27,31] := {84} tii[27,32] := {34} tii[27,33] := {15} tii[27,34] := {9} tii[27,35] := {47} tii[27,36] := {3} tii[27,37] := {32} tii[27,38] := {58} tii[27,39] := {39} tii[27,40] := {14} tii[27,41] := {90} tii[27,42] := {27} tii[27,43] := {62} tii[27,44] := {31} tii[27,45] := {77} tii[27,46] := {22} tii[27,47] := {69} tii[27,48] := {38} tii[27,49] := {13} tii[27,50] := {95} tii[27,51] := {80} tii[27,52] := {50} tii[27,53] := {30} tii[27,54] := {67} tii[27,55] := {91} tii[27,56] := {61} tii[27,57] := {76} tii[27,58] := {10} tii[27,59] := {59} tii[27,60] := {16} tii[27,61] := {24} tii[27,62] := {52} tii[27,63] := {43} tii[27,64] := {11} tii[27,65] := {79} tii[27,66] := {25} tii[27,67] := {88} tii[27,68] := {99} tii[27,69] := {4} tii[27,70] := {35} tii[27,71] := {63} tii[27,72] := {36} tii[27,73] := {97} tii[27,74] := {17} tii[27,75] := {54} tii[27,76] := {55} tii[27,77] := {81} tii[27,78] := {48} tii[27,79] := {64} tii[27,80] := {65} tii[27,81] := {92} tii[27,82] := {12} tii[27,83] := {37} tii[27,84] := {29} tii[27,85] := {60} tii[27,86] := {40} tii[27,87] := {75} tii[27,88] := {0} tii[27,89] := {5} tii[27,90] := {26} tii[27,91] := {18} tii[27,92] := {1} tii[27,93] := {7} tii[27,94] := {23} tii[27,95] := {51} tii[27,96] := {42} tii[27,97] := {6} tii[27,98] := {72} tii[27,99] := {53} tii[27,100] := {19} tii[27,101] := {85} tii[27,102] := {41} tii[27,103] := {2} tii[27,104] := {8} tii[27,105] := {28} cell#46 , |C| = 126 special orbit = [6, 6, 1, 1] special rep = [[3], [3, 1]] , dim = 105 cell rep = phi[[3, 3, 1],[]]+phi[[3],[3, 1]] TII depth = 4 TII multiplicity polynomial = 21*X^2+84*X TII subcells: tii[28,1] := {86, 111} tii[28,2] := {112} tii[28,3] := {122} tii[28,4] := {125} tii[28,5] := {68, 101} tii[28,6] := {37, 76} tii[28,7] := {104} tii[28,8] := {71} tii[28,9] := {118} tii[28,10] := {91} tii[28,11] := {123} tii[28,12] := {47, 87} tii[28,13] := {93} tii[28,14] := {30, 70} tii[28,15] := {22, 51} tii[28,16] := {62} tii[28,17] := {113} tii[28,18] := {33} tii[28,19] := {84} tii[28,20] := {120} tii[28,21] := {78} tii[28,22] := {61} tii[28,23] := {106} tii[28,24] := {83} tii[28,25] := {44} tii[28,26] := {117} tii[28,27] := {114} tii[28,28] := {108} tii[28,29] := {121} tii[28,30] := {124} tii[28,31] := {57, 92} tii[28,32] := {89} tii[28,33] := {103} tii[28,34] := {69, 102} tii[28,35] := {23, 58} tii[28,36] := {56, 90} tii[28,37] := {95} tii[28,38] := {50} tii[28,39] := {73} tii[28,40] := {110} tii[28,41] := {75} tii[28,42] := {11, 38} tii[28,43] := {105} tii[28,44] := {6, 24} tii[28,45] := {31} tii[28,46] := {13} tii[28,47] := {116} tii[28,48] := {96} tii[28,49] := {54} tii[28,50] := {18} tii[28,51] := {119} tii[28,52] := {8} tii[28,53] := {35} tii[28,54] := {55} tii[28,55] := {48, 88} tii[28,56] := {36, 72} tii[28,57] := {80} tii[28,58] := {52} tii[28,59] := {99} tii[28,60] := {17, 49} tii[28,61] := {10, 32} tii[28,62] := {26, 59} tii[28,63] := {94} tii[28,64] := {42} tii[28,65] := {20} tii[28,66] := {40} tii[28,67] := {109} tii[28,68] := {81} tii[28,69] := {65} tii[28,70] := {4, 19} tii[28,71] := {27} tii[28,72] := {53} tii[28,73] := {115} tii[28,74] := {15} tii[28,75] := {9} tii[28,76] := {46} tii[28,77] := {2} tii[28,78] := {67} tii[28,79] := {79} tii[28,80] := {98} tii[28,81] := {63} tii[28,82] := {43} tii[28,83] := {45} tii[28,84] := {107} tii[28,85] := {66} tii[28,86] := {29} tii[28,87] := {85} tii[28,88] := {16} tii[28,89] := {97} tii[28,90] := {100} tii[28,91] := {41, 77} tii[28,92] := {60} tii[28,93] := {74} tii[28,94] := {14, 39} tii[28,95] := {25} tii[28,96] := {1, 12} tii[28,97] := {82} tii[28,98] := {34} tii[28,99] := {5} tii[28,100] := {0} tii[28,101] := {21} tii[28,102] := {3} tii[28,103] := {64} tii[28,104] := {28} tii[28,105] := {7} cell#47 , |C| = 154 special orbit = [8, 2, 2, 2] special rep = [[4, 1], [1, 1]] , dim = 84 cell rep = phi[[4, 1, 1],[1]]+phi[[4, 1],[1, 1]] TII depth = 4 TII multiplicity polynomial = 70*X^2+14*X TII subcells: tii[32,1] := {93, 153} tii[32,2] := {87, 148} tii[32,3] := {59, 137} tii[32,4] := {55, 113} tii[32,5] := {110, 152} tii[32,6] := {67, 143} tii[32,7] := {123, 150} tii[32,8] := {44, 126} tii[32,9] := {109, 147} tii[32,10] := {38, 95} tii[32,11] := {124, 142} tii[32,12] := {135} tii[32,13] := {85, 139} tii[32,14] := {31, 111} tii[32,15] := {74, 131} tii[32,16] := {27, 77} tii[32,17] := {88, 119} tii[32,18] := {107} tii[32,19] := {43, 99} tii[32,20] := {18, 61} tii[32,21] := {52, 82} tii[32,22] := {71} tii[32,23] := {26, 49} tii[32,24] := {41} tii[32,25] := {0, 122} tii[32,26] := {76, 151} tii[32,27] := {4, 129} tii[32,28] := {60, 149} tii[32,29] := {12, 121} tii[32,30] := {46, 145} tii[32,31] := {21, 130} tii[32,32] := {34, 141} tii[32,33] := {7, 114} tii[32,34] := {105, 146} tii[32,35] := {92, 140} tii[32,36] := {15, 104} tii[32,37] := {68, 144} tii[32,38] := {106, 134} tii[32,39] := {24, 115} tii[32,40] := {54, 138} tii[32,41] := {125} tii[32,42] := {39, 133} tii[32,43] := {11, 86} tii[32,44] := {75, 132} tii[32,45] := {20, 98} tii[32,46] := {89, 120} tii[32,47] := {45, 128} tii[32,48] := {108} tii[32,49] := {33, 118} tii[32,50] := {25, 79} tii[32,51] := {70, 103} tii[32,52] := {91} tii[32,53] := {40, 101} tii[32,54] := {73} tii[32,55] := {2, 96} tii[32,56] := {51, 136} tii[32,57] := {8, 84} tii[32,58] := {37, 127} tii[32,59] := {16, 97} tii[32,60] := {28, 117} tii[32,61] := {5, 66} tii[32,62] := {58, 116} tii[32,63] := {13, 78} tii[32,64] := {32, 112} tii[32,65] := {69, 102} tii[32,66] := {23, 100} tii[32,67] := {90} tii[32,68] := {17, 63} tii[32,69] := {53, 83} tii[32,70] := {72} tii[32,71] := {29, 81} tii[32,72] := {57} tii[32,73] := {1, 50} tii[32,74] := {22, 94} tii[32,75] := {6, 62} tii[32,76] := {14, 80} tii[32,77] := {9, 47} tii[32,78] := {36, 65} tii[32,79] := {19, 64} tii[32,80] := {56} tii[32,81] := {42} tii[32,82] := {3, 35} tii[32,83] := {10, 48} tii[32,84] := {30} cell#48 , |C| = 154 special orbit = [8, 2, 2, 2] special rep = [[4, 1], [1, 1]] , dim = 84 cell rep = phi[[4, 1, 1],[1]]+phi[[4, 1],[1, 1]] TII depth = 4 TII multiplicity polynomial = 70*X^2+14*X TII subcells: tii[32,1] := {122, 152} tii[32,2] := {113, 145} tii[32,3] := {83, 124} tii[32,4] := {90, 91} tii[32,5] := {135, 153} tii[32,6] := {94, 136} tii[32,7] := {139, 151} tii[32,8] := {60, 107} tii[32,9] := {134, 149} tii[32,10] := {70, 71} tii[32,11] := {143, 144} tii[32,12] := {147} tii[32,13] := {112, 141} tii[32,14] := {36, 87} tii[32,15] := {103, 130} tii[32,16] := {48, 49} tii[32,17] := {117, 118} tii[32,18] := {128} tii[32,19] := {59, 98} tii[32,20] := {28, 29} tii[32,21] := {78, 79} tii[32,22] := {96} tii[32,23] := {34, 35} tii[32,24] := {56} tii[32,25] := {15, 40} tii[32,26] := {105, 150} tii[32,27] := {19, 65} tii[32,28] := {84, 146} tii[32,29] := {14, 86} tii[32,30] := {63, 138} tii[32,31] := {24, 108} tii[32,32] := {54, 126} tii[32,33] := {41, 42} tii[32,34] := {127, 148} tii[32,35] := {121, 142} tii[32,36] := {18, 66} tii[32,37] := {95, 137} tii[32,38] := {132, 133} tii[32,39] := {33, 88} tii[32,40] := {76, 125} tii[32,41] := {140} tii[32,42] := {61, 111} tii[32,43] := {13, 44} tii[32,44] := {104, 131} tii[32,45] := {23, 68} tii[32,46] := {119, 120} tii[32,47] := {62, 110} tii[32,48] := {129} tii[32,49] := {53, 93} tii[32,50] := {46, 47} tii[32,51] := {101, 102} tii[32,52] := {115} tii[32,53] := {73, 74} tii[32,54] := {106} tii[32,55] := {20, 21} tii[32,56] := {75, 123} tii[32,57] := {5, 43} tii[32,58] := {55, 109} tii[32,59] := {16, 67} tii[32,60] := {37, 92} tii[32,61] := {4, 22} tii[32,62] := {82, 116} tii[32,63] := {7, 45} tii[32,64] := {38, 89} tii[32,65] := {99, 100} tii[32,66] := {32, 72} tii[32,67] := {114} tii[32,68] := {26, 27} tii[32,69] := {80, 81} tii[32,70] := {97} tii[32,71] := {51, 52} tii[32,72] := {85} tii[32,73] := {0, 6} tii[32,74] := {17, 69} tii[32,75] := {1, 25} tii[32,76] := {12, 50} tii[32,77] := {8, 9} tii[32,78] := {57, 58} tii[32,79] := {30, 31} tii[32,80] := {77} tii[32,81] := {64} tii[32,82] := {2, 3} tii[32,83] := {10, 11} tii[32,84] := {39} cell#49 , |C| = 105 special orbit = [6, 4, 4] special rep = [[3, 2], [2]] , dim = 105 cell rep = phi[[3, 2],[2]] TII depth = 4 TII multiplicity polynomial = 105*X TII subcells: tii[27,1] := {104} tii[27,2] := {94} tii[27,3] := {58} tii[27,4] := {46} tii[27,5] := {98} tii[27,6] := {85} tii[27,7] := {31} tii[27,8] := {70} tii[27,9] := {50} tii[27,10] := {72} tii[27,11] := {32} tii[27,12] := {101} tii[27,13] := {97} tii[27,14] := {75} tii[27,15] := {76} tii[27,16] := {86} tii[27,17] := {80} tii[27,18] := {103} tii[27,19] := {23} tii[27,20] := {45} tii[27,21] := {88} tii[27,22] := {84} tii[27,23] := {102} tii[27,24] := {93} tii[27,25] := {51} tii[27,26] := {99} tii[27,27] := {66} tii[27,28] := {59} tii[27,29] := {91} tii[27,30] := {68} tii[27,31] := {82} tii[27,32] := {33} tii[27,33] := {9} tii[27,34] := {19} tii[27,35] := {47} tii[27,36] := {8} tii[27,37] := {37} tii[27,38] := {60} tii[27,39] := {34} tii[27,40] := {12} tii[27,41] := {92} tii[27,42] := {22} tii[27,43] := {64} tii[27,44] := {28} tii[27,45] := {77} tii[27,46] := {24} tii[27,47] := {71} tii[27,48] := {36} tii[27,49] := {14} tii[27,50] := {96} tii[27,51] := {78} tii[27,52] := {52} tii[27,53] := {30} tii[27,54] := {67} tii[27,55] := {89} tii[27,56] := {57} tii[27,57] := {74} tii[27,58] := {18} tii[27,59] := {61} tii[27,60] := {10} tii[27,61] := {25} tii[27,62] := {48} tii[27,63] := {42} tii[27,64] := {11} tii[27,65] := {81} tii[27,66] := {20} tii[27,67] := {87} tii[27,68] := {100} tii[27,69] := {3} tii[27,70] := {38} tii[27,71] := {63} tii[27,72] := {39} tii[27,73] := {95} tii[27,74] := {15} tii[27,75] := {54} tii[27,76] := {55} tii[27,77] := {79} tii[27,78] := {44} tii[27,79] := {65} tii[27,80] := {62} tii[27,81] := {90} tii[27,82] := {13} tii[27,83] := {35} tii[27,84] := {29} tii[27,85] := {56} tii[27,86] := {40} tii[27,87] := {73} tii[27,88] := {2} tii[27,89] := {4} tii[27,90] := {21} tii[27,91] := {16} tii[27,92] := {0} tii[27,93] := {6} tii[27,94] := {26} tii[27,95] := {49} tii[27,96] := {43} tii[27,97] := {5} tii[27,98] := {69} tii[27,99] := {53} tii[27,100] := {17} tii[27,101] := {83} tii[27,102] := {41} tii[27,103] := {1} tii[27,104] := {7} tii[27,105] := {27} cell#50 , |C| = 553 special orbit = [6, 4, 2, 2] special rep = [[3, 1], [2, 1]] , dim = 210 cell rep = phi[[3, 2, 1],[1]]+phi[[3, 1, 1],[2]]+phi[[3, 2],[1, 1]]+phi[[3, 1],[2, 1]] TII depth = 3 TII multiplicity polynomial = 91*X^4+70*X^2+49*X TII subcells: tii[26,1] := {183, 472, 497, 551} tii[26,2] := {166, 358, 446, 536} tii[26,3] := {340, 485} tii[26,4] := {295, 400} tii[26,5] := {238, 438, 518, 548} tii[26,6] := {333, 403} tii[26,7] := {138, 346, 502, 535} tii[26,8] := {117, 302, 406, 520} tii[26,9] := {54, 253, 470, 509} tii[26,10] := {284, 454} tii[26,11] := {412} tii[26,12] := {464} tii[26,13] := {296, 395, 533, 552} tii[26,14] := {216, 301} tii[26,15] := {73, 244, 445, 503} tii[26,16] := {240, 345, 534, 549} tii[26,17] := {16, 172, 390, 453} tii[26,18] := {224, 417} tii[26,19] := {181, 290, 532, 546} tii[26,20] := {309} tii[26,21] := {233, 541} tii[26,22] := {381} tii[26,23] := {116, 190, 476, 522} tii[26,24] := {283, 372} tii[26,25] := {68, 144, 467, 506} tii[26,26] := {193} tii[26,27] := {101, 488} tii[26,28] := {268} tii[26,29] := {336, 419} tii[26,30] := {376} tii[26,31] := {67, 163, 350, 441} tii[26,32] := {87, 167, 386, 444} tii[26,33] := {92, 397, 433, 544} tii[26,34] := {40, 312, 341, 527} tii[26,35] := {171, 451} tii[26,36] := {229, 494} tii[26,37] := {111, 215, 399, 473} tii[26,38] := {237, 352} tii[26,39] := {137, 439, 469, 550} tii[26,40] := {276, 357} tii[26,41] := {70, 277, 353, 500} tii[26,42] := {91, 288, 477, 521} tii[26,43] := {115, 189, 335, 404} tii[26,44] := {184, 304} tii[26,45] := {26, 195, 434, 484} tii[26,46] := {94, 398, 435, 547} tii[26,47] := {32, 294, 338, 523} tii[26,48] := {77, 282, 371, 510} tii[26,49] := {365} tii[26,50] := {158, 254} tii[26,51] := {192, 413} tii[26,52] := {57, 349, 394, 542} tii[26,53] := {427} tii[26,54] := {201} tii[26,55] := {267, 465} tii[26,56] := {86, 243, 278, 443} tii[26,57] := {218, 303} tii[26,58] := {135, 230, 501, 537} tii[26,59] := {122, 314, 416, 526} tii[26,60] := {48, 212, 306, 479} tii[26,61] := {162, 257} tii[26,62] := {15, 145, 391, 455} tii[26,63] := {90, 177, 496, 524} tii[26,64] := {311} tii[26,65] := {170, 366} tii[26,66] := {204} tii[26,67] := {81, 260, 378, 515} tii[26,68] := {131, 512} tii[26,69] := {228, 428} tii[26,70] := {383} tii[26,71] := {221, 411} tii[26,72] := {38, 97, 432, 487} tii[26,73] := {252} tii[26,74] := {60, 458} tii[26,75] := {207} tii[26,76] := {286, 463} tii[26,77] := {329} tii[26,78] := {385} tii[26,79] := {161, 273, 351, 440} tii[26,80] := {239, 359} tii[26,81] := {188, 396, 499, 543} tii[26,82] := {72, 139, 275, 356} tii[26,83] := {114, 298, 334, 474} tii[26,84] := {211, 313} tii[26,85] := {41, 223, 317, 483} tii[26,86] := {142, 347, 471, 539} tii[26,87] := {65, 235, 389, 504} tii[26,88] := {140, 364} tii[26,89] := {259} tii[26,90] := {99, 292, 437, 530} tii[26,91] := {208, 426} tii[26,92] := {187, 289, 519, 545} tii[26,93] := {71, 241, 354, 442} tii[26,94] := {51, 186, 217, 401} tii[26,95] := {165, 245} tii[26,96] := {79, 255, 370, 507} tii[26,97] := {134, 232, 517, 538} tii[26,98] := {23, 159, 247, 447} tii[26,99] := {33, 182, 407, 478} tii[26,100] := {272, 368} tii[26,101] := {95, 291, 481, 525} tii[26,102] := {10, 124, 339, 418} tii[26,103] := {112, 197} tii[26,104] := {251} tii[26,105] := {121, 310} tii[26,106] := {180, 529} tii[26,107] := {58, 234, 459, 514} tii[26,108] := {45, 202, 324, 490} tii[26,109] := {319} tii[26,110] := {150} tii[26,111] := {175, 382} tii[26,112] := {328} tii[26,113] := {93, 178, 498, 528} tii[26,114] := {12, 157, 388, 449} tii[26,115] := {169, 362} tii[26,116] := {194} tii[26,117] := {25, 80, 387, 456} tii[26,118] := {374} tii[26,119] := {132, 513} tii[26,120] := {154} tii[26,121] := {227, 424} tii[26,122] := {47, 421} tii[26,123] := {269} tii[26,124] := {27, 200, 436, 492} tii[26,125] := {89, 495} tii[26,126] := {331} tii[26,127] := {24, 164, 242, 355} tii[26,128] := {160, 256} tii[26,129] := {42, 196, 415, 482} tii[26,130] := {9, 110, 305, 408} tii[26,131] := {76, 250} tii[26,132] := {203} tii[26,133] := {19, 149, 377, 460} tii[26,134] := {128, 327} tii[26,135] := {39, 98, 431, 486} tii[26,136] := {2, 85, 279, 361} tii[26,137] := {120, 307} tii[26,138] := {141} tii[26,139] := {263} tii[26,140] := {61, 457} tii[26,141] := {174, 379} tii[26,142] := {6, 125, 342, 423} tii[26,143] := {104} tii[26,144] := {209} tii[26,145] := {31, 429} tii[26,146] := {270} tii[26,147] := {168, 249} tii[26,148] := {153} tii[26,149] := {226, 326} tii[26,150] := {330} tii[26,151] := {35, 119, 297, 405} tii[26,152] := {22, 78, 271, 367} tii[26,153] := {44, 318} tii[26,154] := {37, 219, 299, 475} tii[26,155] := {136, 246} tii[26,156] := {13, 236, 281, 505} tii[26,157] := {113, 198} tii[26,158] := {55, 348, 392, 540} tii[26,159] := {49, 123, 332, 414} tii[26,160] := {28, 293, 344, 531} tii[26,161] := {151} tii[26,162] := {82, 373} tii[26,163] := {7, 210, 222, 480} tii[26,164] := {74, 146} tii[26,165] := {127, 420} tii[26,166] := {105} tii[26,167] := {17, 258, 287, 516} tii[26,168] := {62} tii[26,169] := {36, 185, 300, 402} tii[26,170] := {214, 316} tii[26,171] := {66, 143, 274, 369} tii[26,172] := {14, 133, 360, 448} tii[26,173] := {56, 231, 452, 508} tii[26,174] := {262} tii[26,175] := {100, 320} tii[26,176] := {29, 179, 422, 491} tii[26,177] := {21, 176, 248, 450} tii[26,178] := {4, 109, 337, 410} tii[26,179] := {118, 199} tii[26,180] := {53, 130, 468, 511} tii[26,181] := {322} tii[26,182] := {152, 375} tii[26,183] := {88, 489} tii[26,184] := {155} tii[26,185] := {11, 148, 393, 462} tii[26,186] := {43, 225, 325, 493} tii[26,187] := {52, 466} tii[26,188] := {107} tii[26,189] := {1, 69, 280, 363} tii[26,190] := {265} tii[26,191] := {126, 323} tii[26,192] := {5, 102, 343, 425} tii[26,193] := {156} tii[26,194] := {30, 430} tii[26,195] := {34, 96, 213, 315} tii[26,196] := {59, 261} tii[26,197] := {8, 129, 191, 409} tii[26,198] := {75, 147} tii[26,199] := {103, 321} tii[26,200] := {18, 173, 266, 461} tii[26,201] := {106} tii[26,202] := {63} tii[26,203] := {0, 50, 220, 308} tii[26,204] := {206} tii[26,205] := {84, 264} tii[26,206] := {3, 83, 285, 380} tii[26,207] := {108} tii[26,208] := {20, 384} tii[26,209] := {46, 205} tii[26,210] := {64} cell#51 , |C| = 140 special orbit = [6, 6, 2] special rep = [[3, 1], [3]] , dim = 105 cell rep = phi[[3, 3],[1]]+phi[[3, 1],[3]] TII depth = 3 TII multiplicity polynomial = 35*X^2+70*X TII subcells: tii[29,1] := {124, 131} tii[29,2] := {132} tii[29,3] := {139} tii[29,4] := {53, 100} tii[29,5] := {106} tii[29,6] := {86, 110} tii[29,7] := {103} tii[29,8] := {127} tii[29,9] := {135} tii[29,10] := {30, 80} tii[29,11] := {4, 33} tii[29,12] := {101, 116} tii[29,13] := {88} tii[29,14] := {62, 87} tii[29,15] := {108} tii[29,16] := {26} tii[29,17] := {119} tii[29,18] := {52} tii[29,19] := {130} tii[29,20] := {54, 99} tii[29,21] := {115, 125} tii[29,22] := {32, 79} tii[29,23] := {105} tii[29,24] := {102, 117} tii[29,25] := {59, 89} tii[29,26] := {70} tii[29,27] := {120} tii[29,28] := {126} tii[29,29] := {83, 112} tii[29,30] := {96} tii[29,31] := {134} tii[29,32] := {118} tii[29,33] := {128} tii[29,34] := {107} tii[29,35] := {133} tii[29,36] := {123} tii[29,37] := {137} tii[29,38] := {136} tii[29,39] := {138} tii[29,40] := {13, 56} tii[29,41] := {47} tii[29,42] := {75} tii[29,43] := {31, 81} tii[29,44] := {2, 23} tii[29,45] := {22, 61} tii[29,46] := {43, 78} tii[29,47] := {71} tii[29,48] := {17} tii[29,49] := {39} tii[29,50] := {97} tii[29,51] := {41} tii[29,52] := {9, 42} tii[29,53] := {92} tii[29,54] := {66, 98} tii[29,55] := {24, 58} tii[29,56] := {36} tii[29,57] := {114} tii[29,58] := {44, 85} tii[29,59] := {72} tii[29,60] := {64} tii[29,61] := {60} tii[29,62] := {122} tii[29,63] := {84} tii[29,64] := {14, 57} tii[29,65] := {8, 38} tii[29,66] := {48} tii[29,67] := {20} tii[29,68] := {76} tii[29,69] := {15, 55} tii[29,70] := {34, 67} tii[29,71] := {82, 104} tii[29,72] := {1, 18} tii[29,73] := {69} tii[29,74] := {46} tii[29,75] := {63, 95} tii[29,76] := {5} tii[29,77] := {94} tii[29,78] := {49} tii[29,79] := {74} tii[29,80] := {16, 45} tii[29,81] := {68} tii[29,82] := {12} tii[29,83] := {109} tii[29,84] := {40, 77} tii[29,85] := {93} tii[29,86] := {91} tii[29,87] := {113} tii[29,88] := {73} tii[29,89] := {90} tii[29,90] := {51} tii[29,91] := {121} tii[29,92] := {111} tii[29,93] := {129} tii[29,94] := {7, 37} tii[29,95] := {19} tii[29,96] := {27} tii[29,97] := {0, 11} tii[29,98] := {3} tii[29,99] := {10, 35} tii[29,100] := {50} tii[29,101] := {6} tii[29,102] := {25, 65} tii[29,103] := {21} tii[29,104] := {28} tii[29,105] := {29} cell#52 , |C| = 36 special orbit = [10, 2, 1, 1] special rep = [[5], [1, 1]] , dim = 21 cell rep = phi[[5, 1, 1],[]]+phi[[5],[1, 1]] TII depth = 1 TII multiplicity polynomial = 15*X^2+6*X TII subcells: tii[36,1] := {22, 35} tii[36,2] := {20, 34} tii[36,3] := {23, 33} tii[36,4] := {21, 31} tii[36,5] := {27, 28} tii[36,6] := {29} tii[36,7] := {13, 32} tii[36,8] := {15, 30} tii[36,9] := {14, 26} tii[36,10] := {18, 19} tii[36,11] := {24} tii[36,12] := {8, 25} tii[36,13] := {7, 17} tii[36,14] := {11, 12} tii[36,15] := {16} tii[36,16] := {2, 10} tii[36,17] := {5, 6} tii[36,18] := {9} tii[36,19] := {0, 1} tii[36,20] := {4} tii[36,21] := {3} cell#53 , |C| = 36 special orbit = [10, 2, 1, 1] special rep = [[5], [1, 1]] , dim = 21 cell rep = phi[[5, 1, 1],[]]+phi[[5],[1, 1]] TII depth = 1 TII multiplicity polynomial = 15*X^2+6*X TII subcells: tii[36,1] := {22, 35} tii[36,2] := {21, 34} tii[36,3] := {23, 33} tii[36,4] := {20, 31} tii[36,5] := {27, 28} tii[36,6] := {29} tii[36,7] := {14, 32} tii[36,8] := {15, 30} tii[36,9] := {13, 26} tii[36,10] := {18, 19} tii[36,11] := {24} tii[36,12] := {8, 25} tii[36,13] := {7, 17} tii[36,14] := {11, 12} tii[36,15] := {16} tii[36,16] := {2, 10} tii[36,17] := {5, 6} tii[36,18] := {9} tii[36,19] := {0, 1} tii[36,20] := {4} tii[36,21] := {3} cell#54 , |C| = 105 special orbit = [8, 4, 1, 1] special rep = [[4], [2, 1]] , dim = 70 cell rep = phi[[4, 2, 1],[]]+phi[[4],[2, 1]] TII depth = 2 TII multiplicity polynomial = 35*X^2+35*X TII subcells: tii[33,1] := {85, 103} tii[33,2] := {60, 95} tii[33,3] := {91, 92} tii[33,4] := {101} tii[33,5] := {104} tii[33,6] := {67, 99} tii[33,7] := {40, 82} tii[33,8] := {47, 90} tii[33,9] := {73, 74} tii[33,10] := {39, 75} tii[33,11] := {55, 56} tii[33,12] := {96} tii[33,13] := {70} tii[33,14] := {102} tii[33,15] := {22, 62} tii[33,16] := {51, 52} tii[33,17] := {14, 43} tii[33,18] := {26, 27} tii[33,19] := {84} tii[33,20] := {42} tii[33,21] := {98} tii[33,22] := {32, 33} tii[33,23] := {17, 18} tii[33,24] := {66} tii[33,25] := {30} tii[33,26] := {87} tii[33,27] := {54} tii[33,28] := {41} tii[33,29] := {80} tii[33,30] := {94} tii[33,31] := {68, 100} tii[33,32] := {59, 93} tii[33,33] := {76, 77} tii[33,34] := {88} tii[33,35] := {29, 72} tii[33,36] := {21, 53} tii[33,37] := {46, 83} tii[33,38] := {35, 36} tii[33,39] := {64, 65} tii[33,40] := {49} tii[33,41] := {81} tii[33,42] := {8, 34} tii[33,43] := {19, 20} tii[33,44] := {78, 79} tii[33,45] := {31} tii[33,46] := {89} tii[33,47] := {4, 5} tii[33,48] := {97} tii[33,49] := {15} tii[33,50] := {9} tii[33,51] := {28, 63} tii[33,52] := {44, 45} tii[33,53] := {61} tii[33,54] := {2, 25} tii[33,55] := {57, 58} tii[33,56] := {12, 13} tii[33,57] := {24} tii[33,58] := {71} tii[33,59] := {0, 1} tii[33,60] := {86} tii[33,61] := {11} tii[33,62] := {3} tii[33,63] := {37, 38} tii[33,64] := {50} tii[33,65] := {6, 7} tii[33,66] := {69} tii[33,67] := {16} tii[33,68] := {10} tii[33,69] := {48} tii[33,70] := {23} cell#55 , |C| = 154 special orbit = [8, 2, 2, 2] special rep = [[4, 1], [1, 1]] , dim = 84 cell rep = phi[[4, 1, 1],[1]]+phi[[4, 1],[1, 1]] TII depth = 4 TII multiplicity polynomial = 70*X^2+14*X TII subcells: tii[32,1] := {113, 153} tii[32,2] := {84, 148} tii[32,3] := {77, 137} tii[32,4] := {52, 108} tii[32,5] := {128, 152} tii[32,6] := {65, 143} tii[32,7] := {119, 150} tii[32,8] := {58, 122} tii[32,9] := {129, 147} tii[32,10] := {36, 88} tii[32,11] := {120, 142} tii[32,12] := {133} tii[32,13] := {82, 140} tii[32,14] := {41, 106} tii[32,15] := {95, 130} tii[32,16] := {24, 70} tii[32,17] := {83, 116} tii[32,18] := {100} tii[32,19] := {56, 97} tii[32,20] := {14, 53} tii[32,21] := {48, 78} tii[32,22] := {62} tii[32,23] := {21, 43} tii[32,24] := {31} tii[32,25] := {2, 134} tii[32,26] := {94, 151} tii[32,27] := {8, 126} tii[32,28] := {76, 149} tii[32,29] := {16, 135} tii[32,30] := {59, 145} tii[32,31] := {28, 127} tii[32,32] := {45, 139} tii[32,33] := {4, 111} tii[32,34] := {102, 146} tii[32,35] := {114, 141} tii[32,36] := {11, 121} tii[32,37] := {67, 144} tii[32,38] := {103, 132} tii[32,39] := {22, 112} tii[32,40] := {51, 138} tii[32,41] := {118} tii[32,42] := {37, 125} tii[32,43] := {17, 105} tii[32,44] := {96, 131} tii[32,45] := {29, 93} tii[32,46] := {85, 117} tii[32,47] := {60, 124} tii[32,48] := {101} tii[32,49] := {46, 110} tii[32,50] := {23, 75} tii[32,51] := {68, 99} tii[32,52] := {81} tii[32,53] := {38, 90} tii[32,54] := {64} tii[32,55] := {0, 91} tii[32,56] := {49, 136} tii[32,57] := {5, 104} tii[32,58] := {35, 123} tii[32,59] := {12, 92} tii[32,60] := {25, 109} tii[32,61] := {9, 86} tii[32,62] := {74, 115} tii[32,63] := {18, 73} tii[32,64] := {42, 107} tii[32,65] := {66, 98} tii[32,66] := {32, 89} tii[32,67] := {80} tii[32,68] := {13, 57} tii[32,69] := {50, 79} tii[32,70] := {63} tii[32,71] := {26, 72} tii[32,72] := {47} tii[32,73] := {3, 69} tii[32,74] := {30, 87} tii[32,75] := {10, 55} tii[32,76] := {19, 71} tii[32,77] := {6, 40} tii[32,78] := {34, 61} tii[32,79] := {15, 54} tii[32,80] := {44} tii[32,81] := {33} tii[32,82] := {1, 27} tii[32,83] := {7, 39} tii[32,84] := {20} cell#56 , |C| = 147 special orbit = [8, 4, 2] special rep = [[4, 1], [2]] , dim = 84 cell rep = phi[[4, 2],[1]]+phi[[4, 1],[2]] TII depth = 4 TII multiplicity polynomial = 63*X^2+21*X TII subcells: tii[34,1] := {92, 146} tii[34,2] := {70, 140} tii[34,3] := {62, 129} tii[34,4] := {105} tii[34,5] := {27, 104} tii[34,6] := {48, 98} tii[34,7] := {66, 143} tii[34,8] := {72, 101} tii[34,9] := {40, 138} tii[34,10] := {17, 130} tii[34,11] := {99} tii[34,12] := {112} tii[34,13] := {14, 114} tii[34,14] := {80, 145} tii[34,15] := {8, 120} tii[34,16] := {34, 84} tii[34,17] := {58, 89} tii[34,18] := {68, 144} tii[34,19] := {15, 125} tii[34,20] := {44, 135} tii[34,21] := {25, 123} tii[34,22] := {56, 141} tii[34,23] := {26, 131} tii[34,24] := {86} tii[34,25] := {42, 136} tii[34,26] := {102} tii[34,27] := {21, 97} tii[34,28] := {57, 139} tii[34,29] := {11, 107} tii[34,30] := {45, 76} tii[34,31] := {20, 116} tii[34,32] := {53, 133} tii[34,33] := {38, 115} tii[34,34] := {73} tii[34,35] := {37, 126} tii[34,36] := {90} tii[34,37] := {31, 83} tii[34,38] := {52, 121} tii[34,39] := {19, 95} tii[34,40] := {60} tii[34,41] := {36, 109} tii[34,42] := {78} tii[34,43] := {74} tii[34,44] := {91} tii[34,45] := {18, 94} tii[34,46] := {28, 82} tii[34,47] := {41, 69} tii[34,48] := {55} tii[34,49] := {2, 110} tii[34,50] := {6, 118} tii[34,51] := {54, 142} tii[34,52] := {35, 85} tii[34,53] := {13, 124} tii[34,54] := {43, 137} tii[34,55] := {47, 81} tii[34,56] := {29, 132} tii[34,57] := {64} tii[34,58] := {1, 108} tii[34,59] := {5, 117} tii[34,60] := {30, 134} tii[34,61] := {59, 93} tii[34,62] := {16, 127} tii[34,63] := {77} tii[34,64] := {0, 111} tii[34,65] := {88} tii[34,66] := {7, 122} tii[34,67] := {22, 71} tii[34,68] := {33, 67} tii[34,69] := {51} tii[34,70] := {4, 96} tii[34,71] := {46, 79} tii[34,72] := {9, 106} tii[34,73] := {39, 128} tii[34,74] := {23, 119} tii[34,75] := {63} tii[34,76] := {3, 100} tii[34,77] := {75} tii[34,78] := {12, 113} tii[34,79] := {32, 65} tii[34,80] := {50} tii[34,81] := {10, 87} tii[34,82] := {61} tii[34,83] := {24, 103} tii[34,84] := {49} cell#57 , |C| = 105 special orbit = [6, 4, 4] special rep = [[3, 2], [2]] , dim = 105 cell rep = phi[[3, 2],[2]] TII depth = 4 TII multiplicity polynomial = 105*X TII subcells: tii[27,1] := {104} tii[27,2] := {93} tii[27,3] := {56} tii[27,4] := {46} tii[27,5] := {98} tii[27,6] := {83} tii[27,7] := {20} tii[27,8] := {68} tii[27,9] := {44} tii[27,10] := {70} tii[27,11] := {33} tii[27,12] := {101} tii[27,13] := {96} tii[27,14] := {74} tii[27,15] := {73} tii[27,16] := {86} tii[27,17] := {78} tii[27,18] := {103} tii[27,19] := {21} tii[27,20] := {45} tii[27,21] := {87} tii[27,22] := {82} tii[27,23] := {102} tii[27,24] := {94} tii[27,25] := {49} tii[27,26] := {100} tii[27,27] := {66} tii[27,28] := {57} tii[27,29] := {89} tii[27,30] := {71} tii[27,31] := {84} tii[27,32] := {34} tii[27,33] := {15} tii[27,34] := {9} tii[27,35] := {47} tii[27,36] := {3} tii[27,37] := {32} tii[27,38] := {58} tii[27,39] := {39} tii[27,40] := {14} tii[27,41] := {90} tii[27,42] := {27} tii[27,43] := {62} tii[27,44] := {31} tii[27,45] := {77} tii[27,46] := {22} tii[27,47] := {69} tii[27,48] := {38} tii[27,49] := {13} tii[27,50] := {95} tii[27,51] := {80} tii[27,52] := {50} tii[27,53] := {30} tii[27,54] := {67} tii[27,55] := {91} tii[27,56] := {61} tii[27,57] := {76} tii[27,58] := {10} tii[27,59] := {59} tii[27,60] := {16} tii[27,61] := {24} tii[27,62] := {52} tii[27,63] := {43} tii[27,64] := {11} tii[27,65] := {79} tii[27,66] := {25} tii[27,67] := {88} tii[27,68] := {99} tii[27,69] := {4} tii[27,70] := {35} tii[27,71] := {63} tii[27,72] := {36} tii[27,73] := {97} tii[27,74] := {17} tii[27,75] := {54} tii[27,76] := {55} tii[27,77] := {81} tii[27,78] := {48} tii[27,79] := {64} tii[27,80] := {65} tii[27,81] := {92} tii[27,82] := {12} tii[27,83] := {37} tii[27,84] := {29} tii[27,85] := {60} tii[27,86] := {40} tii[27,87] := {75} tii[27,88] := {0} tii[27,89] := {5} tii[27,90] := {26} tii[27,91] := {18} tii[27,92] := {1} tii[27,93] := {7} tii[27,94] := {23} tii[27,95] := {51} tii[27,96] := {42} tii[27,97] := {6} tii[27,98] := {72} tii[27,99] := {53} tii[27,100] := {19} tii[27,101] := {85} tii[27,102] := {41} tii[27,103] := {2} tii[27,104] := {8} tii[27,105] := {28} cell#58 , |C| = 105 special orbit = [8, 4, 1, 1] special rep = [[4], [2, 1]] , dim = 70 cell rep = phi[[4, 2, 1],[]]+phi[[4],[2, 1]] TII depth = 2 TII multiplicity polynomial = 35*X^2+35*X TII subcells: tii[33,1] := {85, 103} tii[33,2] := {60, 95} tii[33,3] := {91, 92} tii[33,4] := {101} tii[33,5] := {104} tii[33,6] := {67, 99} tii[33,7] := {40, 82} tii[33,8] := {47, 90} tii[33,9] := {73, 74} tii[33,10] := {39, 75} tii[33,11] := {55, 56} tii[33,12] := {96} tii[33,13] := {70} tii[33,14] := {102} tii[33,15] := {22, 62} tii[33,16] := {51, 52} tii[33,17] := {14, 43} tii[33,18] := {26, 27} tii[33,19] := {84} tii[33,20] := {42} tii[33,21] := {98} tii[33,22] := {32, 33} tii[33,23] := {17, 18} tii[33,24] := {66} tii[33,25] := {30} tii[33,26] := {87} tii[33,27] := {54} tii[33,28] := {41} tii[33,29] := {80} tii[33,30] := {94} tii[33,31] := {68, 100} tii[33,32] := {59, 93} tii[33,33] := {76, 77} tii[33,34] := {88} tii[33,35] := {29, 72} tii[33,36] := {21, 53} tii[33,37] := {46, 83} tii[33,38] := {35, 36} tii[33,39] := {64, 65} tii[33,40] := {49} tii[33,41] := {81} tii[33,42] := {8, 34} tii[33,43] := {19, 20} tii[33,44] := {78, 79} tii[33,45] := {31} tii[33,46] := {89} tii[33,47] := {4, 5} tii[33,48] := {97} tii[33,49] := {15} tii[33,50] := {9} tii[33,51] := {28, 63} tii[33,52] := {44, 45} tii[33,53] := {61} tii[33,54] := {2, 25} tii[33,55] := {57, 58} tii[33,56] := {12, 13} tii[33,57] := {24} tii[33,58] := {71} tii[33,59] := {0, 1} tii[33,60] := {86} tii[33,61] := {11} tii[33,62] := {3} tii[33,63] := {37, 38} tii[33,64] := {50} tii[33,65] := {6, 7} tii[33,66] := {69} tii[33,67] := {16} tii[33,68] := {10} tii[33,69] := {48} tii[33,70] := {23} cell#59 , |C| = 126 special orbit = [6, 6, 1, 1] special rep = [[3], [3, 1]] , dim = 105 cell rep = phi[[3, 3, 1],[]]+phi[[3],[3, 1]] TII depth = 4 TII multiplicity polynomial = 21*X^2+84*X TII subcells: tii[28,1] := {91, 92} tii[28,2] := {112} tii[28,3] := {122} tii[28,4] := {125} tii[28,5] := {77, 78} tii[28,6] := {41, 42} tii[28,7] := {105} tii[28,8] := {70} tii[28,9] := {118} tii[28,10] := {90} tii[28,11] := {123} tii[28,12] := {57, 58} tii[28,13] := {96} tii[28,14] := {39, 40} tii[28,15] := {28, 29} tii[28,16] := {69} tii[28,17] := {113} tii[28,18] := {37} tii[28,19] := {89} tii[28,20] := {120} tii[28,21] := {93} tii[28,22] := {81} tii[28,23] := {110} tii[28,24] := {94} tii[28,25] := {66} tii[28,26] := {117} tii[28,27] := {116} tii[28,28] := {111} tii[28,29] := {121} tii[28,30] := {124} tii[28,31] := {61, 62} tii[28,32] := {86} tii[28,33] := {102} tii[28,34] := {79, 80} tii[28,35] := {23, 24} tii[28,36] := {64, 65} tii[28,37] := {98} tii[28,38] := {50} tii[28,39] := {76} tii[28,40] := {109} tii[28,41] := {74} tii[28,42] := {12, 13} tii[28,43] := {106} tii[28,44] := {4, 5} tii[28,45] := {34} tii[28,46] := {10} tii[28,47] := {115} tii[28,48] := {99} tii[28,49] := {54} tii[28,50] := {27} tii[28,51] := {119} tii[28,52] := {18} tii[28,53] := {49} tii[28,54] := {68} tii[28,55] := {59, 60} tii[28,56] := {44, 45} tii[28,57] := {85} tii[28,58] := {55} tii[28,59] := {101} tii[28,60] := {25, 26} tii[28,61] := {16, 17} tii[28,62] := {30, 31} tii[28,63] := {97} tii[28,64] := {51} tii[28,65] := {22} tii[28,66] := {38} tii[28,67] := {108} tii[28,68] := {87} tii[28,69] := {75} tii[28,70] := {6, 7} tii[28,71] := {43} tii[28,72] := {53} tii[28,73] := {114} tii[28,74] := {32} tii[28,75] := {11} tii[28,76] := {67} tii[28,77] := {9} tii[28,78] := {83} tii[28,79] := {84} tii[28,80] := {100} tii[28,81] := {71} tii[28,82] := {63} tii[28,83] := {52} tii[28,84] := {107} tii[28,85] := {82} tii[28,86] := {48} tii[28,87] := {95} tii[28,88] := {33} tii[28,89] := {103} tii[28,90] := {104} tii[28,91] := {46, 47} tii[28,92] := {56} tii[28,93] := {73} tii[28,94] := {14, 15} tii[28,95] := {21} tii[28,96] := {0, 1} tii[28,97] := {88} tii[28,98] := {35} tii[28,99] := {3} tii[28,100] := {2} tii[28,101] := {20} tii[28,102] := {8} tii[28,103] := {72} tii[28,104] := {36} tii[28,105] := {19} cell#60 , |C| = 154 special orbit = [8, 2, 2, 2] special rep = [[4, 1], [1, 1]] , dim = 84 cell rep = phi[[4, 1, 1],[1]]+phi[[4, 1],[1, 1]] TII depth = 4 TII multiplicity polynomial = 70*X^2+14*X TII subcells: tii[32,1] := {125, 151} tii[32,2] := {97, 136} tii[32,3] := {105, 106} tii[32,4] := {100, 101} tii[32,5] := {138, 153} tii[32,6] := {73, 122} tii[32,7] := {134, 150} tii[32,8] := {83, 84} tii[32,9] := {144, 145} tii[32,10] := {79, 80} tii[32,11] := {148, 149} tii[32,12] := {152} tii[32,13] := {96, 131} tii[32,14] := {61, 62} tii[32,15] := {113, 114} tii[32,16] := {56, 57} tii[32,17] := {127, 128} tii[32,18] := {139} tii[32,19] := {71, 72} tii[32,20] := {38, 39} tii[32,21] := {92, 93} tii[32,22] := {110} tii[32,23] := {58, 59} tii[32,24] := {77} tii[32,25] := {21, 22} tii[32,26] := {109, 146} tii[32,27] := {10, 40} tii[32,28] := {91, 137} tii[32,29] := {15, 60} tii[32,30] := {74, 124} tii[32,31] := {32, 78} tii[32,32] := {50, 107} tii[32,33] := {4, 23} tii[32,34] := {117, 143} tii[32,35] := {132, 133} tii[32,36] := {12, 41} tii[32,37] := {76, 123} tii[32,38] := {141, 142} tii[32,39] := {20, 55} tii[32,40] := {70, 108} tii[32,41] := {147} tii[32,42] := {46, 87} tii[32,43] := {25, 26} tii[32,44] := {115, 116} tii[32,45] := {36, 37} tii[32,46] := {129, 130} tii[32,47] := {89, 90} tii[32,48] := {140} tii[32,49] := {66, 67} tii[32,50] := {53, 54} tii[32,51] := {120, 121} tii[32,52] := {135} tii[32,53] := {85, 86} tii[32,54] := {118} tii[32,55] := {0, 11} tii[32,56] := {52, 104} tii[32,57] := {1, 24} tii[32,58] := {49, 88} tii[32,59] := {9, 35} tii[32,60] := {31, 65} tii[32,61] := {13, 14} tii[32,62] := {94, 95} tii[32,63] := {18, 19} tii[32,64] := {68, 69} tii[32,65] := {111, 112} tii[32,66] := {44, 45} tii[32,67] := {126} tii[32,68] := {33, 34} tii[32,69] := {102, 103} tii[32,70] := {119} tii[32,71] := {63, 64} tii[32,72] := {98} tii[32,73] := {2, 3} tii[32,74] := {47, 48} tii[32,75] := {7, 8} tii[32,76] := {29, 30} tii[32,77] := {16, 17} tii[32,78] := {81, 82} tii[32,79] := {42, 43} tii[32,80] := {99} tii[32,81] := {75} tii[32,82] := {5, 6} tii[32,83] := {27, 28} tii[32,84] := {51} cell#61 , |C| = 105 special orbit = [6, 4, 4] special rep = [[3, 2], [2]] , dim = 105 cell rep = phi[[3, 2],[2]] TII depth = 4 TII multiplicity polynomial = 105*X TII subcells: tii[27,1] := {104} tii[27,2] := {102} tii[27,3] := {48} tii[27,4] := {42} tii[27,5] := {98} tii[27,6] := {81} tii[27,7] := {18} tii[27,8] := {61} tii[27,9] := {38} tii[27,10] := {67} tii[27,11] := {55} tii[27,12] := {101} tii[27,13] := {95} tii[27,14] := {88} tii[27,15] := {63} tii[27,16] := {78} tii[27,17] := {73} tii[27,18] := {103} tii[27,19] := {37} tii[27,20] := {66} tii[27,21] := {83} tii[27,22] := {94} tii[27,23] := {100} tii[27,24] := {90} tii[27,25] := {62} tii[27,26] := {96} tii[27,27] := {77} tii[27,28] := {76} tii[27,29] := {99} tii[27,30] := {85} tii[27,31] := {93} tii[27,32] := {24} tii[27,33] := {13} tii[27,34] := {9} tii[27,35] := {36} tii[27,36] := {4} tii[27,37] := {25} tii[27,38] := {56} tii[27,39] := {35} tii[27,40] := {7} tii[27,41] := {89} tii[27,42] := {22} tii[27,43] := {50} tii[27,44] := {20} tii[27,45] := {68} tii[27,46] := {14} tii[27,47] := {60} tii[27,48] := {33} tii[27,49] := {6} tii[27,50] := {92} tii[27,51] := {71} tii[27,52] := {39} tii[27,53] := {19} tii[27,54] := {57} tii[27,55] := {84} tii[27,56] := {52} tii[27,57] := {70} tii[27,58] := {10} tii[27,59] := {49} tii[27,60] := {34} tii[27,61] := {17} tii[27,62] := {47} tii[27,63] := {32} tii[27,64] := {26} tii[27,65] := {72} tii[27,66] := {45} tii[27,67] := {82} tii[27,68] := {97} tii[27,69] := {16} tii[27,70] := {28} tii[27,71] := {59} tii[27,72] := {51} tii[27,73] := {91} tii[27,74] := {31} tii[27,75] := {44} tii[27,76] := {69} tii[27,77] := {75} tii[27,78] := {64} tii[27,79] := {54} tii[27,80] := {79} tii[27,81] := {87} tii[27,82] := {27} tii[27,83] := {58} tii[27,84] := {43} tii[27,85] := {74} tii[27,86] := {53} tii[27,87] := {86} tii[27,88] := {1} tii[27,89] := {2} tii[27,90] := {23} tii[27,91] := {11} tii[27,92] := {0} tii[27,93] := {5} tii[27,94] := {15} tii[27,95] := {46} tii[27,96] := {30} tii[27,97] := {3} tii[27,98] := {65} tii[27,99] := {40} tii[27,100] := {12} tii[27,101] := {80} tii[27,102] := {29} tii[27,103] := {8} tii[27,104] := {21} tii[27,105] := {41} cell#62 , |C| = 553 special orbit = [6, 4, 2, 2] special rep = [[3, 1], [2, 1]] , dim = 210 cell rep = phi[[3, 2, 1],[1]]+phi[[3, 1, 1],[2]]+phi[[3, 2],[1, 1]]+phi[[3, 1],[2, 1]] TII depth = 3 TII multiplicity polynomial = 91*X^4+70*X^2+49*X TII subcells: tii[26,1] := {136, 341, 501, 551} tii[26,2] := {201, 413, 466, 530} tii[26,3] := {374, 538} tii[26,4] := {246, 339} tii[26,5] := {90, 281, 525, 548} tii[26,6] := {345, 346} tii[26,7] := {32, 203, 494, 529} tii[26,8] := {146, 362, 424, 509} tii[26,9] := {41, 306, 487, 488} tii[26,10] := {319, 524} tii[26,11] := {427} tii[26,12] := {473} tii[26,13] := {135, 222, 539, 552} tii[26,14] := {223, 224} tii[26,15] := {200, 376, 412, 480} tii[26,16] := {89, 171, 536, 549} tii[26,17] := {109, 268, 406, 407} tii[26,18] := {373, 500} tii[26,19] := {125, 126, 544, 545} tii[26,20] := {323} tii[26,21] := {164, 547} tii[26,22] := {388} tii[26,23] := {258, 349, 455, 511} tii[26,24] := {423, 490} tii[26,25] := {199, 305, 483, 484} tii[26,26] := {356} tii[26,27] := {248, 506} tii[26,28] := {419} tii[26,29] := {465, 520} tii[26,30] := {495} tii[26,31] := {35, 161, 307, 394} tii[26,32] := {82, 162, 398, 399} tii[26,33] := {56, 260, 432, 542} tii[26,34] := {70, 338, 361, 517} tii[26,35] := {174, 469} tii[26,36] := {254, 505} tii[26,37] := {28, 213, 247, 441} tii[26,38] := {189, 282} tii[26,39] := {93, 290, 470, 550} tii[26,40] := {287, 288} tii[26,41] := {13, 186, 271, 479} tii[26,42] := {24, 149, 456, 510} tii[26,43] := {63, 139, 347, 348} tii[26,44] := {134, 229} tii[26,45] := {29, 244, 449, 450} tii[26,46] := {59, 236, 437, 546} tii[26,47] := {19, 235, 322, 512} tii[26,48] := {110, 317, 382, 489} tii[26,49] := {380} tii[26,50] := {178, 179} tii[26,51] := {151, 428} tii[26,52] := {48, 276, 387, 537} tii[26,53] := {436} tii[26,54] := {218} tii[26,55] := {210, 474} tii[26,56] := {101, 191, 396, 397} tii[26,57] := {225, 226} tii[26,58] := {44, 104, 493, 531} tii[26,59] := {155, 371, 429, 516} tii[26,60] := {66, 233, 340, 445} tii[26,61] := {182, 183} tii[26,62] := {51, 185, 408, 409} tii[26,63] := {67, 68, 513, 514} tii[26,64] := {324} tii[26,65] := {206, 468} tii[26,66] := {220} tii[26,67] := {116, 314, 383, 497} tii[26,68] := {96, 527} tii[26,69] := {265, 504} tii[26,70] := {389} tii[26,71] := {262, 499} tii[26,72] := {79, 156, 453, 454} tii[26,73] := {298} tii[26,74] := {114, 478} tii[26,75] := {251} tii[26,76] := {321, 526} tii[26,77] := {369} tii[26,78] := {422} tii[26,79] := {14, 188, 269, 393} tii[26,80] := {187, 291} tii[26,81] := {57, 228, 502, 541} tii[26,82] := {36, 92, 285, 286} tii[26,83] := {5, 133, 328, 442} tii[26,84] := {237, 238} tii[26,85] := {71, 257, 326, 448} tii[26,86] := {34, 177, 475, 534} tii[26,87] := {9, 176, 377, 481} tii[26,88] := {105, 379} tii[26,89] := {277} tii[26,90] := {27, 217, 433, 522} tii[26,91] := {160, 435} tii[26,92] := {55, 123, 521, 543} tii[26,93] := {1, 111, 308, 395} tii[26,94] := {64, 137, 342, 343} tii[26,95] := {168, 169} tii[26,96] := {108, 316, 381, 485} tii[26,97] := {83, 84, 532, 533} tii[26,98] := {38, 173, 280, 400} tii[26,99] := {3, 152, 355, 444} tii[26,100] := {301, 302} tii[26,101] := {17, 153, 463, 515} tii[26,102] := {69, 212, 359, 360} tii[26,103] := {127, 128} tii[26,104] := {267} tii[26,105] := {150, 426} tii[26,106] := {119, 540} tii[26,107] := {11, 196, 418, 496} tii[26,108] := {74, 253, 327, 457} tii[26,109] := {336} tii[26,110] := {165} tii[26,111] := {209, 472} tii[26,112] := {334} tii[26,113] := {53, 54, 518, 519} tii[26,114] := {10, 202, 402, 403} tii[26,115] := {204, 467} tii[26,116] := {234} tii[26,117] := {102, 184, 410, 411} tii[26,118] := {385} tii[26,119] := {81, 528} tii[26,120] := {192} tii[26,121] := {263, 503} tii[26,122] := {140, 440} tii[26,123] := {315} tii[26,124] := {25, 252, 459, 460} tii[26,125] := {61, 507} tii[26,126] := {372} tii[26,127] := {100, 190, 283, 284} tii[26,128] := {180, 181} tii[26,129] := {154, 325, 370, 447} tii[26,130] := {65, 221, 232, 351} tii[26,131] := {205, 378} tii[26,132] := {219} tii[26,133] := {115, 270, 313, 414} tii[26,134] := {264, 434} tii[26,135] := {147, 243, 451, 452} tii[26,136] := {39, 170, 292, 293} tii[26,137] := {261, 425} tii[26,138] := {297} tii[26,139] := {272} tii[26,140] := {193, 477} tii[26,141] := {320, 471} tii[26,142] := {75, 216, 363, 364} tii[26,143] := {250} tii[26,144] := {368} tii[26,145] := {144, 438} tii[26,146] := {421} tii[26,147] := {318, 405} tii[26,148] := {309} tii[26,149] := {375, 462} tii[26,150] := {464} tii[26,151] := {18, 117, 245, 350} tii[26,152] := {31, 80, 299, 300} tii[26,153] := {58, 335} tii[26,154] := {4, 157, 214, 443} tii[26,155] := {91, 172} tii[26,156] := {8, 207, 266, 482} tii[26,157] := {129, 130} tii[26,158] := {33, 208, 391, 535} tii[26,159] := {52, 118, 357, 358} tii[26,160] := {26, 256, 333, 523} tii[26,161] := {166} tii[26,162] := {94, 390} tii[26,163] := {22, 211, 259, 446} tii[26,164] := {85, 86} tii[26,165] := {138, 431} tii[26,166] := {120} tii[26,167] := {46, 275, 310, 498} tii[26,168] := {98} tii[26,169] := {0, 72, 249, 344} tii[26,170] := {241, 242} tii[26,171] := {37, 95, 303, 304} tii[26,172] := {2, 106, 296, 401} tii[26,173] := {12, 107, 420, 486} tii[26,174] := {279} tii[26,175] := {77, 337} tii[26,176] := {7, 142, 367, 458} tii[26,177] := {40, 175, 289, 404} tii[26,178] := {6, 148, 353, 354} tii[26,179] := {131, 132} tii[26,180] := {42, 43, 491, 492} tii[26,181] := {331} tii[26,182] := {113, 386} tii[26,183] := {62, 508} tii[26,184] := {167} tii[26,185] := {16, 194, 416, 417} tii[26,186] := {76, 255, 332, 461} tii[26,187] := {50, 476} tii[26,188] := {145} tii[26,189] := {15, 103, 294, 295} tii[26,190] := {273} tii[26,191] := {159, 430} tii[26,192] := {30, 141, 365, 366} tii[26,193] := {198} tii[26,194] := {78, 439} tii[26,195] := {20, 60, 239, 240} tii[26,196] := {49, 278} tii[26,197] := {23, 124, 227, 352} tii[26,198] := {87, 88} tii[26,199] := {73, 330} tii[26,200] := {47, 195, 274, 415} tii[26,201] := {121} tii[26,202] := {99} tii[26,203] := {21, 122, 230, 231} tii[26,204] := {215} tii[26,205] := {112, 384} tii[26,206] := {45, 163, 311, 312} tii[26,207] := {143} tii[26,208] := {97, 392} tii[26,209] := {158, 329} tii[26,210] := {197} cell#63 , |C| = 553 special orbit = [6, 4, 2, 2] special rep = [[3, 1], [2, 1]] , dim = 210 cell rep = phi[[3, 2, 1],[1]]+phi[[3, 1, 1],[2]]+phi[[3, 2],[1, 1]]+phi[[3, 1],[2, 1]] TII depth = 3 TII multiplicity polynomial = 91*X^4+70*X^2+49*X TII subcells: tii[26,1] := {370, 446, 549, 552} tii[26,2] := {167, 254, 513, 540} tii[26,3] := {209, 533} tii[26,4] := {332, 460} tii[26,5] := {432, 494, 542, 550} tii[26,6] := {194, 337} tii[26,7] := {305, 390, 505, 534} tii[26,8] := {132, 214, 482, 524} tii[26,9] := {276, 417, 418, 487} tii[26,10] := {178, 508} tii[26,11] := {318} tii[26,12] := {392} tii[26,13] := {481, 522, 547, 548} tii[26,14] := {112, 231} tii[26,15] := {188, 285, 434, 496} tii[26,16] := {431, 493, 538, 539} tii[26,17] := {177, 312, 313, 397} tii[26,18] := {240, 471} tii[26,19] := {465, 520, 521, 527} tii[26,20] := {205} tii[26,21] := {511, 535} tii[26,22] := {291} tii[26,23] := {250, 355, 464, 473} tii[26,24] := {311, 419} tii[26,25] := {306, 414, 415, 430} tii[26,26] := {204} tii[26,27] := {381, 453} tii[26,28] := {290} tii[26,29] := {375, 472} tii[26,30] := {420} tii[26,31] := {62, 164, 399, 504} tii[26,32] := {12, 69, 260, 404} tii[26,33] := {233, 323, 531, 545} tii[26,34] := {123, 193, 470, 517} tii[26,35] := {56, 386} tii[26,36] := {103, 450} tii[26,37] := {108, 228, 459, 529} tii[26,38] := {259, 401} tii[26,39] := {304, 391, 543, 551} tii[26,40] := {137, 263} tii[26,41] := {65, 162, 403, 502} tii[26,42] := {232, 322, 463, 514} tii[26,43] := {4, 35, 229, 373} tii[26,44] := {195, 338} tii[26,45] := {208, 350, 351, 439} tii[26,46] := {238, 327, 532, 546} tii[26,47] := {115, 199, 467, 519} tii[26,48] := {77, 136, 436, 501} tii[26,49] := {252} tii[26,50] := {161, 275} tii[26,51] := {26, 347} tii[26,52] := {180, 289, 509, 541} tii[26,53] := {324} tii[26,54] := {211} tii[26,55] := {59, 427} tii[26,56] := {13, 64, 302, 433} tii[26,57] := {90, 197} tii[26,58] := {300, 389, 488, 495} tii[26,59] := {121, 192, 483, 528} tii[26,60] := {36, 91, 376, 466} tii[26,61] := {63, 146} tii[26,62] := {147, 277, 278, 383} tii[26,63] := {339, 442, 443, 452} tii[26,64] := {189} tii[26,65] := {55, 412} tii[26,66] := {97} tii[26,67] := {80, 155, 437, 512} tii[26,68] := {424, 484} tii[26,69] := {102, 479} tii[26,70] := {255} tii[26,71] := {93, 468} tii[26,72] := {202, 319, 320, 329} tii[26,73] := {134} tii[26,74] := {292, 382} tii[26,75] := {89} tii[26,76] := {154, 510} tii[26,77] := {191} tii[26,78] := {258} tii[26,79] := {163, 299, 400, 503} tii[26,80] := {261, 405} tii[26,81] := {374, 448, 530, 544} tii[26,82] := {2, 23, 165, 303} tii[26,83] := {111, 227, 335, 458} tii[26,84] := {226, 349} tii[26,85] := {50, 105, 378, 456} tii[26,86] := {310, 394, 506, 536} tii[26,87] := {169, 265, 408, 489} tii[26,88] := {15, 273} tii[26,89] := {282} tii[26,90] := {244, 361, 474, 525} tii[26,91] := {46, 363} tii[26,92] := {371, 447, 518, 523} tii[26,93] := {66, 160, 262, 402} tii[26,94] := {8, 48, 230, 372} tii[26,95] := {67, 168} tii[26,96] := {87, 158, 435, 500} tii[26,97] := {406, 491, 492, 499} tii[26,98] := {24, 70, 307, 407} tii[26,99] := {116, 198, 341, 440} tii[26,100] := {159, 274} tii[26,101] := {239, 326, 469, 516} tii[26,102] := {122, 241, 242, 331} tii[26,103] := {47, 120} tii[26,104] := {144} tii[26,105] := {40, 346} tii[26,106] := {477, 515} tii[26,107] := {181, 288, 421, 497} tii[26,108] := {51, 129, 379, 478} tii[26,109] := {210} tii[26,110] := {79} tii[26,111] := {83, 426} tii[26,112] := {220} tii[26,113] := {345, 444, 445, 457} tii[26,114] := {141, 267, 268, 385} tii[26,115] := {74, 410} tii[26,116] := {95} tii[26,117] := {173, 279, 280, 297} tii[26,118] := {253} tii[26,119] := {429, 486} tii[26,120] := {57} tii[26,121] := {128, 476} tii[26,122] := {248, 330} tii[26,123] := {156} tii[26,124] := {215, 358, 359, 451} tii[26,125] := {367, 455} tii[26,126] := {224} tii[26,127] := {21, 86, 166, 301} tii[26,128] := {85, 174} tii[26,129] := {133, 222, 377, 454} tii[26,130] := {49, 114, 234, 340} tii[26,131] := {75, 272} tii[26,132] := {124} tii[26,133] := {88, 185, 314, 425} tii[26,134] := {130, 362} tii[26,135] := {236, 352, 353, 369} tii[26,136] := {73, 171, 172, 270} tii[26,137] := {119, 343} tii[26,138] := {145} tii[26,139] := {151} tii[26,140] := {316, 396} tii[26,141] := {184, 423} tii[26,142] := {127, 246, 247, 364} tii[26,143] := {99} tii[26,144] := {221} tii[26,145] := {249, 368} tii[26,146] := {295} tii[26,147] := {170, 269} tii[26,148] := {152} tii[26,149] := {245, 360} tii[26,150] := {366} tii[26,151] := {31, 113, 334, 462} tii[26,152] := {20, 76, 298, 413} tii[26,153] := {42, 354} tii[26,154] := {33, 110, 336, 461} tii[26,155] := {138, 264} tii[26,156] := {72, 140, 409, 490} tii[26,157] := {109, 207} tii[26,158] := {176, 257, 507, 537} tii[26,159] := {7, 41, 225, 348} tii[26,160] := {126, 219, 475, 526} tii[26,161] := {150} tii[26,162] := {17, 281} tii[26,163] := {37, 94, 342, 441} tii[26,164] := {68, 148} tii[26,165] := {27, 321} tii[26,166] := {100} tii[26,167] := {82, 157, 422, 498} tii[26,168] := {60} tii[26,169] := {32, 107, 196, 333} tii[26,170] := {106, 206} tii[26,171] := {1, 16, 187, 309} tii[26,172] := {71, 139, 266, 384} tii[26,173] := {175, 256, 416, 485} tii[26,174] := {149} tii[26,175] := {5, 243} tii[26,176] := {125, 218, 357, 449} tii[26,177] := {14, 54, 308, 411} tii[26,178] := {92, 200, 201, 317} tii[26,179] := {34, 96} tii[26,180] := {271, 387, 388, 398} tii[26,181] := {190} tii[26,182] := {11, 283} tii[26,183] := {365, 438} tii[26,184] := {58} tii[26,185] := {153, 286, 287, 393} tii[26,186] := {45, 104, 380, 480} tii[26,187] := {294, 395} tii[26,188] := {29} tii[26,189] := {53, 142, 143, 251} tii[26,190] := {135} tii[26,191] := {28, 356} tii[26,192] := {101, 216, 217, 325} tii[26,193] := {52} tii[26,194] := {223, 328} tii[26,195] := {0, 10, 131, 237} tii[26,196] := {3, 179} tii[26,197] := {9, 39, 235, 344} tii[26,198] := {22, 78} tii[26,199] := {6, 212} tii[26,200] := {25, 84, 315, 428} tii[26,201] := {44} tii[26,202] := {19} tii[26,203] := {38, 117, 118, 203} tii[26,204] := {98} tii[26,205] := {18, 284} tii[26,206] := {81, 182, 183, 293} tii[26,207] := {30} tii[26,208] := {186, 296} tii[26,209] := {43, 213} tii[26,210] := {61} cell#64 , |C| = 105 special orbit = [6, 4, 4] special rep = [[3, 2], [2]] , dim = 105 cell rep = phi[[3, 2],[2]] TII depth = 4 TII multiplicity polynomial = 105*X TII subcells: tii[27,1] := {104} tii[27,2] := {101} tii[27,3] := {55} tii[27,4] := {36} tii[27,5] := {96} tii[27,6] := {78} tii[27,7] := {21} tii[27,8] := {68} tii[27,9] := {40} tii[27,10] := {64} tii[27,11] := {50} tii[27,12] := {100} tii[27,13] := {94} tii[27,14] := {89} tii[27,15] := {67} tii[27,16] := {81} tii[27,17] := {79} tii[27,18] := {103} tii[27,19] := {39} tii[27,20] := {63} tii[27,21] := {84} tii[27,22] := {93} tii[27,23] := {102} tii[27,24] := {90} tii[27,25] := {66} tii[27,26] := {97} tii[27,27] := {80} tii[27,28] := {74} tii[27,29] := {98} tii[27,30] := {82} tii[27,31] := {91} tii[27,32] := {31} tii[27,33] := {9} tii[27,34] := {10} tii[27,35] := {44} tii[27,36] := {5} tii[27,37] := {26} tii[27,38] := {49} tii[27,39] := {34} tii[27,40] := {11} tii[27,41] := {88} tii[27,42] := {14} tii[27,43] := {53} tii[27,44] := {23} tii[27,45] := {69} tii[27,46] := {15} tii[27,47] := {62} tii[27,48] := {24} tii[27,49] := {6} tii[27,50] := {95} tii[27,51] := {71} tii[27,52] := {41} tii[27,53] := {18} tii[27,54] := {59} tii[27,55] := {85} tii[27,56] := {48} tii[27,57] := {65} tii[27,58] := {13} tii[27,59] := {58} tii[27,60] := {25} tii[27,61] := {22} tii[27,62] := {47} tii[27,63] := {35} tii[27,64] := {27} tii[27,65] := {75} tii[27,66] := {38} tii[27,67] := {83} tii[27,68] := {99} tii[27,69] := {17} tii[27,70] := {28} tii[27,71] := {51} tii[27,72] := {54} tii[27,73] := {92} tii[27,74] := {33} tii[27,75] := {45} tii[27,76] := {70} tii[27,77] := {73} tii[27,78] := {61} tii[27,79] := {57} tii[27,80] := {77} tii[27,81] := {87} tii[27,82] := {29} tii[27,83] := {52} tii[27,84] := {46} tii[27,85] := {72} tii[27,86] := {56} tii[27,87] := {86} tii[27,88] := {1} tii[27,89] := {3} tii[27,90] := {20} tii[27,91] := {12} tii[27,92] := {0} tii[27,93] := {4} tii[27,94] := {16} tii[27,95] := {37} tii[27,96] := {32} tii[27,97] := {2} tii[27,98] := {60} tii[27,99] := {42} tii[27,100] := {8} tii[27,101] := {76} tii[27,102] := {30} tii[27,103] := {7} tii[27,104] := {19} tii[27,105] := {43} cell#65 , |C| = 105 special orbit = [6, 4, 4] special rep = [[3, 2], [2]] , dim = 105 cell rep = phi[[3, 2],[2]] TII depth = 4 TII multiplicity polynomial = 105*X TII subcells: tii[27,1] := {104} tii[27,2] := {102} tii[27,3] := {48} tii[27,4] := {42} tii[27,5] := {98} tii[27,6] := {81} tii[27,7] := {18} tii[27,8] := {61} tii[27,9] := {38} tii[27,10] := {67} tii[27,11] := {55} tii[27,12] := {101} tii[27,13] := {95} tii[27,14] := {88} tii[27,15] := {63} tii[27,16] := {78} tii[27,17] := {73} tii[27,18] := {103} tii[27,19] := {37} tii[27,20] := {66} tii[27,21] := {83} tii[27,22] := {94} tii[27,23] := {100} tii[27,24] := {90} tii[27,25] := {62} tii[27,26] := {96} tii[27,27] := {77} tii[27,28] := {76} tii[27,29] := {99} tii[27,30] := {85} tii[27,31] := {93} tii[27,32] := {24} tii[27,33] := {13} tii[27,34] := {9} tii[27,35] := {36} tii[27,36] := {4} tii[27,37] := {25} tii[27,38] := {56} tii[27,39] := {35} tii[27,40] := {7} tii[27,41] := {89} tii[27,42] := {22} tii[27,43] := {50} tii[27,44] := {20} tii[27,45] := {68} tii[27,46] := {14} tii[27,47] := {60} tii[27,48] := {33} tii[27,49] := {6} tii[27,50] := {92} tii[27,51] := {71} tii[27,52] := {39} tii[27,53] := {19} tii[27,54] := {57} tii[27,55] := {84} tii[27,56] := {52} tii[27,57] := {70} tii[27,58] := {10} tii[27,59] := {49} tii[27,60] := {34} tii[27,61] := {17} tii[27,62] := {47} tii[27,63] := {32} tii[27,64] := {26} tii[27,65] := {72} tii[27,66] := {45} tii[27,67] := {82} tii[27,68] := {97} tii[27,69] := {16} tii[27,70] := {28} tii[27,71] := {59} tii[27,72] := {51} tii[27,73] := {91} tii[27,74] := {31} tii[27,75] := {44} tii[27,76] := {69} tii[27,77] := {75} tii[27,78] := {64} tii[27,79] := {54} tii[27,80] := {79} tii[27,81] := {87} tii[27,82] := {27} tii[27,83] := {58} tii[27,84] := {43} tii[27,85] := {74} tii[27,86] := {53} tii[27,87] := {86} tii[27,88] := {1} tii[27,89] := {2} tii[27,90] := {23} tii[27,91] := {11} tii[27,92] := {0} tii[27,93] := {5} tii[27,94] := {15} tii[27,95] := {46} tii[27,96] := {30} tii[27,97] := {3} tii[27,98] := {65} tii[27,99] := {40} tii[27,100] := {12} tii[27,101] := {80} tii[27,102] := {29} tii[27,103] := {8} tii[27,104] := {21} tii[27,105] := {41} cell#66 , |C| = 553 special orbit = [6, 4, 2, 2] special rep = [[3, 1], [2, 1]] , dim = 210 cell rep = phi[[3, 2, 1],[1]]+phi[[3, 1, 1],[2]]+phi[[3, 2],[1, 1]]+phi[[3, 1],[2, 1]] TII depth = 3 TII multiplicity polynomial = 91*X^4+70*X^2+49*X TII subcells: tii[26,1] := {201, 389, 450, 552} tii[26,2] := {228, 323, 402, 540} tii[26,3] := {287, 502} tii[26,4] := {305, 469} tii[26,5] := {151, 413, 431, 551} tii[26,6] := {385, 454} tii[26,7] := {83, 324, 419, 544} tii[26,8] := {174, 267, 357, 530} tii[26,9] := {77, 224, 412, 527} tii[26,10] := {236, 477} tii[26,11] := {467} tii[26,12] := {495} tii[26,13] := {199, 390, 468, 547} tii[26,14] := {281, 370} tii[26,15] := {128, 308, 322, 523} tii[26,16] := {158, 344, 483, 543} tii[26,17] := {66, 207, 318, 490} tii[26,18] := {288, 444} tii[26,19] := {202, 300, 504, 538} tii[26,20] := {387} tii[26,21] := {254, 525} tii[26,22] := {435} tii[26,23] := {173, 266, 367, 503} tii[26,24] := {341, 428} tii[26,25] := {129, 220, 406, 492} tii[26,26] := {285} tii[26,27] := {186, 458} tii[26,28] := {349} tii[26,29] := {386, 466} tii[26,30] := {437} tii[26,31] := {5, 67, 335, 482} tii[26,32] := {26, 70, 405, 474} tii[26,33] := {118, 291, 374, 546} tii[26,34] := {113, 196, 278, 533} tii[26,35] := {75, 480} tii[26,36] := {114, 508} tii[26,37] := {10, 97, 280, 506} tii[26,38] := {252, 432} tii[26,39] := {152, 345, 418, 550} tii[26,40] := {336, 417} tii[26,41] := {25, 140, 251, 517} tii[26,42] := {54, 268, 373, 536} tii[26,43] := {37, 88, 360, 441} tii[26,44] := {206, 392} tii[26,45] := {49, 172, 366, 512} tii[26,46] := {112, 302, 380, 548} tii[26,47] := {46, 181, 283, 531} tii[26,48] := {138, 223, 310, 520} tii[26,49] := {430} tii[26,50] := {253, 351} tii[26,51] := {93, 447} tii[26,52] := {78, 244, 347, 541} tii[26,53] := {470} tii[26,54] := {307} tii[26,55] := {143, 485} tii[26,56] := {59, 123, 312, 473} tii[26,57] := {282, 371} tii[26,58] := {82, 239, 414, 522} tii[26,59] := {182, 277, 359, 534} tii[26,60] := {89, 165, 261, 496} tii[26,61] := {232, 332} tii[26,62] := {29, 127, 319, 491} tii[26,63] := {110, 193, 445, 513} tii[26,64] := {388} tii[26,65] := {134, 408} tii[26,66] := {297} tii[26,67] := {141, 218, 327, 518} tii[26,68] := {155, 486} tii[26,69] := {188, 457} tii[26,70] := {436} tii[26,71] := {177, 439} tii[26,72] := {48, 107, 365, 464} tii[26,73] := {340} tii[26,74] := {80, 424} tii[26,75] := {290} tii[26,76] := {240, 476} tii[26,77] := {397} tii[26,78] := {353} tii[26,79] := {2, 139, 226, 494} tii[26,80] := {256, 434} tii[26,81] := {109, 372, 393, 549} tii[26,82] := {19, 57, 311, 401} tii[26,83] := {11, 183, 198, 507} tii[26,84] := {306, 398} tii[26,85] := {96, 170, 258, 501} tii[26,86] := {76, 329, 352, 545} tii[26,87] := {27, 229, 234, 524} tii[26,88] := {65, 407} tii[26,89] := {355} tii[26,90] := {51, 294, 298, 537} tii[26,91] := {103, 456} tii[26,92] := {117, 292, 451, 535} tii[26,93] := {6, 150, 214, 484} tii[26,94] := {36, 87, 259, 440} tii[26,95] := {227, 321} tii[26,96] := {137, 222, 309, 521} tii[26,97] := {153, 247, 478, 528} tii[26,98] := {61, 120, 209, 471} tii[26,99] := {17, 175, 263, 505} tii[26,100] := {338, 426} tii[26,101] := {55, 274, 382, 539} tii[26,102] := {40, 160, 264, 463} tii[26,103] := {176, 275} tii[26,104] := {339} tii[26,105] := {92, 362} tii[26,106] := {204, 509} tii[26,107] := {34, 242, 328, 526} tii[26,108] := {101, 167, 271, 499} tii[26,109] := {395} tii[26,110] := {243} tii[26,111] := {142, 421} tii[26,112] := {396} tii[26,113] := {111, 197, 449, 515} tii[26,114] := {28, 132, 314, 481} tii[26,115] := {131, 400} tii[26,116] := {286} tii[26,117] := {63, 126, 317, 429} tii[26,118] := {433} tii[26,119] := {156, 489} tii[26,120] := {238} tii[26,121] := {185, 442} tii[26,122] := {104, 379} tii[26,123] := {350} tii[26,124] := {52, 191, 375, 511} tii[26,125] := {116, 462} tii[26,126] := {303} tii[26,127] := {60, 122, 208, 415} tii[26,128] := {230, 330} tii[26,129] := {95, 257, 276, 514} tii[26,130] := {38, 161, 164, 446} tii[26,131] := {136, 315} tii[26,132] := {295} tii[26,133] := {71, 216, 217, 487} tii[26,134] := {190, 377} tii[26,135] := {90, 171, 364, 465} tii[26,136] := {21, 119, 210, 409} tii[26,137] := {178, 356} tii[26,138] := {235} tii[26,139] := {342} tii[26,140] := {145, 423} tii[26,141] := {241, 403} tii[26,142] := {43, 169, 269, 459} tii[26,143] := {184} tii[26,144] := {299} tii[26,145] := {106, 383} tii[26,146] := {354} tii[26,147] := {233, 316} tii[26,148] := {237} tii[26,149] := {293, 378} tii[26,150] := {399} tii[26,151] := {0, 42, 304, 455} tii[26,152] := {3, 24, 337, 425} tii[26,153] := {15, 394} tii[26,154] := {16, 99, 200, 498} tii[26,155] := {159, 346} tii[26,156] := {32, 135, 231, 516} tii[26,157] := {203, 301} tii[26,158] := {84, 249, 331, 542} tii[26,159] := {12, 45, 361, 443} tii[26,160] := {56, 189, 296, 532} tii[26,161] := {255} tii[26,162] := {31, 420} tii[26,163] := {47, 94, 179, 497} tii[26,164] := {154, 250} tii[26,165] := {50, 453} tii[26,166] := {205} tii[26,167] := {79, 144, 245, 519} tii[26,168] := {157} tii[26,169] := {1, 108, 166, 452} tii[26,170] := {284, 381} tii[26,171] := {20, 58, 313, 404} tii[26,172] := {7, 130, 213, 479} tii[26,173] := {33, 221, 333, 529} tii[26,174] := {348} tii[26,175] := {44, 376} tii[26,176] := {18, 187, 272, 510} tii[26,177] := {62, 121, 212, 472} tii[26,178] := {13, 91, 262, 448} tii[26,179] := {180, 279} tii[26,180] := {74, 149, 411, 493} tii[26,181] := {391} tii[26,182] := {69, 416} tii[26,183] := {115, 461} tii[26,184] := {246} tii[26,185] := {30, 146, 325, 488} tii[26,186] := {102, 168, 273, 500} tii[26,187] := {81, 427} tii[26,188] := {195} tii[26,189] := {4, 64, 211, 410} tii[26,190] := {343} tii[26,191] := {98, 369} tii[26,192] := {14, 105, 270, 460} tii[26,193] := {248} tii[26,194] := {53, 384} tii[26,195] := {8, 35, 260, 358} tii[26,196] := {23, 326} tii[26,197] := {39, 86, 163, 438} tii[26,198] := {133, 225} tii[26,199] := {41, 368} tii[26,200] := {72, 124, 219, 475} tii[26,201] := {192} tii[26,202] := {148} tii[26,203] := {9, 85, 162, 363} tii[26,204] := {289} tii[26,205] := {68, 320} tii[26,206] := {22, 125, 215, 422} tii[26,207] := {194} tii[26,208] := {73, 334} tii[26,209] := {100, 265} tii[26,210] := {147} cell#67 , |C| = 105 special orbit = [6, 4, 4] special rep = [[3, 2], [2]] , dim = 105 cell rep = phi[[3, 2],[2]] TII depth = 4 TII multiplicity polynomial = 105*X TII subcells: tii[27,1] := {104} tii[27,2] := {96} tii[27,3] := {57} tii[27,4] := {50} tii[27,5] := {100} tii[27,6] := {85} tii[27,7] := {24} tii[27,8] := {70} tii[27,9] := {45} tii[27,10] := {73} tii[27,11] := {38} tii[27,12] := {102} tii[27,13] := {97} tii[27,14] := {77} tii[27,15] := {71} tii[27,16] := {83} tii[27,17] := {81} tii[27,18] := {103} tii[27,19] := {20} tii[27,20] := {51} tii[27,21] := {88} tii[27,22] := {86} tii[27,23] := {101} tii[27,24] := {93} tii[27,25] := {46} tii[27,26] := {98} tii[27,27] := {64} tii[27,28] := {56} tii[27,29] := {90} tii[27,30] := {68} tii[27,31] := {80} tii[27,32] := {32} tii[27,33] := {19} tii[27,34] := {13} tii[27,35] := {44} tii[27,36] := {6} tii[27,37] := {33} tii[27,38] := {63} tii[27,39] := {43} tii[27,40] := {12} tii[27,41] := {92} tii[27,42] := {30} tii[27,43] := {59} tii[27,44] := {28} tii[27,45] := {74} tii[27,46] := {21} tii[27,47] := {69} tii[27,48] := {41} tii[27,49] := {11} tii[27,50] := {95} tii[27,51] := {78} tii[27,52] := {47} tii[27,53] := {27} tii[27,54] := {65} tii[27,55] := {89} tii[27,56] := {60} tii[27,57] := {75} tii[27,58] := {14} tii[27,59] := {58} tii[27,60] := {18} tii[27,61] := {23} tii[27,62] := {55} tii[27,63] := {40} tii[27,64] := {9} tii[27,65] := {79} tii[27,66] := {29} tii[27,67] := {87} tii[27,68] := {99} tii[27,69] := {3} tii[27,70] := {34} tii[27,71] := {67} tii[27,72] := {35} tii[27,73] := {94} tii[27,74] := {15} tii[27,75] := {52} tii[27,76] := {53} tii[27,77] := {82} tii[27,78] := {48} tii[27,79] := {62} tii[27,80] := {66} tii[27,81] := {91} tii[27,82] := {10} tii[27,83] := {42} tii[27,84] := {26} tii[27,85] := {61} tii[27,86] := {36} tii[27,87] := {76} tii[27,88] := {2} tii[27,89] := {4} tii[27,90] := {31} tii[27,91] := {16} tii[27,92] := {1} tii[27,93] := {8} tii[27,94] := {22} tii[27,95] := {54} tii[27,96] := {39} tii[27,97] := {5} tii[27,98] := {72} tii[27,99] := {49} tii[27,100] := {17} tii[27,101] := {84} tii[27,102] := {37} tii[27,103] := {0} tii[27,104] := {7} tii[27,105] := {25} cell#68 , |C| = 553 special orbit = [6, 4, 2, 2] special rep = [[3, 1], [2, 1]] , dim = 210 cell rep = phi[[3, 2, 1],[1]]+phi[[3, 1, 1],[2]]+phi[[3, 2],[1, 1]]+phi[[3, 1],[2, 1]] TII depth = 3 TII multiplicity polynomial = 91*X^4+70*X^2+49*X TII subcells: tii[26,1] := {226, 371, 492, 539} tii[26,2] := {299, 300, 474, 475} tii[26,3] := {456, 457} tii[26,4] := {339, 455} tii[26,5] := {168, 318, 517, 547} tii[26,6] := {425, 426} tii[26,7] := {93, 210, 526, 527} tii[26,8] := {239, 240, 437, 438} tii[26,9] := {110, 111, 521, 522} tii[26,10] := {414, 415} tii[26,11] := {488} tii[26,12] := {516} tii[26,13] := {225, 358, 534, 551} tii[26,14] := {324, 325} tii[26,15] := {183, 184, 476, 477} tii[26,16] := {199, 301, 544, 545} tii[26,17] := {88, 89, 468, 469} tii[26,18] := {364, 365} tii[26,19] := {248, 249, 549, 550} tii[26,20] := {418} tii[26,21] := {296, 552} tii[26,22] := {460} tii[26,23] := {216, 217, 489, 490} tii[26,24] := {390, 391} tii[26,25] := {164, 165, 512, 513} tii[26,26] := {320} tii[26,27] := {214, 529} tii[26,28] := {375} tii[26,29] := {434, 435} tii[26,30] := {464} tii[26,31] := {24, 105, 201, 285} tii[26,32] := {78, 171, 180, 291} tii[26,33] := {146, 265, 424, 503} tii[26,34] := {159, 160, 357, 453} tii[26,35] := {190, 307} tii[26,36] := {263, 370} tii[26,37] := {57, 58, 255, 340} tii[26,38] := {284, 412} tii[26,39] := {172, 319, 463, 525} tii[26,40] := {377, 378} tii[26,41] := {23, 106, 286, 393} tii[26,42] := {50, 156, 504, 505} tii[26,43] := {125, 126, 230, 231} tii[26,44] := {254, 359} tii[26,45] := {64, 65, 497, 498} tii[26,46] := {119, 266, 452, 509} tii[26,47] := {38, 157, 334, 429} tii[26,48] := {195, 196, 408, 409} tii[26,49] := {458} tii[26,50] := {308, 309} tii[26,51] := {246, 247} tii[26,52] := {98, 213, 402, 480} tii[26,53] := {491} tii[26,54] := {354} tii[26,55] := {316, 317} tii[26,56] := {181, 182, 289, 290} tii[26,57] := {326, 327} tii[26,58] := {92, 185, 514, 515} tii[26,59] := {250, 251, 450, 451} tii[26,60] := {130, 131, 332, 333} tii[26,61] := {282, 283} tii[26,62] := {33, 34, 470, 471} tii[26,63] := {134, 135, 530, 531} tii[26,64] := {419} tii[26,65] := {305, 306} tii[26,66] := {323} tii[26,67] := {206, 207, 400, 401} tii[26,68] := {177, 541} tii[26,69] := {368, 369} tii[26,70] := {461} tii[26,71] := {360, 361} tii[26,72] := {48, 49, 499, 500} tii[26,73] := {387} tii[26,74] := {75, 519} tii[26,75] := {345} tii[26,76] := {416, 417} tii[26,77] := {447} tii[26,78] := {487} tii[26,79] := {25, 26, 311, 392} tii[26,80] := {310, 413} tii[26,81] := {118, 264, 495, 540} tii[26,82] := {76, 77, 169, 170} tii[26,83] := {7, 59, 341, 436} tii[26,84] := {362, 363} tii[26,85] := {136, 137, 355, 356} tii[26,86] := {73, 211, 486, 528} tii[26,87] := {17, 107, 386, 467} tii[26,88] := {188, 189} tii[26,89] := {405} tii[26,90] := {53, 161, 446, 508} tii[26,91] := {261, 262} tii[26,92] := {140, 241, 532, 533} tii[26,93] := {4, 27, 394, 395} tii[26,94] := {127, 128, 227, 228} tii[26,95] := {270, 271} tii[26,96] := {191, 192, 406, 407} tii[26,97] := {193, 194, 542, 543} tii[26,98] := {84, 85, 274, 275} tii[26,99] := {9, 61, 430, 431} tii[26,100] := {388, 389} tii[26,101] := {54, 158, 510, 511} tii[26,102] := {46, 47, 432, 433} tii[26,103] := {221, 222} tii[26,104] := {372} tii[26,105] := {244, 245} tii[26,106] := {236, 548} tii[26,107] := {37, 112, 481, 482} tii[26,108] := {148, 149, 348, 349} tii[26,109] := {422} tii[26,110] := {268} tii[26,111] := {314, 315} tii[26,112] := {421} tii[26,113] := {138, 139, 537, 538} tii[26,114] := {31, 32, 465, 466} tii[26,115] := {303, 304} tii[26,116] := {336} tii[26,117] := {71, 72, 472, 473} tii[26,118] := {459} tii[26,119] := {179, 546} tii[26,120] := {292} tii[26,121] := {366, 367} tii[26,122] := {115, 496} tii[26,123] := {404} tii[26,124] := {67, 68, 506, 507} tii[26,125] := {155, 535} tii[26,126] := {454} tii[26,127] := {79, 80, 287, 288} tii[26,128] := {280, 281} tii[26,129] := {132, 133, 448, 449} tii[26,130] := {42, 43, 330, 331} tii[26,131] := {186, 187} tii[26,132] := {322} tii[26,133] := {94, 95, 398, 399} tii[26,134] := {259, 260} tii[26,135] := {116, 117, 501, 502} tii[26,136] := {18, 19, 379, 380} tii[26,137] := {242, 243} tii[26,138] := {279} tii[26,139] := {373} tii[26,140] := {163, 520} tii[26,141] := {312, 313} tii[26,142] := {51, 52, 439, 440} tii[26,143] := {232} tii[26,144] := {353} tii[26,145] := {123, 493} tii[26,146] := {410} tii[26,147] := {272, 273} tii[26,148] := {267} tii[26,149] := {346, 347} tii[26,150] := {423} tii[26,151] := {16, 56, 147, 233} tii[26,152] := {29, 81, 103, 173} tii[26,153] := {70, 152} tii[26,154] := {15, 60, 229, 344} tii[26,155] := {200, 302} tii[26,156] := {28, 108, 276, 385} tii[26,157] := {252, 253} tii[26,158] := {102, 212, 411, 485} tii[26,159] := {39, 120, 129, 234} tii[26,160] := {69, 162, 350, 445} tii[26,161] := {298} tii[26,162] := {99, 208} tii[26,163] := {62, 63, 220, 335} tii[26,164] := {197, 198} tii[26,165] := {145, 258} tii[26,166] := {238} tii[26,167] := {113, 114, 295, 403} tii[26,168] := {209} tii[26,169] := {0, 8, 342, 343} tii[26,170] := {337, 338} tii[26,171] := {82, 83, 174, 175} tii[26,172] := {1, 30, 383, 384} tii[26,173] := {22, 109, 483, 484} tii[26,174] := {376} tii[26,175] := {153, 154} tii[26,176] := {14, 66, 443, 444} tii[26,177] := {86, 87, 277, 278} tii[26,178] := {10, 11, 427, 428} tii[26,179] := {223, 224} tii[26,180] := {90, 91, 523, 524} tii[26,181] := {420} tii[26,182] := {204, 205} tii[26,183] := {124, 536} tii[26,184] := {269} tii[26,185] := {35, 36, 478, 479} tii[26,186] := {150, 151, 351, 352} tii[26,187] := {104, 518} tii[26,188] := {237} tii[26,189] := {2, 3, 381, 382} tii[26,190] := {374} tii[26,191] := {256, 257} tii[26,192] := {12, 13, 441, 442} tii[26,193] := {297} tii[26,194] := {55, 494} tii[26,195] := {40, 41, 121, 122} tii[26,196] := {100, 101} tii[26,197] := {44, 45, 218, 219} tii[26,198] := {166, 167} tii[26,199] := {143, 144} tii[26,200] := {96, 97, 293, 294} tii[26,201] := {215} tii[26,202] := {178} tii[26,203] := {5, 6, 328, 329} tii[26,204] := {321} tii[26,205] := {202, 203} tii[26,206] := {20, 21, 396, 397} tii[26,207] := {235} tii[26,208] := {74, 462} tii[26,209] := {141, 142} tii[26,210] := {176} cell#69 , |C| = 70 special orbit = [5, 5, 4] special rep = [[2, 2], [3]] , dim = 70 cell rep = phi[[2, 2],[3]] TII depth = 3 TII multiplicity polynomial = 70*X TII subcells: tii[21,1] := {69} tii[21,2] := {39} tii[21,3] := {60} tii[21,4] := {23} tii[21,5] := {46} tii[21,6] := {64} tii[21,7] := {41} tii[21,8] := {52} tii[21,9] := {38} tii[21,10] := {53} tii[21,11] := {66} tii[21,12] := {55} tii[21,13] := {62} tii[21,14] := {58} tii[21,15] := {68} tii[21,16] := {63} tii[21,17] := {67} tii[21,18] := {18} tii[21,19] := {14} tii[21,20] := {32} tii[21,21] := {4} tii[21,22] := {25} tii[21,23] := {45} tii[21,24] := {13} tii[21,25] := {22} tii[21,26] := {33} tii[21,27] := {15} tii[21,28] := {40} tii[21,29] := {27} tii[21,30] := {51} tii[21,31] := {47} tii[21,32] := {56} tii[21,33] := {10} tii[21,34] := {34} tii[21,35] := {21} tii[21,36] := {30} tii[21,37] := {17} tii[21,38] := {42} tii[21,39] := {24} tii[21,40] := {48} tii[21,41] := {11} tii[21,42] := {37} tii[21,43] := {29} tii[21,44] := {57} tii[21,45] := {54} tii[21,46] := {36} tii[21,47] := {61} tii[21,48] := {31} tii[21,49] := {49} tii[21,50] := {44} tii[21,51] := {59} tii[21,52] := {50} tii[21,53] := {65} tii[21,54] := {1} tii[21,55] := {7} tii[21,56] := {3} tii[21,57] := {12} tii[21,58] := {9} tii[21,59] := {5} tii[21,60] := {20} tii[21,61] := {8} tii[21,62] := {26} tii[21,63] := {2} tii[21,64] := {19} tii[21,65] := {35} tii[21,66] := {16} tii[21,67] := {6} tii[21,68] := {28} tii[21,69] := {43} tii[21,70] := {0} cell#70 , |C| = 245 special orbit = [4, 4, 4, 2] special rep = [[2, 2], [2, 1]] , dim = 140 cell rep = phi[[2, 2, 1],[2]]+phi[[2, 2],[2, 1]] TII depth = 4 TII multiplicity polynomial = 105*X^2+35*X TII subcells: tii[18,1] := {215, 244} tii[18,2] := {57, 147} tii[18,3] := {196, 241} tii[18,4] := {143, 219} tii[18,5] := {107, 146} tii[18,6] := {214, 236} tii[18,7] := {193, 218} tii[18,8] := {152} tii[18,9] := {189} tii[18,10] := {227, 242} tii[18,11] := {226, 237} tii[18,12] := {233} tii[18,13] := {81, 174} tii[18,14] := {170, 231} tii[18,15] := {55, 167} tii[18,16] := {34, 119} tii[18,17] := {91, 195} tii[18,18] := {112, 203} tii[18,19] := {7, 85} tii[18,20] := {181, 239} tii[18,21] := {94, 200} tii[18,22] := {133, 225} tii[18,23] := {118, 213} tii[18,24] := {56, 92} tii[18,25] := {202, 243} tii[18,26] := {142, 182} tii[18,27] := {149, 228} tii[18,28] := {32, 70} tii[18,29] := {95} tii[18,30] := {48} tii[18,31] := {186, 240} tii[18,32] := {134} tii[18,33] := {168, 205} tii[18,34] := {184} tii[18,35] := {33, 138} tii[18,36] := {66, 173} tii[18,37] := {18, 111} tii[18,38] := {156, 230} tii[18,39] := {67, 177} tii[18,40] := {103, 209} tii[18,41] := {26, 108} tii[18,42] := {90, 194} tii[18,43] := {80, 120} tii[18,44] := {38, 126} tii[18,45] := {12, 77} tii[18,46] := {180, 238} tii[18,47] := {125} tii[18,48] := {121, 216} tii[18,49] := {169, 204} tii[18,50] := {59, 153} tii[18,51] := {54, 98} tii[18,52] := {21, 99} tii[18,53] := {164} tii[18,54] := {160, 234} tii[18,55] := {88, 190} tii[18,56] := {73} tii[18,57] := {83, 176} tii[18,58] := {96} tii[18,59] := {192, 220} tii[18,60] := {76} tii[18,61] := {115, 208} tii[18,62] := {206} tii[18,63] := {135} tii[18,64] := {166} tii[18,65] := {117, 172} tii[18,66] := {78, 127} tii[18,67] := {201, 229} tii[18,68] := {148, 197} tii[18,69] := {100} tii[18,70] := {185, 222} tii[18,71] := {212, 232} tii[18,72] := {140, 175} tii[18,73] := {130} tii[18,74] := {221} tii[18,75] := {171, 207} tii[18,76] := {211} tii[18,77] := {37, 141} tii[18,78] := {44, 139} tii[18,79] := {60, 154} tii[18,80] := {24, 105} tii[18,81] := {6, 61} tii[18,82] := {84, 178} tii[18,83] := {40, 128} tii[18,84] := {116, 210} tii[18,85] := {110, 199} tii[18,86] := {14, 39} tii[18,87] := {145, 224} tii[18,88] := {23} tii[18,89] := {13, 79} tii[18,90] := {19, 97} tii[18,91] := {31, 137} tii[18,92] := {69, 179} tii[18,93] := {5, 53} tii[18,94] := {36, 124} tii[18,95] := {9, 72} tii[18,96] := {47, 157} tii[18,97] := {64, 163} tii[18,98] := {122, 217} tii[18,99] := {17, 46} tii[18,100] := {68} tii[18,101] := {58, 150} tii[18,102] := {1, 43} tii[18,103] := {74, 183} tii[18,104] := {28} tii[18,105] := {87, 187} tii[18,106] := {161, 235} tii[18,107] := {104} tii[18,108] := {50} tii[18,109] := {3, 62} tii[18,110] := {136} tii[18,111] := {15} tii[18,112] := {82, 123} tii[18,113] := {114, 162} tii[18,114] := {75} tii[18,115] := {165} tii[18,116] := {16, 106} tii[18,117] := {45, 155} tii[18,118] := {27, 129} tii[18,119] := {4, 65} tii[18,120] := {93, 198} tii[18,121] := {35, 71} tii[18,122] := {49, 158} tii[18,123] := {8, 86} tii[18,124] := {51} tii[18,125] := {132, 223} tii[18,126] := {29} tii[18,127] := {109, 151} tii[18,128] := {102} tii[18,129] := {42, 131} tii[18,130] := {144, 188} tii[18,131] := {52} tii[18,132] := {191} tii[18,133] := {11, 89} tii[18,134] := {20, 113} tii[18,135] := {0, 25} tii[18,136] := {63, 159} tii[18,137] := {2, 41} tii[18,138] := {10} tii[18,139] := {22, 101} tii[18,140] := {30} cell#71 , |C| = 154 special orbit = [8, 2, 2, 2] special rep = [[4, 1], [1, 1]] , dim = 84 cell rep = phi[[4, 1, 1],[1]]+phi[[4, 1],[1, 1]] TII depth = 4 TII multiplicity polynomial = 70*X^2+14*X TII subcells: tii[32,1] := {113, 153} tii[32,2] := {85, 148} tii[32,3] := {77, 137} tii[32,4] := {51, 108} tii[32,5] := {128, 152} tii[32,6] := {66, 143} tii[32,7] := {120, 150} tii[32,8] := {58, 122} tii[32,9] := {129, 147} tii[32,10] := {35, 88} tii[32,11] := {119, 142} tii[32,12] := {133} tii[32,13] := {83, 140} tii[32,14] := {41, 106} tii[32,15] := {95, 130} tii[32,16] := {24, 70} tii[32,17] := {82, 116} tii[32,18] := {100} tii[32,19] := {56, 97} tii[32,20] := {14, 53} tii[32,21] := {48, 78} tii[32,22] := {62} tii[32,23] := {21, 43} tii[32,24] := {31} tii[32,25] := {2, 134} tii[32,26] := {94, 151} tii[32,27] := {8, 127} tii[32,28] := {76, 149} tii[32,29] := {16, 135} tii[32,30] := {59, 145} tii[32,31] := {28, 126} tii[32,32] := {45, 139} tii[32,33] := {4, 112} tii[32,34] := {103, 146} tii[32,35] := {114, 141} tii[32,36] := {11, 121} tii[32,37] := {68, 144} tii[32,38] := {102, 132} tii[32,39] := {23, 111} tii[32,40] := {52, 138} tii[32,41] := {118} tii[32,42] := {38, 125} tii[32,43] := {17, 105} tii[32,44] := {96, 131} tii[32,45] := {29, 93} tii[32,46] := {84, 117} tii[32,47] := {60, 124} tii[32,48] := {101} tii[32,49] := {46, 110} tii[32,50] := {22, 75} tii[32,51] := {67, 99} tii[32,52] := {81} tii[32,53] := {37, 90} tii[32,54] := {64} tii[32,55] := {0, 92} tii[32,56] := {50, 136} tii[32,57] := {5, 104} tii[32,58] := {36, 123} tii[32,59] := {13, 91} tii[32,60] := {26, 109} tii[32,61] := {9, 86} tii[32,62] := {74, 115} tii[32,63] := {18, 73} tii[32,64] := {42, 107} tii[32,65] := {65, 98} tii[32,66] := {32, 89} tii[32,67] := {80} tii[32,68] := {12, 57} tii[32,69] := {49, 79} tii[32,70] := {63} tii[32,71] := {25, 72} tii[32,72] := {47} tii[32,73] := {3, 69} tii[32,74] := {30, 87} tii[32,75] := {10, 55} tii[32,76] := {19, 71} tii[32,77] := {6, 40} tii[32,78] := {34, 61} tii[32,79] := {15, 54} tii[32,80] := {44} tii[32,81] := {33} tii[32,82] := {1, 27} tii[32,83] := {7, 39} tii[32,84] := {20} cell#72 , |C| = 154 special orbit = [8, 2, 2, 2] special rep = [[4, 1], [1, 1]] , dim = 84 cell rep = phi[[4, 1, 1],[1]]+phi[[4, 1],[1, 1]] TII depth = 4 TII multiplicity polynomial = 70*X^2+14*X TII subcells: tii[32,1] := {125, 151} tii[32,2] := {97, 136} tii[32,3] := {105, 106} tii[32,4] := {100, 101} tii[32,5] := {138, 153} tii[32,6] := {73, 122} tii[32,7] := {134, 150} tii[32,8] := {83, 84} tii[32,9] := {144, 145} tii[32,10] := {79, 80} tii[32,11] := {148, 149} tii[32,12] := {152} tii[32,13] := {96, 131} tii[32,14] := {61, 62} tii[32,15] := {113, 114} tii[32,16] := {56, 57} tii[32,17] := {127, 128} tii[32,18] := {139} tii[32,19] := {71, 72} tii[32,20] := {38, 39} tii[32,21] := {92, 93} tii[32,22] := {110} tii[32,23] := {58, 59} tii[32,24] := {77} tii[32,25] := {21, 22} tii[32,26] := {109, 146} tii[32,27] := {10, 40} tii[32,28] := {91, 137} tii[32,29] := {15, 60} tii[32,30] := {74, 124} tii[32,31] := {32, 78} tii[32,32] := {50, 107} tii[32,33] := {4, 23} tii[32,34] := {117, 143} tii[32,35] := {132, 133} tii[32,36] := {12, 41} tii[32,37] := {76, 123} tii[32,38] := {141, 142} tii[32,39] := {20, 55} tii[32,40] := {70, 108} tii[32,41] := {147} tii[32,42] := {46, 87} tii[32,43] := {25, 26} tii[32,44] := {115, 116} tii[32,45] := {36, 37} tii[32,46] := {129, 130} tii[32,47] := {89, 90} tii[32,48] := {140} tii[32,49] := {66, 67} tii[32,50] := {53, 54} tii[32,51] := {120, 121} tii[32,52] := {135} tii[32,53] := {85, 86} tii[32,54] := {118} tii[32,55] := {0, 11} tii[32,56] := {52, 104} tii[32,57] := {1, 24} tii[32,58] := {49, 88} tii[32,59] := {9, 35} tii[32,60] := {31, 65} tii[32,61] := {13, 14} tii[32,62] := {94, 95} tii[32,63] := {18, 19} tii[32,64] := {68, 69} tii[32,65] := {111, 112} tii[32,66] := {44, 45} tii[32,67] := {126} tii[32,68] := {33, 34} tii[32,69] := {102, 103} tii[32,70] := {119} tii[32,71] := {63, 64} tii[32,72] := {98} tii[32,73] := {2, 3} tii[32,74] := {47, 48} tii[32,75] := {7, 8} tii[32,76] := {29, 30} tii[32,77] := {16, 17} tii[32,78] := {81, 82} tii[32,79] := {42, 43} tii[32,80] := {99} tii[32,81] := {75} tii[32,82] := {5, 6} tii[32,83] := {27, 28} tii[32,84] := {51} cell#73 , |C| = 553 special orbit = [6, 4, 2, 2] special rep = [[3, 1], [2, 1]] , dim = 210 cell rep = phi[[3, 2, 1],[1]]+phi[[3, 1, 1],[2]]+phi[[3, 2],[1, 1]]+phi[[3, 1],[2, 1]] TII depth = 3 TII multiplicity polynomial = 91*X^4+70*X^2+49*X TII subcells: tii[26,1] := {136, 340, 501, 551} tii[26,2] := {201, 413, 466, 530} tii[26,3] := {374, 538} tii[26,4] := {246, 339} tii[26,5] := {90, 280, 525, 548} tii[26,6] := {345, 346} tii[26,7] := {32, 202, 494, 529} tii[26,8] := {146, 362, 424, 509} tii[26,9] := {41, 306, 487, 488} tii[26,10] := {319, 524} tii[26,11] := {427} tii[26,12] := {473} tii[26,13] := {135, 221, 539, 552} tii[26,14] := {223, 224} tii[26,15] := {200, 376, 412, 480} tii[26,16] := {89, 170, 536, 549} tii[26,17] := {109, 268, 406, 407} tii[26,18] := {373, 500} tii[26,19] := {125, 126, 544, 545} tii[26,20] := {323} tii[26,21] := {164, 547} tii[26,22] := {388} tii[26,23] := {258, 349, 455, 511} tii[26,24] := {423, 490} tii[26,25] := {199, 305, 483, 484} tii[26,26] := {356} tii[26,27] := {248, 506} tii[26,28] := {419} tii[26,29] := {465, 520} tii[26,30] := {495} tii[26,31] := {35, 161, 307, 394} tii[26,32] := {82, 162, 398, 399} tii[26,33] := {56, 259, 432, 542} tii[26,34] := {70, 338, 361, 517} tii[26,35] := {174, 469} tii[26,36] := {254, 505} tii[26,37] := {28, 213, 247, 441} tii[26,38] := {189, 282} tii[26,39] := {93, 289, 470, 550} tii[26,40] := {287, 288} tii[26,41] := {13, 186, 271, 479} tii[26,42] := {24, 148, 456, 510} tii[26,43] := {63, 139, 347, 348} tii[26,44] := {134, 229} tii[26,45] := {29, 244, 449, 450} tii[26,46] := {59, 235, 437, 546} tii[26,47] := {19, 236, 322, 512} tii[26,48] := {110, 317, 382, 489} tii[26,49] := {380} tii[26,50] := {178, 179} tii[26,51] := {151, 428} tii[26,52] := {48, 276, 387, 537} tii[26,53] := {436} tii[26,54] := {218} tii[26,55] := {210, 474} tii[26,56] := {101, 191, 396, 397} tii[26,57] := {225, 226} tii[26,58] := {44, 103, 493, 531} tii[26,59] := {155, 371, 429, 516} tii[26,60] := {66, 233, 341, 445} tii[26,61] := {182, 183} tii[26,62] := {51, 185, 408, 409} tii[26,63] := {67, 68, 513, 514} tii[26,64] := {324} tii[26,65] := {206, 468} tii[26,66] := {220} tii[26,67] := {116, 314, 383, 497} tii[26,68] := {96, 527} tii[26,69] := {265, 504} tii[26,70] := {389} tii[26,71] := {262, 499} tii[26,72] := {79, 156, 453, 454} tii[26,73] := {298} tii[26,74] := {114, 478} tii[26,75] := {251} tii[26,76] := {321, 526} tii[26,77] := {369} tii[26,78] := {422} tii[26,79] := {14, 188, 269, 393} tii[26,80] := {187, 291} tii[26,81] := {57, 227, 502, 541} tii[26,82] := {36, 92, 285, 286} tii[26,83] := {5, 133, 328, 442} tii[26,84] := {237, 238} tii[26,85] := {71, 257, 326, 448} tii[26,86] := {34, 176, 475, 534} tii[26,87] := {9, 177, 377, 481} tii[26,88] := {105, 379} tii[26,89] := {277} tii[26,90] := {27, 217, 433, 522} tii[26,91] := {160, 435} tii[26,92] := {55, 122, 521, 543} tii[26,93] := {1, 111, 308, 395} tii[26,94] := {64, 137, 342, 343} tii[26,95] := {168, 169} tii[26,96] := {108, 316, 381, 485} tii[26,97] := {83, 84, 532, 533} tii[26,98] := {38, 173, 281, 400} tii[26,99] := {3, 153, 355, 444} tii[26,100] := {301, 302} tii[26,101] := {17, 152, 463, 515} tii[26,102] := {69, 212, 359, 360} tii[26,103] := {127, 128} tii[26,104] := {267} tii[26,105] := {150, 426} tii[26,106] := {119, 540} tii[26,107] := {11, 196, 418, 496} tii[26,108] := {74, 253, 327, 457} tii[26,109] := {336} tii[26,110] := {165} tii[26,111] := {209, 472} tii[26,112] := {334} tii[26,113] := {53, 54, 518, 519} tii[26,114] := {10, 203, 402, 403} tii[26,115] := {204, 467} tii[26,116] := {234} tii[26,117] := {102, 184, 410, 411} tii[26,118] := {385} tii[26,119] := {81, 528} tii[26,120] := {192} tii[26,121] := {263, 503} tii[26,122] := {140, 440} tii[26,123] := {315} tii[26,124] := {25, 252, 459, 460} tii[26,125] := {61, 507} tii[26,126] := {372} tii[26,127] := {100, 190, 283, 284} tii[26,128] := {180, 181} tii[26,129] := {154, 325, 370, 447} tii[26,130] := {65, 222, 232, 351} tii[26,131] := {205, 378} tii[26,132] := {219} tii[26,133] := {115, 270, 313, 414} tii[26,134] := {264, 434} tii[26,135] := {147, 243, 451, 452} tii[26,136] := {39, 171, 292, 293} tii[26,137] := {261, 425} tii[26,138] := {297} tii[26,139] := {272} tii[26,140] := {193, 477} tii[26,141] := {320, 471} tii[26,142] := {75, 216, 363, 364} tii[26,143] := {250} tii[26,144] := {368} tii[26,145] := {144, 438} tii[26,146] := {421} tii[26,147] := {318, 405} tii[26,148] := {309} tii[26,149] := {375, 462} tii[26,150] := {464} tii[26,151] := {18, 117, 245, 350} tii[26,152] := {31, 80, 299, 300} tii[26,153] := {58, 335} tii[26,154] := {4, 157, 214, 443} tii[26,155] := {91, 172} tii[26,156] := {8, 208, 266, 482} tii[26,157] := {129, 130} tii[26,158] := {33, 207, 391, 535} tii[26,159] := {52, 118, 357, 358} tii[26,160] := {26, 256, 333, 523} tii[26,161] := {166} tii[26,162] := {94, 390} tii[26,163] := {22, 211, 260, 446} tii[26,164] := {85, 86} tii[26,165] := {138, 431} tii[26,166] := {120} tii[26,167] := {46, 275, 310, 498} tii[26,168] := {98} tii[26,169] := {0, 72, 249, 344} tii[26,170] := {241, 242} tii[26,171] := {37, 95, 303, 304} tii[26,172] := {2, 107, 296, 401} tii[26,173] := {12, 106, 420, 486} tii[26,174] := {279} tii[26,175] := {77, 337} tii[26,176] := {7, 142, 367, 458} tii[26,177] := {40, 175, 290, 404} tii[26,178] := {6, 149, 353, 354} tii[26,179] := {131, 132} tii[26,180] := {42, 43, 491, 492} tii[26,181] := {331} tii[26,182] := {113, 386} tii[26,183] := {62, 508} tii[26,184] := {167} tii[26,185] := {16, 194, 416, 417} tii[26,186] := {76, 255, 332, 461} tii[26,187] := {50, 476} tii[26,188] := {145} tii[26,189] := {15, 104, 294, 295} tii[26,190] := {273} tii[26,191] := {159, 430} tii[26,192] := {30, 141, 365, 366} tii[26,193] := {198} tii[26,194] := {78, 439} tii[26,195] := {20, 60, 239, 240} tii[26,196] := {49, 278} tii[26,197] := {23, 124, 228, 352} tii[26,198] := {87, 88} tii[26,199] := {73, 330} tii[26,200] := {47, 195, 274, 415} tii[26,201] := {121} tii[26,202] := {99} tii[26,203] := {21, 123, 230, 231} tii[26,204] := {215} tii[26,205] := {112, 384} tii[26,206] := {45, 163, 311, 312} tii[26,207] := {143} tii[26,208] := {97, 392} tii[26,209] := {158, 329} tii[26,210] := {197} cell#74 , |C| = 35 special orbit = [10, 2, 2] special rep = [[5, 1], [1]] , dim = 35 cell rep = phi[[5, 1],[1]] TII depth = 5 TII multiplicity polynomial = 35*X TII subcells: tii[37,1] := {34} tii[37,2] := {33} tii[37,3] := {29} tii[37,4] := {27} tii[37,5] := {20} tii[37,6] := {5} tii[37,7] := {32} tii[37,8] := {8} tii[37,9] := {30} tii[37,10] := {4} tii[37,11] := {26} tii[37,12] := {11} tii[37,13] := {22} tii[37,14] := {2} tii[37,15] := {14} tii[37,16] := {18} tii[37,17] := {7} tii[37,18] := {31} tii[37,19] := {15} tii[37,20] := {28} tii[37,21] := {6} tii[37,22] := {23} tii[37,23] := {16} tii[37,24] := {3} tii[37,25] := {10} tii[37,26] := {25} tii[37,27] := {1} tii[37,28] := {21} tii[37,29] := {13} tii[37,30] := {19} tii[37,31] := {9} tii[37,32] := {24} tii[37,33] := {17} tii[37,34] := {0} tii[37,35] := {12} cell#75 , |C| = 36 special orbit = [10, 2, 1, 1] special rep = [[5], [1, 1]] , dim = 21 cell rep = phi[[5, 1, 1],[]]+phi[[5],[1, 1]] TII depth = 1 TII multiplicity polynomial = 15*X^2+6*X TII subcells: tii[36,1] := {21, 35} tii[36,2] := {22, 34} tii[36,3] := {20, 33} tii[36,4] := {23, 31} tii[36,5] := {19, 29} tii[36,6] := {26} tii[36,7] := {14, 32} tii[36,8] := {13, 30} tii[36,9] := {15, 28} tii[36,10] := {12, 25} tii[36,11] := {18} tii[36,12] := {8, 27} tii[36,13] := {9, 24} tii[36,14] := {7, 17} tii[36,15] := {11} tii[36,16] := {4, 16} tii[36,17] := {3, 10} tii[36,18] := {6} tii[36,19] := {1, 5} tii[36,20] := {2} tii[36,21] := {0} cell#76 , |C| = 154 special orbit = [8, 2, 2, 2] special rep = [[4, 1], [1, 1]] , dim = 84 cell rep = phi[[4, 1, 1],[1]]+phi[[4, 1],[1, 1]] TII depth = 4 TII multiplicity polynomial = 70*X^2+14*X TII subcells: tii[32,1] := {97, 153} tii[32,2] := {61, 150} tii[32,3] := {56, 148} tii[32,4] := {29, 138} tii[32,5] := {118, 151} tii[32,6] := {55, 145} tii[32,7] := {96, 147} tii[32,8] := {45, 141} tii[32,9] := {109, 142} tii[32,10] := {24, 123} tii[32,11] := {95, 130} tii[32,12] := {114} tii[32,13] := {71, 135} tii[32,14] := {63, 128} tii[32,15] := {81, 122} tii[32,16] := {31, 102} tii[32,17] := {70, 103} tii[32,18] := {86} tii[32,19] := {82, 110} tii[32,20] := {23, 83} tii[32,21] := {59, 91} tii[32,22] := {75} tii[32,23] := {39, 65} tii[32,24] := {51} tii[32,25] := {37, 134} tii[32,26] := {80, 152} tii[32,27] := {20, 117} tii[32,28] := {64, 149} tii[32,29] := {27, 127} tii[32,30] := {49, 143} tii[32,31] := {19, 116} tii[32,32] := {33, 132} tii[32,33] := {6, 108} tii[32,34] := {78, 140} tii[32,35] := {90, 129} tii[32,36] := {14, 120} tii[32,37] := {47, 146} tii[32,38] := {77, 112} tii[32,39] := {5, 107} tii[32,40] := {30, 139} tii[32,41] := {93} tii[32,42] := {16, 126} tii[32,43] := {28, 136} tii[32,44] := {72, 111} tii[32,45] := {13, 119} tii[32,46] := {60, 92} tii[32,47] := {42, 144} tii[32,48] := {76} tii[32,49] := {26, 133} tii[32,50] := {4, 106} tii[32,51] := {46, 73} tii[32,52] := {57} tii[32,53] := {15, 125} tii[32,54] := {43} tii[32,55] := {3, 89} tii[32,56] := {41, 137} tii[32,57] := {9, 99} tii[32,58] := {25, 124} tii[32,59] := {2, 88} tii[32,60] := {12, 105} tii[32,61] := {22, 121} tii[32,62] := {62, 101} tii[32,63] := {8, 98} tii[32,64] := {32, 131} tii[32,65] := {54, 84} tii[32,66] := {18, 115} tii[32,67] := {68} tii[32,68] := {1, 87} tii[32,69] := {40, 66} tii[32,70] := {52} tii[32,71] := {11, 104} tii[32,72] := {36} tii[32,73] := {38, 100} tii[32,74] := {50, 113} tii[32,75] := {21, 79} tii[32,76] := {34, 94} tii[32,77] := {7, 69} tii[32,78] := {48, 74} tii[32,79] := {17, 85} tii[32,80] := {58} tii[32,81] := {44} tii[32,82] := {0, 53} tii[32,83] := {10, 67} tii[32,84] := {35} cell#77 , |C| = 105 special orbit = [6, 4, 4] special rep = [[3, 2], [2]] , dim = 105 cell rep = phi[[3, 2],[2]] TII depth = 4 TII multiplicity polynomial = 105*X TII subcells: tii[27,1] := {104} tii[27,2] := {94} tii[27,3] := {58} tii[27,4] := {46} tii[27,5] := {98} tii[27,6] := {85} tii[27,7] := {31} tii[27,8] := {70} tii[27,9] := {50} tii[27,10] := {72} tii[27,11] := {32} tii[27,12] := {101} tii[27,13] := {97} tii[27,14] := {75} tii[27,15] := {76} tii[27,16] := {86} tii[27,17] := {80} tii[27,18] := {103} tii[27,19] := {23} tii[27,20] := {45} tii[27,21] := {88} tii[27,22] := {84} tii[27,23] := {102} tii[27,24] := {93} tii[27,25] := {51} tii[27,26] := {99} tii[27,27] := {66} tii[27,28] := {59} tii[27,29] := {91} tii[27,30] := {68} tii[27,31] := {82} tii[27,32] := {33} tii[27,33] := {9} tii[27,34] := {19} tii[27,35] := {47} tii[27,36] := {8} tii[27,37] := {37} tii[27,38] := {60} tii[27,39] := {34} tii[27,40] := {12} tii[27,41] := {92} tii[27,42] := {22} tii[27,43] := {64} tii[27,44] := {28} tii[27,45] := {77} tii[27,46] := {24} tii[27,47] := {71} tii[27,48] := {36} tii[27,49] := {14} tii[27,50] := {96} tii[27,51] := {78} tii[27,52] := {52} tii[27,53] := {30} tii[27,54] := {67} tii[27,55] := {89} tii[27,56] := {57} tii[27,57] := {74} tii[27,58] := {18} tii[27,59] := {61} tii[27,60] := {10} tii[27,61] := {25} tii[27,62] := {48} tii[27,63] := {42} tii[27,64] := {11} tii[27,65] := {81} tii[27,66] := {20} tii[27,67] := {87} tii[27,68] := {100} tii[27,69] := {3} tii[27,70] := {38} tii[27,71] := {63} tii[27,72] := {39} tii[27,73] := {95} tii[27,74] := {15} tii[27,75] := {54} tii[27,76] := {55} tii[27,77] := {79} tii[27,78] := {44} tii[27,79] := {65} tii[27,80] := {62} tii[27,81] := {90} tii[27,82] := {13} tii[27,83] := {35} tii[27,84] := {29} tii[27,85] := {56} tii[27,86] := {40} tii[27,87] := {73} tii[27,88] := {2} tii[27,89] := {4} tii[27,90] := {21} tii[27,91] := {16} tii[27,92] := {0} tii[27,93] := {6} tii[27,94] := {26} tii[27,95] := {49} tii[27,96] := {43} tii[27,97] := {5} tii[27,98] := {69} tii[27,99] := {53} tii[27,100] := {17} tii[27,101] := {83} tii[27,102] := {41} tii[27,103] := {1} tii[27,104] := {7} tii[27,105] := {27} cell#78 , |C| = 315 special orbit = [5, 5, 2, 2] special rep = [[2, 1], [3, 1]] , dim = 210 cell rep = phi[[2, 1, 1],[3]]+phi[[2, 1],[3, 1]] TII depth = 4 TII multiplicity polynomial = 105*X^2+105*X TII subcells: tii[20,1] := {158, 292} tii[20,2] := {254, 313} tii[20,3] := {168} tii[20,4] := {193, 277} tii[20,5] := {92, 211} tii[20,6] := {275, 309} tii[20,7] := {235} tii[20,8] := {271} tii[20,9] := {167} tii[20,10] := {226, 258} tii[20,11] := {163, 210} tii[20,12] := {290, 303} tii[20,13] := {103} tii[20,14] := {234} tii[20,15] := {151} tii[20,16] := {270} tii[20,17] := {252, 278} tii[20,18] := {301, 310} tii[20,19] := {225, 264} tii[20,20] := {280} tii[20,21] := {241} tii[20,22] := {297} tii[20,23] := {308, 314} tii[20,24] := {311} tii[20,25] := {32, 203} tii[20,26] := {61, 239} tii[20,27] := {89, 261} tii[20,28] := {131, 287} tii[20,29] := {132} tii[20,30] := {55, 232} tii[20,31] := {60, 176} tii[20,32] := {18, 174} tii[20,33] := {91, 265} tii[20,34] := {207} tii[20,35] := {72} tii[20,36] := {123, 282} tii[20,37] := {42, 222} tii[20,38] := {249} tii[20,39] := {115} tii[20,40] := {166, 299} tii[20,41] := {85, 257} tii[20,42] := {98} tii[20,43] := {124, 283} tii[20,44] := {56, 233} tii[20,45] := {69} tii[20,46] := {90, 141} tii[20,47] := {44} tii[20,48] := {175} tii[20,49] := {160, 295} tii[20,50] := {94, 269} tii[20,51] := {48} tii[20,52] := {112} tii[20,53] := {79} tii[20,54] := {199, 306} tii[20,55] := {223} tii[20,56] := {195, 302} tii[20,57] := {121, 178} tii[20,58] := {209} tii[20,59] := {146} tii[20,60] := {182} tii[20,61] := {229, 312} tii[20,62] := {251} tii[20,63] := {273} tii[20,64] := {86, 202} tii[20,65] := {105} tii[20,66] := {126, 238} tii[20,67] := {37, 138} tii[20,68] := {161, 260} tii[20,69] := {153} tii[20,70] := {67, 188} tii[20,71] := {200, 286} tii[20,72] := {120, 231} tii[20,73] := {133} tii[20,74] := {137} tii[20,75] := {162, 263} tii[20,76] := {71} tii[20,77] := {87, 204} tii[20,78] := {125, 177} tii[20,79] := {19, 104} tii[20,80] := {102} tii[20,81] := {208} tii[20,82] := {196, 281} tii[20,83] := {106} tii[20,84] := {114} tii[20,85] := {129, 246} tii[20,86] := {187} tii[20,87] := {43, 152} tii[20,88] := {75} tii[20,89] := {150} tii[20,90] := {230, 298} tii[20,91] := {250} tii[20,92] := {47} tii[20,93] := {35, 135} tii[20,94] := {227, 293} tii[20,95] := {236} tii[20,96] := {159, 212} tii[20,97] := {214} tii[20,98] := {30} tii[20,99] := {82} tii[20,100] := {215} tii[20,101] := {65, 185} tii[20,102] := {255, 304} tii[20,103] := {183} tii[20,104] := {272} tii[20,105] := {119} tii[20,106] := {289} tii[20,107] := {157, 201} tii[20,108] := {136} tii[20,109] := {197, 237} tii[20,110] := {122, 169} tii[20,111] := {228, 259} tii[20,112] := {107} tii[20,113] := {186} tii[20,114] := {165, 217} tii[20,115] := {256, 285} tii[20,116] := {194, 240} tii[20,117] := {88, 134} tii[20,118] := {253, 279} tii[20,119] := {262} tii[20,120] := {77} tii[20,121] := {213} tii[20,122] := {216} tii[20,123] := {276, 296} tii[20,124] := {130, 184} tii[20,125] := {245} tii[20,126] := {288} tii[20,127] := {192} tii[20,128] := {300} tii[20,129] := {274, 294} tii[20,130] := {266} tii[20,131] := {291, 305} tii[20,132] := {307} tii[20,133] := {7, 140} tii[20,134] := {24, 190} tii[20,135] := {17, 173} tii[20,136] := {45} tii[20,137] := {6, 139} tii[20,138] := {8, 142} tii[20,139] := {23, 189} tii[20,140] := {80} tii[20,141] := {41, 221} tii[20,142] := {16, 171} tii[20,143] := {26} tii[20,144] := {62, 244} tii[20,145] := {54} tii[20,146] := {12} tii[20,147] := {40, 219} tii[20,148] := {84} tii[20,149] := {101} tii[20,150] := {36, 206} tii[20,151] := {5, 70} tii[20,152] := {74} tii[20,153] := {149} tii[20,154] := {20, 179} tii[20,155] := {66, 248} tii[20,156] := {22, 113} tii[20,157] := {25} tii[20,158] := {34, 205} tii[20,159] := {46} tii[20,160] := {15, 99} tii[20,161] := {9, 144} tii[20,162] := {180} tii[20,163] := {49} tii[20,164] := {93, 268} tii[20,165] := {53} tii[20,166] := {39, 147} tii[20,167] := {29} tii[20,168] := {81} tii[20,169] := {64, 247} tii[20,170] := {11} tii[20,171] := {13} tii[20,172] := {83} tii[20,173] := {118} tii[20,174] := {33, 68} tii[20,175] := {145} tii[20,176] := {127, 284} tii[20,177] := {63, 111} tii[20,178] := {27} tii[20,179] := {154} tii[20,180] := {117} tii[20,181] := {59, 172} tii[20,182] := {38, 143} tii[20,183] := {97, 220} tii[20,184] := {58, 170} tii[20,185] := {73} tii[20,186] := {76} tii[20,187] := {21, 109} tii[20,188] := {128, 243} tii[20,189] := {96, 218} tii[20,190] := {52} tii[20,191] := {116} tii[20,192] := {31} tii[20,193] := {156} tii[20,194] := {57, 100} tii[20,195] := {51} tii[20,196] := {10, 78} tii[20,197] := {181} tii[20,198] := {164, 267} tii[20,199] := {95, 148} tii[20,200] := {14} tii[20,201] := {191} tii[20,202] := {155} tii[20,203] := {198, 242} tii[20,204] := {224} tii[20,205] := {0, 108} tii[20,206] := {28} tii[20,207] := {2, 110} tii[20,208] := {3} tii[20,209] := {1, 50} tii[20,210] := {4} cell#79 , |C| = 553 special orbit = [6, 4, 2, 2] special rep = [[3, 1], [2, 1]] , dim = 210 cell rep = phi[[3, 2, 1],[1]]+phi[[3, 1, 1],[2]]+phi[[3, 2],[1, 1]]+phi[[3, 1],[2, 1]] TII depth = 3 TII multiplicity polynomial = 91*X^4+70*X^2+49*X TII subcells: tii[26,1] := {336, 439, 492, 552} tii[26,2] := {200, 313, 395, 540} tii[26,3] := {233, 491} tii[26,4] := {437, 505} tii[26,5] := {274, 462, 476, 551} tii[26,6] := {367, 459} tii[26,7] := {170, 376, 418, 543} tii[26,8] := {148, 255, 341, 529} tii[26,9] := {106, 269, 405, 523} tii[26,10] := {178, 460} tii[26,11] := {448} tii[26,12] := {485} tii[26,13] := {335, 438, 504, 548} tii[26,14] := {253, 368} tii[26,15] := {103, 282, 312, 518} tii[26,16] := {276, 392, 488, 542} tii[26,17] := {47, 179, 292, 472} tii[26,18] := {128, 420} tii[26,19] := {249, 347, 507, 537} tii[26,20] := {345} tii[26,21] := {296, 527} tii[26,22] := {409} tii[26,23] := {145, 256, 366, 496} tii[26,24] := {177, 387} tii[26,25] := {115, 202, 397, 471} tii[26,26] := {227} tii[26,27] := {155, 451} tii[26,28] := {304} tii[26,29] := {226, 333} tii[26,30] := {306} tii[26,31] := {26, 81, 461, 515} tii[26,32] := {33, 83, 390, 478} tii[26,33] := {223, 339, 424, 546} tii[26,34] := {151, 234, 327, 531} tii[26,35] := {89, 466} tii[26,36] := {138, 498} tii[26,37] := {49, 119, 421, 532} tii[26,38] := {389, 475} tii[26,39] := {280, 394, 463, 550} tii[26,40] := {311, 417} tii[26,41] := {82, 166, 375, 524} tii[26,42] := {122, 323, 369, 535} tii[26,43] := {22, 63, 337, 441} tii[26,44] := {338, 442} tii[26,45] := {70, 213, 352, 502} tii[26,46] := {231, 351, 428, 547} tii[26,47] := {123, 224, 334, 533} tii[26,48] := {117, 204, 294, 514} tii[26,49] := {401} tii[26,50] := {310, 403} tii[26,51] := {69, 427} tii[26,52] := {187, 302, 382, 544} tii[26,53] := {452} tii[26,54] := {354} tii[26,55] := {113, 468} tii[26,56] := {34, 100, 278, 477} tii[26,57] := {254, 370} tii[26,58] := {167, 281, 415, 517} tii[26,59] := {152, 260, 349, 530} tii[26,60] := {67, 150, 251, 494} tii[26,61] := {211, 316} tii[26,62] := {40, 162, 293, 474} tii[26,63] := {142, 229, 444, 500} tii[26,64] := {346} tii[26,65] := {90, 379} tii[26,66] := {263} tii[26,67] := {111, 209, 298, 519} tii[26,68] := {181, 483} tii[26,69] := {139, 432} tii[26,70] := {410} tii[26,71] := {125, 426} tii[26,72] := {64, 129, 343, 435} tii[26,73] := {288} tii[26,74] := {92, 412} tii[26,75] := {242} tii[26,76] := {189, 470} tii[26,77] := {359} tii[26,78] := {307} tii[26,79] := {80, 164, 374, 525} tii[26,80] := {391, 479} tii[26,81] := {222, 423, 443, 549} tii[26,82] := {7, 35, 277, 393} tii[26,83] := {50, 218, 321, 512} tii[26,84] := {365, 450} tii[26,85] := {78, 153, 235, 490} tii[26,86] := {175, 380, 404, 545} tii[26,87] := {85, 273, 283, 526} tii[26,88] := {38, 378} tii[26,89] := {407} tii[26,90] := {134, 328, 356, 539} tii[26,91] := {75, 431} tii[26,92] := {219, 340, 457, 534} tii[26,93] := {27, 196, 266, 489} tii[26,94] := {15, 62, 220, 440} tii[26,95] := {197, 314} tii[26,96] := {107, 203, 290, 513} tii[26,97] := {194, 289, 480, 521} tii[26,98] := {37, 104, 195, 464} tii[26,99] := {53, 217, 257, 508} tii[26,100] := {320, 419} tii[26,101] := {127, 326, 372, 538} tii[26,102] := {24, 130, 232, 436} tii[26,103] := {160, 258} tii[26,104] := {287} tii[26,105] := {55, 325} tii[26,106] := {237, 509} tii[26,107] := {94, 270, 319, 528} tii[26,108] := {74, 157, 238, 497} tii[26,109] := {373} tii[26,110] := {206} tii[26,111] := {96, 384} tii[26,112] := {358} tii[26,113] := {147, 236, 447, 503} tii[26,114] := {36, 169, 284, 482} tii[26,115] := {88, 377} tii[26,116] := {228} tii[26,117] := {45, 108, 285, 386} tii[26,118] := {408} tii[26,119] := {185, 487} tii[26,120] := {186} tii[26,121] := {137, 433} tii[26,122] := {72, 360} tii[26,123] := {305} tii[26,124] := {73, 216, 357, 511} tii[26,125] := {140, 456} tii[26,126] := {247} tii[26,127] := {3, 99, 168, 416} tii[26,128] := {210, 315} tii[26,129] := {71, 230, 259, 501} tii[26,130] := {17, 143, 149, 445} tii[26,131] := {29, 267} tii[26,132] := {262} tii[26,133] := {43, 182, 208, 484} tii[26,134] := {60, 332} tii[26,135] := {77, 154, 342, 434} tii[26,136] := {8, 101, 172, 398} tii[26,137] := {54, 324} tii[26,138] := {174} tii[26,139] := {300} tii[26,140] := {109, 411} tii[26,141] := {95, 385} tii[26,142] := {25, 131, 244, 453} tii[26,143] := {133} tii[26,144] := {246} tii[26,145] := {76, 362} tii[26,146] := {193} tii[26,147] := {87, 286} tii[26,148] := {183} tii[26,149] := {136, 361} tii[26,150] := {248} tii[26,151] := {10, 52, 422, 493} tii[26,152] := {2, 30, 388, 467} tii[26,153] := {12, 429} tii[26,154] := {51, 120, 322, 506} tii[26,155] := {279, 396} tii[26,156] := {86, 171, 275, 516} tii[26,157] := {252, 350} tii[26,158] := {176, 291, 381, 541} tii[26,159] := {14, 56, 364, 449} tii[26,160] := {135, 243, 329, 536} tii[26,161] := {299} tii[26,162] := {31, 406} tii[26,163] := {66, 126, 221, 495} tii[26,164] := {199, 295} tii[26,165] := {57, 430} tii[26,166] := {241} tii[26,167] := {110, 190, 272, 520} tii[26,168] := {191} tii[26,169] := {11, 144, 212, 458} tii[26,170] := {265, 371} tii[26,171] := {6, 39, 309, 402} tii[26,172] := {28, 165, 201, 481} tii[26,173] := {91, 268, 317, 522} tii[26,174] := {318} tii[26,175] := {19, 353} tii[26,176] := {59, 214, 264, 510} tii[26,177] := {46, 105, 198, 465} tii[26,178] := {16, 121, 225, 446} tii[26,179] := {161, 261} tii[26,180] := {102, 180, 399, 473} tii[26,181] := {355} tii[26,182] := {41, 383} tii[26,183] := {132, 454} tii[26,184] := {207} tii[26,185] := {42, 163, 303, 486} tii[26,186] := {79, 158, 240, 499} tii[26,187] := {97, 414} tii[26,188] := {159} tii[26,189] := {4, 84, 173, 400} tii[26,190] := {301} tii[26,191] := {58, 331} tii[26,192] := {21, 118, 245, 455} tii[26,193] := {192} tii[26,194] := {61, 363} tii[26,195] := {0, 18, 250, 348} tii[26,196] := {5, 297} tii[26,197] := {23, 68, 146, 425} tii[26,198] := {116, 205} tii[26,199] := {20, 330} tii[26,200] := {48, 112, 184, 469} tii[26,201] := {156} tii[26,202] := {114} tii[26,203] := {1, 65, 124, 344} tii[26,204] := {239} tii[26,205] := {32, 271} tii[26,206] := {9, 93, 188, 413} tii[26,207] := {141} tii[26,208] := {44, 308} tii[26,209] := {13, 215} tii[26,210] := {98} cell#80 , |C| = 70 special orbit = [5, 5, 4] special rep = [[2, 2], [3]] , dim = 70 cell rep = phi[[2, 2],[3]] TII depth = 3 TII multiplicity polynomial = 70*X TII subcells: tii[21,1] := {69} tii[21,2] := {39} tii[21,3] := {60} tii[21,4] := {23} tii[21,5] := {46} tii[21,6] := {64} tii[21,7] := {41} tii[21,8] := {52} tii[21,9] := {38} tii[21,10] := {53} tii[21,11] := {66} tii[21,12] := {55} tii[21,13] := {62} tii[21,14] := {58} tii[21,15] := {68} tii[21,16] := {63} tii[21,17] := {67} tii[21,18] := {18} tii[21,19] := {14} tii[21,20] := {32} tii[21,21] := {4} tii[21,22] := {25} tii[21,23] := {45} tii[21,24] := {13} tii[21,25] := {22} tii[21,26] := {33} tii[21,27] := {15} tii[21,28] := {40} tii[21,29] := {27} tii[21,30] := {51} tii[21,31] := {47} tii[21,32] := {56} tii[21,33] := {10} tii[21,34] := {34} tii[21,35] := {21} tii[21,36] := {30} tii[21,37] := {17} tii[21,38] := {42} tii[21,39] := {24} tii[21,40] := {48} tii[21,41] := {11} tii[21,42] := {37} tii[21,43] := {29} tii[21,44] := {57} tii[21,45] := {54} tii[21,46] := {36} tii[21,47] := {61} tii[21,48] := {31} tii[21,49] := {49} tii[21,50] := {44} tii[21,51] := {59} tii[21,52] := {50} tii[21,53] := {65} tii[21,54] := {1} tii[21,55] := {7} tii[21,56] := {3} tii[21,57] := {12} tii[21,58] := {9} tii[21,59] := {5} tii[21,60] := {20} tii[21,61] := {8} tii[21,62] := {26} tii[21,63] := {2} tii[21,64] := {19} tii[21,65] := {35} tii[21,66] := {16} tii[21,67] := {6} tii[21,68] := {28} tii[21,69] := {43} tii[21,70] := {0} cell#81 , |C| = 553 special orbit = [6, 4, 2, 2] special rep = [[3, 1], [2, 1]] , dim = 210 cell rep = phi[[3, 2, 1],[1]]+phi[[3, 1, 1],[2]]+phi[[3, 2],[1, 1]]+phi[[3, 1],[2, 1]] TII depth = 3 TII multiplicity polynomial = 91*X^4+70*X^2+49*X TII subcells: tii[26,1] := {336, 439, 492, 552} tii[26,2] := {200, 313, 395, 540} tii[26,3] := {233, 491} tii[26,4] := {437, 505} tii[26,5] := {274, 462, 476, 551} tii[26,6] := {367, 459} tii[26,7] := {170, 376, 418, 543} tii[26,8] := {148, 255, 341, 529} tii[26,9] := {106, 269, 405, 523} tii[26,10] := {178, 460} tii[26,11] := {448} tii[26,12] := {485} tii[26,13] := {335, 438, 504, 548} tii[26,14] := {253, 368} tii[26,15] := {103, 282, 312, 518} tii[26,16] := {276, 392, 488, 542} tii[26,17] := {47, 179, 292, 472} tii[26,18] := {128, 420} tii[26,19] := {249, 347, 507, 537} tii[26,20] := {345} tii[26,21] := {296, 527} tii[26,22] := {409} tii[26,23] := {145, 256, 366, 496} tii[26,24] := {177, 387} tii[26,25] := {115, 202, 397, 471} tii[26,26] := {227} tii[26,27] := {155, 451} tii[26,28] := {304} tii[26,29] := {226, 333} tii[26,30] := {306} tii[26,31] := {26, 81, 461, 515} tii[26,32] := {33, 83, 390, 478} tii[26,33] := {223, 339, 424, 546} tii[26,34] := {151, 234, 327, 531} tii[26,35] := {89, 466} tii[26,36] := {138, 498} tii[26,37] := {49, 119, 421, 532} tii[26,38] := {389, 475} tii[26,39] := {280, 394, 463, 550} tii[26,40] := {311, 417} tii[26,41] := {82, 166, 375, 524} tii[26,42] := {122, 323, 369, 535} tii[26,43] := {22, 63, 337, 441} tii[26,44] := {338, 442} tii[26,45] := {70, 213, 352, 502} tii[26,46] := {231, 351, 428, 547} tii[26,47] := {123, 224, 334, 533} tii[26,48] := {117, 204, 294, 514} tii[26,49] := {401} tii[26,50] := {310, 403} tii[26,51] := {69, 427} tii[26,52] := {187, 302, 382, 544} tii[26,53] := {452} tii[26,54] := {354} tii[26,55] := {113, 468} tii[26,56] := {34, 100, 278, 477} tii[26,57] := {254, 370} tii[26,58] := {167, 281, 415, 517} tii[26,59] := {152, 260, 349, 530} tii[26,60] := {67, 150, 251, 494} tii[26,61] := {211, 316} tii[26,62] := {40, 162, 293, 474} tii[26,63] := {142, 229, 444, 500} tii[26,64] := {346} tii[26,65] := {90, 379} tii[26,66] := {263} tii[26,67] := {111, 209, 298, 519} tii[26,68] := {181, 483} tii[26,69] := {139, 432} tii[26,70] := {410} tii[26,71] := {125, 426} tii[26,72] := {64, 129, 343, 435} tii[26,73] := {288} tii[26,74] := {92, 412} tii[26,75] := {242} tii[26,76] := {189, 470} tii[26,77] := {359} tii[26,78] := {307} tii[26,79] := {80, 164, 374, 525} tii[26,80] := {391, 479} tii[26,81] := {222, 423, 443, 549} tii[26,82] := {7, 35, 277, 393} tii[26,83] := {50, 218, 321, 512} tii[26,84] := {365, 450} tii[26,85] := {78, 153, 235, 490} tii[26,86] := {175, 380, 404, 545} tii[26,87] := {85, 273, 283, 526} tii[26,88] := {38, 378} tii[26,89] := {407} tii[26,90] := {134, 328, 356, 539} tii[26,91] := {75, 431} tii[26,92] := {219, 340, 457, 534} tii[26,93] := {27, 196, 266, 489} tii[26,94] := {15, 62, 220, 440} tii[26,95] := {197, 314} tii[26,96] := {107, 203, 290, 513} tii[26,97] := {194, 289, 480, 521} tii[26,98] := {37, 104, 195, 464} tii[26,99] := {53, 217, 257, 508} tii[26,100] := {320, 419} tii[26,101] := {127, 326, 372, 538} tii[26,102] := {24, 130, 232, 436} tii[26,103] := {160, 258} tii[26,104] := {287} tii[26,105] := {55, 325} tii[26,106] := {237, 509} tii[26,107] := {94, 270, 319, 528} tii[26,108] := {74, 157, 238, 497} tii[26,109] := {373} tii[26,110] := {206} tii[26,111] := {96, 384} tii[26,112] := {358} tii[26,113] := {147, 236, 447, 503} tii[26,114] := {36, 169, 284, 482} tii[26,115] := {88, 377} tii[26,116] := {228} tii[26,117] := {45, 108, 285, 386} tii[26,118] := {408} tii[26,119] := {185, 487} tii[26,120] := {186} tii[26,121] := {137, 433} tii[26,122] := {72, 360} tii[26,123] := {305} tii[26,124] := {73, 216, 357, 511} tii[26,125] := {140, 456} tii[26,126] := {247} tii[26,127] := {3, 99, 168, 416} tii[26,128] := {210, 315} tii[26,129] := {71, 230, 259, 501} tii[26,130] := {17, 143, 149, 445} tii[26,131] := {29, 267} tii[26,132] := {262} tii[26,133] := {43, 182, 208, 484} tii[26,134] := {60, 332} tii[26,135] := {77, 154, 342, 434} tii[26,136] := {8, 101, 172, 398} tii[26,137] := {54, 324} tii[26,138] := {174} tii[26,139] := {300} tii[26,140] := {109, 411} tii[26,141] := {95, 385} tii[26,142] := {25, 131, 244, 453} tii[26,143] := {133} tii[26,144] := {246} tii[26,145] := {76, 362} tii[26,146] := {193} tii[26,147] := {87, 286} tii[26,148] := {183} tii[26,149] := {136, 361} tii[26,150] := {248} tii[26,151] := {10, 52, 422, 493} tii[26,152] := {2, 30, 388, 467} tii[26,153] := {12, 429} tii[26,154] := {51, 120, 322, 506} tii[26,155] := {279, 396} tii[26,156] := {86, 171, 275, 516} tii[26,157] := {252, 350} tii[26,158] := {176, 291, 381, 541} tii[26,159] := {14, 56, 364, 449} tii[26,160] := {135, 243, 329, 536} tii[26,161] := {299} tii[26,162] := {31, 406} tii[26,163] := {66, 126, 221, 495} tii[26,164] := {199, 295} tii[26,165] := {57, 430} tii[26,166] := {241} tii[26,167] := {110, 190, 272, 520} tii[26,168] := {191} tii[26,169] := {11, 144, 212, 458} tii[26,170] := {265, 371} tii[26,171] := {6, 39, 309, 402} tii[26,172] := {28, 165, 201, 481} tii[26,173] := {91, 268, 317, 522} tii[26,174] := {318} tii[26,175] := {19, 353} tii[26,176] := {59, 214, 264, 510} tii[26,177] := {46, 105, 198, 465} tii[26,178] := {16, 121, 225, 446} tii[26,179] := {161, 261} tii[26,180] := {102, 180, 399, 473} tii[26,181] := {355} tii[26,182] := {41, 383} tii[26,183] := {132, 454} tii[26,184] := {207} tii[26,185] := {42, 163, 303, 486} tii[26,186] := {79, 158, 240, 499} tii[26,187] := {97, 414} tii[26,188] := {159} tii[26,189] := {4, 84, 173, 400} tii[26,190] := {301} tii[26,191] := {58, 331} tii[26,192] := {21, 118, 245, 455} tii[26,193] := {192} tii[26,194] := {61, 363} tii[26,195] := {0, 18, 250, 348} tii[26,196] := {5, 297} tii[26,197] := {23, 68, 146, 425} tii[26,198] := {116, 205} tii[26,199] := {20, 330} tii[26,200] := {48, 112, 184, 469} tii[26,201] := {156} tii[26,202] := {114} tii[26,203] := {1, 65, 124, 344} tii[26,204] := {239} tii[26,205] := {32, 271} tii[26,206] := {9, 93, 188, 413} tii[26,207] := {141} tii[26,208] := {44, 308} tii[26,209] := {13, 215} tii[26,210] := {98} cell#82 , |C| = 315 special orbit = [5, 5, 2, 2] special rep = [[2, 1], [3, 1]] , dim = 210 cell rep = phi[[2, 1, 1],[3]]+phi[[2, 1],[3, 1]] TII depth = 4 TII multiplicity polynomial = 105*X^2+105*X TII subcells: tii[20,1] := {154, 297} tii[20,2] := {195, 314} tii[20,3] := {250} tii[20,4] := {118, 282} tii[20,5] := {49, 207} tii[20,6] := {227, 313} tii[20,7] := {292} tii[20,8] := {304} tii[20,9] := {188} tii[20,10] := {153, 271} tii[20,11] := {96, 219} tii[20,12] := {254, 310} tii[20,13] := {123} tii[20,14] := {251} tii[20,15] := {168} tii[20,16] := {278} tii[20,17] := {187, 244} tii[20,18] := {276, 303} tii[20,19] := {155, 218} tii[20,20] := {252} tii[20,21] := {202} tii[20,22] := {279} tii[20,23] := {291, 311} tii[20,24] := {305} tii[20,25] := {14, 266} tii[20,26] := {71, 238} tii[20,27] := {46, 298} tii[20,28] := {80, 308} tii[20,29] := {221} tii[20,30] := {26, 240} tii[20,31] := {32, 175} tii[20,32] := {31, 179} tii[20,33] := {97, 264} tii[20,34] := {274} tii[20,35] := {160} tii[20,36] := {67, 284} tii[20,37] := {57, 215} tii[20,38] := {293} tii[20,39] := {205} tii[20,40] := {105, 300} tii[20,41] := {41, 265} tii[20,42] := {189} tii[20,43] := {128, 283} tii[20,44] := {64, 241} tii[20,45] := {159} tii[20,46] := {48, 151} tii[20,47] := {66} tii[20,48] := {253} tii[20,49] := {90, 299} tii[20,50] := {104, 273} tii[20,51] := {130} tii[20,52] := {203} tii[20,53] := {106} tii[20,54] := {133, 309} tii[20,55] := {280} tii[20,56] := {119, 306} tii[20,57] := {65, 117} tii[20,58] := {226} tii[20,59] := {108} tii[20,60] := {199} tii[20,61] := {165, 312} tii[20,62] := {261} tii[20,63] := {236} tii[20,64] := {42, 208} tii[20,65] := {193} tii[20,66] := {70, 237} tii[20,67] := {18, 144} tii[20,68] := {92, 267} tii[20,69] := {234} tii[20,70] := {38, 182} tii[20,71] := {134, 289} tii[20,72] := {62, 239} tii[20,73] := {152} tii[20,74] := {223} tii[20,75] := {95, 263} tii[20,76] := {91} tii[20,77] := {43, 209} tii[20,78] := {69, 186} tii[20,79] := {8, 113} tii[20,80] := {122} tii[20,81] := {224} tii[20,82] := {124, 285} tii[20,83] := {196} tii[20,84] := {135} tii[20,85] := {77, 246} tii[20,86] := {258} tii[20,87] := {24, 148} tii[20,88] := {98} tii[20,89] := {166} tii[20,90] := {167, 301} tii[20,91] := {259} tii[20,92] := {68} tii[20,93] := {16, 143} tii[20,94] := {156, 296} tii[20,95] := {194} tii[20,96] := {88, 150} tii[20,97] := {277} tii[20,98] := {52} tii[20,99] := {107} tii[20,100] := {164} tii[20,101] := {36, 184} tii[20,102] := {200, 307} tii[20,103] := {138} tii[20,104] := {235} tii[20,105] := {83} tii[20,106] := {262} tii[20,107] := {87, 220} tii[20,108] := {158} tii[20,109] := {127, 249} tii[20,110] := {63, 190} tii[20,111] := {161, 275} tii[20,112] := {129} tii[20,113] := {201} tii[20,114] := {103, 233} tii[20,115] := {204, 294} tii[20,116] := {120, 185} tii[20,117] := {44, 157} tii[20,118] := {191, 286} tii[20,119] := {225} tii[20,120] := {99} tii[20,121] := {228} tii[20,122] := {170} tii[20,123] := {231, 302} tii[20,124] := {78, 206} tii[20,125] := {198} tii[20,126] := {260} tii[20,127] := {141} tii[20,128] := {281} tii[20,129] := {222, 268} tii[20,130] := {229} tii[20,131] := {257, 290} tii[20,132] := {295} tii[20,133] := {3, 212} tii[20,134] := {13, 247} tii[20,135] := {7, 242} tii[20,136] := {125} tii[20,137] := {19, 145} tii[20,138] := {4, 213} tii[20,139] := {39, 183} tii[20,140] := {169} tii[20,141] := {23, 272} tii[20,142] := {29, 177} tii[20,143] := {94} tii[20,144] := {33, 287} tii[20,145] := {137} tii[20,146] := {76} tii[20,147] := {55, 217} tii[20,148] := {110} tii[20,149] := {192} tii[20,150] := {17, 211} tii[20,151] := {2, 85} tii[20,152] := {162} tii[20,153] := {232} tii[20,154] := {9, 180} tii[20,155] := {37, 245} tii[20,156] := {12, 116} tii[20,157] := {47} tii[20,158] := {45, 210} tii[20,159] := {126} tii[20,160] := {6, 112} tii[20,161] := {21, 147} tii[20,162] := {255} tii[20,163] := {131} tii[20,164] := {51, 269} tii[20,165] := {81} tii[20,166] := {22, 149} tii[20,167] := {102} tii[20,168] := {171} tii[20,169] := {79, 248} tii[20,170] := {34} tii[20,171] := {82} tii[20,172] := {60} tii[20,173] := {142} tii[20,174] := {15, 89} tii[20,175] := {230} tii[20,176] := {72, 288} tii[20,177] := {35, 139} tii[20,178] := {50} tii[20,179] := {174} tii[20,180] := {84} tii[20,181] := {30, 178} tii[20,182] := {20, 146} tii[20,183] := {56, 214} tii[20,184] := {28, 176} tii[20,185] := {93} tii[20,186] := {163} tii[20,187] := {10, 114} tii[20,188] := {74, 243} tii[20,189] := {54, 216} tii[20,190] := {75} tii[20,191] := {136} tii[20,192] := {58} tii[20,193] := {109} tii[20,194] := {27, 121} tii[20,195] := {73} tii[20,196] := {5, 86} tii[20,197] := {197} tii[20,198] := {101, 270} tii[20,199] := {53, 172} tii[20,200] := {40} tii[20,201] := {140} tii[20,202] := {111} tii[20,203] := {132, 256} tii[20,204] := {173} tii[20,205] := {0, 181} tii[20,206] := {100} tii[20,207] := {11, 115} tii[20,208] := {59} tii[20,209] := {1, 61} tii[20,210] := {25} cell#83 , |C| = 245 special orbit = [4, 4, 4, 2] special rep = [[2, 2], [2, 1]] , dim = 140 cell rep = phi[[2, 2, 1],[2]]+phi[[2, 2],[2, 1]] TII depth = 4 TII multiplicity polynomial = 105*X^2+35*X TII subcells: tii[18,1] := {185, 244} tii[18,2] := {70, 151} tii[18,3] := {205, 241} tii[18,4] := {149, 217} tii[18,5] := {119, 161} tii[18,6] := {221, 239} tii[18,7] := {195, 222} tii[18,8] := {164} tii[18,9] := {192} tii[18,10] := {232, 243} tii[18,11] := {226, 240} tii[18,12] := {235} tii[18,13] := {37, 176} tii[18,14] := {113, 229} tii[18,15] := {21, 160} tii[18,16] := {48, 124} tii[18,17] := {56, 197} tii[18,18] := {121, 201} tii[18,19] := {18, 74} tii[18,20] := {140, 237} tii[18,21] := {59, 200} tii[18,22] := {91, 220} tii[18,23] := {78, 214} tii[18,24] := {69, 107} tii[18,25] := {165, 242} tii[18,26] := {148, 188} tii[18,27] := {108, 227} tii[18,28] := {47, 85} tii[18,29] := {110} tii[18,30] := {62} tii[18,31] := {142, 238} tii[18,32] := {144} tii[18,33] := {172, 209} tii[18,34] := {189} tii[18,35] := {36, 132} tii[18,36] := {80, 175} tii[18,37] := {32, 99} tii[18,38] := {166, 228} tii[18,39] := {83, 178} tii[18,40] := {117, 203} tii[18,41] := {29, 105} tii[18,42] := {106, 196} tii[18,43] := {93, 135} tii[18,44] := {51, 126} tii[18,45] := {17, 77} tii[18,46] := {187, 236} tii[18,47] := {138} tii[18,48] := {136, 215} tii[18,49] := {173, 208} tii[18,50] := {72, 153} tii[18,51] := {68, 112} tii[18,52] := {34, 100} tii[18,53] := {169} tii[18,54] := {167, 230} tii[18,55] := {97, 183} tii[18,56] := {87} tii[18,57] := {95, 177} tii[18,58] := {111} tii[18,59] := {194, 223} tii[18,60] := {89} tii[18,61] := {123, 202} tii[18,62] := {210} tii[18,63] := {145} tii[18,64] := {171} tii[18,65] := {133, 184} tii[18,66] := {92, 139} tii[18,67] := {207, 233} tii[18,68] := {162, 206} tii[18,69] := {114} tii[18,70] := {190, 225} tii[18,71] := {213, 234} tii[18,72] := {147, 186} tii[18,73] := {141} tii[18,74] := {224} tii[18,75] := {174, 211} tii[18,76] := {212} tii[18,77] := {12, 127} tii[18,78] := {10, 134} tii[18,79] := {24, 155} tii[18,80] := {4, 104} tii[18,81] := {8, 53} tii[18,82] := {39, 179} tii[18,83] := {13, 129} tii[18,84] := {66, 204} tii[18,85] := {58, 199} tii[18,86] := {16, 41} tii[18,87] := {90, 219} tii[18,88] := {26} tii[18,89] := {15, 79} tii[18,90] := {31, 98} tii[18,91] := {11, 131} tii[18,92] := {40, 180} tii[18,93] := {6, 55} tii[18,94] := {50, 125} tii[18,95] := {19, 75} tii[18,96] := {27, 156} tii[18,97] := {73, 159} tii[18,98] := {82, 216} tii[18,99] := {30, 61} tii[18,100] := {84} tii[18,101] := {71, 152} tii[18,102] := {2, 38} tii[18,103] := {42, 181} tii[18,104] := {43} tii[18,105] := {96, 182} tii[18,106] := {116, 231} tii[18,107] := {118} tii[18,108] := {64} tii[18,109] := {9, 54} tii[18,110] := {146} tii[18,111] := {28} tii[18,112] := {94, 137} tii[18,113] := {122, 168} tii[18,114] := {88} tii[18,115] := {170} tii[18,116] := {23, 103} tii[18,117] := {60, 154} tii[18,118] := {44, 128} tii[18,119] := {7, 57} tii[18,120] := {109, 198} tii[18,121] := {49, 86} tii[18,122] := {63, 157} tii[18,123] := {20, 76} tii[18,124] := {65} tii[18,125] := {143, 218} tii[18,126] := {46} tii[18,127] := {120, 163} tii[18,128] := {115} tii[18,129] := {52, 130} tii[18,130] := {150, 191} tii[18,131] := {67} tii[18,132] := {193} tii[18,133] := {1, 81} tii[18,134] := {5, 102} tii[18,135] := {0, 22} tii[18,136] := {25, 158} tii[18,137] := {3, 35} tii[18,138] := {14} tii[18,139] := {33, 101} tii[18,140] := {45} cell#84 , |C| = 245 special orbit = [4, 4, 4, 2] special rep = [[2, 2], [2, 1]] , dim = 140 cell rep = phi[[2, 2, 1],[2]]+phi[[2, 2],[2, 1]] TII depth = 4 TII multiplicity polynomial = 105*X^2+35*X TII subcells: tii[18,1] := {106, 244} tii[18,2] := {92, 178} tii[18,3] := {129, 243} tii[18,4] := {118, 229} tii[18,5] := {137, 177} tii[18,6] := {156, 240} tii[18,7] := {153, 228} tii[18,8] := {185} tii[18,9] := {205} tii[18,10] := {175, 234} tii[18,11] := {192, 230} tii[18,12] := {214} tii[18,13] := {13, 190} tii[18,14] := {52, 233} tii[18,15] := {8, 171} tii[18,16] := {71, 154} tii[18,17] := {23, 208} tii[18,18] := {96, 217} tii[18,19] := {42, 111} tii[18,20] := {69, 239} tii[18,21] := {28, 210} tii[18,22] := {46, 225} tii[18,23] := {35, 222} tii[18,24] := {91, 128} tii[18,25] := {87, 242} tii[18,26] := {105, 202} tii[18,27] := {48, 231} tii[18,28] := {72, 109} tii[18,29] := {140} tii[18,30] := {99} tii[18,31] := {67, 238} tii[18,32] := {168} tii[18,33] := {126, 184} tii[18,34] := {158} tii[18,35] := {16, 162} tii[18,36] := {36, 198} tii[18,37] := {58, 136} tii[18,38] := {88, 236} tii[18,39] := {41, 204} tii[18,40] := {61, 220} tii[18,41] := {25, 138} tii[18,42] := {50, 212} tii[18,43] := {114, 155} tii[18,44] := {76, 160} tii[18,45] := {38, 116} tii[18,46] := {110, 241} tii[18,47] := {164} tii[18,48] := {65, 224} tii[18,49] := {127, 218} tii[18,50] := {56, 186} tii[18,51] := {94, 133} tii[18,52] := {59, 145} tii[18,53] := {189} tii[18,54] := {86, 235} tii[18,55] := {78, 206} tii[18,56] := {122} tii[18,57] := {73, 195} tii[18,58] := {141} tii[18,59] := {152, 203} tii[18,60] := {120} tii[18,61] := {98, 216} tii[18,62] := {181} tii[18,63] := {169} tii[18,64] := {147} tii[18,65] := {66, 196} tii[18,66] := {115, 159} tii[18,67] := {134, 237} tii[18,68] := {84, 209} tii[18,69] := {144} tii[18,70] := {108, 226} tii[18,71] := {174, 219} tii[18,72] := {103, 194} tii[18,73] := {165} tii[18,74] := {201} tii[18,75] := {130, 215} tii[18,76] := {183} tii[18,77] := {3, 148} tii[18,78] := {4, 149} tii[18,79] := {7, 170} tii[18,80] := {1, 125} tii[18,81] := {29, 90} tii[18,82] := {18, 193} tii[18,83] := {6, 157} tii[18,84] := {33, 213} tii[18,85] := {22, 207} tii[18,86] := {39, 70} tii[18,87] := {37, 223} tii[18,88] := {62} tii[18,89] := {15, 113} tii[18,90] := {57, 132} tii[18,91] := {5, 150} tii[18,92] := {14, 191} tii[18,93] := {26, 93} tii[18,94] := {40, 163} tii[18,95] := {44, 121} tii[18,96] := {12, 179} tii[18,97] := {60, 188} tii[18,98] := {34, 221} tii[18,99] := {54, 89} tii[18,100] := {117} tii[18,101] := {53, 172} tii[18,102] := {17, 74} tii[18,103] := {19, 197} tii[18,104] := {79} tii[18,105] := {77, 199} tii[18,106] := {51, 232} tii[18,107] := {146} tii[18,108] := {97} tii[18,109] := {32, 100} tii[18,110] := {124} tii[18,111] := {63} tii[18,112] := {64, 151} tii[18,113] := {85, 180} tii[18,114] := {119} tii[18,115] := {135} tii[18,116] := {9, 139} tii[18,117] := {24, 182} tii[18,118] := {21, 167} tii[18,119] := {27, 95} tii[18,120] := {49, 211} tii[18,121] := {75, 112} tii[18,122] := {31, 187} tii[18,123] := {45, 123} tii[18,124] := {101} tii[18,125] := {68, 227} tii[18,126] := {82} tii[18,127] := {83, 173} tii[18,128] := {143} tii[18,129] := {43, 166} tii[18,130] := {107, 200} tii[18,131] := {102} tii[18,132] := {161} tii[18,133] := {0, 104} tii[18,134] := {2, 131} tii[18,135] := {10, 55} tii[18,136] := {11, 176} tii[18,137] := {20, 80} tii[18,138] := {47} tii[18,139] := {30, 142} tii[18,140] := {81} cell#85 , |C| = 126 special orbit = [6, 2, 2, 2, 2] special rep = [[3, 1, 1], [1, 1]] , dim = 126 cell rep = phi[[3, 1, 1],[1, 1]] TII depth = 4 TII multiplicity polynomial = 126*X TII subcells: tii[24,1] := {125} tii[24,2] := {121} tii[24,3] := {122} tii[24,4] := {102} tii[24,5] := {108} tii[24,6] := {78} tii[24,7] := {74} tii[24,8] := {40} tii[24,9] := {39} tii[24,10] := {123} tii[24,11] := {92} tii[24,12] := {114} tii[24,13] := {38} tii[24,14] := {119} tii[24,15] := {73} tii[24,16] := {117} tii[24,17] := {31} tii[24,18] := {113} tii[24,19] := {86} tii[24,20] := {104} tii[24,21] := {103} tii[24,22] := {52} tii[24,23] := {109} tii[24,24] := {46} tii[24,25] := {90} tii[24,26] := {59} tii[24,27] := {83} tii[24,28] := {96} tii[24,29] := {61} tii[24,30] := {81} tii[24,31] := {106} tii[24,32] := {25} tii[24,33] := {124} tii[24,34] := {91} tii[24,35] := {20} tii[24,36] := {120} tii[24,37] := {101} tii[24,38] := {115} tii[24,39] := {84} tii[24,40] := {87} tii[24,41] := {37} tii[24,42] := {32} tii[24,43] := {41} tii[24,44] := {71} tii[24,45] := {93} tii[24,46] := {116} tii[24,47] := {95} tii[24,48] := {65} tii[24,49] := {111} tii[24,50] := {107} tii[24,51] := {79} tii[24,52] := {44} tii[24,53] := {64} tii[24,54] := {118} tii[24,55] := {51} tii[24,56] := {21} tii[24,57] := {89} tii[24,58] := {58} tii[24,59] := {82} tii[24,60] := {76} tii[24,61] := {62} tii[24,62] := {29} tii[24,63] := {47} tii[24,64] := {97} tii[24,65] := {42} tii[24,66] := {63} tii[24,67] := {3} tii[24,68] := {57} tii[24,69] := {9} tii[24,70] := {45} tii[24,71] := {18} tii[24,72] := {33} tii[24,73] := {4} tii[24,74] := {112} tii[24,75] := {56} tii[24,76] := {10} tii[24,77] := {30} tii[24,78] := {100} tii[24,79] := {69} tii[24,80] := {22} tii[24,81] := {88} tii[24,82] := {17} tii[24,83] := {85} tii[24,84] := {53} tii[24,85] := {27} tii[24,86] := {70} tii[24,87] := {54} tii[24,88] := {68} tii[24,89] := {1} tii[24,90] := {105} tii[24,91] := {26} tii[24,92] := {75} tii[24,93] := {7} tii[24,94] := {99} tii[24,95] := {16} tii[24,96] := {94} tii[24,97] := {11} tii[24,98] := {72} tii[24,99] := {43} tii[24,100] := {110} tii[24,101] := {23} tii[24,102] := {66} tii[24,103] := {50} tii[24,104] := {77} tii[24,105] := {19} tii[24,106] := {98} tii[24,107] := {34} tii[24,108] := {67} tii[24,109] := {0} tii[24,110] := {15} tii[24,111] := {2} tii[24,112] := {8} tii[24,113] := {5} tii[24,114] := {28} tii[24,115] := {55} tii[24,116] := {13} tii[24,117] := {48} tii[24,118] := {36} tii[24,119] := {60} tii[24,120] := {12} tii[24,121] := {80} tii[24,122] := {24} tii[24,123] := {49} tii[24,124] := {6} tii[24,125] := {14} tii[24,126] := {35} cell#86 , |C| = 126 special orbit = [6, 2, 2, 2, 2] special rep = [[3, 1, 1], [1, 1]] , dim = 126 cell rep = phi[[3, 1, 1],[1, 1]] TII depth = 4 TII multiplicity polynomial = 126*X TII subcells: tii[24,1] := {124} tii[24,2] := {117} tii[24,3] := {125} tii[24,4] := {84} tii[24,5] := {112} tii[24,6] := {78} tii[24,7] := {80} tii[24,8] := {40} tii[24,9] := {46} tii[24,10] := {120} tii[24,11] := {99} tii[24,12] := {103} tii[24,13] := {31} tii[24,14] := {109} tii[24,15] := {79} tii[24,16] := {122} tii[24,17] := {38} tii[24,18] := {95} tii[24,19] := {96} tii[24,20] := {108} tii[24,21] := {86} tii[24,22] := {50} tii[24,23] := {113} tii[24,24] := {55} tii[24,25] := {68} tii[24,26] := {69} tii[24,27] := {83} tii[24,28] := {107} tii[24,29] := {74} tii[24,30] := {92} tii[24,31] := {114} tii[24,32] := {18} tii[24,33] := {121} tii[24,34] := {98} tii[24,35] := {24} tii[24,36] := {110} tii[24,37] := {111} tii[24,38] := {119} tii[24,39] := {91} tii[24,40] := {64} tii[24,41] := {30} tii[24,42] := {37} tii[24,43] := {45} tii[24,44] := {44} tii[24,45] := {106} tii[24,46] := {105} tii[24,47] := {97} tii[24,48] := {61} tii[24,49] := {116} tii[24,50] := {118} tii[24,51] := {90} tii[24,52] := {54} tii[24,53] := {72} tii[24,54] := {123} tii[24,55] := {49} tii[24,56] := {23} tii[24,57] := {66} tii[24,58] := {67} tii[24,59] := {82} tii[24,60] := {85} tii[24,61] := {70} tii[24,62] := {36} tii[24,63] := {51} tii[24,64] := {100} tii[24,65] := {43} tii[24,66] := {60} tii[24,67] := {21} tii[24,68] := {59} tii[24,69] := {10} tii[24,70] := {41} tii[24,71] := {16} tii[24,72] := {33} tii[24,73] := {3} tii[24,74] := {94} tii[24,75] := {58} tii[24,76] := {8} tii[24,77] := {27} tii[24,78] := {76} tii[24,79] := {77} tii[24,80] := {19} tii[24,81] := {93} tii[24,82] := {17} tii[24,83] := {56} tii[24,84] := {57} tii[24,85] := {32} tii[24,86] := {75} tii[24,87] := {62} tii[24,88] := {71} tii[24,89] := {2} tii[24,90] := {88} tii[24,91] := {20} tii[24,92] := {89} tii[24,93] := {4} tii[24,94] := {102} tii[24,95] := {15} tii[24,96] := {104} tii[24,97] := {12} tii[24,98] := {47} tii[24,99] := {48} tii[24,100] := {115} tii[24,101] := {26} tii[24,102] := {63} tii[24,103] := {53} tii[24,104] := {87} tii[24,105] := {22} tii[24,106] := {101} tii[24,107] := {39} tii[24,108] := {73} tii[24,109] := {0} tii[24,110] := {9} tii[24,111] := {1} tii[24,112] := {7} tii[24,113] := {6} tii[24,114] := {29} tii[24,115] := {28} tii[24,116] := {14} tii[24,117] := {42} tii[24,118] := {35} tii[24,119] := {65} tii[24,120] := {11} tii[24,121] := {81} tii[24,122] := {25} tii[24,123] := {52} tii[24,124] := {5} tii[24,125] := {13} tii[24,126] := {34} cell#87 , |C| = 315 special orbit = [4, 4, 2, 2, 2] special rep = [[2, 1, 1], [2, 1]] , dim = 210 cell rep = phi[[2, 2, 1],[1, 1]]+phi[[2, 1, 1],[2, 1]] TII depth = 4 TII multiplicity polynomial = 105*X^2+105*X TII subcells: tii[16,1] := {200, 307} tii[16,2] := {279} tii[16,3] := {141, 314} tii[16,4] := {88, 311} tii[16,5] := {232} tii[16,6] := {277} tii[16,7] := {85, 254} tii[16,8] := {178} tii[16,9] := {139, 192} tii[16,10] := {171, 297} tii[16,11] := {78, 276} tii[16,12] := {33, 230} tii[16,13] := {257} tii[16,14] := {118, 268} tii[16,15] := {160} tii[16,16] := {194} tii[16,17] := {225} tii[16,18] := {142, 306} tii[16,19] := {102, 291} tii[16,20] := {57, 293} tii[16,21] := {233} tii[16,22] := {190} tii[16,23] := {120, 298} tii[16,24] := {75, 274} tii[16,25] := {147} tii[16,26] := {95, 287} tii[16,27] := {184} tii[16,28] := {259} tii[16,29] := {217} tii[16,30] := {236} tii[16,31] := {53, 292} tii[16,32] := {169, 221} tii[16,33] := {131} tii[16,34] := {18, 255} tii[16,35] := {148, 285} tii[16,36] := {223} tii[16,37] := {251} tii[16,38] := {157, 245} tii[16,39] := {113, 312} tii[16,40] := {77, 303} tii[16,41] := {177, 299} tii[16,42] := {62, 304} tii[16,43] := {7, 244} tii[16,44] := {127, 267} tii[16,45] := {159} tii[16,46] := {90, 308} tii[16,47] := {50, 290} tii[16,48] := {116} tii[16,49] := {207} tii[16,50] := {204} tii[16,51] := {150, 289} tii[16,52] := {67, 301} tii[16,53] := {154} tii[16,54] := {240} tii[16,55] := {16, 266} tii[16,56] := {229} tii[16,57] := {41, 294} tii[16,58] := {234} tii[16,59] := {187} tii[16,60] := {26, 282} tii[16,61] := {263} tii[16,62] := {208} tii[16,63] := {101, 310} tii[16,64] := {189} tii[16,65] := {119, 313} tii[16,66] := {74, 302} tii[16,67] := {146} tii[16,68] := {183} tii[16,69] := {94, 309} tii[16,70] := {48, 296} tii[16,71] := {174} tii[16,72] := {258} tii[16,73] := {216} tii[16,74] := {211} tii[16,75] := {235} tii[16,76] := {65, 305} tii[16,77] := {242} tii[16,78] := {260} tii[16,79] := {76, 112} tii[16,80] := {40, 206} tii[16,81] := {115} tii[16,82] := {153} tii[16,83] := {52, 140} tii[16,84] := {111, 163} tii[16,85] := {61, 231} tii[16,86] := {29, 173} tii[16,87] := {91, 248} tii[16,88] := {17, 205} tii[16,89] := {86} tii[16,90] := {164} tii[16,91] := {84, 135} tii[16,92] := {42, 210} tii[16,93] := {125} tii[16,94] := {197} tii[16,95] := {108} tii[16,96] := {114} tii[16,97] := {63, 269} tii[16,98] := {134} tii[16,99] := {31, 227} tii[16,100] := {152} tii[16,101] := {44, 249} tii[16,102] := {168} tii[16,103] := {109} tii[16,104] := {198} tii[16,105] := {128, 220} tii[16,106] := {39, 170} tii[16,107] := {110, 165} tii[16,108] := {149, 284} tii[16,109] := {56, 256} tii[16,110] := {6, 218} tii[16,111] := {100, 246} tii[16,112] := {22, 202} tii[16,113] := {176} tii[16,114] := {80} tii[16,115] := {136} tii[16,116] := {122, 271} tii[16,117] := {36, 238} tii[16,118] := {213} tii[16,119] := {106} tii[16,120] := {92, 286} tii[16,121] := {54, 253} tii[16,122] := {11, 172} tii[16,123] := {203} tii[16,124] := {104} tii[16,125] := {117} tii[16,126] := {13, 243} tii[16,127] := {35, 280} tii[16,128] := {73, 222} tii[16,129] := {167} tii[16,130] := {71, 270} tii[16,131] := {239} tii[16,132] := {133} tii[16,133] := {19, 209} tii[16,134] := {21, 261} tii[16,135] := {98} tii[16,136] := {155} tii[16,137] := {93, 250} tii[16,138] := {46, 252} tii[16,139] := {186} tii[16,140] := {23, 265} tii[16,141] := {175} tii[16,142] := {130} tii[16,143] := {124} tii[16,144] := {212} tii[16,145] := {162} tii[16,146] := {37, 281} tii[16,147] := {215} tii[16,148] := {24, 199} tii[16,149] := {34, 278} tii[16,150] := {138, 195} tii[16,151] := {12, 228} tii[16,152] := {55} tii[16,153] := {20, 262} tii[16,154] := {166} tii[16,155] := {81} tii[16,156] := {79} tii[16,157] := {99, 247} tii[16,158] := {5, 201} tii[16,159] := {32, 275} tii[16,160] := {64, 300} tii[16,161] := {87} tii[16,162] := {196} tii[16,163] := {105} tii[16,164] := {45, 288} tii[16,165] := {121, 272} tii[16,166] := {9, 237} tii[16,167] := {126} tii[16,168] := {70} tii[16,169] := {156} tii[16,170] := {28, 273} tii[16,171] := {30, 283} tii[16,172] := {1, 188} tii[16,173] := {145} tii[16,174] := {103} tii[16,175] := {97} tii[16,176] := {179} tii[16,177] := {43, 295} tii[16,178] := {3, 219} tii[16,179] := {182} tii[16,180] := {132} tii[16,181] := {14, 264} tii[16,182] := {185} tii[16,183] := {129} tii[16,184] := {161} tii[16,185] := {123} tii[16,186] := {214} tii[16,187] := {49, 89} tii[16,188] := {66} tii[16,189] := {15, 144} tii[16,190] := {60, 107} tii[16,191] := {96} tii[16,192] := {25, 181} tii[16,193] := {82} tii[16,194] := {59} tii[16,195] := {4, 143} tii[16,196] := {51, 193} tii[16,197] := {69} tii[16,198] := {137} tii[16,199] := {8, 180} tii[16,200] := {68, 224} tii[16,201] := {27, 226} tii[16,202] := {83} tii[16,203] := {0, 158} tii[16,204] := {151} tii[16,205] := {58} tii[16,206] := {2, 191} tii[16,207] := {72} tii[16,208] := {10, 241} tii[16,209] := {38} tii[16,210] := {47} cell#88 , |C| = 147 special orbit = [8, 4, 2] special rep = [[4, 1], [2]] , dim = 84 cell rep = phi[[4, 2],[1]]+phi[[4, 1],[2]] TII depth = 4 TII multiplicity polynomial = 63*X^2+21*X TII subcells: tii[34,1] := {143, 146} tii[34,2] := {138, 144} tii[34,3] := {107, 126} tii[34,4] := {121} tii[34,5] := {5, 87} tii[34,6] := {30, 74} tii[34,7] := {132, 141} tii[34,8] := {8, 43} tii[34,9] := {108, 127} tii[34,10] := {68, 95} tii[34,11] := {35} tii[34,12] := {61} tii[34,13] := {19, 106} tii[34,14] := {139, 145} tii[34,15] := {40, 116} tii[34,16] := {50, 98} tii[34,17] := {13, 52} tii[34,18] := {133, 142} tii[34,19] := {65, 105} tii[34,20] := {118, 134} tii[34,21] := {81, 111} tii[34,22] := {124, 137} tii[34,23] := {88, 119} tii[34,24] := {49} tii[34,25] := {110, 131} tii[34,26] := {72} tii[34,27] := {73, 117} tii[34,28] := {130, 140} tii[34,29] := {51, 96} tii[34,30] := {7, 42} tii[34,31] := {79, 112} tii[34,32] := {120, 135} tii[34,33] := {67, 94} tii[34,34] := {34} tii[34,35] := {101, 128} tii[34,36] := {60} tii[34,37] := {22, 62} tii[34,38] := {89, 114} tii[34,39] := {45, 77} tii[34,40] := {57} tii[34,41] := {69, 103} tii[34,42] := {83} tii[34,43] := {80} tii[34,44] := {102} tii[34,45] := {1, 64} tii[34,46] := {9, 44} tii[34,47] := {3, 28} tii[34,48] := {12} tii[34,49] := {21, 97} tii[34,50] := {41, 86} tii[34,51] := {123, 136} tii[34,52] := {14, 53} tii[34,53] := {66, 99} tii[34,54] := {109, 129} tii[34,55] := {6, 37} tii[34,56] := {91, 122} tii[34,57] := {16} tii[34,58] := {23, 63} tii[34,59] := {46, 78} tii[34,60] := {90, 115} tii[34,61] := {2, 27} tii[34,62] := {70, 104} tii[34,63] := {11} tii[34,64] := {25, 56} tii[34,65] := {18} tii[34,66] := {48, 85} tii[34,67] := {31, 76} tii[34,68] := {20, 58} tii[34,69] := {38} tii[34,70] := {32, 75} tii[34,71] := {4, 36} tii[34,72] := {54, 92} tii[34,73] := {100, 125} tii[34,74] := {82, 113} tii[34,75] := {15} tii[34,76] := {33, 71} tii[34,77] := {29} tii[34,78] := {59, 93} tii[34,79] := {0, 26} tii[34,80] := {10} tii[34,81] := {24, 55} tii[34,82] := {17} tii[34,83] := {47, 84} tii[34,84] := {39} cell#89 , |C| = 105 special orbit = [8, 4, 1, 1] special rep = [[4], [2, 1]] , dim = 70 cell rep = phi[[4, 2, 1],[]]+phi[[4],[2, 1]] TII depth = 2 TII multiplicity polynomial = 35*X^2+35*X TII subcells: tii[33,1] := {66, 104} tii[33,2] := {89, 103} tii[33,3] := {68, 96} tii[33,4] := {92} tii[33,5] := {100} tii[33,6] := {44, 101} tii[33,7] := {76, 98} tii[33,8] := {35, 95} tii[33,9] := {46, 85} tii[33,10] := {47, 86} tii[33,11] := {37, 73} tii[33,12] := {79} tii[33,13] := {53} tii[33,14] := {94} tii[33,15] := {57, 90} tii[33,16] := {29, 70} tii[33,17] := {38, 78} tii[33,18] := {28, 61} tii[33,19] := {60} tii[33,20] := {41} tii[33,21] := {83} tii[33,22] := {14, 48} tii[33,23] := {9, 31} tii[33,24] := {39} tii[33,25] := {18} tii[33,26] := {64} tii[33,27] := {24} tii[33,28] := {11} tii[33,29] := {43} tii[33,30] := {65} tii[33,31] := {54, 102} tii[33,32] := {69, 97} tii[33,33] := {56, 88} tii[33,34] := {75} tii[33,35] := {20, 84} tii[33,36] := {30, 71} tii[33,37] := {77, 99} tii[33,38] := {22, 51} tii[33,39] := {67, 93} tii[33,40] := {34} tii[33,41] := {81} tii[33,42] := {15, 49} tii[33,43] := {10, 32} tii[33,44] := {55, 87} tii[33,45] := {19} tii[33,46] := {74} tii[33,47] := {3, 17} tii[33,48] := {82} tii[33,49] := {8} tii[33,50] := {1} tii[33,51] := {58, 91} tii[33,52] := {45, 80} tii[33,53] := {62} tii[33,54] := {23, 59} tii[33,55] := {36, 72} tii[33,56] := {13, 40} tii[33,57] := {26} tii[33,58] := {52} tii[33,59] := {6, 25} tii[33,60] := {63} tii[33,61] := {12} tii[33,62] := {4} tii[33,63] := {21, 50} tii[33,64] := {33} tii[33,65] := {2, 16} tii[33,66] := {42} tii[33,67] := {7} tii[33,68] := {0} tii[33,69] := {27} tii[33,70] := {5} cell#90 , |C| = 140 special orbit = [6, 6, 2] special rep = [[3, 1], [3]] , dim = 105 cell rep = phi[[3, 3],[1]]+phi[[3, 1],[3]] TII depth = 3 TII multiplicity polynomial = 35*X^2+70*X TII subcells: tii[29,1] := {85, 138} tii[29,2] := {129} tii[29,3] := {139} tii[29,4] := {22, 61} tii[29,5] := {69} tii[29,6] := {43, 126} tii[29,7] := {97} tii[29,8] := {102} tii[29,9] := {117} tii[29,10] := {41, 78} tii[29,11] := {51, 80} tii[29,12] := {52, 132} tii[29,13] := {86} tii[29,14] := {26, 120} tii[29,15] := {103} tii[29,16] := {82} tii[29,17] := {113} tii[29,18] := {99} tii[29,19] := {125} tii[29,20] := {60, 93} tii[29,21] := {70, 136} tii[29,22] := {42, 107} tii[29,23] := {100} tii[29,24] := {56, 133} tii[29,25] := {21, 118} tii[29,26] := {73} tii[29,27] := {114} tii[29,28] := {122} tii[29,29] := {37, 128} tii[29,30] := {92} tii[29,31] := {131} tii[29,32] := {112} tii[29,33] := {123} tii[29,34] := {101} tii[29,35] := {130} tii[29,36] := {116} tii[29,37] := {135} tii[29,38] := {134} tii[29,39] := {137} tii[29,40] := {5, 34} tii[29,41] := {25} tii[29,42] := {50} tii[29,43] := {9, 44} tii[29,44] := {33, 62} tii[29,45] := {3, 27} tii[29,46] := {17, 109} tii[29,47] := {35} tii[29,48] := {65} tii[29,49] := {11} tii[29,50] := {59} tii[29,51] := {84} tii[29,52] := {16, 79} tii[29,53] := {53} tii[29,54] := {28, 119} tii[29,55] := {4, 95} tii[29,56] := {45} tii[29,57] := {75} tii[29,58] := {12, 110} tii[29,59] := {38} tii[29,60] := {68} tii[29,61] := {64} tii[29,62] := {89} tii[29,63] := {83} tii[29,64] := {23, 63} tii[29,65] := {14, 46} tii[29,66] := {55} tii[29,67] := {29} tii[29,68] := {77} tii[29,69] := {24, 94} tii[29,70] := {8, 108} tii[29,71] := {36, 127} tii[29,72] := {32, 66} tii[29,73] := {72} tii[29,74] := {54} tii[29,75] := {19, 121} tii[29,76] := {48} tii[29,77] := {91} tii[29,78] := {57} tii[29,79] := {76} tii[29,80] := {2, 96} tii[29,81] := {71} tii[29,82] := {67} tii[29,83] := {104} tii[29,84] := {10, 111} tii[29,85] := {90} tii[29,86] := {88} tii[29,87] := {106} tii[29,88] := {74} tii[29,89] := {87} tii[29,90] := {58} tii[29,91] := {115} tii[29,92] := {105} tii[29,93] := {124} tii[29,94] := {1, 18} tii[29,95] := {7} tii[29,96] := {13} tii[29,97] := {15, 47} tii[29,98] := {30} tii[29,99] := {0, 81} tii[29,100] := {20} tii[29,101] := {49} tii[29,102] := {6, 98} tii[29,103] := {31} tii[29,104] := {39} tii[29,105] := {40} cell#91 , |C| = 126 special orbit = [6, 6, 1, 1] special rep = [[3], [3, 1]] , dim = 105 cell rep = phi[[3, 3, 1],[]]+phi[[3],[3, 1]] TII depth = 4 TII multiplicity polynomial = 21*X^2+84*X TII subcells: tii[28,1] := {86, 111} tii[28,2] := {112} tii[28,3] := {122} tii[28,4] := {125} tii[28,5] := {68, 101} tii[28,6] := {37, 76} tii[28,7] := {104} tii[28,8] := {71} tii[28,9] := {118} tii[28,10] := {91} tii[28,11] := {123} tii[28,12] := {47, 87} tii[28,13] := {93} tii[28,14] := {30, 70} tii[28,15] := {22, 51} tii[28,16] := {62} tii[28,17] := {113} tii[28,18] := {33} tii[28,19] := {84} tii[28,20] := {120} tii[28,21] := {78} tii[28,22] := {61} tii[28,23] := {106} tii[28,24] := {83} tii[28,25] := {44} tii[28,26] := {117} tii[28,27] := {114} tii[28,28] := {108} tii[28,29] := {121} tii[28,30] := {124} tii[28,31] := {57, 92} tii[28,32] := {89} tii[28,33] := {103} tii[28,34] := {69, 102} tii[28,35] := {23, 58} tii[28,36] := {56, 90} tii[28,37] := {95} tii[28,38] := {50} tii[28,39] := {73} tii[28,40] := {110} tii[28,41] := {75} tii[28,42] := {11, 38} tii[28,43] := {105} tii[28,44] := {6, 24} tii[28,45] := {31} tii[28,46] := {13} tii[28,47] := {116} tii[28,48] := {96} tii[28,49] := {54} tii[28,50] := {18} tii[28,51] := {119} tii[28,52] := {8} tii[28,53] := {35} tii[28,54] := {55} tii[28,55] := {48, 88} tii[28,56] := {36, 72} tii[28,57] := {80} tii[28,58] := {52} tii[28,59] := {99} tii[28,60] := {17, 49} tii[28,61] := {10, 32} tii[28,62] := {26, 59} tii[28,63] := {94} tii[28,64] := {42} tii[28,65] := {20} tii[28,66] := {40} tii[28,67] := {109} tii[28,68] := {81} tii[28,69] := {65} tii[28,70] := {4, 19} tii[28,71] := {27} tii[28,72] := {53} tii[28,73] := {115} tii[28,74] := {15} tii[28,75] := {9} tii[28,76] := {46} tii[28,77] := {2} tii[28,78] := {67} tii[28,79] := {79} tii[28,80] := {98} tii[28,81] := {63} tii[28,82] := {43} tii[28,83] := {45} tii[28,84] := {107} tii[28,85] := {66} tii[28,86] := {29} tii[28,87] := {85} tii[28,88] := {16} tii[28,89] := {97} tii[28,90] := {100} tii[28,91] := {41, 77} tii[28,92] := {60} tii[28,93] := {74} tii[28,94] := {14, 39} tii[28,95] := {25} tii[28,96] := {1, 12} tii[28,97] := {82} tii[28,98] := {34} tii[28,99] := {5} tii[28,100] := {0} tii[28,101] := {21} tii[28,102] := {3} tii[28,103] := {64} tii[28,104] := {28} tii[28,105] := {7} cell#92 , |C| = 154 special orbit = [8, 2, 2, 2] special rep = [[4, 1], [1, 1]] , dim = 84 cell rep = phi[[4, 1, 1],[1]]+phi[[4, 1],[1, 1]] TII depth = 4 TII multiplicity polynomial = 70*X^2+14*X TII subcells: tii[32,1] := {93, 153} tii[32,2] := {87, 148} tii[32,3] := {59, 137} tii[32,4] := {55, 113} tii[32,5] := {110, 152} tii[32,6] := {67, 143} tii[32,7] := {123, 150} tii[32,8] := {44, 126} tii[32,9] := {109, 147} tii[32,10] := {38, 95} tii[32,11] := {124, 142} tii[32,12] := {135} tii[32,13] := {85, 139} tii[32,14] := {31, 111} tii[32,15] := {74, 131} tii[32,16] := {27, 77} tii[32,17] := {88, 119} tii[32,18] := {107} tii[32,19] := {43, 99} tii[32,20] := {18, 61} tii[32,21] := {52, 82} tii[32,22] := {71} tii[32,23] := {26, 49} tii[32,24] := {41} tii[32,25] := {0, 122} tii[32,26] := {76, 151} tii[32,27] := {4, 129} tii[32,28] := {60, 149} tii[32,29] := {12, 121} tii[32,30] := {46, 145} tii[32,31] := {21, 130} tii[32,32] := {34, 141} tii[32,33] := {7, 114} tii[32,34] := {105, 146} tii[32,35] := {92, 140} tii[32,36] := {15, 104} tii[32,37] := {68, 144} tii[32,38] := {106, 134} tii[32,39] := {24, 115} tii[32,40] := {54, 138} tii[32,41] := {125} tii[32,42] := {39, 133} tii[32,43] := {11, 86} tii[32,44] := {75, 132} tii[32,45] := {20, 98} tii[32,46] := {89, 120} tii[32,47] := {45, 128} tii[32,48] := {108} tii[32,49] := {33, 118} tii[32,50] := {25, 79} tii[32,51] := {70, 103} tii[32,52] := {91} tii[32,53] := {40, 101} tii[32,54] := {73} tii[32,55] := {2, 96} tii[32,56] := {51, 136} tii[32,57] := {8, 84} tii[32,58] := {37, 127} tii[32,59] := {16, 97} tii[32,60] := {28, 117} tii[32,61] := {5, 66} tii[32,62] := {58, 116} tii[32,63] := {13, 78} tii[32,64] := {32, 112} tii[32,65] := {69, 102} tii[32,66] := {23, 100} tii[32,67] := {90} tii[32,68] := {17, 63} tii[32,69] := {53, 83} tii[32,70] := {72} tii[32,71] := {29, 81} tii[32,72] := {57} tii[32,73] := {1, 50} tii[32,74] := {22, 94} tii[32,75] := {6, 62} tii[32,76] := {14, 80} tii[32,77] := {9, 47} tii[32,78] := {36, 65} tii[32,79] := {19, 64} tii[32,80] := {56} tii[32,81] := {42} tii[32,82] := {3, 35} tii[32,83] := {10, 48} tii[32,84] := {30} cell#93 , |C| = 154 special orbit = [8, 2, 2, 2] special rep = [[4, 1], [1, 1]] , dim = 84 cell rep = phi[[4, 1, 1],[1]]+phi[[4, 1],[1, 1]] TII depth = 4 TII multiplicity polynomial = 70*X^2+14*X TII subcells: tii[32,1] := {122, 152} tii[32,2] := {113, 145} tii[32,3] := {83, 124} tii[32,4] := {90, 91} tii[32,5] := {135, 153} tii[32,6] := {94, 136} tii[32,7] := {139, 151} tii[32,8] := {60, 107} tii[32,9] := {134, 149} tii[32,10] := {70, 71} tii[32,11] := {143, 144} tii[32,12] := {147} tii[32,13] := {112, 141} tii[32,14] := {36, 87} tii[32,15] := {103, 130} tii[32,16] := {48, 49} tii[32,17] := {117, 118} tii[32,18] := {128} tii[32,19] := {59, 98} tii[32,20] := {28, 29} tii[32,21] := {78, 79} tii[32,22] := {96} tii[32,23] := {34, 35} tii[32,24] := {56} tii[32,25] := {15, 40} tii[32,26] := {105, 150} tii[32,27] := {19, 65} tii[32,28] := {84, 146} tii[32,29] := {14, 86} tii[32,30] := {63, 138} tii[32,31] := {24, 108} tii[32,32] := {54, 126} tii[32,33] := {41, 42} tii[32,34] := {127, 148} tii[32,35] := {121, 142} tii[32,36] := {18, 66} tii[32,37] := {95, 137} tii[32,38] := {132, 133} tii[32,39] := {33, 88} tii[32,40] := {76, 125} tii[32,41] := {140} tii[32,42] := {61, 111} tii[32,43] := {13, 44} tii[32,44] := {104, 131} tii[32,45] := {23, 68} tii[32,46] := {119, 120} tii[32,47] := {62, 110} tii[32,48] := {129} tii[32,49] := {53, 93} tii[32,50] := {46, 47} tii[32,51] := {101, 102} tii[32,52] := {115} tii[32,53] := {73, 74} tii[32,54] := {106} tii[32,55] := {20, 21} tii[32,56] := {75, 123} tii[32,57] := {5, 43} tii[32,58] := {55, 109} tii[32,59] := {16, 67} tii[32,60] := {37, 92} tii[32,61] := {4, 22} tii[32,62] := {82, 116} tii[32,63] := {7, 45} tii[32,64] := {38, 89} tii[32,65] := {99, 100} tii[32,66] := {32, 72} tii[32,67] := {114} tii[32,68] := {26, 27} tii[32,69] := {80, 81} tii[32,70] := {97} tii[32,71] := {51, 52} tii[32,72] := {85} tii[32,73] := {0, 6} tii[32,74] := {17, 69} tii[32,75] := {1, 25} tii[32,76] := {12, 50} tii[32,77] := {8, 9} tii[32,78] := {57, 58} tii[32,79] := {30, 31} tii[32,80] := {77} tii[32,81] := {64} tii[32,82] := {2, 3} tii[32,83] := {10, 11} tii[32,84] := {39} cell#94 , |C| = 553 special orbit = [6, 4, 2, 2] special rep = [[3, 1], [2, 1]] , dim = 210 cell rep = phi[[3, 2, 1],[1]]+phi[[3, 1, 1],[2]]+phi[[3, 2],[1, 1]]+phi[[3, 1],[2, 1]] TII depth = 3 TII multiplicity polynomial = 91*X^4+70*X^2+49*X TII subcells: tii[26,1] := {183, 472, 497, 551} tii[26,2] := {166, 358, 446, 536} tii[26,3] := {340, 485} tii[26,4] := {295, 400} tii[26,5] := {238, 438, 518, 548} tii[26,6] := {333, 403} tii[26,7] := {138, 346, 502, 535} tii[26,8] := {117, 302, 406, 520} tii[26,9] := {54, 253, 470, 509} tii[26,10] := {284, 454} tii[26,11] := {412} tii[26,12] := {464} tii[26,13] := {296, 395, 533, 552} tii[26,14] := {216, 301} tii[26,15] := {73, 244, 445, 503} tii[26,16] := {240, 345, 534, 549} tii[26,17] := {16, 172, 390, 453} tii[26,18] := {224, 417} tii[26,19] := {181, 290, 532, 546} tii[26,20] := {309} tii[26,21] := {233, 541} tii[26,22] := {381} tii[26,23] := {116, 190, 476, 522} tii[26,24] := {283, 372} tii[26,25] := {68, 144, 467, 506} tii[26,26] := {193} tii[26,27] := {101, 488} tii[26,28] := {268} tii[26,29] := {336, 419} tii[26,30] := {376} tii[26,31] := {67, 163, 350, 441} tii[26,32] := {87, 167, 386, 444} tii[26,33] := {92, 397, 433, 544} tii[26,34] := {40, 312, 341, 527} tii[26,35] := {171, 451} tii[26,36] := {229, 494} tii[26,37] := {111, 215, 399, 473} tii[26,38] := {237, 352} tii[26,39] := {137, 439, 469, 550} tii[26,40] := {276, 357} tii[26,41] := {70, 277, 353, 500} tii[26,42] := {91, 288, 477, 521} tii[26,43] := {115, 189, 335, 404} tii[26,44] := {184, 304} tii[26,45] := {26, 195, 434, 484} tii[26,46] := {94, 398, 435, 547} tii[26,47] := {32, 294, 338, 523} tii[26,48] := {77, 282, 371, 510} tii[26,49] := {365} tii[26,50] := {158, 254} tii[26,51] := {192, 413} tii[26,52] := {57, 349, 394, 542} tii[26,53] := {427} tii[26,54] := {201} tii[26,55] := {267, 465} tii[26,56] := {86, 243, 278, 443} tii[26,57] := {218, 303} tii[26,58] := {135, 230, 501, 537} tii[26,59] := {122, 314, 416, 526} tii[26,60] := {48, 212, 306, 479} tii[26,61] := {162, 257} tii[26,62] := {15, 145, 391, 455} tii[26,63] := {90, 177, 496, 524} tii[26,64] := {311} tii[26,65] := {170, 366} tii[26,66] := {204} tii[26,67] := {81, 260, 378, 515} tii[26,68] := {131, 512} tii[26,69] := {228, 428} tii[26,70] := {383} tii[26,71] := {221, 411} tii[26,72] := {38, 97, 432, 487} tii[26,73] := {252} tii[26,74] := {60, 458} tii[26,75] := {207} tii[26,76] := {286, 463} tii[26,77] := {329} tii[26,78] := {385} tii[26,79] := {161, 273, 351, 440} tii[26,80] := {239, 359} tii[26,81] := {188, 396, 499, 543} tii[26,82] := {72, 139, 275, 356} tii[26,83] := {114, 298, 334, 474} tii[26,84] := {211, 313} tii[26,85] := {41, 223, 317, 483} tii[26,86] := {142, 347, 471, 539} tii[26,87] := {65, 235, 389, 504} tii[26,88] := {140, 364} tii[26,89] := {259} tii[26,90] := {99, 292, 437, 530} tii[26,91] := {208, 426} tii[26,92] := {187, 289, 519, 545} tii[26,93] := {71, 241, 354, 442} tii[26,94] := {51, 186, 217, 401} tii[26,95] := {165, 245} tii[26,96] := {79, 255, 370, 507} tii[26,97] := {134, 232, 517, 538} tii[26,98] := {23, 159, 247, 447} tii[26,99] := {33, 182, 407, 478} tii[26,100] := {272, 368} tii[26,101] := {95, 291, 481, 525} tii[26,102] := {10, 124, 339, 418} tii[26,103] := {112, 197} tii[26,104] := {251} tii[26,105] := {121, 310} tii[26,106] := {180, 529} tii[26,107] := {58, 234, 459, 514} tii[26,108] := {45, 202, 324, 490} tii[26,109] := {319} tii[26,110] := {150} tii[26,111] := {175, 382} tii[26,112] := {328} tii[26,113] := {93, 178, 498, 528} tii[26,114] := {12, 157, 388, 449} tii[26,115] := {169, 362} tii[26,116] := {194} tii[26,117] := {25, 80, 387, 456} tii[26,118] := {374} tii[26,119] := {132, 513} tii[26,120] := {154} tii[26,121] := {227, 424} tii[26,122] := {47, 421} tii[26,123] := {269} tii[26,124] := {27, 200, 436, 492} tii[26,125] := {89, 495} tii[26,126] := {331} tii[26,127] := {24, 164, 242, 355} tii[26,128] := {160, 256} tii[26,129] := {42, 196, 415, 482} tii[26,130] := {9, 110, 305, 408} tii[26,131] := {76, 250} tii[26,132] := {203} tii[26,133] := {19, 149, 377, 460} tii[26,134] := {128, 327} tii[26,135] := {39, 98, 431, 486} tii[26,136] := {2, 85, 279, 361} tii[26,137] := {120, 307} tii[26,138] := {141} tii[26,139] := {263} tii[26,140] := {61, 457} tii[26,141] := {174, 379} tii[26,142] := {6, 125, 342, 423} tii[26,143] := {104} tii[26,144] := {209} tii[26,145] := {31, 429} tii[26,146] := {270} tii[26,147] := {168, 249} tii[26,148] := {153} tii[26,149] := {226, 326} tii[26,150] := {330} tii[26,151] := {35, 119, 297, 405} tii[26,152] := {22, 78, 271, 367} tii[26,153] := {44, 318} tii[26,154] := {37, 219, 299, 475} tii[26,155] := {136, 246} tii[26,156] := {13, 236, 281, 505} tii[26,157] := {113, 198} tii[26,158] := {55, 348, 392, 540} tii[26,159] := {49, 123, 332, 414} tii[26,160] := {28, 293, 344, 531} tii[26,161] := {151} tii[26,162] := {82, 373} tii[26,163] := {7, 210, 222, 480} tii[26,164] := {74, 146} tii[26,165] := {127, 420} tii[26,166] := {105} tii[26,167] := {17, 258, 287, 516} tii[26,168] := {62} tii[26,169] := {36, 185, 300, 402} tii[26,170] := {214, 316} tii[26,171] := {66, 143, 274, 369} tii[26,172] := {14, 133, 360, 448} tii[26,173] := {56, 231, 452, 508} tii[26,174] := {262} tii[26,175] := {100, 320} tii[26,176] := {29, 179, 422, 491} tii[26,177] := {21, 176, 248, 450} tii[26,178] := {4, 109, 337, 410} tii[26,179] := {118, 199} tii[26,180] := {53, 130, 468, 511} tii[26,181] := {322} tii[26,182] := {152, 375} tii[26,183] := {88, 489} tii[26,184] := {155} tii[26,185] := {11, 148, 393, 462} tii[26,186] := {43, 225, 325, 493} tii[26,187] := {52, 466} tii[26,188] := {107} tii[26,189] := {1, 69, 280, 363} tii[26,190] := {265} tii[26,191] := {126, 323} tii[26,192] := {5, 102, 343, 425} tii[26,193] := {156} tii[26,194] := {30, 430} tii[26,195] := {34, 96, 213, 315} tii[26,196] := {59, 261} tii[26,197] := {8, 129, 191, 409} tii[26,198] := {75, 147} tii[26,199] := {103, 321} tii[26,200] := {18, 173, 266, 461} tii[26,201] := {106} tii[26,202] := {63} tii[26,203] := {0, 50, 220, 308} tii[26,204] := {206} tii[26,205] := {84, 264} tii[26,206] := {3, 83, 285, 380} tii[26,207] := {108} tii[26,208] := {20, 384} tii[26,209] := {46, 205} tii[26,210] := {64} cell#95 , |C| = 553 special orbit = [6, 4, 2, 2] special rep = [[3, 1], [2, 1]] , dim = 210 cell rep = phi[[3, 2, 1],[1]]+phi[[3, 1, 1],[2]]+phi[[3, 2],[1, 1]]+phi[[3, 1],[2, 1]] TII depth = 3 TII multiplicity polynomial = 91*X^4+70*X^2+49*X TII subcells: tii[26,1] := {370, 446, 549, 552} tii[26,2] := {167, 254, 513, 540} tii[26,3] := {209, 533} tii[26,4] := {332, 460} tii[26,5] := {432, 494, 542, 550} tii[26,6] := {194, 337} tii[26,7] := {305, 390, 505, 534} tii[26,8] := {132, 214, 482, 524} tii[26,9] := {276, 417, 418, 487} tii[26,10] := {178, 508} tii[26,11] := {318} tii[26,12] := {392} tii[26,13] := {481, 522, 547, 548} tii[26,14] := {112, 231} tii[26,15] := {188, 285, 434, 496} tii[26,16] := {431, 493, 538, 539} tii[26,17] := {177, 312, 313, 397} tii[26,18] := {240, 471} tii[26,19] := {465, 520, 521, 527} tii[26,20] := {205} tii[26,21] := {511, 535} tii[26,22] := {291} tii[26,23] := {250, 355, 464, 473} tii[26,24] := {311, 419} tii[26,25] := {306, 414, 415, 430} tii[26,26] := {204} tii[26,27] := {381, 453} tii[26,28] := {290} tii[26,29] := {375, 472} tii[26,30] := {420} tii[26,31] := {62, 164, 399, 504} tii[26,32] := {12, 69, 260, 404} tii[26,33] := {233, 323, 531, 545} tii[26,34] := {123, 193, 470, 517} tii[26,35] := {56, 386} tii[26,36] := {103, 450} tii[26,37] := {108, 228, 459, 529} tii[26,38] := {259, 401} tii[26,39] := {304, 391, 543, 551} tii[26,40] := {137, 263} tii[26,41] := {65, 162, 403, 502} tii[26,42] := {232, 322, 463, 514} tii[26,43] := {4, 35, 229, 373} tii[26,44] := {195, 338} tii[26,45] := {208, 350, 351, 439} tii[26,46] := {238, 327, 532, 546} tii[26,47] := {115, 199, 467, 519} tii[26,48] := {77, 136, 436, 501} tii[26,49] := {252} tii[26,50] := {161, 275} tii[26,51] := {26, 347} tii[26,52] := {180, 289, 509, 541} tii[26,53] := {324} tii[26,54] := {211} tii[26,55] := {59, 427} tii[26,56] := {13, 64, 302, 433} tii[26,57] := {90, 197} tii[26,58] := {300, 389, 488, 495} tii[26,59] := {121, 192, 483, 528} tii[26,60] := {36, 91, 376, 466} tii[26,61] := {63, 146} tii[26,62] := {147, 277, 278, 383} tii[26,63] := {339, 442, 443, 452} tii[26,64] := {189} tii[26,65] := {55, 412} tii[26,66] := {97} tii[26,67] := {80, 155, 437, 512} tii[26,68] := {424, 484} tii[26,69] := {102, 479} tii[26,70] := {255} tii[26,71] := {93, 468} tii[26,72] := {202, 319, 320, 329} tii[26,73] := {134} tii[26,74] := {292, 382} tii[26,75] := {89} tii[26,76] := {154, 510} tii[26,77] := {191} tii[26,78] := {258} tii[26,79] := {163, 299, 400, 503} tii[26,80] := {261, 405} tii[26,81] := {374, 448, 530, 544} tii[26,82] := {2, 23, 165, 303} tii[26,83] := {111, 227, 335, 458} tii[26,84] := {226, 349} tii[26,85] := {50, 105, 378, 456} tii[26,86] := {310, 394, 506, 536} tii[26,87] := {169, 265, 408, 489} tii[26,88] := {15, 273} tii[26,89] := {282} tii[26,90] := {244, 361, 474, 525} tii[26,91] := {46, 363} tii[26,92] := {371, 447, 518, 523} tii[26,93] := {66, 160, 262, 402} tii[26,94] := {8, 48, 230, 372} tii[26,95] := {67, 168} tii[26,96] := {87, 158, 435, 500} tii[26,97] := {406, 491, 492, 499} tii[26,98] := {24, 70, 307, 407} tii[26,99] := {116, 198, 341, 440} tii[26,100] := {159, 274} tii[26,101] := {239, 326, 469, 516} tii[26,102] := {122, 241, 242, 331} tii[26,103] := {47, 120} tii[26,104] := {144} tii[26,105] := {40, 346} tii[26,106] := {477, 515} tii[26,107] := {181, 288, 421, 497} tii[26,108] := {51, 129, 379, 478} tii[26,109] := {210} tii[26,110] := {79} tii[26,111] := {83, 426} tii[26,112] := {220} tii[26,113] := {345, 444, 445, 457} tii[26,114] := {141, 267, 268, 385} tii[26,115] := {74, 410} tii[26,116] := {95} tii[26,117] := {173, 279, 280, 297} tii[26,118] := {253} tii[26,119] := {429, 486} tii[26,120] := {57} tii[26,121] := {128, 476} tii[26,122] := {248, 330} tii[26,123] := {156} tii[26,124] := {215, 358, 359, 451} tii[26,125] := {367, 455} tii[26,126] := {224} tii[26,127] := {21, 86, 166, 301} tii[26,128] := {85, 174} tii[26,129] := {133, 222, 377, 454} tii[26,130] := {49, 114, 234, 340} tii[26,131] := {75, 272} tii[26,132] := {124} tii[26,133] := {88, 185, 314, 425} tii[26,134] := {130, 362} tii[26,135] := {236, 352, 353, 369} tii[26,136] := {73, 171, 172, 270} tii[26,137] := {119, 343} tii[26,138] := {145} tii[26,139] := {151} tii[26,140] := {316, 396} tii[26,141] := {184, 423} tii[26,142] := {127, 246, 247, 364} tii[26,143] := {99} tii[26,144] := {221} tii[26,145] := {249, 368} tii[26,146] := {295} tii[26,147] := {170, 269} tii[26,148] := {152} tii[26,149] := {245, 360} tii[26,150] := {366} tii[26,151] := {31, 113, 334, 462} tii[26,152] := {20, 76, 298, 413} tii[26,153] := {42, 354} tii[26,154] := {33, 110, 336, 461} tii[26,155] := {138, 264} tii[26,156] := {72, 140, 409, 490} tii[26,157] := {109, 207} tii[26,158] := {176, 257, 507, 537} tii[26,159] := {7, 41, 225, 348} tii[26,160] := {126, 219, 475, 526} tii[26,161] := {150} tii[26,162] := {17, 281} tii[26,163] := {37, 94, 342, 441} tii[26,164] := {68, 148} tii[26,165] := {27, 321} tii[26,166] := {100} tii[26,167] := {82, 157, 422, 498} tii[26,168] := {60} tii[26,169] := {32, 107, 196, 333} tii[26,170] := {106, 206} tii[26,171] := {1, 16, 187, 309} tii[26,172] := {71, 139, 266, 384} tii[26,173] := {175, 256, 416, 485} tii[26,174] := {149} tii[26,175] := {5, 243} tii[26,176] := {125, 218, 357, 449} tii[26,177] := {14, 54, 308, 411} tii[26,178] := {92, 200, 201, 317} tii[26,179] := {34, 96} tii[26,180] := {271, 387, 388, 398} tii[26,181] := {190} tii[26,182] := {11, 283} tii[26,183] := {365, 438} tii[26,184] := {58} tii[26,185] := {153, 286, 287, 393} tii[26,186] := {45, 104, 380, 480} tii[26,187] := {294, 395} tii[26,188] := {29} tii[26,189] := {53, 142, 143, 251} tii[26,190] := {135} tii[26,191] := {28, 356} tii[26,192] := {101, 216, 217, 325} tii[26,193] := {52} tii[26,194] := {223, 328} tii[26,195] := {0, 10, 131, 237} tii[26,196] := {3, 179} tii[26,197] := {9, 39, 235, 344} tii[26,198] := {22, 78} tii[26,199] := {6, 212} tii[26,200] := {25, 84, 315, 428} tii[26,201] := {44} tii[26,202] := {19} tii[26,203] := {38, 117, 118, 203} tii[26,204] := {98} tii[26,205] := {18, 284} tii[26,206] := {81, 182, 183, 293} tii[26,207] := {30} tii[26,208] := {186, 296} tii[26,209] := {43, 213} tii[26,210] := {61} cell#96 , |C| = 315 special orbit = [5, 5, 2, 2] special rep = [[2, 1], [3, 1]] , dim = 210 cell rep = phi[[2, 1, 1],[3]]+phi[[2, 1],[3, 1]] TII depth = 4 TII multiplicity polynomial = 105*X^2+105*X TII subcells: tii[20,1] := {158, 292} tii[20,2] := {254, 313} tii[20,3] := {168} tii[20,4] := {193, 277} tii[20,5] := {92, 211} tii[20,6] := {275, 309} tii[20,7] := {235} tii[20,8] := {271} tii[20,9] := {167} tii[20,10] := {226, 258} tii[20,11] := {163, 210} tii[20,12] := {290, 303} tii[20,13] := {103} tii[20,14] := {234} tii[20,15] := {151} tii[20,16] := {270} tii[20,17] := {252, 278} tii[20,18] := {301, 310} tii[20,19] := {225, 264} tii[20,20] := {280} tii[20,21] := {241} tii[20,22] := {297} tii[20,23] := {308, 314} tii[20,24] := {311} tii[20,25] := {32, 203} tii[20,26] := {61, 239} tii[20,27] := {89, 261} tii[20,28] := {131, 287} tii[20,29] := {132} tii[20,30] := {55, 232} tii[20,31] := {60, 176} tii[20,32] := {18, 174} tii[20,33] := {91, 265} tii[20,34] := {207} tii[20,35] := {72} tii[20,36] := {123, 282} tii[20,37] := {42, 222} tii[20,38] := {249} tii[20,39] := {115} tii[20,40] := {166, 299} tii[20,41] := {85, 257} tii[20,42] := {98} tii[20,43] := {124, 283} tii[20,44] := {56, 233} tii[20,45] := {69} tii[20,46] := {90, 141} tii[20,47] := {44} tii[20,48] := {175} tii[20,49] := {160, 295} tii[20,50] := {94, 269} tii[20,51] := {48} tii[20,52] := {112} tii[20,53] := {79} tii[20,54] := {199, 306} tii[20,55] := {223} tii[20,56] := {195, 302} tii[20,57] := {121, 178} tii[20,58] := {209} tii[20,59] := {146} tii[20,60] := {182} tii[20,61] := {229, 312} tii[20,62] := {251} tii[20,63] := {273} tii[20,64] := {86, 202} tii[20,65] := {105} tii[20,66] := {126, 238} tii[20,67] := {37, 138} tii[20,68] := {161, 260} tii[20,69] := {153} tii[20,70] := {67, 188} tii[20,71] := {200, 286} tii[20,72] := {120, 231} tii[20,73] := {133} tii[20,74] := {137} tii[20,75] := {162, 263} tii[20,76] := {71} tii[20,77] := {87, 204} tii[20,78] := {125, 177} tii[20,79] := {19, 104} tii[20,80] := {102} tii[20,81] := {208} tii[20,82] := {196, 281} tii[20,83] := {106} tii[20,84] := {114} tii[20,85] := {129, 246} tii[20,86] := {187} tii[20,87] := {43, 152} tii[20,88] := {75} tii[20,89] := {150} tii[20,90] := {230, 298} tii[20,91] := {250} tii[20,92] := {47} tii[20,93] := {35, 135} tii[20,94] := {227, 293} tii[20,95] := {236} tii[20,96] := {159, 212} tii[20,97] := {214} tii[20,98] := {30} tii[20,99] := {82} tii[20,100] := {215} tii[20,101] := {65, 185} tii[20,102] := {255, 304} tii[20,103] := {183} tii[20,104] := {272} tii[20,105] := {119} tii[20,106] := {289} tii[20,107] := {157, 201} tii[20,108] := {136} tii[20,109] := {197, 237} tii[20,110] := {122, 169} tii[20,111] := {228, 259} tii[20,112] := {107} tii[20,113] := {186} tii[20,114] := {165, 217} tii[20,115] := {256, 285} tii[20,116] := {194, 240} tii[20,117] := {88, 134} tii[20,118] := {253, 279} tii[20,119] := {262} tii[20,120] := {77} tii[20,121] := {213} tii[20,122] := {216} tii[20,123] := {276, 296} tii[20,124] := {130, 184} tii[20,125] := {245} tii[20,126] := {288} tii[20,127] := {192} tii[20,128] := {300} tii[20,129] := {274, 294} tii[20,130] := {266} tii[20,131] := {291, 305} tii[20,132] := {307} tii[20,133] := {7, 140} tii[20,134] := {24, 190} tii[20,135] := {17, 173} tii[20,136] := {45} tii[20,137] := {6, 139} tii[20,138] := {8, 142} tii[20,139] := {23, 189} tii[20,140] := {80} tii[20,141] := {41, 221} tii[20,142] := {16, 171} tii[20,143] := {26} tii[20,144] := {62, 244} tii[20,145] := {54} tii[20,146] := {12} tii[20,147] := {40, 219} tii[20,148] := {84} tii[20,149] := {101} tii[20,150] := {36, 206} tii[20,151] := {5, 70} tii[20,152] := {74} tii[20,153] := {149} tii[20,154] := {20, 179} tii[20,155] := {66, 248} tii[20,156] := {22, 113} tii[20,157] := {25} tii[20,158] := {34, 205} tii[20,159] := {46} tii[20,160] := {15, 99} tii[20,161] := {9, 144} tii[20,162] := {180} tii[20,163] := {49} tii[20,164] := {93, 268} tii[20,165] := {53} tii[20,166] := {39, 147} tii[20,167] := {29} tii[20,168] := {81} tii[20,169] := {64, 247} tii[20,170] := {11} tii[20,171] := {13} tii[20,172] := {83} tii[20,173] := {118} tii[20,174] := {33, 68} tii[20,175] := {145} tii[20,176] := {127, 284} tii[20,177] := {63, 111} tii[20,178] := {27} tii[20,179] := {154} tii[20,180] := {117} tii[20,181] := {59, 172} tii[20,182] := {38, 143} tii[20,183] := {97, 220} tii[20,184] := {58, 170} tii[20,185] := {73} tii[20,186] := {76} tii[20,187] := {21, 109} tii[20,188] := {128, 243} tii[20,189] := {96, 218} tii[20,190] := {52} tii[20,191] := {116} tii[20,192] := {31} tii[20,193] := {156} tii[20,194] := {57, 100} tii[20,195] := {51} tii[20,196] := {10, 78} tii[20,197] := {181} tii[20,198] := {164, 267} tii[20,199] := {95, 148} tii[20,200] := {14} tii[20,201] := {191} tii[20,202] := {155} tii[20,203] := {198, 242} tii[20,204] := {224} tii[20,205] := {0, 108} tii[20,206] := {28} tii[20,207] := {2, 110} tii[20,208] := {3} tii[20,209] := {1, 50} tii[20,210] := {4} cell#97 , |C| = 245 special orbit = [4, 4, 4, 2] special rep = [[2, 2], [2, 1]] , dim = 140 cell rep = phi[[2, 2, 1],[2]]+phi[[2, 2],[2, 1]] TII depth = 4 TII multiplicity polynomial = 105*X^2+35*X TII subcells: tii[18,1] := {185, 244} tii[18,2] := {70, 151} tii[18,3] := {205, 241} tii[18,4] := {149, 217} tii[18,5] := {119, 161} tii[18,6] := {221, 239} tii[18,7] := {195, 222} tii[18,8] := {164} tii[18,9] := {192} tii[18,10] := {232, 243} tii[18,11] := {226, 240} tii[18,12] := {235} tii[18,13] := {37, 176} tii[18,14] := {113, 229} tii[18,15] := {21, 160} tii[18,16] := {48, 124} tii[18,17] := {56, 197} tii[18,18] := {121, 201} tii[18,19] := {18, 74} tii[18,20] := {140, 237} tii[18,21] := {59, 200} tii[18,22] := {91, 220} tii[18,23] := {78, 214} tii[18,24] := {69, 107} tii[18,25] := {165, 242} tii[18,26] := {148, 188} tii[18,27] := {108, 227} tii[18,28] := {47, 85} tii[18,29] := {110} tii[18,30] := {62} tii[18,31] := {142, 238} tii[18,32] := {144} tii[18,33] := {172, 209} tii[18,34] := {189} tii[18,35] := {36, 132} tii[18,36] := {80, 175} tii[18,37] := {32, 99} tii[18,38] := {166, 228} tii[18,39] := {83, 178} tii[18,40] := {117, 203} tii[18,41] := {29, 105} tii[18,42] := {106, 196} tii[18,43] := {93, 135} tii[18,44] := {51, 126} tii[18,45] := {17, 77} tii[18,46] := {187, 236} tii[18,47] := {138} tii[18,48] := {136, 215} tii[18,49] := {173, 208} tii[18,50] := {72, 153} tii[18,51] := {68, 112} tii[18,52] := {34, 100} tii[18,53] := {169} tii[18,54] := {167, 230} tii[18,55] := {97, 183} tii[18,56] := {87} tii[18,57] := {95, 177} tii[18,58] := {111} tii[18,59] := {194, 223} tii[18,60] := {89} tii[18,61] := {123, 202} tii[18,62] := {210} tii[18,63] := {145} tii[18,64] := {171} tii[18,65] := {133, 184} tii[18,66] := {92, 139} tii[18,67] := {207, 233} tii[18,68] := {162, 206} tii[18,69] := {114} tii[18,70] := {190, 225} tii[18,71] := {213, 234} tii[18,72] := {147, 186} tii[18,73] := {141} tii[18,74] := {224} tii[18,75] := {174, 211} tii[18,76] := {212} tii[18,77] := {12, 127} tii[18,78] := {10, 134} tii[18,79] := {24, 155} tii[18,80] := {4, 104} tii[18,81] := {8, 53} tii[18,82] := {39, 179} tii[18,83] := {13, 129} tii[18,84] := {66, 204} tii[18,85] := {58, 199} tii[18,86] := {16, 41} tii[18,87] := {90, 219} tii[18,88] := {26} tii[18,89] := {15, 79} tii[18,90] := {31, 98} tii[18,91] := {11, 131} tii[18,92] := {40, 180} tii[18,93] := {6, 55} tii[18,94] := {50, 125} tii[18,95] := {19, 75} tii[18,96] := {27, 156} tii[18,97] := {73, 159} tii[18,98] := {82, 216} tii[18,99] := {30, 61} tii[18,100] := {84} tii[18,101] := {71, 152} tii[18,102] := {2, 38} tii[18,103] := {42, 181} tii[18,104] := {43} tii[18,105] := {96, 182} tii[18,106] := {116, 231} tii[18,107] := {118} tii[18,108] := {64} tii[18,109] := {9, 54} tii[18,110] := {146} tii[18,111] := {28} tii[18,112] := {94, 137} tii[18,113] := {122, 168} tii[18,114] := {88} tii[18,115] := {170} tii[18,116] := {23, 103} tii[18,117] := {60, 154} tii[18,118] := {44, 128} tii[18,119] := {7, 57} tii[18,120] := {109, 198} tii[18,121] := {49, 86} tii[18,122] := {63, 157} tii[18,123] := {20, 76} tii[18,124] := {65} tii[18,125] := {143, 218} tii[18,126] := {46} tii[18,127] := {120, 163} tii[18,128] := {115} tii[18,129] := {52, 130} tii[18,130] := {150, 191} tii[18,131] := {67} tii[18,132] := {193} tii[18,133] := {1, 81} tii[18,134] := {5, 102} tii[18,135] := {0, 22} tii[18,136] := {25, 158} tii[18,137] := {3, 35} tii[18,138] := {14} tii[18,139] := {33, 101} tii[18,140] := {45} cell#98 , |C| = 126 special orbit = [6, 2, 2, 2, 2] special rep = [[3, 1, 1], [1, 1]] , dim = 126 cell rep = phi[[3, 1, 1],[1, 1]] TII depth = 4 TII multiplicity polynomial = 126*X TII subcells: tii[24,1] := {125} tii[24,2] := {121} tii[24,3] := {122} tii[24,4] := {102} tii[24,5] := {108} tii[24,6] := {78} tii[24,7] := {74} tii[24,8] := {40} tii[24,9] := {39} tii[24,10] := {123} tii[24,11] := {92} tii[24,12] := {114} tii[24,13] := {38} tii[24,14] := {119} tii[24,15] := {73} tii[24,16] := {117} tii[24,17] := {31} tii[24,18] := {113} tii[24,19] := {86} tii[24,20] := {104} tii[24,21] := {103} tii[24,22] := {52} tii[24,23] := {109} tii[24,24] := {46} tii[24,25] := {90} tii[24,26] := {59} tii[24,27] := {83} tii[24,28] := {96} tii[24,29] := {61} tii[24,30] := {81} tii[24,31] := {106} tii[24,32] := {25} tii[24,33] := {124} tii[24,34] := {91} tii[24,35] := {20} tii[24,36] := {120} tii[24,37] := {101} tii[24,38] := {115} tii[24,39] := {84} tii[24,40] := {87} tii[24,41] := {37} tii[24,42] := {32} tii[24,43] := {41} tii[24,44] := {71} tii[24,45] := {93} tii[24,46] := {116} tii[24,47] := {95} tii[24,48] := {65} tii[24,49] := {111} tii[24,50] := {107} tii[24,51] := {79} tii[24,52] := {44} tii[24,53] := {64} tii[24,54] := {118} tii[24,55] := {51} tii[24,56] := {21} tii[24,57] := {89} tii[24,58] := {58} tii[24,59] := {82} tii[24,60] := {76} tii[24,61] := {62} tii[24,62] := {29} tii[24,63] := {47} tii[24,64] := {97} tii[24,65] := {42} tii[24,66] := {63} tii[24,67] := {3} tii[24,68] := {57} tii[24,69] := {9} tii[24,70] := {45} tii[24,71] := {18} tii[24,72] := {33} tii[24,73] := {4} tii[24,74] := {112} tii[24,75] := {56} tii[24,76] := {10} tii[24,77] := {30} tii[24,78] := {100} tii[24,79] := {69} tii[24,80] := {22} tii[24,81] := {88} tii[24,82] := {17} tii[24,83] := {85} tii[24,84] := {53} tii[24,85] := {27} tii[24,86] := {70} tii[24,87] := {54} tii[24,88] := {68} tii[24,89] := {1} tii[24,90] := {105} tii[24,91] := {26} tii[24,92] := {75} tii[24,93] := {7} tii[24,94] := {99} tii[24,95] := {16} tii[24,96] := {94} tii[24,97] := {11} tii[24,98] := {72} tii[24,99] := {43} tii[24,100] := {110} tii[24,101] := {23} tii[24,102] := {66} tii[24,103] := {50} tii[24,104] := {77} tii[24,105] := {19} tii[24,106] := {98} tii[24,107] := {34} tii[24,108] := {67} tii[24,109] := {0} tii[24,110] := {15} tii[24,111] := {2} tii[24,112] := {8} tii[24,113] := {5} tii[24,114] := {28} tii[24,115] := {55} tii[24,116] := {13} tii[24,117] := {48} tii[24,118] := {36} tii[24,119] := {60} tii[24,120] := {12} tii[24,121] := {80} tii[24,122] := {24} tii[24,123] := {49} tii[24,124] := {6} tii[24,125] := {14} tii[24,126] := {35} cell#99 , |C| = 126 special orbit = [6, 2, 2, 2, 2] special rep = [[3, 1, 1], [1, 1]] , dim = 126 cell rep = phi[[3, 1, 1],[1, 1]] TII depth = 4 TII multiplicity polynomial = 126*X TII subcells: tii[24,1] := {124} tii[24,2] := {117} tii[24,3] := {125} tii[24,4] := {84} tii[24,5] := {112} tii[24,6] := {78} tii[24,7] := {80} tii[24,8] := {40} tii[24,9] := {46} tii[24,10] := {120} tii[24,11] := {99} tii[24,12] := {103} tii[24,13] := {31} tii[24,14] := {109} tii[24,15] := {79} tii[24,16] := {122} tii[24,17] := {38} tii[24,18] := {95} tii[24,19] := {96} tii[24,20] := {108} tii[24,21] := {86} tii[24,22] := {50} tii[24,23] := {113} tii[24,24] := {55} tii[24,25] := {68} tii[24,26] := {69} tii[24,27] := {83} tii[24,28] := {107} tii[24,29] := {74} tii[24,30] := {92} tii[24,31] := {114} tii[24,32] := {18} tii[24,33] := {121} tii[24,34] := {98} tii[24,35] := {24} tii[24,36] := {110} tii[24,37] := {111} tii[24,38] := {119} tii[24,39] := {91} tii[24,40] := {64} tii[24,41] := {30} tii[24,42] := {37} tii[24,43] := {45} tii[24,44] := {44} tii[24,45] := {106} tii[24,46] := {105} tii[24,47] := {97} tii[24,48] := {61} tii[24,49] := {116} tii[24,50] := {118} tii[24,51] := {90} tii[24,52] := {54} tii[24,53] := {72} tii[24,54] := {123} tii[24,55] := {49} tii[24,56] := {23} tii[24,57] := {66} tii[24,58] := {67} tii[24,59] := {82} tii[24,60] := {85} tii[24,61] := {70} tii[24,62] := {36} tii[24,63] := {51} tii[24,64] := {100} tii[24,65] := {43} tii[24,66] := {60} tii[24,67] := {21} tii[24,68] := {59} tii[24,69] := {10} tii[24,70] := {41} tii[24,71] := {16} tii[24,72] := {33} tii[24,73] := {3} tii[24,74] := {94} tii[24,75] := {58} tii[24,76] := {8} tii[24,77] := {27} tii[24,78] := {76} tii[24,79] := {77} tii[24,80] := {19} tii[24,81] := {93} tii[24,82] := {17} tii[24,83] := {56} tii[24,84] := {57} tii[24,85] := {32} tii[24,86] := {75} tii[24,87] := {62} tii[24,88] := {71} tii[24,89] := {2} tii[24,90] := {88} tii[24,91] := {20} tii[24,92] := {89} tii[24,93] := {4} tii[24,94] := {102} tii[24,95] := {15} tii[24,96] := {104} tii[24,97] := {12} tii[24,98] := {47} tii[24,99] := {48} tii[24,100] := {115} tii[24,101] := {26} tii[24,102] := {63} tii[24,103] := {53} tii[24,104] := {87} tii[24,105] := {22} tii[24,106] := {101} tii[24,107] := {39} tii[24,108] := {73} tii[24,109] := {0} tii[24,110] := {9} tii[24,111] := {1} tii[24,112] := {7} tii[24,113] := {6} tii[24,114] := {29} tii[24,115] := {28} tii[24,116] := {14} tii[24,117] := {42} tii[24,118] := {35} tii[24,119] := {65} tii[24,120] := {11} tii[24,121] := {81} tii[24,122] := {25} tii[24,123] := {52} tii[24,124] := {5} tii[24,125] := {13} tii[24,126] := {34} cell#100 , |C| = 315 special orbit = [4, 4, 2, 2, 2] special rep = [[2, 1, 1], [2, 1]] , dim = 210 cell rep = phi[[2, 2, 1],[1, 1]]+phi[[2, 1, 1],[2, 1]] TII depth = 4 TII multiplicity polynomial = 105*X^2+105*X TII subcells: tii[16,1] := {200, 307} tii[16,2] := {279} tii[16,3] := {141, 314} tii[16,4] := {88, 311} tii[16,5] := {232} tii[16,6] := {277} tii[16,7] := {85, 254} tii[16,8] := {178} tii[16,9] := {139, 192} tii[16,10] := {171, 297} tii[16,11] := {78, 276} tii[16,12] := {33, 230} tii[16,13] := {257} tii[16,14] := {118, 268} tii[16,15] := {160} tii[16,16] := {194} tii[16,17] := {225} tii[16,18] := {142, 306} tii[16,19] := {102, 291} tii[16,20] := {57, 293} tii[16,21] := {233} tii[16,22] := {190} tii[16,23] := {120, 298} tii[16,24] := {75, 274} tii[16,25] := {147} tii[16,26] := {95, 287} tii[16,27] := {184} tii[16,28] := {259} tii[16,29] := {217} tii[16,30] := {236} tii[16,31] := {53, 292} tii[16,32] := {169, 221} tii[16,33] := {131} tii[16,34] := {18, 255} tii[16,35] := {148, 285} tii[16,36] := {223} tii[16,37] := {251} tii[16,38] := {157, 245} tii[16,39] := {113, 312} tii[16,40] := {77, 303} tii[16,41] := {177, 299} tii[16,42] := {62, 304} tii[16,43] := {7, 244} tii[16,44] := {127, 267} tii[16,45] := {159} tii[16,46] := {90, 308} tii[16,47] := {50, 290} tii[16,48] := {116} tii[16,49] := {207} tii[16,50] := {204} tii[16,51] := {150, 289} tii[16,52] := {67, 301} tii[16,53] := {154} tii[16,54] := {240} tii[16,55] := {16, 266} tii[16,56] := {229} tii[16,57] := {41, 294} tii[16,58] := {234} tii[16,59] := {187} tii[16,60] := {26, 282} tii[16,61] := {263} tii[16,62] := {208} tii[16,63] := {101, 310} tii[16,64] := {189} tii[16,65] := {119, 313} tii[16,66] := {74, 302} tii[16,67] := {146} tii[16,68] := {183} tii[16,69] := {94, 309} tii[16,70] := {48, 296} tii[16,71] := {174} tii[16,72] := {258} tii[16,73] := {216} tii[16,74] := {211} tii[16,75] := {235} tii[16,76] := {65, 305} tii[16,77] := {242} tii[16,78] := {260} tii[16,79] := {76, 112} tii[16,80] := {40, 206} tii[16,81] := {115} tii[16,82] := {153} tii[16,83] := {52, 140} tii[16,84] := {111, 163} tii[16,85] := {61, 231} tii[16,86] := {29, 173} tii[16,87] := {91, 248} tii[16,88] := {17, 205} tii[16,89] := {86} tii[16,90] := {164} tii[16,91] := {84, 135} tii[16,92] := {42, 210} tii[16,93] := {125} tii[16,94] := {197} tii[16,95] := {108} tii[16,96] := {114} tii[16,97] := {63, 269} tii[16,98] := {134} tii[16,99] := {31, 227} tii[16,100] := {152} tii[16,101] := {44, 249} tii[16,102] := {168} tii[16,103] := {109} tii[16,104] := {198} tii[16,105] := {128, 220} tii[16,106] := {39, 170} tii[16,107] := {110, 165} tii[16,108] := {149, 284} tii[16,109] := {56, 256} tii[16,110] := {6, 218} tii[16,111] := {100, 246} tii[16,112] := {22, 202} tii[16,113] := {176} tii[16,114] := {80} tii[16,115] := {136} tii[16,116] := {122, 271} tii[16,117] := {36, 238} tii[16,118] := {213} tii[16,119] := {106} tii[16,120] := {92, 286} tii[16,121] := {54, 253} tii[16,122] := {11, 172} tii[16,123] := {203} tii[16,124] := {104} tii[16,125] := {117} tii[16,126] := {13, 243} tii[16,127] := {35, 280} tii[16,128] := {73, 222} tii[16,129] := {167} tii[16,130] := {71, 270} tii[16,131] := {239} tii[16,132] := {133} tii[16,133] := {19, 209} tii[16,134] := {21, 261} tii[16,135] := {98} tii[16,136] := {155} tii[16,137] := {93, 250} tii[16,138] := {46, 252} tii[16,139] := {186} tii[16,140] := {23, 265} tii[16,141] := {175} tii[16,142] := {130} tii[16,143] := {124} tii[16,144] := {212} tii[16,145] := {162} tii[16,146] := {37, 281} tii[16,147] := {215} tii[16,148] := {24, 199} tii[16,149] := {34, 278} tii[16,150] := {138, 195} tii[16,151] := {12, 228} tii[16,152] := {55} tii[16,153] := {20, 262} tii[16,154] := {166} tii[16,155] := {81} tii[16,156] := {79} tii[16,157] := {99, 247} tii[16,158] := {5, 201} tii[16,159] := {32, 275} tii[16,160] := {64, 300} tii[16,161] := {87} tii[16,162] := {196} tii[16,163] := {105} tii[16,164] := {45, 288} tii[16,165] := {121, 272} tii[16,166] := {9, 237} tii[16,167] := {126} tii[16,168] := {70} tii[16,169] := {156} tii[16,170] := {28, 273} tii[16,171] := {30, 283} tii[16,172] := {1, 188} tii[16,173] := {145} tii[16,174] := {103} tii[16,175] := {97} tii[16,176] := {179} tii[16,177] := {43, 295} tii[16,178] := {3, 219} tii[16,179] := {182} tii[16,180] := {132} tii[16,181] := {14, 264} tii[16,182] := {185} tii[16,183] := {129} tii[16,184] := {161} tii[16,185] := {123} tii[16,186] := {214} tii[16,187] := {49, 89} tii[16,188] := {66} tii[16,189] := {15, 144} tii[16,190] := {60, 107} tii[16,191] := {96} tii[16,192] := {25, 181} tii[16,193] := {82} tii[16,194] := {59} tii[16,195] := {4, 143} tii[16,196] := {51, 193} tii[16,197] := {69} tii[16,198] := {137} tii[16,199] := {8, 180} tii[16,200] := {68, 224} tii[16,201] := {27, 226} tii[16,202] := {83} tii[16,203] := {0, 158} tii[16,204] := {151} tii[16,205] := {58} tii[16,206] := {2, 191} tii[16,207] := {72} tii[16,208] := {10, 241} tii[16,209] := {38} tii[16,210] := {47} cell#101 , |C| = 154 special orbit = [8, 2, 2, 2] special rep = [[4, 1], [1, 1]] , dim = 84 cell rep = phi[[4, 1, 1],[1]]+phi[[4, 1],[1, 1]] TII depth = 4 TII multiplicity polynomial = 70*X^2+14*X TII subcells: tii[32,1] := {68, 153} tii[32,2] := {56, 151} tii[32,3] := {33, 141} tii[32,4] := {38, 152} tii[32,5] := {88, 149} tii[32,6] := {76, 145} tii[32,7] := {95, 140} tii[32,8] := {40, 123} tii[32,9] := {87, 124} tii[32,10] := {43, 147} tii[32,11] := {104, 106} tii[32,12] := {121} tii[32,13] := {96, 131} tii[32,14] := {32, 100} tii[32,15] := {74, 112} tii[32,16] := {37, 135} tii[32,17] := {92, 93} tii[32,18] := {111} tii[32,19] := {48, 79} tii[32,20] := {53, 115} tii[32,21] := {62, 64} tii[32,22] := {77} tii[32,23] := {70, 107} tii[32,24] := {89} tii[32,25] := {3, 110} tii[32,26] := {50, 150} tii[32,27] := {6, 117} tii[32,28] := {34, 142} tii[32,29] := {2, 109} tii[32,30] := {25, 127} tii[32,31] := {9, 129} tii[32,32] := {18, 139} tii[32,33] := {13, 136} tii[32,34] := {75, 122} tii[32,35] := {67, 101} tii[32,36] := {5, 116} tii[32,37] := {41, 146} tii[32,38] := {83, 85} tii[32,39] := {11, 134} tii[32,40] := {31, 133} tii[32,41] := {99} tii[32,42] := {22, 144} tii[32,43] := {1, 108} tii[32,44] := {49, 80} tii[32,45] := {8, 128} tii[32,46] := {63, 65} tii[32,47] := {24, 126} tii[32,48] := {78} tii[32,49] := {17, 138} tii[32,50] := {15, 143} tii[32,51] := {45, 47} tii[32,52] := {61} tii[32,53] := {29, 148} tii[32,54] := {52} tii[32,55] := {26, 118} tii[32,56] := {58, 132} tii[32,57] := {12, 94} tii[32,58] := {42, 113} tii[32,59] := {19, 114} tii[32,60] := {36, 130} tii[32,61] := {4, 86} tii[32,62] := {57, 91} tii[32,63] := {10, 105} tii[32,64] := {30, 103} tii[32,65] := {72, 73} tii[32,66] := {21, 120} tii[32,67] := {90} tii[32,68] := {20, 125} tii[32,69] := {54, 55} tii[32,70] := {71} tii[32,71] := {35, 137} tii[32,72] := {59} tii[32,73] := {0, 66} tii[32,74] := {23, 82} tii[32,75] := {7, 84} tii[32,76] := {16, 98} tii[32,77] := {14, 102} tii[32,78] := {44, 46} tii[32,79] := {28, 119} tii[32,80] := {60} tii[32,81] := {51} tii[32,82] := {27, 81} tii[32,83] := {39, 97} tii[32,84] := {69} cell#102 , |C| = 105 special orbit = [6, 4, 4] special rep = [[3, 2], [2]] , dim = 105 cell rep = phi[[3, 2],[2]] TII depth = 4 TII multiplicity polynomial = 105*X TII subcells: tii[27,1] := {103} tii[27,2] := {104} tii[27,3] := {36} tii[27,4] := {53} tii[27,5] := {91} tii[27,6] := {88} tii[27,7] := {13} tii[27,8] := {49} tii[27,9] := {28} tii[27,10] := {51} tii[27,11] := {65} tii[27,12] := {97} tii[27,13] := {85} tii[27,14] := {95} tii[27,15] := {55} tii[27,16] := {71} tii[27,17] := {62} tii[27,18] := {101} tii[27,19] := {52} tii[27,20] := {77} tii[27,21] := {73} tii[27,22] := {99} tii[27,23] := {98} tii[27,24] := {82} tii[27,25] := {79} tii[27,26] := {92} tii[27,27] := {90} tii[27,28] := {86} tii[27,29] := {102} tii[27,30] := {94} tii[27,31] := {100} tii[27,32] := {20} tii[27,33] := {24} tii[27,34] := {5} tii[27,35] := {25} tii[27,36] := {1} tii[27,37] := {16} tii[27,38] := {37} tii[27,39] := {15} tii[27,40] := {3} tii[27,41] := {76} tii[27,42] := {31} tii[27,43] := {42} tii[27,44] := {11} tii[27,45] := {59} tii[27,46] := {29} tii[27,47] := {50} tii[27,48] := {43} tii[27,49] := {18} tii[27,50] := {84} tii[27,51] := {60} tii[27,52] := {54} tii[27,53] := {33} tii[27,54] := {70} tii[27,55] := {74} tii[27,56] := {66} tii[27,57] := {80} tii[27,58] := {4} tii[27,59] := {38} tii[27,60] := {44} tii[27,61] := {8} tii[27,62] := {26} tii[27,63] := {22} tii[27,64] := {40} tii[27,65] := {63} tii[27,66] := {56} tii[27,67] := {72} tii[27,68] := {93} tii[27,69] := {30} tii[27,70] := {17} tii[27,71] := {39} tii[27,72] := {67} tii[27,73] := {83} tii[27,74] := {47} tii[27,75] := {35} tii[27,76] := {81} tii[27,77] := {61} tii[27,78] := {78} tii[27,79] := {46} tii[27,80] := {89} tii[27,81] := {75} tii[27,82] := {41} tii[27,83] := {68} tii[27,84] := {58} tii[27,85] := {87} tii[27,86] := {69} tii[27,87] := {96} tii[27,88] := {0} tii[27,89] := {2} tii[27,90] := {12} tii[27,91] := {7} tii[27,92] := {6} tii[27,93] := {14} tii[27,94] := {9} tii[27,95] := {27} tii[27,96] := {23} tii[27,97] := {10} tii[27,98] := {48} tii[27,99] := {32} tii[27,100] := {21} tii[27,101] := {64} tii[27,102] := {45} tii[27,103] := {19} tii[27,104] := {34} tii[27,105] := {57} cell#103 , |C| = 105 special orbit = [6, 4, 4] special rep = [[3, 2], [2]] , dim = 105 cell rep = phi[[3, 2],[2]] TII depth = 4 TII multiplicity polynomial = 105*X TII subcells: tii[27,1] := {104} tii[27,2] := {101} tii[27,3] := {55} tii[27,4] := {36} tii[27,5] := {96} tii[27,6] := {78} tii[27,7] := {21} tii[27,8] := {68} tii[27,9] := {40} tii[27,10] := {64} tii[27,11] := {50} tii[27,12] := {100} tii[27,13] := {94} tii[27,14] := {89} tii[27,15] := {67} tii[27,16] := {81} tii[27,17] := {79} tii[27,18] := {103} tii[27,19] := {39} tii[27,20] := {63} tii[27,21] := {84} tii[27,22] := {93} tii[27,23] := {102} tii[27,24] := {90} tii[27,25] := {66} tii[27,26] := {97} tii[27,27] := {80} tii[27,28] := {74} tii[27,29] := {98} tii[27,30] := {82} tii[27,31] := {91} tii[27,32] := {31} tii[27,33] := {9} tii[27,34] := {10} tii[27,35] := {44} tii[27,36] := {5} tii[27,37] := {26} tii[27,38] := {49} tii[27,39] := {34} tii[27,40] := {11} tii[27,41] := {88} tii[27,42] := {14} tii[27,43] := {53} tii[27,44] := {23} tii[27,45] := {69} tii[27,46] := {15} tii[27,47] := {62} tii[27,48] := {24} tii[27,49] := {6} tii[27,50] := {95} tii[27,51] := {71} tii[27,52] := {41} tii[27,53] := {18} tii[27,54] := {59} tii[27,55] := {85} tii[27,56] := {48} tii[27,57] := {65} tii[27,58] := {13} tii[27,59] := {58} tii[27,60] := {25} tii[27,61] := {22} tii[27,62] := {47} tii[27,63] := {35} tii[27,64] := {27} tii[27,65] := {75} tii[27,66] := {38} tii[27,67] := {83} tii[27,68] := {99} tii[27,69] := {17} tii[27,70] := {28} tii[27,71] := {51} tii[27,72] := {54} tii[27,73] := {92} tii[27,74] := {33} tii[27,75] := {45} tii[27,76] := {70} tii[27,77] := {73} tii[27,78] := {61} tii[27,79] := {57} tii[27,80] := {77} tii[27,81] := {87} tii[27,82] := {29} tii[27,83] := {52} tii[27,84] := {46} tii[27,85] := {72} tii[27,86] := {56} tii[27,87] := {86} tii[27,88] := {1} tii[27,89] := {3} tii[27,90] := {20} tii[27,91] := {12} tii[27,92] := {0} tii[27,93] := {4} tii[27,94] := {16} tii[27,95] := {37} tii[27,96] := {32} tii[27,97] := {2} tii[27,98] := {60} tii[27,99] := {42} tii[27,100] := {8} tii[27,101] := {76} tii[27,102] := {30} tii[27,103] := {7} tii[27,104] := {19} tii[27,105] := {43} cell#104 , |C| = 553 special orbit = [6, 4, 2, 2] special rep = [[3, 1], [2, 1]] , dim = 210 cell rep = phi[[3, 2, 1],[1]]+phi[[3, 1, 1],[2]]+phi[[3, 2],[1, 1]]+phi[[3, 1],[2, 1]] TII depth = 3 TII multiplicity polynomial = 91*X^4+70*X^2+49*X TII subcells: tii[26,1] := {201, 389, 450, 552} tii[26,2] := {228, 323, 402, 540} tii[26,3] := {287, 502} tii[26,4] := {305, 469} tii[26,5] := {151, 413, 431, 551} tii[26,6] := {385, 454} tii[26,7] := {83, 324, 419, 544} tii[26,8] := {174, 267, 357, 530} tii[26,9] := {77, 224, 412, 527} tii[26,10] := {236, 477} tii[26,11] := {467} tii[26,12] := {495} tii[26,13] := {199, 390, 468, 547} tii[26,14] := {281, 370} tii[26,15] := {128, 308, 322, 523} tii[26,16] := {158, 344, 483, 543} tii[26,17] := {66, 207, 318, 490} tii[26,18] := {288, 444} tii[26,19] := {202, 300, 504, 538} tii[26,20] := {387} tii[26,21] := {254, 525} tii[26,22] := {435} tii[26,23] := {173, 266, 367, 503} tii[26,24] := {341, 428} tii[26,25] := {129, 220, 406, 492} tii[26,26] := {285} tii[26,27] := {186, 458} tii[26,28] := {349} tii[26,29] := {386, 466} tii[26,30] := {437} tii[26,31] := {5, 67, 335, 482} tii[26,32] := {26, 70, 405, 474} tii[26,33] := {118, 291, 374, 546} tii[26,34] := {113, 196, 278, 533} tii[26,35] := {75, 480} tii[26,36] := {114, 508} tii[26,37] := {10, 97, 280, 506} tii[26,38] := {252, 432} tii[26,39] := {152, 345, 418, 550} tii[26,40] := {336, 417} tii[26,41] := {25, 140, 251, 517} tii[26,42] := {54, 268, 373, 536} tii[26,43] := {37, 88, 360, 441} tii[26,44] := {206, 392} tii[26,45] := {49, 172, 366, 512} tii[26,46] := {112, 302, 380, 548} tii[26,47] := {46, 181, 283, 531} tii[26,48] := {138, 223, 310, 520} tii[26,49] := {430} tii[26,50] := {253, 351} tii[26,51] := {93, 447} tii[26,52] := {78, 244, 347, 541} tii[26,53] := {470} tii[26,54] := {307} tii[26,55] := {143, 485} tii[26,56] := {59, 123, 312, 473} tii[26,57] := {282, 371} tii[26,58] := {82, 239, 414, 522} tii[26,59] := {182, 277, 359, 534} tii[26,60] := {89, 165, 261, 496} tii[26,61] := {232, 332} tii[26,62] := {29, 127, 319, 491} tii[26,63] := {110, 193, 445, 513} tii[26,64] := {388} tii[26,65] := {134, 408} tii[26,66] := {297} tii[26,67] := {141, 218, 327, 518} tii[26,68] := {155, 486} tii[26,69] := {188, 457} tii[26,70] := {436} tii[26,71] := {177, 439} tii[26,72] := {48, 107, 365, 464} tii[26,73] := {340} tii[26,74] := {80, 424} tii[26,75] := {290} tii[26,76] := {240, 476} tii[26,77] := {397} tii[26,78] := {353} tii[26,79] := {2, 139, 226, 494} tii[26,80] := {256, 434} tii[26,81] := {109, 372, 393, 549} tii[26,82] := {19, 57, 311, 401} tii[26,83] := {11, 183, 198, 507} tii[26,84] := {306, 398} tii[26,85] := {96, 170, 258, 501} tii[26,86] := {76, 329, 352, 545} tii[26,87] := {27, 229, 234, 524} tii[26,88] := {65, 407} tii[26,89] := {355} tii[26,90] := {51, 294, 298, 537} tii[26,91] := {103, 456} tii[26,92] := {117, 292, 451, 535} tii[26,93] := {6, 150, 214, 484} tii[26,94] := {36, 87, 259, 440} tii[26,95] := {227, 321} tii[26,96] := {137, 222, 309, 521} tii[26,97] := {153, 247, 478, 528} tii[26,98] := {61, 120, 209, 471} tii[26,99] := {17, 175, 263, 505} tii[26,100] := {338, 426} tii[26,101] := {55, 274, 382, 539} tii[26,102] := {40, 160, 264, 463} tii[26,103] := {176, 275} tii[26,104] := {339} tii[26,105] := {92, 362} tii[26,106] := {204, 509} tii[26,107] := {34, 242, 328, 526} tii[26,108] := {101, 167, 271, 499} tii[26,109] := {395} tii[26,110] := {243} tii[26,111] := {142, 421} tii[26,112] := {396} tii[26,113] := {111, 197, 449, 515} tii[26,114] := {28, 132, 314, 481} tii[26,115] := {131, 400} tii[26,116] := {286} tii[26,117] := {63, 126, 317, 429} tii[26,118] := {433} tii[26,119] := {156, 489} tii[26,120] := {238} tii[26,121] := {185, 442} tii[26,122] := {104, 379} tii[26,123] := {350} tii[26,124] := {52, 191, 375, 511} tii[26,125] := {116, 462} tii[26,126] := {303} tii[26,127] := {60, 122, 208, 415} tii[26,128] := {230, 330} tii[26,129] := {95, 257, 276, 514} tii[26,130] := {38, 161, 164, 446} tii[26,131] := {136, 315} tii[26,132] := {295} tii[26,133] := {71, 216, 217, 487} tii[26,134] := {190, 377} tii[26,135] := {90, 171, 364, 465} tii[26,136] := {21, 119, 210, 409} tii[26,137] := {178, 356} tii[26,138] := {235} tii[26,139] := {342} tii[26,140] := {145, 423} tii[26,141] := {241, 403} tii[26,142] := {43, 169, 269, 459} tii[26,143] := {184} tii[26,144] := {299} tii[26,145] := {106, 383} tii[26,146] := {354} tii[26,147] := {233, 316} tii[26,148] := {237} tii[26,149] := {293, 378} tii[26,150] := {399} tii[26,151] := {0, 42, 304, 455} tii[26,152] := {3, 24, 337, 425} tii[26,153] := {15, 394} tii[26,154] := {16, 99, 200, 498} tii[26,155] := {159, 346} tii[26,156] := {32, 135, 231, 516} tii[26,157] := {203, 301} tii[26,158] := {84, 249, 331, 542} tii[26,159] := {12, 45, 361, 443} tii[26,160] := {56, 189, 296, 532} tii[26,161] := {255} tii[26,162] := {31, 420} tii[26,163] := {47, 94, 179, 497} tii[26,164] := {154, 250} tii[26,165] := {50, 453} tii[26,166] := {205} tii[26,167] := {79, 144, 245, 519} tii[26,168] := {157} tii[26,169] := {1, 108, 166, 452} tii[26,170] := {284, 381} tii[26,171] := {20, 58, 313, 404} tii[26,172] := {7, 130, 213, 479} tii[26,173] := {33, 221, 333, 529} tii[26,174] := {348} tii[26,175] := {44, 376} tii[26,176] := {18, 187, 272, 510} tii[26,177] := {62, 121, 212, 472} tii[26,178] := {13, 91, 262, 448} tii[26,179] := {180, 279} tii[26,180] := {74, 149, 411, 493} tii[26,181] := {391} tii[26,182] := {69, 416} tii[26,183] := {115, 461} tii[26,184] := {246} tii[26,185] := {30, 146, 325, 488} tii[26,186] := {102, 168, 273, 500} tii[26,187] := {81, 427} tii[26,188] := {195} tii[26,189] := {4, 64, 211, 410} tii[26,190] := {343} tii[26,191] := {98, 369} tii[26,192] := {14, 105, 270, 460} tii[26,193] := {248} tii[26,194] := {53, 384} tii[26,195] := {8, 35, 260, 358} tii[26,196] := {23, 326} tii[26,197] := {39, 86, 163, 438} tii[26,198] := {133, 225} tii[26,199] := {41, 368} tii[26,200] := {72, 124, 219, 475} tii[26,201] := {192} tii[26,202] := {148} tii[26,203] := {9, 85, 162, 363} tii[26,204] := {289} tii[26,205] := {68, 320} tii[26,206] := {22, 125, 215, 422} tii[26,207] := {194} tii[26,208] := {73, 334} tii[26,209] := {100, 265} tii[26,210] := {147} cell#105 , |C| = 553 special orbit = [6, 4, 2, 2] special rep = [[3, 1], [2, 1]] , dim = 210 cell rep = phi[[3, 2, 1],[1]]+phi[[3, 1, 1],[2]]+phi[[3, 2],[1, 1]]+phi[[3, 1],[2, 1]] TII depth = 3 TII multiplicity polynomial = 91*X^4+70*X^2+49*X TII subcells: tii[26,1] := {226, 371, 492, 539} tii[26,2] := {299, 300, 474, 475} tii[26,3] := {456, 457} tii[26,4] := {339, 455} tii[26,5] := {168, 318, 517, 547} tii[26,6] := {425, 426} tii[26,7] := {93, 210, 526, 527} tii[26,8] := {239, 240, 437, 438} tii[26,9] := {110, 111, 521, 522} tii[26,10] := {414, 415} tii[26,11] := {488} tii[26,12] := {516} tii[26,13] := {225, 358, 534, 551} tii[26,14] := {324, 325} tii[26,15] := {183, 184, 476, 477} tii[26,16] := {199, 301, 544, 545} tii[26,17] := {88, 89, 468, 469} tii[26,18] := {364, 365} tii[26,19] := {248, 249, 549, 550} tii[26,20] := {418} tii[26,21] := {296, 552} tii[26,22] := {460} tii[26,23] := {216, 217, 489, 490} tii[26,24] := {390, 391} tii[26,25] := {164, 165, 512, 513} tii[26,26] := {320} tii[26,27] := {214, 529} tii[26,28] := {375} tii[26,29] := {434, 435} tii[26,30] := {464} tii[26,31] := {24, 105, 201, 285} tii[26,32] := {78, 171, 180, 291} tii[26,33] := {146, 265, 424, 503} tii[26,34] := {159, 160, 357, 453} tii[26,35] := {190, 307} tii[26,36] := {263, 370} tii[26,37] := {57, 58, 255, 340} tii[26,38] := {284, 412} tii[26,39] := {172, 319, 463, 525} tii[26,40] := {377, 378} tii[26,41] := {23, 106, 286, 393} tii[26,42] := {50, 156, 504, 505} tii[26,43] := {125, 126, 230, 231} tii[26,44] := {254, 359} tii[26,45] := {64, 65, 497, 498} tii[26,46] := {119, 266, 452, 509} tii[26,47] := {38, 157, 334, 429} tii[26,48] := {195, 196, 408, 409} tii[26,49] := {458} tii[26,50] := {308, 309} tii[26,51] := {246, 247} tii[26,52] := {98, 213, 402, 480} tii[26,53] := {491} tii[26,54] := {354} tii[26,55] := {316, 317} tii[26,56] := {181, 182, 289, 290} tii[26,57] := {326, 327} tii[26,58] := {92, 185, 514, 515} tii[26,59] := {250, 251, 450, 451} tii[26,60] := {130, 131, 332, 333} tii[26,61] := {282, 283} tii[26,62] := {33, 34, 470, 471} tii[26,63] := {134, 135, 530, 531} tii[26,64] := {419} tii[26,65] := {305, 306} tii[26,66] := {323} tii[26,67] := {206, 207, 400, 401} tii[26,68] := {177, 541} tii[26,69] := {368, 369} tii[26,70] := {461} tii[26,71] := {360, 361} tii[26,72] := {48, 49, 499, 500} tii[26,73] := {387} tii[26,74] := {75, 519} tii[26,75] := {345} tii[26,76] := {416, 417} tii[26,77] := {447} tii[26,78] := {487} tii[26,79] := {25, 26, 311, 392} tii[26,80] := {310, 413} tii[26,81] := {118, 264, 495, 540} tii[26,82] := {76, 77, 169, 170} tii[26,83] := {7, 59, 341, 436} tii[26,84] := {362, 363} tii[26,85] := {136, 137, 355, 356} tii[26,86] := {73, 211, 486, 528} tii[26,87] := {17, 107, 386, 467} tii[26,88] := {188, 189} tii[26,89] := {405} tii[26,90] := {53, 161, 446, 508} tii[26,91] := {261, 262} tii[26,92] := {140, 241, 532, 533} tii[26,93] := {4, 27, 394, 395} tii[26,94] := {127, 128, 227, 228} tii[26,95] := {270, 271} tii[26,96] := {191, 192, 406, 407} tii[26,97] := {193, 194, 542, 543} tii[26,98] := {84, 85, 274, 275} tii[26,99] := {9, 61, 430, 431} tii[26,100] := {388, 389} tii[26,101] := {54, 158, 510, 511} tii[26,102] := {46, 47, 432, 433} tii[26,103] := {221, 222} tii[26,104] := {372} tii[26,105] := {244, 245} tii[26,106] := {236, 548} tii[26,107] := {37, 112, 481, 482} tii[26,108] := {148, 149, 348, 349} tii[26,109] := {422} tii[26,110] := {268} tii[26,111] := {314, 315} tii[26,112] := {421} tii[26,113] := {138, 139, 537, 538} tii[26,114] := {31, 32, 465, 466} tii[26,115] := {303, 304} tii[26,116] := {336} tii[26,117] := {71, 72, 472, 473} tii[26,118] := {459} tii[26,119] := {179, 546} tii[26,120] := {292} tii[26,121] := {366, 367} tii[26,122] := {115, 496} tii[26,123] := {404} tii[26,124] := {67, 68, 506, 507} tii[26,125] := {155, 535} tii[26,126] := {454} tii[26,127] := {79, 80, 287, 288} tii[26,128] := {280, 281} tii[26,129] := {132, 133, 448, 449} tii[26,130] := {42, 43, 330, 331} tii[26,131] := {186, 187} tii[26,132] := {322} tii[26,133] := {94, 95, 398, 399} tii[26,134] := {259, 260} tii[26,135] := {116, 117, 501, 502} tii[26,136] := {18, 19, 379, 380} tii[26,137] := {242, 243} tii[26,138] := {279} tii[26,139] := {373} tii[26,140] := {163, 520} tii[26,141] := {312, 313} tii[26,142] := {51, 52, 439, 440} tii[26,143] := {232} tii[26,144] := {353} tii[26,145] := {123, 493} tii[26,146] := {410} tii[26,147] := {272, 273} tii[26,148] := {267} tii[26,149] := {346, 347} tii[26,150] := {423} tii[26,151] := {16, 56, 147, 233} tii[26,152] := {29, 81, 103, 173} tii[26,153] := {70, 152} tii[26,154] := {15, 60, 229, 344} tii[26,155] := {200, 302} tii[26,156] := {28, 108, 276, 385} tii[26,157] := {252, 253} tii[26,158] := {102, 212, 411, 485} tii[26,159] := {39, 120, 129, 234} tii[26,160] := {69, 162, 350, 445} tii[26,161] := {298} tii[26,162] := {99, 208} tii[26,163] := {62, 63, 220, 335} tii[26,164] := {197, 198} tii[26,165] := {145, 258} tii[26,166] := {238} tii[26,167] := {113, 114, 295, 403} tii[26,168] := {209} tii[26,169] := {0, 8, 342, 343} tii[26,170] := {337, 338} tii[26,171] := {82, 83, 174, 175} tii[26,172] := {1, 30, 383, 384} tii[26,173] := {22, 109, 483, 484} tii[26,174] := {376} tii[26,175] := {153, 154} tii[26,176] := {14, 66, 443, 444} tii[26,177] := {86, 87, 277, 278} tii[26,178] := {10, 11, 427, 428} tii[26,179] := {223, 224} tii[26,180] := {90, 91, 523, 524} tii[26,181] := {420} tii[26,182] := {204, 205} tii[26,183] := {124, 536} tii[26,184] := {269} tii[26,185] := {35, 36, 478, 479} tii[26,186] := {150, 151, 351, 352} tii[26,187] := {104, 518} tii[26,188] := {237} tii[26,189] := {2, 3, 381, 382} tii[26,190] := {374} tii[26,191] := {256, 257} tii[26,192] := {12, 13, 441, 442} tii[26,193] := {297} tii[26,194] := {55, 494} tii[26,195] := {40, 41, 121, 122} tii[26,196] := {100, 101} tii[26,197] := {44, 45, 218, 219} tii[26,198] := {166, 167} tii[26,199] := {143, 144} tii[26,200] := {96, 97, 293, 294} tii[26,201] := {215} tii[26,202] := {178} tii[26,203] := {5, 6, 328, 329} tii[26,204] := {321} tii[26,205] := {202, 203} tii[26,206] := {20, 21, 396, 397} tii[26,207] := {235} tii[26,208] := {74, 462} tii[26,209] := {141, 142} tii[26,210] := {176} cell#106 , |C| = 245 special orbit = [4, 4, 4, 2] special rep = [[2, 2], [2, 1]] , dim = 140 cell rep = phi[[2, 2, 1],[2]]+phi[[2, 2],[2, 1]] TII depth = 4 TII multiplicity polynomial = 105*X^2+35*X TII subcells: tii[18,1] := {215, 244} tii[18,2] := {57, 147} tii[18,3] := {196, 241} tii[18,4] := {143, 219} tii[18,5] := {107, 146} tii[18,6] := {214, 236} tii[18,7] := {193, 218} tii[18,8] := {152} tii[18,9] := {189} tii[18,10] := {227, 242} tii[18,11] := {226, 237} tii[18,12] := {233} tii[18,13] := {81, 174} tii[18,14] := {170, 231} tii[18,15] := {55, 167} tii[18,16] := {34, 119} tii[18,17] := {91, 195} tii[18,18] := {112, 203} tii[18,19] := {7, 85} tii[18,20] := {181, 239} tii[18,21] := {94, 200} tii[18,22] := {133, 225} tii[18,23] := {118, 213} tii[18,24] := {56, 92} tii[18,25] := {202, 243} tii[18,26] := {142, 182} tii[18,27] := {149, 228} tii[18,28] := {32, 70} tii[18,29] := {95} tii[18,30] := {48} tii[18,31] := {186, 240} tii[18,32] := {134} tii[18,33] := {168, 205} tii[18,34] := {184} tii[18,35] := {33, 138} tii[18,36] := {66, 173} tii[18,37] := {18, 111} tii[18,38] := {156, 230} tii[18,39] := {67, 177} tii[18,40] := {103, 209} tii[18,41] := {26, 108} tii[18,42] := {90, 194} tii[18,43] := {80, 120} tii[18,44] := {38, 126} tii[18,45] := {12, 77} tii[18,46] := {180, 238} tii[18,47] := {125} tii[18,48] := {121, 216} tii[18,49] := {169, 204} tii[18,50] := {59, 153} tii[18,51] := {54, 98} tii[18,52] := {21, 99} tii[18,53] := {164} tii[18,54] := {160, 234} tii[18,55] := {88, 190} tii[18,56] := {73} tii[18,57] := {83, 176} tii[18,58] := {96} tii[18,59] := {192, 220} tii[18,60] := {76} tii[18,61] := {115, 208} tii[18,62] := {206} tii[18,63] := {135} tii[18,64] := {166} tii[18,65] := {117, 172} tii[18,66] := {78, 127} tii[18,67] := {201, 229} tii[18,68] := {148, 197} tii[18,69] := {100} tii[18,70] := {185, 222} tii[18,71] := {212, 232} tii[18,72] := {140, 175} tii[18,73] := {130} tii[18,74] := {221} tii[18,75] := {171, 207} tii[18,76] := {211} tii[18,77] := {37, 141} tii[18,78] := {44, 139} tii[18,79] := {60, 154} tii[18,80] := {24, 105} tii[18,81] := {6, 61} tii[18,82] := {84, 178} tii[18,83] := {40, 128} tii[18,84] := {116, 210} tii[18,85] := {110, 199} tii[18,86] := {14, 39} tii[18,87] := {145, 224} tii[18,88] := {23} tii[18,89] := {13, 79} tii[18,90] := {19, 97} tii[18,91] := {31, 137} tii[18,92] := {69, 179} tii[18,93] := {5, 53} tii[18,94] := {36, 124} tii[18,95] := {9, 72} tii[18,96] := {47, 157} tii[18,97] := {64, 163} tii[18,98] := {122, 217} tii[18,99] := {17, 46} tii[18,100] := {68} tii[18,101] := {58, 150} tii[18,102] := {1, 43} tii[18,103] := {74, 183} tii[18,104] := {28} tii[18,105] := {87, 187} tii[18,106] := {161, 235} tii[18,107] := {104} tii[18,108] := {50} tii[18,109] := {3, 62} tii[18,110] := {136} tii[18,111] := {15} tii[18,112] := {82, 123} tii[18,113] := {114, 162} tii[18,114] := {75} tii[18,115] := {165} tii[18,116] := {16, 106} tii[18,117] := {45, 155} tii[18,118] := {27, 129} tii[18,119] := {4, 65} tii[18,120] := {93, 198} tii[18,121] := {35, 71} tii[18,122] := {49, 158} tii[18,123] := {8, 86} tii[18,124] := {51} tii[18,125] := {132, 223} tii[18,126] := {29} tii[18,127] := {109, 151} tii[18,128] := {102} tii[18,129] := {42, 131} tii[18,130] := {144, 188} tii[18,131] := {52} tii[18,132] := {191} tii[18,133] := {11, 89} tii[18,134] := {20, 113} tii[18,135] := {0, 25} tii[18,136] := {63, 159} tii[18,137] := {2, 41} tii[18,138] := {10} tii[18,139] := {22, 101} tii[18,140] := {30} cell#107 , |C| = 126 special orbit = [6, 2, 2, 2, 2] special rep = [[3, 1, 1], [1, 1]] , dim = 126 cell rep = phi[[3, 1, 1],[1, 1]] TII depth = 4 TII multiplicity polynomial = 126*X TII subcells: tii[24,1] := {125} tii[24,2] := {111} tii[24,3] := {124} tii[24,4] := {85} tii[24,5] := {116} tii[24,6] := {118} tii[24,7] := {81} tii[24,8] := {40} tii[24,9] := {47} tii[24,10] := {122} tii[24,11] := {103} tii[24,12] := {93} tii[24,13] := {25} tii[24,14] := {113} tii[24,15] := {80} tii[24,16] := {119} tii[24,17] := {27} tii[24,18] := {98} tii[24,19] := {99} tii[24,20] := {110} tii[24,21] := {73} tii[24,22] := {39} tii[24,23] := {107} tii[24,24] := {46} tii[24,25] := {53} tii[24,26] := {54} tii[24,27] := {71} tii[24,28] := {100} tii[24,29] := {63} tii[24,30] := {82} tii[24,31] := {117} tii[24,32] := {18} tii[24,33] := {123} tii[24,34] := {102} tii[24,35] := {23} tii[24,36] := {114} tii[24,37] := {115} tii[24,38] := {121} tii[24,39] := {79} tii[24,40] := {64} tii[24,41] := {30} tii[24,42] := {35} tii[24,43] := {45} tii[24,44] := {44} tii[24,45] := {97} tii[24,46] := {96} tii[24,47] := {101} tii[24,48] := {60} tii[24,49] := {109} tii[24,50] := {112} tii[24,51] := {87} tii[24,52] := {50} tii[24,53] := {68} tii[24,54] := {120} tii[24,55] := {48} tii[24,56] := {51} tii[24,57] := {66} tii[24,58] := {67} tii[24,59] := {84} tii[24,60] := {86} tii[24,61] := {105} tii[24,62] := {70} tii[24,63] := {88} tii[24,64] := {104} tii[24,65] := {89} tii[24,66] := {106} tii[24,67] := {21} tii[24,68] := {59} tii[24,69] := {11} tii[24,70] := {41} tii[24,71] := {15} tii[24,72] := {33} tii[24,73] := {4} tii[24,74] := {95} tii[24,75] := {58} tii[24,76] := {7} tii[24,77] := {26} tii[24,78] := {77} tii[24,79] := {78} tii[24,80] := {20} tii[24,81] := {92} tii[24,82] := {17} tii[24,83] := {55} tii[24,84] := {56} tii[24,85] := {32} tii[24,86] := {72} tii[24,87] := {62} tii[24,88] := {57} tii[24,89] := {1} tii[24,90] := {75} tii[24,91] := {14} tii[24,92] := {76} tii[24,93] := {3} tii[24,94] := {91} tii[24,95] := {9} tii[24,96] := {94} tii[24,97] := {8} tii[24,98] := {37} tii[24,99] := {38} tii[24,100] := {108} tii[24,101] := {19} tii[24,102] := {52} tii[24,103] := {42} tii[24,104] := {74} tii[24,105] := {16} tii[24,106] := {90} tii[24,107] := {31} tii[24,108] := {61} tii[24,109] := {0} tii[24,110] := {10} tii[24,111] := {2} tii[24,112] := {6} tii[24,113] := {5} tii[24,114] := {29} tii[24,115] := {28} tii[24,116] := {13} tii[24,117] := {43} tii[24,118] := {34} tii[24,119] := {65} tii[24,120] := {12} tii[24,121] := {83} tii[24,122] := {24} tii[24,123] := {49} tii[24,124] := {22} tii[24,125] := {36} tii[24,126] := {69} cell#108 , |C| = 553 special orbit = [6, 4, 2, 2] special rep = [[3, 1], [2, 1]] , dim = 210 cell rep = phi[[3, 2, 1],[1]]+phi[[3, 1, 1],[2]]+phi[[3, 2],[1, 1]]+phi[[3, 1],[2, 1]] TII depth = 3 TII multiplicity polynomial = 91*X^4+70*X^2+49*X TII subcells: tii[26,1] := {178, 374, 542, 547} tii[26,2] := {110, 337, 509, 551} tii[26,3] := {292, 552} tii[26,4] := {145, 285} tii[26,5] := {236, 434, 521, 529} tii[26,6] := {249, 250} tii[26,7] := {225, 441, 457, 458} tii[26,8] := {159, 401, 469, 543} tii[26,9] := {131, 332, 449, 450} tii[26,10] := {359, 549} tii[26,11] := {363} tii[26,12] := {433} tii[26,13] := {298, 482, 506, 538} tii[26,14] := {247, 248} tii[26,15] := {222, 421, 456, 523} tii[26,16] := {355, 467, 514, 515} tii[26,17] := {119, 301, 447, 448} tii[26,18] := {419, 535} tii[26,19] := {297, 418, 536, 537} tii[26,20] := {362} tii[26,21] := {360, 548} tii[26,22] := {432} tii[26,23] := {286, 384, 498, 544} tii[26,24] := {468, 528} tii[26,25] := {218, 328, 524, 525} tii[26,26] := {390} tii[26,27] := {267, 541} tii[26,28] := {463} tii[26,29] := {507, 546} tii[26,30] := {531} tii[26,31] := {1, 48, 203, 354} tii[26,32] := {8, 35, 316, 317} tii[26,33] := {88, 244, 488, 500} tii[26,34] := {32, 158, 396, 493} tii[26,35] := {43, 424} tii[26,36] := {85, 481} tii[26,37] := {4, 79, 266, 416} tii[26,38] := {100, 220} tii[26,39] := {130, 309, 522, 530} tii[26,40] := {185, 186} tii[26,41] := {14, 101, 334, 438} tii[26,42] := {163, 385, 402, 403} tii[26,43] := {20, 65, 382, 383} tii[26,44] := {78, 162} tii[26,45] := {89, 265, 392, 393} tii[26,46] := {90, 282, 490, 504} tii[26,47] := {31, 139, 389, 415} tii[26,48] := {44, 216, 426, 527} tii[26,49] := {299} tii[26,50] := {116, 117} tii[26,51] := {72, 472} tii[26,52] := {60, 212, 455, 462} tii[26,53] := {371} tii[26,54] := {155} tii[26,55] := {127, 518} tii[26,56] := {39, 102, 439, 440} tii[26,57] := {135, 136} tii[26,58] := {221, 356, 430, 431} tii[26,59] := {73, 281, 473, 545} tii[26,60] := {22, 138, 377, 489} tii[26,61] := {96, 97} tii[26,62] := {57, 202, 330, 331} tii[26,63] := {177, 291, 474, 475} tii[26,64] := {237} tii[26,65] := {114, 511} tii[26,66] := {133} tii[26,67] := {50, 211, 427, 532} tii[26,68] := {231, 508} tii[26,69] := {174, 540} tii[26,70] := {306} tii[26,71] := {164, 534} tii[26,72] := {87, 170, 397, 398} tii[26,73] := {196} tii[26,74] := {124, 437} tii[26,75] := {150} tii[26,76] := {233, 550} tii[26,77] := {279} tii[26,78] := {350} tii[26,79] := {13, 122, 204, 352} tii[26,80] := {121, 224} tii[26,81] := {180, 376, 487, 499} tii[26,82] := {38, 103, 314, 315} tii[26,83] := {29, 146, 269, 378} tii[26,84] := {166, 167} tii[26,85] := {77, 283, 365, 492} tii[26,86] := {132, 349, 445, 464} tii[26,87] := {56, 195, 323, 351} tii[26,88] := {115, 423} tii[26,89] := {214} tii[26,90] := {92, 278, 399, 408} tii[26,91] := {175, 480} tii[26,92] := {287, 417, 477, 478} tii[26,93] := {37, 206, 207, 313} tii[26,94] := {69, 149, 379, 380} tii[26,95] := {187, 188} tii[26,96] := {118, 348, 425, 526} tii[26,97] := {235, 358, 512, 513} tii[26,98] := {40, 194, 310, 442} tii[26,99] := {71, 257, 258, 284} tii[26,100] := {197, 198} tii[26,101] := {169, 391, 412, 413} tii[26,102] := {76, 238, 394, 395} tii[26,103] := {143, 144} tii[26,104] := {300} tii[26,105] := {165, 471} tii[26,106] := {294, 533} tii[26,107] := {126, 333, 343, 344} tii[26,108] := {82, 277, 366, 501} tii[26,109] := {242} tii[26,110] := {184} tii[26,111] := {234, 517} tii[26,112] := {372} tii[26,113] := {179, 293, 496, 497} tii[26,114] := {55, 223, 321, 322} tii[26,115] := {226, 510} tii[26,116] := {259} tii[26,117] := {111, 201, 451, 452} tii[26,118] := {304} tii[26,119] := {232, 520} tii[26,120] := {208} tii[26,121] := {295, 539} tii[26,122] := {151, 485} tii[26,123] := {345} tii[26,124] := {91, 272, 406, 407} tii[26,125] := {176, 484} tii[26,126] := {414} tii[26,127] := {109, 205, 311, 312} tii[26,128] := {199, 200} tii[26,129] := {168, 364, 411, 491} tii[26,130] := {70, 245, 256, 386} tii[26,131] := {227, 422} tii[26,132] := {243} tii[26,133] := {125, 302, 342, 459} tii[26,134] := {296, 479} tii[26,135] := {160, 264, 494, 495} tii[26,136] := {41, 189, 319, 320} tii[26,137] := {290, 470} tii[26,138] := {325} tii[26,139] := {303} tii[26,140] := {209, 519} tii[26,141] := {361, 516} tii[26,142] := {83, 241, 404, 405} tii[26,143] := {271} tii[26,144] := {410} tii[26,145] := {157, 483} tii[26,146] := {466} tii[26,147] := {357, 444} tii[26,148] := {335} tii[26,149] := {420, 503} tii[26,150] := {505} tii[26,151] := {0, 26, 171, 289} tii[26,152] := {2, 12, 228, 229} tii[26,153] := {7, 280} tii[26,154] := {5, 64, 270, 381} tii[26,155] := {47, 113} tii[26,156] := {16, 94, 324, 353} tii[26,157] := {74, 75} tii[26,158] := {58, 217, 446, 465} tii[26,159] := {3, 18, 260, 261} tii[26,160] := {34, 153, 400, 409} tii[26,161] := {106} tii[26,162] := {11, 307} tii[26,163] := {6, 61, 288, 388} tii[26,164] := {45, 46} tii[26,165] := {25, 369} tii[26,166] := {68} tii[26,167] := {17, 104, 336, 461} tii[26,168] := {54} tii[26,169] := {19, 147, 148, 246} tii[26,170] := {141, 142} tii[26,171] := {9, 36, 326, 327} tii[26,172] := {42, 192, 193, 219} tii[26,173] := {120, 329, 346, 347} tii[26,174] := {183} tii[26,175] := {28, 373} tii[26,176] := {84, 268, 275, 276} tii[26,177] := {10, 95, 318, 443} tii[26,178] := {30, 161, 252, 253} tii[26,179] := {62, 63} tii[26,180] := {129, 230, 453, 454} tii[26,181] := {239} tii[26,182] := {49, 429} tii[26,183] := {173, 486} tii[26,184] := {93} tii[26,185] := {59, 210, 338, 339} tii[26,186] := {27, 154, 370, 502} tii[26,187] := {128, 435} tii[26,188] := {67} tii[26,189] := {15, 112, 190, 191} tii[26,190] := {181} tii[26,191] := {80, 476} tii[26,192] := {33, 152, 273, 274} tii[26,193] := {105} tii[26,194] := {86, 375} tii[26,195] := {21, 66, 262, 263} tii[26,196] := {53, 308} tii[26,197] := {24, 140, 251, 387} tii[26,198] := {98, 99} tii[26,199] := {81, 368} tii[26,200] := {52, 213, 305, 460} tii[26,201] := {134} tii[26,202] := {108} tii[26,203] := {23, 137, 254, 255} tii[26,204] := {240} tii[26,205] := {123, 428} tii[26,206] := {51, 182, 340, 341} tii[26,207] := {156} tii[26,208] := {107, 436} tii[26,209] := {172, 367} tii[26,210] := {215} cell#109 , |C| = 245 special orbit = [4, 4, 4, 2] special rep = [[2, 2], [2, 1]] , dim = 140 cell rep = phi[[2, 2, 1],[2]]+phi[[2, 2],[2, 1]] TII depth = 4 TII multiplicity polynomial = 105*X^2+35*X TII subcells: tii[18,1] := {118, 244} tii[18,2] := {94, 177} tii[18,3] := {143, 242} tii[18,4] := {107, 221} tii[18,5] := {142, 189} tii[18,6] := {167, 240} tii[18,7] := {157, 228} tii[18,8] := {180} tii[18,9] := {203} tii[18,10] := {188, 234} tii[18,11] := {200, 227} tii[18,12] := {219} tii[18,13] := {14, 199} tii[18,14] := {56, 232} tii[18,15] := {11, 176} tii[18,16] := {72, 152} tii[18,17] := {24, 217} tii[18,18] := {84, 207} tii[18,19] := {46, 108} tii[18,20] := {75, 239} tii[18,21] := {27, 210} tii[18,22] := {43, 224} tii[18,23] := {36, 229} tii[18,24] := {92, 144} tii[18,25] := {96, 243} tii[18,26] := {106, 197} tii[18,27] := {53, 233} tii[18,28] := {81, 119} tii[18,29] := {128} tii[18,30] := {99} tii[18,31] := {78, 241} tii[18,32] := {162} tii[18,33] := {127, 175} tii[18,34] := {164} tii[18,35] := {19, 150} tii[18,36] := {37, 198} tii[18,37] := {63, 132} tii[18,38] := {97, 231} tii[18,39] := {40, 191} tii[18,40] := {60, 211} tii[18,41] := {23, 126} tii[18,42] := {51, 216} tii[18,43] := {116, 168} tii[18,44] := {74, 156} tii[18,45] := {38, 115} tii[18,46] := {120, 238} tii[18,47] := {155} tii[18,48] := {73, 222} tii[18,49] := {131, 215} tii[18,50] := {49, 171} tii[18,51] := {102, 145} tii[18,52] := {58, 133} tii[18,53] := {184} tii[18,54] := {101, 235} tii[18,55] := {68, 194} tii[18,56] := {122} tii[18,57] := {65, 190} tii[18,58] := {129} tii[18,59] := {153, 196} tii[18,60] := {112} tii[18,61] := {89, 213} tii[18,62] := {185} tii[18,63] := {163} tii[18,64] := {138} tii[18,65] := {70, 206} tii[18,66] := {124, 169} tii[18,67] := {146, 237} tii[18,68] := {95, 218} tii[18,69] := {147} tii[18,70] := {123, 230} tii[18,71] := {178, 214} tii[18,72] := {104, 201} tii[18,73] := {161} tii[18,74] := {204} tii[18,75] := {136, 220} tii[18,76] := {187} tii[18,77] := {6, 158} tii[18,78] := {5, 151} tii[18,79] := {7, 182} tii[18,80] := {1, 141} tii[18,81] := {32, 85} tii[18,82] := {15, 192} tii[18,83] := {3, 160} tii[18,84] := {30, 212} tii[18,85] := {26, 209} tii[18,86] := {45, 76} tii[18,87] := {42, 226} tii[18,88] := {57} tii[18,89] := {13, 103} tii[18,90] := {55, 130} tii[18,91] := {4, 166} tii[18,92] := {16, 202} tii[18,93] := {25, 91} tii[18,94] := {34, 148} tii[18,95] := {41, 109} tii[18,96] := {8, 183} tii[18,97] := {50, 174} tii[18,98] := {39, 223} tii[18,99] := {62, 98} tii[18,100] := {105} tii[18,101] := {48, 170} tii[18,102] := {20, 71} tii[18,103] := {18, 193} tii[18,104] := {77} tii[18,105] := {67, 195} tii[18,106] := {59, 236} tii[18,107] := {137} tii[18,108] := {87} tii[18,109] := {33, 86} tii[18,110] := {114} tii[18,111] := {61} tii[18,112] := {64, 154} tii[18,113] := {88, 186} tii[18,114] := {110} tii[18,115] := {139} tii[18,116] := {10, 140} tii[18,117] := {28, 181} tii[18,118] := {17, 159} tii[18,119] := {31, 93} tii[18,120] := {54, 208} tii[18,121] := {82, 121} tii[18,122] := {29, 172} tii[18,123] := {47, 111} tii[18,124] := {100} tii[18,125] := {79, 225} tii[18,126] := {80} tii[18,127] := {83, 179} tii[18,128] := {134} tii[18,129] := {35, 149} tii[18,130] := {113, 205} tii[18,131] := {90} tii[18,132] := {165} tii[18,133] := {0, 117} tii[18,134] := {2, 135} tii[18,135] := {12, 52} tii[18,136] := {9, 173} tii[18,137] := {21, 66} tii[18,138] := {44} tii[18,139] := {22, 125} tii[18,140] := {69} cell#110 , |C| = 126 special orbit = [6, 2, 2, 2, 2] special rep = [[3, 1, 1], [1, 1]] , dim = 126 cell rep = phi[[3, 1, 1],[1, 1]] TII depth = 4 TII multiplicity polynomial = 126*X TII subcells: tii[24,1] := {125} tii[24,2] := {124} tii[24,3] := {115} tii[24,4] := {123} tii[24,5] := {107} tii[24,6] := {82} tii[24,7] := {51} tii[24,8] := {39} tii[24,9] := {21} tii[24,10] := {121} tii[24,11] := {70} tii[24,12] := {117} tii[24,13] := {59} tii[24,14] := {114} tii[24,15] := {79} tii[24,16] := {102} tii[24,17] := {24} tii[24,18] := {103} tii[24,19] := {69} tii[24,20] := {86} tii[24,21] := {106} tii[24,22] := {80} tii[24,23] := {83} tii[24,24] := {20} tii[24,25] := {90} tii[24,26] := {56} tii[24,27] := {73} tii[24,28] := {63} tii[24,29] := {34} tii[24,30] := {46} tii[24,31] := {89} tii[24,32] := {81} tii[24,33] := {122} tii[24,34] := {98} tii[24,35] := {42} tii[24,36] := {116} tii[24,37] := {88} tii[24,38] := {105} tii[24,39] := {113} tii[24,40] := {118} tii[24,41] := {100} tii[24,42] := {23} tii[24,43] := {78} tii[24,44] := {109} tii[24,45] := {96} tii[24,46] := {119} tii[24,47] := {91} tii[24,48] := {95} tii[24,49] := {110} tii[24,50] := {87} tii[24,51] := {71} tii[24,52] := {40} tii[24,53] := {53} tii[24,54] := {104} tii[24,55] := {112} tii[24,56] := {19} tii[24,57] := {120} tii[24,58] := {97} tii[24,59] := {111} tii[24,60] := {76} tii[24,61] := {62} tii[24,62] := {33} tii[24,63] := {45} tii[24,64] := {93} tii[24,65] := {48} tii[24,66] := {65} tii[24,67] := {4} tii[24,68] := {36} tii[24,69] := {8} tii[24,70] := {22} tii[24,71] := {3} tii[24,72] := {12} tii[24,73] := {18} tii[24,74] := {101} tii[24,75] := {58} tii[24,76] := {7} tii[24,77] := {25} tii[24,78] := {84} tii[24,79] := {50} tii[24,80] := {15} tii[24,81] := {67} tii[24,82] := {2} tii[24,83] := {64} tii[24,84] := {35} tii[24,85] := {11} tii[24,86] := {47} tii[24,87] := {30} tii[24,88] := {99} tii[24,89] := {32} tii[24,90] := {108} tii[24,91] := {43} tii[24,92] := {77} tii[24,93] := {17} tii[24,94] := {94} tii[24,95] := {27} tii[24,96] := {68} tii[24,97] := {6} tii[24,98] := {72} tii[24,99] := {41} tii[24,100] := {85} tii[24,101] := {14} tii[24,102] := {54} tii[24,103] := {38} tii[24,104] := {49} tii[24,105] := {1} tii[24,106] := {66} tii[24,107] := {10} tii[24,108] := {29} tii[24,109] := {52} tii[24,110] := {61} tii[24,111] := {31} tii[24,112] := {44} tii[24,113] := {16} tii[24,114] := {60} tii[24,115] := {92} tii[24,116] := {26} tii[24,117] := {75} tii[24,118] := {55} tii[24,119] := {57} tii[24,120] := {5} tii[24,121] := {74} tii[24,122] := {13} tii[24,123] := {37} tii[24,124] := {0} tii[24,125] := {9} tii[24,126] := {28} cell#111 , |C| = 126 special orbit = [6, 2, 2, 2, 2] special rep = [[3, 1, 1], [1, 1]] , dim = 126 cell rep = phi[[3, 1, 1],[1, 1]] TII depth = 4 TII multiplicity polynomial = 126*X TII subcells: tii[24,1] := {125} tii[24,2] := {124} tii[24,3] := {118} tii[24,4] := {112} tii[24,5] := {92} tii[24,6] := {57} tii[24,7] := {66} tii[24,8] := {55} tii[24,9] := {34} tii[24,10] := {122} tii[24,11] := {83} tii[24,12] := {120} tii[24,13] := {74} tii[24,14] := {117} tii[24,15] := {89} tii[24,16] := {108} tii[24,17] := {38} tii[24,18] := {109} tii[24,19] := {82} tii[24,20] := {96} tii[24,21] := {113} tii[24,22] := {91} tii[24,23] := {93} tii[24,24] := {33} tii[24,25] := {102} tii[24,26] := {71} tii[24,27] := {87} tii[24,28] := {76} tii[24,29] := {48} tii[24,30] := {61} tii[24,31] := {99} tii[24,32] := {56} tii[24,33] := {123} tii[24,34] := {105} tii[24,35] := {25} tii[24,36] := {119} tii[24,37] := {98} tii[24,38] := {111} tii[24,39] := {116} tii[24,40] := {100} tii[24,41] := {73} tii[24,42] := {20} tii[24,43] := {53} tii[24,44] := {84} tii[24,45] := {104} tii[24,46] := {121} tii[24,47] := {75} tii[24,48] := {68} tii[24,49] := {115} tii[24,50] := {97} tii[24,51] := {59} tii[24,52] := {32} tii[24,53] := {43} tii[24,54] := {110} tii[24,55] := {90} tii[24,56] := {11} tii[24,57] := {101} tii[24,58] := {70} tii[24,59] := {86} tii[24,60] := {63} tii[24,61] := {41} tii[24,62] := {19} tii[24,63] := {26} tii[24,64] := {78} tii[24,65] := {31} tii[24,66] := {42} tii[24,67] := {0} tii[24,68] := {50} tii[24,69] := {2} tii[24,70] := {35} tii[24,71] := {10} tii[24,72] := {23} tii[24,73] := {5} tii[24,74] := {107} tii[24,75] := {72} tii[24,76] := {15} tii[24,77] := {39} tii[24,78] := {94} tii[24,79] := {65} tii[24,80] := {28} tii[24,81] := {80} tii[24,82] := {9} tii[24,83] := {77} tii[24,84] := {49} tii[24,85] := {22} tii[24,86] := {62} tii[24,87] := {46} tii[24,88] := {106} tii[24,89] := {13} tii[24,90] := {114} tii[24,91] := {58} tii[24,92] := {88} tii[24,93] := {24} tii[24,94] := {103} tii[24,95] := {44} tii[24,96] := {81} tii[24,97] := {14} tii[24,98] := {85} tii[24,99] := {54} tii[24,100] := {95} tii[24,101] := {27} tii[24,102] := {69} tii[24,103] := {52} tii[24,104] := {64} tii[24,105] := {8} tii[24,106] := {79} tii[24,107] := {21} tii[24,108] := {45} tii[24,109] := {6} tii[24,110] := {40} tii[24,111] := {16} tii[24,112] := {29} tii[24,113] := {7} tii[24,114] := {37} tii[24,115] := {67} tii[24,116] := {17} tii[24,117] := {51} tii[24,118] := {36} tii[24,119] := {47} tii[24,120] := {3} tii[24,121] := {60} tii[24,122] := {12} tii[24,123] := {30} tii[24,124] := {1} tii[24,125] := {4} tii[24,126] := {18} cell#112 , |C| = 245 special orbit = [4, 4, 4, 2] special rep = [[2, 2], [2, 1]] , dim = 140 cell rep = phi[[2, 2, 1],[2]]+phi[[2, 2],[2, 1]] TII depth = 4 TII multiplicity polynomial = 105*X^2+35*X TII subcells: tii[18,1] := {155, 244} tii[18,2] := {71, 159} tii[18,3] := {178, 241} tii[18,4] := {149, 221} tii[18,5] := {119, 167} tii[18,6] := {198, 239} tii[18,7] := {194, 224} tii[18,8] := {172} tii[18,9] := {195} tii[18,10] := {215, 243} tii[18,11] := {226, 240} tii[18,12] := {235} tii[18,13] := {27, 182} tii[18,14] := {83, 232} tii[18,15] := {14, 162} tii[18,16] := {50, 133} tii[18,17] := {41, 202} tii[18,18] := {123, 204} tii[18,19] := {22, 86} tii[18,20] := {106, 238} tii[18,21] := {43, 206} tii[18,22] := {64, 223} tii[18,23] := {59, 218} tii[18,24] := {70, 115} tii[18,25] := {130, 242} tii[18,26] := {148, 192} tii[18,27] := {81, 228} tii[18,28] := {51, 92} tii[18,29] := {121} tii[18,30] := {76} tii[18,31] := {107, 236} tii[18,32] := {152} tii[18,33] := {171, 211} tii[18,34] := {196} tii[18,35] := {26, 136} tii[18,36] := {60, 181} tii[18,37] := {36, 110} tii[18,38] := {131, 231} tii[18,39] := {62, 185} tii[18,40] := {85, 207} tii[18,41] := {33, 111} tii[18,42] := {80, 201} tii[18,43] := {94, 142} tii[18,44] := {54, 134} tii[18,45] := {20, 88} tii[18,46] := {156, 237} tii[18,47] := {147} tii[18,48] := {105, 216} tii[18,49] := {173, 210} tii[18,50] := {74, 163} tii[18,51] := {72, 118} tii[18,52] := {38, 116} tii[18,53] := {175} tii[18,54] := {132, 229} tii[18,55] := {103, 190} tii[18,56] := {102} tii[18,57] := {97, 180} tii[18,58] := {122} tii[18,59] := {193, 225} tii[18,60] := {100} tii[18,61] := {126, 203} tii[18,62] := {213} tii[18,63] := {153} tii[18,64] := {177} tii[18,65] := {104, 188} tii[18,66] := {95, 145} tii[18,67] := {179, 233} tii[18,68] := {129, 205} tii[18,69] := {127} tii[18,70] := {157, 222} tii[18,71] := {212, 234} tii[18,72] := {146, 187} tii[18,73] := {150} tii[18,74] := {227} tii[18,75] := {174, 209} tii[18,76] := {214} tii[18,77] := {8, 135} tii[18,78] := {6, 137} tii[18,79] := {16, 161} tii[18,80] := {2, 113} tii[18,81] := {12, 65} tii[18,82] := {28, 186} tii[18,83] := {9, 144} tii[18,84] := {46, 208} tii[18,85] := {42, 200} tii[18,86] := {21, 49} tii[18,87] := {63, 220} tii[18,88] := {39} tii[18,89] := {19, 87} tii[18,90] := {35, 109} tii[18,91] := {7, 138} tii[18,92] := {29, 184} tii[18,93] := {10, 66} tii[18,94] := {53, 139} tii[18,95] := {23, 90} tii[18,96] := {18, 168} tii[18,97] := {77, 169} tii[18,98] := {61, 217} tii[18,99] := {34, 69} tii[18,100] := {98} tii[18,101] := {73, 158} tii[18,102] := {4, 47} tii[18,103] := {30, 189} tii[18,104] := {56} tii[18,105] := {101, 183} tii[18,106] := {84, 230} tii[18,107] := {128} tii[18,108] := {75} tii[18,109] := {13, 68} tii[18,110] := {154} tii[18,111] := {40} tii[18,112] := {96, 140} tii[18,113] := {125, 170} tii[18,114] := {99} tii[18,115] := {176} tii[18,116] := {15, 112} tii[18,117] := {44, 160} tii[18,118] := {31, 143} tii[18,119] := {11, 67} tii[18,120] := {82, 199} tii[18,121] := {52, 93} tii[18,122] := {45, 165} tii[18,123] := {24, 91} tii[18,124] := {78} tii[18,125] := {108, 219} tii[18,126] := {58} tii[18,127] := {120, 164} tii[18,128] := {124} tii[18,129] := {55, 141} tii[18,130] := {151, 191} tii[18,131] := {79} tii[18,132] := {197} tii[18,133] := {0, 89} tii[18,134] := {3, 117} tii[18,135] := {1, 32} tii[18,136] := {17, 166} tii[18,137] := {5, 48} tii[18,138] := {25} tii[18,139] := {37, 114} tii[18,140] := {57} cell#113 , |C| = 126 special orbit = [6, 2, 2, 2, 2] special rep = [[3, 1, 1], [1, 1]] , dim = 126 cell rep = phi[[3, 1, 1],[1, 1]] TII depth = 4 TII multiplicity polynomial = 126*X TII subcells: tii[24,1] := {100} tii[24,2] := {120} tii[24,3] := {125} tii[24,4] := {92} tii[24,5] := {117} tii[24,6] := {99} tii[24,7] := {25} tii[24,8] := {31} tii[24,9] := {29} tii[24,10] := {76} tii[24,11] := {37} tii[24,12] := {110} tii[24,13] := {49} tii[24,14] := {54} tii[24,15] := {55} tii[24,16] := {123} tii[24,17] := {43} tii[24,18] := {73} tii[24,19] := {74} tii[24,20] := {91} tii[24,21] := {105} tii[24,22] := {69} tii[24,23] := {122} tii[24,24] := {66} tii[24,25] := {88} tii[24,26] := {89} tii[24,27] := {104} tii[24,28] := {114} tii[24,29] := {85} tii[24,30] := {102} tii[24,31] := {57} tii[24,32] := {30} tii[24,33] := {78} tii[24,34] := {79} tii[24,35] := {28} tii[24,36] := {96} tii[24,37] := {97} tii[24,38] := {109} tii[24,39] := {101} tii[24,40] := {86} tii[24,41] := {48} tii[24,42] := {42} tii[24,43] := {65} tii[24,44] := {64} tii[24,45] := {113} tii[24,46] := {112} tii[24,47] := {115} tii[24,48] := {82} tii[24,49] := {119} tii[24,50] := {121} tii[24,51] := {98} tii[24,52] := {62} tii[24,53] := {80} tii[24,54] := {124} tii[24,55] := {53} tii[24,56] := {27} tii[24,57] := {71} tii[24,58] := {72} tii[24,59] := {90} tii[24,60] := {93} tii[24,61] := {75} tii[24,62] := {41} tii[24,63] := {56} tii[24,64] := {107} tii[24,65] := {63} tii[24,66] := {81} tii[24,67] := {0} tii[24,68] := {16} tii[24,69] := {1} tii[24,70] := {15} tii[24,71] := {2} tii[24,72] := {8} tii[24,73] := {4} tii[24,74] := {35} tii[24,75] := {36} tii[24,76] := {6} tii[24,77] := {24} tii[24,78] := {51} tii[24,79] := {52} tii[24,80] := {14} tii[24,81] := {70} tii[24,82] := {11} tii[24,83] := {46} tii[24,84] := {47} tii[24,85] := {21} tii[24,86] := {61} tii[24,87] := {40} tii[24,88] := {77} tii[24,89] := {7} tii[24,90] := {94} tii[24,91] := {34} tii[24,92] := {95} tii[24,93] := {12} tii[24,94] := {108} tii[24,95] := {22} tii[24,96] := {111} tii[24,97] := {18} tii[24,98] := {67} tii[24,99] := {68} tii[24,100] := {118} tii[24,101] := {33} tii[24,102] := {84} tii[24,103] := {59} tii[24,104] := {106} tii[24,105] := {26} tii[24,106] := {116} tii[24,107] := {50} tii[24,108] := {83} tii[24,109] := {3} tii[24,110] := {23} tii[24,111] := {5} tii[24,112] := {13} tii[24,113] := {10} tii[24,114] := {45} tii[24,115] := {44} tii[24,116] := {20} tii[24,117] := {60} tii[24,118] := {39} tii[24,119] := {87} tii[24,120] := {17} tii[24,121] := {103} tii[24,122] := {32} tii[24,123] := {58} tii[24,124] := {9} tii[24,125] := {19} tii[24,126] := {38} cell#114 , |C| = 315 special orbit = [4, 4, 2, 2, 2] special rep = [[2, 1, 1], [2, 1]] , dim = 210 cell rep = phi[[2, 2, 1],[1, 1]]+phi[[2, 1, 1],[2, 1]] TII depth = 4 TII multiplicity polynomial = 105*X^2+105*X TII subcells: tii[16,1] := {221, 277} tii[16,2] := {290} tii[16,3] := {228, 307} tii[16,4] := {172, 314} tii[16,5] := {299} tii[16,6] := {313} tii[16,7] := {53, 178} tii[16,8] := {153} tii[16,9] := {94, 95} tii[16,10] := {190, 254} tii[16,11] := {82, 208} tii[16,12] := {35, 204} tii[16,13] := {271} tii[16,14] := {123, 203} tii[16,15] := {187} tii[16,16] := {156} tii[16,17] := {195} tii[16,18] := {165, 279} tii[16,19] := {116, 237} tii[16,20] := {103, 304} tii[16,21] := {261} tii[16,22] := {218} tii[16,23] := {137, 257} tii[16,24] := {80, 258} tii[16,25] := {170} tii[16,26] := {106, 274} tii[16,27] := {213} tii[16,28] := {284} tii[16,29] := {245} tii[16,30] := {265} tii[16,31] := {117, 238} tii[16,32] := {131, 132} tii[16,33] := {219} tii[16,34] := {58, 234} tii[16,35] := {158, 233} tii[16,36] := {192} tii[16,37] := {225} tii[16,38] := {163, 164} tii[16,39] := {197, 295} tii[16,40] := {150, 264} tii[16,41] := {193, 259} tii[16,42] := {138, 311} tii[16,43] := {36, 260} tii[16,44] := {128, 198} tii[16,45] := {246} tii[16,46] := {173, 281} tii[16,47] := {115, 282} tii[16,48] := {201} tii[16,49] := {283} tii[16,50] := {223} tii[16,51] := {159, 239} tii[16,52] := {141, 294} tii[16,53] := {242} tii[16,54] := {250} tii[16,55] := {55, 278} tii[16,56] := {248} tii[16,57] := {105, 303} tii[16,58] := {300} tii[16,59] := {269} tii[16,60] := {76, 292} tii[16,61] := {273} tii[16,62] := {286} tii[16,63] := {185, 285} tii[16,64] := {270} tii[16,65] := {202, 297} tii[16,66] := {149, 298} tii[16,67] := {230} tii[16,68] := {267} tii[16,69] := {176, 306} tii[16,70] := {114, 308} tii[16,71] := {256} tii[16,72] := {309} tii[16,73] := {289} tii[16,74] := {287} tii[16,75] := {301} tii[16,76] := {140, 312} tii[16,77] := {302} tii[16,78] := {310} tii[16,79] := {4, 25} tii[16,80] := {18, 113} tii[16,81] := {33} tii[16,82] := {61} tii[16,83] := {13, 45} tii[16,84] := {64, 65} tii[16,85] := {34, 148} tii[16,86] := {5, 67} tii[16,87] := {89, 174} tii[16,88] := {17, 175} tii[16,89] := {56} tii[16,90] := {122} tii[16,91] := {43, 44} tii[16,92] := {20, 111} tii[16,93] := {88} tii[16,94] := {162} tii[16,95] := {63} tii[16,96] := {84} tii[16,97] := {71, 205} tii[16,98] := {100} tii[16,99] := {31, 206} tii[16,100] := {120} tii[16,101] := {47, 227} tii[16,102] := {147} tii[16,103] := {74} tii[16,104] := {184} tii[16,105] := {129, 130} tii[16,106] := {29, 73} tii[16,107] := {68, 69} tii[16,108] := {157, 231} tii[16,109] := {57, 183} tii[16,110] := {16, 232} tii[16,111] := {93, 166} tii[16,112] := {14, 99} tii[16,113] := {191} tii[16,114] := {85} tii[16,115] := {92} tii[16,116] := {124, 209} tii[16,117] := {38, 146} tii[16,118] := {224} tii[16,119] := {121} tii[16,120] := {104, 235} tii[16,121] := {54, 236} tii[16,122] := {6, 134} tii[16,123] := {222} tii[16,124] := {118} tii[16,125] := {136} tii[16,126] := {30, 255} tii[16,127] := {70, 291} tii[16,128] := {66, 133} tii[16,129] := {125} tii[16,130] := {75, 253} tii[16,131] := {249} tii[16,132] := {154} tii[16,133] := {21, 180} tii[16,134] := {46, 272} tii[16,135] := {109} tii[16,136] := {182} tii[16,137] := {91, 179} tii[16,138] := {49, 226} tii[16,139] := {216} tii[16,140] := {51, 280} tii[16,141] := {200} tii[16,142] := {151} tii[16,143] := {142} tii[16,144] := {241} tii[16,145] := {188} tii[16,146] := {72, 293} tii[16,147] := {243} tii[16,148] := {52, 108} tii[16,149] := {86, 215} tii[16,150] := {101, 102} tii[16,151] := {32, 135} tii[16,152] := {119} tii[16,153] := {60, 181} tii[16,154] := {127} tii[16,155] := {155} tii[16,156] := {152} tii[16,157] := {96, 168} tii[16,158] := {15, 169} tii[16,159] := {83, 263} tii[16,160] := {139, 262} tii[16,161] := {171} tii[16,162] := {161} tii[16,163] := {189} tii[16,164] := {110, 276} tii[16,165] := {126, 211} tii[16,166] := {39, 212} tii[16,167] := {214} tii[16,168] := {143} tii[16,169] := {244} tii[16,170] := {79, 252} tii[16,171] := {81, 296} tii[16,172] := {7, 199} tii[16,173] := {229} tii[16,174] := {186} tii[16,175] := {177} tii[16,176] := {194} tii[16,177] := {107, 305} tii[16,178] := {22, 240} tii[16,179] := {266} tii[16,180] := {220} tii[16,181] := {50, 275} tii[16,182] := {268} tii[16,183] := {217} tii[16,184] := {247} tii[16,185] := {207} tii[16,186] := {288} tii[16,187] := {0, 12} tii[16,188] := {11} tii[16,189] := {3, 42} tii[16,190] := {23, 24} tii[16,191] := {19} tii[16,192] := {10, 77} tii[16,193] := {40} tii[16,194] := {28} tii[16,195] := {2, 98} tii[16,196] := {41, 97} tii[16,197] := {37} tii[16,198] := {90} tii[16,199] := {9, 145} tii[16,200] := {62, 144} tii[16,201] := {27, 196} tii[16,202] := {48} tii[16,203] := {1, 167} tii[16,204] := {160} tii[16,205] := {59} tii[16,206] := {8, 210} tii[16,207] := {78} tii[16,208] := {26, 251} tii[16,209] := {87} tii[16,210] := {112} cell#115 , |C| = 245 special orbit = [4, 4, 4, 2] special rep = [[2, 2], [2, 1]] , dim = 140 cell rep = phi[[2, 2, 1],[2]]+phi[[2, 2],[2, 1]] TII depth = 4 TII multiplicity polynomial = 105*X^2+35*X TII subcells: tii[18,1] := {185, 242} tii[18,2] := {110, 111} tii[18,3] := {208, 236} tii[18,4] := {195, 196} tii[18,5] := {154, 155} tii[18,6] := {225, 239} tii[18,7] := {221, 222} tii[18,8] := {200} tii[18,9] := {218} tii[18,10] := {235, 244} tii[18,11] := {240, 241} tii[18,12] := {243} tii[18,13] := {28, 140} tii[18,14] := {108, 215} tii[18,15] := {14, 109} tii[18,16] := {82, 83} tii[18,17] := {50, 167} tii[18,18] := {171, 172} tii[18,19] := {38, 39} tii[18,20] := {138, 228} tii[18,21] := {57, 170} tii[18,22] := {95, 199} tii[18,23] := {75, 192} tii[18,24] := {98, 99} tii[18,25] := {164, 237} tii[18,26] := {183, 184} tii[18,27] := {100, 213} tii[18,28] := {71, 72} tii[18,29] := {151} tii[18,30] := {96} tii[18,31] := {136, 229} tii[18,32] := {179} tii[18,33] := {206, 207} tii[18,34] := {220} tii[18,35] := {31, 80} tii[18,36] := {76, 139} tii[18,37] := {60, 61} tii[18,38] := {165, 214} tii[18,39] := {87, 143} tii[18,40] := {123, 175} tii[18,41] := {53, 54} tii[18,42] := {104, 166} tii[18,43] := {126, 127} tii[18,44] := {88, 89} tii[18,45] := {34, 35} tii[18,46] := {190, 227} tii[18,47] := {177} tii[18,48] := {130, 193} tii[18,49] := {204, 205} tii[18,50] := {114, 115} tii[18,51] := {102, 103} tii[18,52] := {65, 66} tii[18,53] := {201} tii[18,54] := {162, 216} tii[18,55] := {149, 150} tii[18,56] := {125} tii[18,57] := {141, 142} tii[18,58] := {159} tii[18,59] := {223, 224} tii[18,60] := {135} tii[18,61] := {173, 174} tii[18,62] := {231} tii[18,63] := {189} tii[18,64] := {212} tii[18,65] := {134, 180} tii[18,66] := {132, 133} tii[18,67] := {211, 232} tii[18,68] := {158, 203} tii[18,69] := {153} tii[18,70] := {188, 226} tii[18,71] := {233, 234} tii[18,72] := {181, 182} tii[18,73] := {178} tii[18,74] := {238} tii[18,75] := {209, 210} tii[18,76] := {230} tii[18,77] := {5, 90} tii[18,78] := {6, 81} tii[18,79] := {13, 117} tii[18,80] := {1, 56} tii[18,81] := {20, 21} tii[18,82] := {37, 144} tii[18,83] := {12, 94} tii[18,84] := {68, 176} tii[18,85] := {47, 169} tii[18,86] := {26, 27} tii[18,87] := {77, 198} tii[18,88] := {46} tii[18,89] := {32, 33} tii[18,90] := {58, 59} tii[18,91] := {7, 84} tii[18,92] := {29, 145} tii[18,93] := {16, 17} tii[18,94] := {85, 86} tii[18,95] := {41, 42} tii[18,96] := {25, 120} tii[18,97] := {121, 122} tii[18,98] := {70, 194} tii[18,99] := {48, 49} tii[18,100] := {131} tii[18,101] := {112, 113} tii[18,102] := {8, 9} tii[18,103] := {40, 146} tii[18,104] := {69} tii[18,105] := {147, 148} tii[18,106] := {106, 217} tii[18,107] := {163} tii[18,108] := {105} tii[18,109] := {23, 24} tii[18,110] := {191} tii[18,111] := {52} tii[18,112] := {128, 129} tii[18,113] := {160, 161} tii[18,114] := {124} tii[18,115] := {202} tii[18,116] := {15, 55} tii[18,117] := {51, 116} tii[18,118] := {45, 93} tii[18,119] := {18, 19} tii[18,120] := {101, 168} tii[18,121] := {73, 74} tii[18,122] := {64, 118} tii[18,123] := {43, 44} tii[18,124] := {97} tii[18,125] := {137, 197} tii[18,126] := {79} tii[18,127] := {156, 157} tii[18,128] := {152} tii[18,129] := {91, 92} tii[18,130] := {186, 187} tii[18,131] := {107} tii[18,132] := {219} tii[18,133] := {0, 36} tii[18,134] := {4, 67} tii[18,135] := {2, 3} tii[18,136] := {22, 119} tii[18,137] := {10, 11} tii[18,138] := {30} tii[18,139] := {62, 63} tii[18,140] := {78} cell#116 , |C| = 126 special orbit = [6, 2, 2, 2, 2] special rep = [[3, 1, 1], [1, 1]] , dim = 126 cell rep = phi[[3, 1, 1],[1, 1]] TII depth = 4 TII multiplicity polynomial = 126*X TII subcells: tii[24,1] := {125} tii[24,2] := {120} tii[24,3] := {106} tii[24,4] := {104} tii[24,5] := {76} tii[24,6] := {44} tii[24,7] := {89} tii[24,8] := {83} tii[24,9] := {57} tii[24,10] := {124} tii[24,11] := {102} tii[24,12] := {115} tii[24,13] := {65} tii[24,14] := {122} tii[24,15] := {110} tii[24,16] := {92} tii[24,17] := {41} tii[24,18] := {119} tii[24,19] := {101} tii[24,20] := {113} tii[24,21] := {111} tii[24,22] := {81} tii[24,23] := {77} tii[24,24] := {28} tii[24,25] := {98} tii[24,26] := {72} tii[24,27] := {86} tii[24,28] := {68} tii[24,29] := {40} tii[24,30] := {52} tii[24,31] := {109} tii[24,32] := {47} tii[24,33] := {123} tii[24,34] := {114} tii[24,35] := {27} tii[24,36] := {121} tii[24,37] := {108} tii[24,38] := {117} tii[24,39] := {103} tii[24,40] := {97} tii[24,41] := {63} tii[24,42] := {15} tii[24,43] := {55} tii[24,44] := {84} tii[24,45] := {95} tii[24,46] := {116} tii[24,47] := {59} tii[24,48] := {69} tii[24,49] := {107} tii[24,50] := {82} tii[24,51] := {50} tii[24,52] := {24} tii[24,53] := {35} tii[24,54] := {94} tii[24,55] := {75} tii[24,56] := {7} tii[24,57] := {91} tii[24,58] := {62} tii[24,59] := {78} tii[24,60] := {46} tii[24,61] := {34} tii[24,62] := {13} tii[24,63] := {21} tii[24,64] := {60} tii[24,65] := {19} tii[24,66] := {30} tii[24,67] := {4} tii[24,68] := {74} tii[24,69] := {12} tii[24,70] := {58} tii[24,71] := {26} tii[24,72] := {43} tii[24,73] := {18} tii[24,74] := {118} tii[24,75] := {96} tii[24,76] := {32} tii[24,77] := {66} tii[24,78] := {112} tii[24,79] := {88} tii[24,80] := {53} tii[24,81] := {100} tii[24,82] := {25} tii[24,83] := {99} tii[24,84] := {73} tii[24,85] := {42} tii[24,86] := {87} tii[24,87] := {71} tii[24,88] := {90} tii[24,89] := {9} tii[24,90] := {105} tii[24,91] := {49} tii[24,92] := {80} tii[24,93] := {20} tii[24,94] := {93} tii[24,95] := {36} tii[24,96] := {64} tii[24,97] := {14} tii[24,98] := {85} tii[24,99] := {56} tii[24,100] := {79} tii[24,101] := {29} tii[24,102] := {70} tii[24,103] := {54} tii[24,104] := {48} tii[24,105] := {6} tii[24,106] := {61} tii[24,107] := {17} tii[24,108] := {38} tii[24,109] := {3} tii[24,110] := {33} tii[24,111] := {10} tii[24,112] := {22} tii[24,113] := {5} tii[24,114] := {39} tii[24,115] := {67} tii[24,116] := {16} tii[24,117] := {51} tii[24,118] := {37} tii[24,119] := {31} tii[24,120] := {1} tii[24,121] := {45} tii[24,122] := {8} tii[24,123] := {23} tii[24,124] := {0} tii[24,125] := {2} tii[24,126] := {11} cell#117 , |C| = 175 special orbit = [6, 2, 2, 2, 1, 1] special rep = [[3, 1], [1, 1, 1]] , dim = 105 cell rep = phi[[3, 1, 1, 1],[1]]+phi[[3, 1],[1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 70*X^2+35*X TII subcells: tii[23,1] := {105, 174} tii[23,2] := {89, 173} tii[23,3] := {55, 167} tii[23,4] := {127, 171} tii[23,5] := {115, 169} tii[23,6] := {134, 166} tii[23,7] := {63, 156} tii[23,8] := {126, 157} tii[23,9] := {143} tii[23,10] := {136, 161} tii[23,11] := {54, 140} tii[23,12] := {111, 149} tii[23,13] := {132} tii[23,14] := {78, 119} tii[23,15] := {98} tii[23,16] := {102, 164} tii[23,17] := {88, 160} tii[23,18] := {112, 154} tii[23,19] := {37, 138} tii[23,20] := {101, 139} tii[23,21] := {122} tii[23,22] := {87, 137} tii[23,23] := {113, 147} tii[23,24] := {30, 117} tii[23,25] := {85, 129} tii[23,26] := {76, 118} tii[23,27] := {108} tii[23,28] := {97} tii[23,29] := {53, 95} tii[23,30] := {52, 94} tii[23,31] := {71} tii[23,32] := {72} tii[23,33] := {46} tii[23,34] := {86, 128} tii[23,35] := {11, 92} tii[23,36] := {60, 106} tii[23,37] := {82} tii[23,38] := {36, 81} tii[23,39] := {28, 66} tii[23,40] := {43} tii[23,41] := {58} tii[23,42] := {35} tii[23,43] := {9, 38} tii[23,44] := {20} tii[23,45] := {6} tii[23,46] := {16, 146} tii[23,47] := {80, 172} tii[23,48] := {27, 152} tii[23,49] := {56, 168} tii[23,50] := {15, 145} tii[23,51] := {33, 159} tii[23,52] := {51, 165} tii[23,53] := {114, 155} tii[23,54] := {25, 151} tii[23,55] := {64, 170} tii[23,56] := {104, 141} tii[23,57] := {41, 163} tii[23,58] := {124} tii[23,59] := {14, 144} tii[23,60] := {79, 120} tii[23,61] := {32, 158} tii[23,62] := {99} tii[23,63] := {74} tii[23,64] := {61, 116} tii[23,65] := {77, 153} tii[23,66] := {91, 162} tii[23,67] := {49, 93} tii[23,68] := {47, 133} tii[23,69] := {70} tii[23,70] := {68, 150} tii[23,71] := {29, 67} tii[23,72] := {24, 125} tii[23,73] := {90, 130} tii[23,74] := {44} tii[23,75] := {40, 142} tii[23,76] := {109} tii[23,77] := {23} tii[23,78] := {84} tii[23,79] := {10, 39} tii[23,80] := {13, 103} tii[23,81] := {21} tii[23,82] := {31, 123} tii[23,83] := {7} tii[23,84] := {73} tii[23,85] := {2} tii[23,86] := {50, 135} tii[23,87] := {65, 148} tii[23,88] := {26, 110} tii[23,89] := {42, 131} tii[23,90] := {8, 100} tii[23,91] := {62, 107} tii[23,92] := {19, 121} tii[23,93] := {83} tii[23,94] := {59} tii[23,95] := {18, 57} tii[23,96] := {4, 75} tii[23,97] := {34} tii[23,98] := {12, 96} tii[23,99] := {45} tii[23,100] := {17} tii[23,101] := {5} tii[23,102] := {0, 48} tii[23,103] := {3, 69} tii[23,104] := {22} tii[23,105] := {1} cell#118 , |C| = 315 special orbit = [4, 4, 2, 2, 2] special rep = [[2, 1, 1], [2, 1]] , dim = 210 cell rep = phi[[2, 2, 1],[1, 1]]+phi[[2, 1, 1],[2, 1]] TII depth = 4 TII multiplicity polynomial = 105*X^2+105*X TII subcells: tii[16,1] := {234, 289} tii[16,2] := {298} tii[16,3] := {172, 307} tii[16,4] := {107, 314} tii[16,5] := {260} tii[16,6] := {300} tii[16,7] := {72, 192} tii[16,8] := {169} tii[16,9] := {115, 116} tii[16,10] := {205, 267} tii[16,11] := {101, 222} tii[16,12] := {51, 219} tii[16,13] := {280} tii[16,14] := {141, 218} tii[16,15] := {203} tii[16,16] := {174} tii[16,17] := {212} tii[16,18] := {183, 291} tii[16,19] := {133, 251} tii[16,20] := {55, 310} tii[16,21] := {274} tii[16,22] := {233} tii[16,23] := {159, 270} tii[16,24] := {99, 271} tii[16,25] := {189} tii[16,26] := {127, 286} tii[16,27] := {228} tii[16,28] := {295} tii[16,29] := {258} tii[16,30] := {279} tii[16,31] := {71, 252} tii[16,32] := {150, 151} tii[16,33] := {168} tii[16,34] := {28, 247} tii[16,35] := {176, 246} tii[16,36] := {208} tii[16,37] := {239} tii[16,38] := {181, 182} tii[16,39] := {152, 304} tii[16,40] := {100, 278} tii[16,41] := {209, 272} tii[16,42] := {79, 313} tii[16,43] := {15, 273} tii[16,44] := {147, 214} tii[16,45] := {202} tii[16,46] := {125, 293} tii[16,47] := {70, 294} tii[16,48] := {157} tii[16,49] := {248} tii[16,50] := {236} tii[16,51] := {177, 254} tii[16,52] := {92, 303} tii[16,53] := {197} tii[16,54] := {263} tii[16,55] := {26, 290} tii[16,56] := {259} tii[16,57] := {63, 309} tii[16,58] := {277} tii[16,59] := {232} tii[16,60] := {41, 301} tii[16,61] := {285} tii[16,62] := {253} tii[16,63] := {114, 282} tii[16,64] := {217} tii[16,65] := {140, 296} tii[16,66] := {83, 297} tii[16,67] := {173} tii[16,68] := {211} tii[16,69] := {109, 306} tii[16,70] := {58, 308} tii[16,71] := {206} tii[16,72] := {281} tii[16,73] := {243} tii[16,74] := {237} tii[16,75] := {261} tii[16,76] := {80, 312} tii[16,77] := {269} tii[16,78] := {284} tii[16,79] := {10, 40} tii[16,80] := {30, 132} tii[16,81] := {48} tii[16,82] := {78} tii[16,83] := {25, 64} tii[16,84] := {84, 85} tii[16,85] := {50, 166} tii[16,86] := {13, 87} tii[16,87] := {108, 190} tii[16,88] := {29, 191} tii[16,89] := {75} tii[16,90] := {139} tii[16,91] := {61, 62} tii[16,92] := {33, 131} tii[16,93] := {106} tii[16,94] := {180} tii[16,95] := {82} tii[16,96] := {103} tii[16,97] := {91, 220} tii[16,98] := {122} tii[16,99] := {47, 221} tii[16,100] := {137} tii[16,101] := {66, 242} tii[16,102] := {165} tii[16,103] := {95} tii[16,104] := {201} tii[16,105] := {148, 149} tii[16,106] := {45, 93} tii[16,107] := {88, 89} tii[16,108] := {175, 244} tii[16,109] := {76, 199} tii[16,110] := {7, 245} tii[16,111] := {113, 184} tii[16,112] := {27, 120} tii[16,113] := {207} tii[16,114] := {104} tii[16,115] := {112} tii[16,116] := {142, 223} tii[16,117] := {54, 163} tii[16,118] := {238} tii[16,119] := {138} tii[16,120] := {126, 249} tii[16,121] := {73, 250} tii[16,122] := {14, 155} tii[16,123] := {235} tii[16,124] := {135} tii[16,125] := {158} tii[16,126] := {11, 268} tii[16,127] := {39, 299} tii[16,128] := {86, 154} tii[16,129] := {144} tii[16,130] := {96, 266} tii[16,131] := {262} tii[16,132] := {171} tii[16,133] := {34, 195} tii[16,134] := {21, 283} tii[16,135] := {130} tii[16,136] := {198} tii[16,137] := {111, 194} tii[16,138] := {69, 241} tii[16,139] := {231} tii[16,140] := {20, 292} tii[16,141] := {216} tii[16,142] := {167} tii[16,143] := {160} tii[16,144] := {256} tii[16,145] := {204} tii[16,146] := {35, 302} tii[16,147] := {257} tii[16,148] := {24, 128} tii[16,149] := {49, 229} tii[16,150] := {123, 124} tii[16,151] := {12, 156} tii[16,152] := {74} tii[16,153] := {32, 196} tii[16,154] := {146} tii[16,155] := {105} tii[16,156] := {102} tii[16,157] := {117, 186} tii[16,158] := {4, 187} tii[16,159] := {46, 276} tii[16,160] := {90, 275} tii[16,161] := {121} tii[16,162] := {179} tii[16,163] := {136} tii[16,164] := {65, 288} tii[16,165] := {145, 225} tii[16,166] := {16, 226} tii[16,167] := {164} tii[16,168] := {94} tii[16,169] := {200} tii[16,170] := {42, 265} tii[16,171] := {36, 305} tii[16,172] := {1, 215} tii[16,173] := {188} tii[16,174] := {134} tii[16,175] := {129} tii[16,176] := {210} tii[16,177] := {56, 311} tii[16,178] := {8, 255} tii[16,179] := {227} tii[16,180] := {170} tii[16,181] := {23, 287} tii[16,182] := {230} tii[16,183] := {153} tii[16,184] := {193} tii[16,185] := {143} tii[16,186] := {240} tii[16,187] := {3, 22} tii[16,188] := {19} tii[16,189] := {6, 60} tii[16,190] := {37, 38} tii[16,191] := {31} tii[16,192] := {18, 97} tii[16,193] := {57} tii[16,194] := {44} tii[16,195] := {5, 119} tii[16,196] := {59, 118} tii[16,197] := {53} tii[16,198] := {110} tii[16,199] := {17, 162} tii[16,200] := {81, 161} tii[16,201] := {43, 213} tii[16,202] := {68} tii[16,203] := {0, 185} tii[16,204] := {178} tii[16,205] := {77} tii[16,206] := {2, 224} tii[16,207] := {98} tii[16,208] := {9, 264} tii[16,209] := {52} tii[16,210] := {67} cell#119 , |C| = 189 special orbit = [4, 2, 2, 2, 2, 2] special rep = [[2, 1, 1], [1, 1, 1]] , dim = 105 cell rep = phi[[2, 1, 1, 1],[1, 1]]+phi[[2, 1, 1],[1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 84*X^2+21*X TII subcells: tii[13,1] := {124, 188} tii[13,2] := {79, 180} tii[13,3] := {41, 167} tii[13,4] := {148, 185} tii[13,5] := {103, 169} tii[13,6] := {165, 179} tii[13,7] := {37, 151} tii[13,8] := {78, 155} tii[13,9] := {145, 170} tii[13,10] := {159} tii[13,11] := {100, 137} tii[13,12] := {118} tii[13,13] := {52, 129} tii[13,14] := {70, 105} tii[13,15] := {85} tii[13,16] := {50, 166} tii[13,17] := {22, 127} tii[13,18] := {99, 186} tii[13,19] := {69, 178} tii[13,20] := {59, 171} tii[13,21] := {13, 102} tii[13,22] := {80, 182} tii[13,23] := {49, 164} tii[13,24] := {63, 175} tii[13,25] := {42, 156} tii[13,26] := {21, 125} tii[13,27] := {30, 141} tii[13,28] := {147, 168} tii[13,29] := {90, 184} tii[13,30] := {122, 154} tii[13,31] := {6, 92} tii[13,32] := {104, 187} tii[13,33] := {68, 176} tii[13,34] := {58, 136} tii[13,35] := {139} tii[13,36] := {84, 183} tii[13,37] := {48, 162} tii[13,38] := {28, 152} tii[13,39] := {76, 115} tii[13,40] := {12, 114} tii[13,41] := {101, 138} tii[13,42] := {94} tii[13,43] := {18, 133} tii[13,44] := {119} tii[13,45] := {62, 173} tii[13,46] := {97} tii[13,47] := {20, 134} tii[13,48] := {57, 93} tii[13,49] := {29, 153} tii[13,50] := {73} tii[13,51] := {55} tii[13,52] := {113, 177} tii[13,53] := {128, 181} tii[13,54] := {5, 71} tii[13,55] := {88, 163} tii[13,56] := {107, 174} tii[13,57] := {67, 144} tii[13,58] := {126, 157} tii[13,59] := {23, 130} tii[13,60] := {10, 91} tii[13,61] := {142} tii[13,62] := {83, 158} tii[13,63] := {15, 109} tii[13,64] := {121} tii[13,65] := {17, 112} tii[13,66] := {51, 81} tii[13,67] := {47, 123} tii[13,68] := {25, 132} tii[13,69] := {64} tii[13,70] := {61, 140} tii[13,71] := {96} tii[13,72] := {46} tii[13,73] := {26, 89} tii[13,74] := {38, 108} tii[13,75] := {65} tii[13,76] := {27, 135} tii[13,77] := {36, 150} tii[13,78] := {16, 111} tii[13,79] := {24, 131} tii[13,80] := {9, 87} tii[13,81] := {60, 172} tii[13,82] := {35, 149} tii[13,83] := {14, 106} tii[13,84] := {45, 161} tii[13,85] := {31, 143} tii[13,86] := {34, 146} tii[13,87] := {4, 66} tii[13,88] := {77, 116} tii[13,89] := {95} tii[13,90] := {44, 160} tii[13,91] := {7, 82} tii[13,92] := {19, 120} tii[13,93] := {75} tii[13,94] := {56} tii[13,95] := {1, 54} tii[13,96] := {33, 98} tii[13,97] := {3, 72} tii[13,98] := {43, 117} tii[13,99] := {11, 110} tii[13,100] := {74} tii[13,101] := {40} tii[13,102] := {0, 39} tii[13,103] := {2, 53} tii[13,104] := {8, 86} tii[13,105] := {32} cell#120 , |C| = 154 special orbit = [8, 2, 2, 2] special rep = [[4, 1], [1, 1]] , dim = 84 cell rep = phi[[4, 1, 1],[1]]+phi[[4, 1],[1, 1]] TII depth = 4 TII multiplicity polynomial = 70*X^2+14*X TII subcells: tii[32,1] := {68, 153} tii[32,2] := {56, 151} tii[32,3] := {33, 141} tii[32,4] := {38, 152} tii[32,5] := {88, 149} tii[32,6] := {76, 145} tii[32,7] := {95, 140} tii[32,8] := {40, 123} tii[32,9] := {87, 124} tii[32,10] := {43, 147} tii[32,11] := {104, 106} tii[32,12] := {121} tii[32,13] := {96, 131} tii[32,14] := {32, 100} tii[32,15] := {74, 112} tii[32,16] := {37, 135} tii[32,17] := {92, 93} tii[32,18] := {111} tii[32,19] := {48, 79} tii[32,20] := {53, 115} tii[32,21] := {62, 64} tii[32,22] := {77} tii[32,23] := {70, 107} tii[32,24] := {89} tii[32,25] := {3, 110} tii[32,26] := {50, 150} tii[32,27] := {6, 117} tii[32,28] := {34, 142} tii[32,29] := {2, 109} tii[32,30] := {25, 127} tii[32,31] := {9, 129} tii[32,32] := {18, 139} tii[32,33] := {13, 136} tii[32,34] := {75, 122} tii[32,35] := {67, 101} tii[32,36] := {5, 116} tii[32,37] := {41, 146} tii[32,38] := {83, 85} tii[32,39] := {11, 134} tii[32,40] := {31, 133} tii[32,41] := {99} tii[32,42] := {22, 144} tii[32,43] := {1, 108} tii[32,44] := {49, 80} tii[32,45] := {8, 128} tii[32,46] := {63, 65} tii[32,47] := {24, 126} tii[32,48] := {78} tii[32,49] := {17, 138} tii[32,50] := {15, 143} tii[32,51] := {45, 47} tii[32,52] := {61} tii[32,53] := {29, 148} tii[32,54] := {52} tii[32,55] := {26, 118} tii[32,56] := {58, 132} tii[32,57] := {12, 94} tii[32,58] := {42, 113} tii[32,59] := {19, 114} tii[32,60] := {36, 130} tii[32,61] := {4, 86} tii[32,62] := {57, 91} tii[32,63] := {10, 105} tii[32,64] := {30, 103} tii[32,65] := {72, 73} tii[32,66] := {21, 120} tii[32,67] := {90} tii[32,68] := {20, 125} tii[32,69] := {54, 55} tii[32,70] := {71} tii[32,71] := {35, 137} tii[32,72] := {59} tii[32,73] := {0, 66} tii[32,74] := {23, 82} tii[32,75] := {7, 84} tii[32,76] := {16, 98} tii[32,77] := {14, 102} tii[32,78] := {44, 46} tii[32,79] := {28, 119} tii[32,80] := {60} tii[32,81] := {51} tii[32,82] := {27, 81} tii[32,83] := {39, 97} tii[32,84] := {69} cell#121 , |C| = 126 special orbit = [6, 2, 2, 2, 2] special rep = [[3, 1, 1], [1, 1]] , dim = 126 cell rep = phi[[3, 1, 1],[1, 1]] TII depth = 4 TII multiplicity polynomial = 126*X TII subcells: tii[24,1] := {125} tii[24,2] := {111} tii[24,3] := {124} tii[24,4] := {85} tii[24,5] := {116} tii[24,6] := {118} tii[24,7] := {81} tii[24,8] := {40} tii[24,9] := {47} tii[24,10] := {122} tii[24,11] := {103} tii[24,12] := {93} tii[24,13] := {25} tii[24,14] := {113} tii[24,15] := {80} tii[24,16] := {119} tii[24,17] := {27} tii[24,18] := {98} tii[24,19] := {99} tii[24,20] := {110} tii[24,21] := {73} tii[24,22] := {39} tii[24,23] := {107} tii[24,24] := {46} tii[24,25] := {53} tii[24,26] := {54} tii[24,27] := {71} tii[24,28] := {100} tii[24,29] := {63} tii[24,30] := {82} tii[24,31] := {117} tii[24,32] := {18} tii[24,33] := {123} tii[24,34] := {102} tii[24,35] := {23} tii[24,36] := {114} tii[24,37] := {115} tii[24,38] := {121} tii[24,39] := {79} tii[24,40] := {64} tii[24,41] := {30} tii[24,42] := {35} tii[24,43] := {45} tii[24,44] := {44} tii[24,45] := {97} tii[24,46] := {96} tii[24,47] := {101} tii[24,48] := {60} tii[24,49] := {109} tii[24,50] := {112} tii[24,51] := {87} tii[24,52] := {50} tii[24,53] := {68} tii[24,54] := {120} tii[24,55] := {48} tii[24,56] := {51} tii[24,57] := {66} tii[24,58] := {67} tii[24,59] := {84} tii[24,60] := {86} tii[24,61] := {105} tii[24,62] := {70} tii[24,63] := {88} tii[24,64] := {104} tii[24,65] := {89} tii[24,66] := {106} tii[24,67] := {21} tii[24,68] := {59} tii[24,69] := {11} tii[24,70] := {41} tii[24,71] := {15} tii[24,72] := {33} tii[24,73] := {4} tii[24,74] := {95} tii[24,75] := {58} tii[24,76] := {7} tii[24,77] := {26} tii[24,78] := {77} tii[24,79] := {78} tii[24,80] := {20} tii[24,81] := {92} tii[24,82] := {17} tii[24,83] := {55} tii[24,84] := {56} tii[24,85] := {32} tii[24,86] := {72} tii[24,87] := {62} tii[24,88] := {57} tii[24,89] := {1} tii[24,90] := {75} tii[24,91] := {14} tii[24,92] := {76} tii[24,93] := {3} tii[24,94] := {91} tii[24,95] := {9} tii[24,96] := {94} tii[24,97] := {8} tii[24,98] := {37} tii[24,99] := {38} tii[24,100] := {108} tii[24,101] := {19} tii[24,102] := {52} tii[24,103] := {42} tii[24,104] := {74} tii[24,105] := {16} tii[24,106] := {90} tii[24,107] := {31} tii[24,108] := {61} tii[24,109] := {0} tii[24,110] := {10} tii[24,111] := {2} tii[24,112] := {6} tii[24,113] := {5} tii[24,114] := {29} tii[24,115] := {28} tii[24,116] := {13} tii[24,117] := {43} tii[24,118] := {34} tii[24,119] := {65} tii[24,120] := {12} tii[24,121] := {83} tii[24,122] := {24} tii[24,123] := {49} tii[24,124] := {22} tii[24,125] := {36} tii[24,126] := {69} cell#122 , |C| = 315 special orbit = [4, 4, 2, 2, 2] special rep = [[2, 1, 1], [2, 1]] , dim = 210 cell rep = phi[[2, 2, 1],[1, 1]]+phi[[2, 1, 1],[2, 1]] TII depth = 4 TII multiplicity polynomial = 105*X^2+105*X TII subcells: tii[16,1] := {274, 302} tii[16,2] := {290} tii[16,3] := {304, 309} tii[16,4] := {310, 314} tii[16,5] := {289} tii[16,6] := {313} tii[16,7] := {68, 109} tii[16,8] := {90} tii[16,9] := {51, 115} tii[16,10] := {241, 282} tii[16,11] := {100, 147} tii[16,12] := {89, 167} tii[16,13] := {260} tii[16,14] := {166, 218} tii[16,15] := {125} tii[16,16] := {104} tii[16,17] := {149} tii[16,18] := {256, 266} tii[16,19] := {136, 188} tii[16,20] := {277, 300} tii[16,21] := {224} tii[16,22] := {164} tii[16,23] := {222, 235} tii[16,24] := {158, 223} tii[16,25] := {103} tii[16,26] := {213, 252} tii[16,27] := {148} tii[16,28] := {262} tii[16,29] := {200} tii[16,30] := {228} tii[16,31] := {137, 189} tii[16,32] := {78, 157} tii[16,33] := {168} tii[16,34] := {123, 208} tii[16,35] := {207, 255} tii[16,36] := {142} tii[16,37] := {193} tii[16,38] := {114, 199} tii[16,39] := {285, 295} tii[16,40] := {177, 227} tii[16,41] := {246, 284} tii[16,42] := {298, 311} tii[16,43] := {165, 247} tii[16,44] := {160, 219} tii[16,45] := {206} tii[16,46] := {258, 270} tii[16,47] := {201, 259} tii[16,48] := {141} tii[16,49] := {261} tii[16,50] := {185} tii[16,51] := {210, 269} tii[16,52] := {251, 283} tii[16,53] := {192} tii[16,54] := {233} tii[16,55] := {203, 275} tii[16,56] := {221} tii[16,57] := {278, 307} tii[16,58] := {291} tii[16,59] := {240} tii[16,60] := {250, 294} tii[16,61] := {268} tii[16,62] := {264} tii[16,63] := {216, 263} tii[16,64] := {245} tii[16,65] := {287, 296} tii[16,66] := {243, 288} tii[16,67] := {184} tii[16,68] := {232} tii[16,69] := {280, 303} tii[16,70] := {276, 305} tii[16,71] := {220} tii[16,72] := {306} tii[16,73] := {273} tii[16,74] := {267} tii[16,75] := {293} tii[16,76] := {299, 312} tii[16,77] := {297} tii[16,78] := {308} tii[16,79] := {1, 12} tii[16,80] := {26, 50} tii[16,81] := {7} tii[16,82] := {21} tii[16,83] := {4, 23} tii[16,84] := {30, 80} tii[16,85] := {44, 77} tii[16,86] := {13, 31} tii[16,87] := {126, 179} tii[16,88] := {60, 127} tii[16,89] := {18} tii[16,90] := {71} tii[16,91] := {22, 59} tii[16,92] := {27, 64} tii[16,93] := {39} tii[16,94] := {110} tii[16,95] := {36} tii[16,96] := {33} tii[16,97] := {143, 155} tii[16,98] := {46} tii[16,99] := {87, 144} tii[16,100] := {63} tii[16,101] := {134, 178} tii[16,102] := {76} tii[16,103] := {28} tii[16,104] := {113} tii[16,105] := {79, 156} tii[16,106] := {10, 42} tii[16,107] := {41, 88} tii[16,108] := {204, 253} tii[16,109] := {69, 112} tii[16,110] := {124, 205} tii[16,111] := {116, 180} tii[16,112] := {25, 52} tii[16,113] := {140} tii[16,114] := {34} tii[16,115] := {61} tii[16,116] := {169, 231} tii[16,117] := {45, 97} tii[16,118] := {191} tii[16,119] := {65} tii[16,120] := {186, 198} tii[16,121] := {121, 187} tii[16,122] := {32, 84} tii[16,123] := {181} tii[16,124] := {57} tii[16,125] := {72} tii[16,126] := {163, 242} tii[16,127] := {248, 292} tii[16,128] := {83, 139} tii[16,129] := {73} tii[16,130] := {174, 217} tii[16,131] := {229} tii[16,132] := {96} tii[16,133] := {62, 131} tii[16,134] := {212, 265} tii[16,135] := {48} tii[16,136] := {111} tii[16,137] := {130, 194} tii[16,138] := {135, 196} tii[16,139] := {153} tii[16,140] := {202, 257} tii[16,141] := {138} tii[16,142] := {82} tii[16,143] := {74} tii[16,144] := {190} tii[16,145] := {128} tii[16,146] := {249, 281} tii[16,147] := {195} tii[16,148] := {24, 67} tii[16,149] := {101, 152} tii[16,150] := {66, 122} tii[16,151] := {43, 81} tii[16,152] := {58} tii[16,153] := {70, 133} tii[16,154] := {91} tii[16,155] := {98} tii[16,156] := {86} tii[16,157] := {119, 183} tii[16,158] := {53, 120} tii[16,159] := {162, 226} tii[16,160] := {225, 239} tii[16,161] := {105} tii[16,162] := {106} tii[16,163] := {132} tii[16,164] := {214, 254} tii[16,165] := {172, 234} tii[16,166] := {92, 173} tii[16,167] := {150} tii[16,168] := {75} tii[16,169] := {197} tii[16,170] := {176, 238} tii[16,171] := {244, 286} tii[16,172] := {85, 161} tii[16,173] := {182} tii[16,174] := {118} tii[16,175] := {108} tii[16,176] := {146} tii[16,177] := {279, 301} tii[16,178] := {129, 211} tii[16,179] := {230} tii[16,180] := {171} tii[16,181] := {215, 272} tii[16,182] := {237} tii[16,183] := {159} tii[16,184] := {209} tii[16,185] := {145} tii[16,186] := {271} tii[16,187] := {0, 6} tii[16,188] := {2} tii[16,189] := {5, 17} tii[16,190] := {11, 35} tii[16,191] := {3} tii[16,192] := {14, 40} tii[16,193] := {20} tii[16,194] := {9} tii[16,195] := {16, 56} tii[16,196] := {55, 102} tii[16,197] := {8} tii[16,198] := {47} tii[16,199] := {38, 95} tii[16,200] := {94, 151} tii[16,201] := {99, 154} tii[16,202] := {15} tii[16,203] := {54, 117} tii[16,204] := {107} tii[16,205] := {19} tii[16,206] := {93, 170} tii[16,207] := {29} tii[16,208] := {175, 236} tii[16,209] := {37} tii[16,210] := {49} cell#123 , |C| = 553 special orbit = [6, 4, 2, 2] special rep = [[3, 1], [2, 1]] , dim = 210 cell rep = phi[[3, 2, 1],[1]]+phi[[3, 1, 1],[2]]+phi[[3, 2],[1, 1]]+phi[[3, 1],[2, 1]] TII depth = 3 TII multiplicity polynomial = 91*X^4+70*X^2+49*X TII subcells: tii[26,1] := {178, 374, 542, 547} tii[26,2] := {110, 337, 509, 551} tii[26,3] := {292, 552} tii[26,4] := {145, 285} tii[26,5] := {236, 434, 521, 529} tii[26,6] := {249, 250} tii[26,7] := {225, 441, 457, 458} tii[26,8] := {159, 401, 469, 543} tii[26,9] := {131, 332, 449, 450} tii[26,10] := {359, 549} tii[26,11] := {363} tii[26,12] := {433} tii[26,13] := {298, 482, 506, 538} tii[26,14] := {247, 248} tii[26,15] := {222, 421, 456, 523} tii[26,16] := {355, 467, 514, 515} tii[26,17] := {119, 301, 447, 448} tii[26,18] := {419, 535} tii[26,19] := {297, 418, 536, 537} tii[26,20] := {362} tii[26,21] := {360, 548} tii[26,22] := {432} tii[26,23] := {286, 384, 498, 544} tii[26,24] := {468, 528} tii[26,25] := {218, 328, 524, 525} tii[26,26] := {390} tii[26,27] := {267, 541} tii[26,28] := {463} tii[26,29] := {507, 546} tii[26,30] := {531} tii[26,31] := {1, 48, 203, 354} tii[26,32] := {8, 35, 316, 317} tii[26,33] := {88, 244, 488, 500} tii[26,34] := {32, 158, 396, 493} tii[26,35] := {43, 424} tii[26,36] := {85, 481} tii[26,37] := {4, 79, 266, 416} tii[26,38] := {100, 220} tii[26,39] := {130, 309, 522, 530} tii[26,40] := {185, 186} tii[26,41] := {14, 101, 334, 438} tii[26,42] := {163, 385, 402, 403} tii[26,43] := {20, 65, 382, 383} tii[26,44] := {78, 162} tii[26,45] := {89, 265, 392, 393} tii[26,46] := {90, 282, 490, 504} tii[26,47] := {31, 139, 389, 415} tii[26,48] := {44, 216, 426, 527} tii[26,49] := {299} tii[26,50] := {116, 117} tii[26,51] := {72, 472} tii[26,52] := {60, 212, 455, 462} tii[26,53] := {371} tii[26,54] := {155} tii[26,55] := {127, 518} tii[26,56] := {39, 102, 439, 440} tii[26,57] := {135, 136} tii[26,58] := {221, 356, 430, 431} tii[26,59] := {73, 281, 473, 545} tii[26,60] := {22, 138, 377, 489} tii[26,61] := {96, 97} tii[26,62] := {57, 202, 330, 331} tii[26,63] := {177, 291, 474, 475} tii[26,64] := {237} tii[26,65] := {114, 511} tii[26,66] := {133} tii[26,67] := {50, 211, 427, 532} tii[26,68] := {231, 508} tii[26,69] := {174, 540} tii[26,70] := {306} tii[26,71] := {164, 534} tii[26,72] := {87, 170, 397, 398} tii[26,73] := {196} tii[26,74] := {124, 437} tii[26,75] := {150} tii[26,76] := {233, 550} tii[26,77] := {279} tii[26,78] := {350} tii[26,79] := {13, 122, 204, 352} tii[26,80] := {121, 224} tii[26,81] := {180, 376, 487, 499} tii[26,82] := {38, 103, 314, 315} tii[26,83] := {29, 146, 269, 378} tii[26,84] := {166, 167} tii[26,85] := {77, 283, 365, 492} tii[26,86] := {132, 349, 445, 464} tii[26,87] := {56, 195, 323, 351} tii[26,88] := {115, 423} tii[26,89] := {214} tii[26,90] := {92, 278, 399, 408} tii[26,91] := {175, 480} tii[26,92] := {287, 417, 477, 478} tii[26,93] := {37, 206, 207, 313} tii[26,94] := {69, 149, 379, 380} tii[26,95] := {187, 188} tii[26,96] := {118, 348, 425, 526} tii[26,97] := {235, 358, 512, 513} tii[26,98] := {40, 194, 310, 442} tii[26,99] := {71, 257, 258, 284} tii[26,100] := {197, 198} tii[26,101] := {169, 391, 412, 413} tii[26,102] := {76, 238, 394, 395} tii[26,103] := {143, 144} tii[26,104] := {300} tii[26,105] := {165, 471} tii[26,106] := {294, 533} tii[26,107] := {126, 333, 343, 344} tii[26,108] := {82, 277, 366, 501} tii[26,109] := {242} tii[26,110] := {184} tii[26,111] := {234, 517} tii[26,112] := {372} tii[26,113] := {179, 293, 496, 497} tii[26,114] := {55, 223, 321, 322} tii[26,115] := {226, 510} tii[26,116] := {259} tii[26,117] := {111, 201, 451, 452} tii[26,118] := {304} tii[26,119] := {232, 520} tii[26,120] := {208} tii[26,121] := {295, 539} tii[26,122] := {151, 485} tii[26,123] := {345} tii[26,124] := {91, 272, 406, 407} tii[26,125] := {176, 484} tii[26,126] := {414} tii[26,127] := {109, 205, 311, 312} tii[26,128] := {199, 200} tii[26,129] := {168, 364, 411, 491} tii[26,130] := {70, 245, 256, 386} tii[26,131] := {227, 422} tii[26,132] := {243} tii[26,133] := {125, 302, 342, 459} tii[26,134] := {296, 479} tii[26,135] := {160, 264, 494, 495} tii[26,136] := {41, 189, 319, 320} tii[26,137] := {290, 470} tii[26,138] := {325} tii[26,139] := {303} tii[26,140] := {209, 519} tii[26,141] := {361, 516} tii[26,142] := {83, 241, 404, 405} tii[26,143] := {271} tii[26,144] := {410} tii[26,145] := {157, 483} tii[26,146] := {466} tii[26,147] := {357, 444} tii[26,148] := {335} tii[26,149] := {420, 503} tii[26,150] := {505} tii[26,151] := {0, 26, 171, 289} tii[26,152] := {2, 12, 228, 229} tii[26,153] := {7, 280} tii[26,154] := {5, 64, 270, 381} tii[26,155] := {47, 113} tii[26,156] := {16, 94, 324, 353} tii[26,157] := {74, 75} tii[26,158] := {58, 217, 446, 465} tii[26,159] := {3, 18, 260, 261} tii[26,160] := {34, 153, 400, 409} tii[26,161] := {106} tii[26,162] := {11, 307} tii[26,163] := {6, 61, 288, 388} tii[26,164] := {45, 46} tii[26,165] := {25, 369} tii[26,166] := {68} tii[26,167] := {17, 104, 336, 461} tii[26,168] := {54} tii[26,169] := {19, 147, 148, 246} tii[26,170] := {141, 142} tii[26,171] := {9, 36, 326, 327} tii[26,172] := {42, 192, 193, 219} tii[26,173] := {120, 329, 346, 347} tii[26,174] := {183} tii[26,175] := {28, 373} tii[26,176] := {84, 268, 275, 276} tii[26,177] := {10, 95, 318, 443} tii[26,178] := {30, 161, 252, 253} tii[26,179] := {62, 63} tii[26,180] := {129, 230, 453, 454} tii[26,181] := {239} tii[26,182] := {49, 429} tii[26,183] := {173, 486} tii[26,184] := {93} tii[26,185] := {59, 210, 338, 339} tii[26,186] := {27, 154, 370, 502} tii[26,187] := {128, 435} tii[26,188] := {67} tii[26,189] := {15, 112, 190, 191} tii[26,190] := {181} tii[26,191] := {80, 476} tii[26,192] := {33, 152, 273, 274} tii[26,193] := {105} tii[26,194] := {86, 375} tii[26,195] := {21, 66, 262, 263} tii[26,196] := {53, 308} tii[26,197] := {24, 140, 251, 387} tii[26,198] := {98, 99} tii[26,199] := {81, 368} tii[26,200] := {52, 213, 305, 460} tii[26,201] := {134} tii[26,202] := {108} tii[26,203] := {23, 137, 254, 255} tii[26,204] := {240} tii[26,205] := {123, 428} tii[26,206] := {51, 182, 340, 341} tii[26,207] := {156} tii[26,208] := {107, 436} tii[26,209] := {172, 367} tii[26,210] := {215} cell#124 , |C| = 126 special orbit = [6, 2, 2, 2, 2] special rep = [[3, 1, 1], [1, 1]] , dim = 126 cell rep = phi[[3, 1, 1],[1, 1]] TII depth = 4 TII multiplicity polynomial = 126*X TII subcells: tii[24,1] := {125} tii[24,2] := {124} tii[24,3] := {115} tii[24,4] := {123} tii[24,5] := {107} tii[24,6] := {82} tii[24,7] := {51} tii[24,8] := {39} tii[24,9] := {21} tii[24,10] := {121} tii[24,11] := {70} tii[24,12] := {117} tii[24,13] := {59} tii[24,14] := {114} tii[24,15] := {79} tii[24,16] := {102} tii[24,17] := {24} tii[24,18] := {103} tii[24,19] := {69} tii[24,20] := {86} tii[24,21] := {106} tii[24,22] := {80} tii[24,23] := {83} tii[24,24] := {20} tii[24,25] := {90} tii[24,26] := {56} tii[24,27] := {73} tii[24,28] := {63} tii[24,29] := {34} tii[24,30] := {46} tii[24,31] := {89} tii[24,32] := {81} tii[24,33] := {122} tii[24,34] := {98} tii[24,35] := {42} tii[24,36] := {116} tii[24,37] := {88} tii[24,38] := {105} tii[24,39] := {113} tii[24,40] := {118} tii[24,41] := {100} tii[24,42] := {23} tii[24,43] := {78} tii[24,44] := {109} tii[24,45] := {96} tii[24,46] := {119} tii[24,47] := {91} tii[24,48] := {95} tii[24,49] := {110} tii[24,50] := {87} tii[24,51] := {71} tii[24,52] := {40} tii[24,53] := {53} tii[24,54] := {104} tii[24,55] := {112} tii[24,56] := {19} tii[24,57] := {120} tii[24,58] := {97} tii[24,59] := {111} tii[24,60] := {76} tii[24,61] := {62} tii[24,62] := {33} tii[24,63] := {45} tii[24,64] := {93} tii[24,65] := {48} tii[24,66] := {65} tii[24,67] := {4} tii[24,68] := {36} tii[24,69] := {8} tii[24,70] := {22} tii[24,71] := {3} tii[24,72] := {12} tii[24,73] := {18} tii[24,74] := {101} tii[24,75] := {58} tii[24,76] := {7} tii[24,77] := {25} tii[24,78] := {84} tii[24,79] := {50} tii[24,80] := {15} tii[24,81] := {67} tii[24,82] := {2} tii[24,83] := {64} tii[24,84] := {35} tii[24,85] := {11} tii[24,86] := {47} tii[24,87] := {30} tii[24,88] := {99} tii[24,89] := {32} tii[24,90] := {108} tii[24,91] := {43} tii[24,92] := {77} tii[24,93] := {17} tii[24,94] := {94} tii[24,95] := {27} tii[24,96] := {68} tii[24,97] := {6} tii[24,98] := {72} tii[24,99] := {41} tii[24,100] := {85} tii[24,101] := {14} tii[24,102] := {54} tii[24,103] := {38} tii[24,104] := {49} tii[24,105] := {1} tii[24,106] := {66} tii[24,107] := {10} tii[24,108] := {29} tii[24,109] := {52} tii[24,110] := {61} tii[24,111] := {31} tii[24,112] := {44} tii[24,113] := {16} tii[24,114] := {60} tii[24,115] := {92} tii[24,116] := {26} tii[24,117] := {75} tii[24,118] := {55} tii[24,119] := {57} tii[24,120] := {5} tii[24,121] := {74} tii[24,122] := {13} tii[24,123] := {37} tii[24,124] := {0} tii[24,125] := {9} tii[24,126] := {28} cell#125 , |C| = 126 special orbit = [6, 2, 2, 2, 2] special rep = [[3, 1, 1], [1, 1]] , dim = 126 cell rep = phi[[3, 1, 1],[1, 1]] TII depth = 4 TII multiplicity polynomial = 126*X TII subcells: tii[24,1] := {125} tii[24,2] := {124} tii[24,3] := {118} tii[24,4] := {112} tii[24,5] := {92} tii[24,6] := {57} tii[24,7] := {66} tii[24,8] := {55} tii[24,9] := {34} tii[24,10] := {122} tii[24,11] := {83} tii[24,12] := {120} tii[24,13] := {74} tii[24,14] := {117} tii[24,15] := {89} tii[24,16] := {108} tii[24,17] := {38} tii[24,18] := {109} tii[24,19] := {82} tii[24,20] := {96} tii[24,21] := {113} tii[24,22] := {91} tii[24,23] := {93} tii[24,24] := {33} tii[24,25] := {102} tii[24,26] := {71} tii[24,27] := {87} tii[24,28] := {76} tii[24,29] := {48} tii[24,30] := {61} tii[24,31] := {99} tii[24,32] := {56} tii[24,33] := {123} tii[24,34] := {105} tii[24,35] := {25} tii[24,36] := {119} tii[24,37] := {98} tii[24,38] := {111} tii[24,39] := {116} tii[24,40] := {100} tii[24,41] := {73} tii[24,42] := {20} tii[24,43] := {53} tii[24,44] := {84} tii[24,45] := {104} tii[24,46] := {121} tii[24,47] := {75} tii[24,48] := {68} tii[24,49] := {115} tii[24,50] := {97} tii[24,51] := {59} tii[24,52] := {32} tii[24,53] := {43} tii[24,54] := {110} tii[24,55] := {90} tii[24,56] := {11} tii[24,57] := {101} tii[24,58] := {70} tii[24,59] := {86} tii[24,60] := {63} tii[24,61] := {41} tii[24,62] := {19} tii[24,63] := {26} tii[24,64] := {78} tii[24,65] := {31} tii[24,66] := {42} tii[24,67] := {0} tii[24,68] := {50} tii[24,69] := {2} tii[24,70] := {35} tii[24,71] := {10} tii[24,72] := {23} tii[24,73] := {5} tii[24,74] := {107} tii[24,75] := {72} tii[24,76] := {15} tii[24,77] := {39} tii[24,78] := {94} tii[24,79] := {65} tii[24,80] := {28} tii[24,81] := {80} tii[24,82] := {9} tii[24,83] := {77} tii[24,84] := {49} tii[24,85] := {22} tii[24,86] := {62} tii[24,87] := {46} tii[24,88] := {106} tii[24,89] := {13} tii[24,90] := {114} tii[24,91] := {58} tii[24,92] := {88} tii[24,93] := {24} tii[24,94] := {103} tii[24,95] := {44} tii[24,96] := {81} tii[24,97] := {14} tii[24,98] := {85} tii[24,99] := {54} tii[24,100] := {95} tii[24,101] := {27} tii[24,102] := {69} tii[24,103] := {52} tii[24,104] := {64} tii[24,105] := {8} tii[24,106] := {79} tii[24,107] := {21} tii[24,108] := {45} tii[24,109] := {6} tii[24,110] := {40} tii[24,111] := {16} tii[24,112] := {29} tii[24,113] := {7} tii[24,114] := {37} tii[24,115] := {67} tii[24,116] := {17} tii[24,117] := {51} tii[24,118] := {36} tii[24,119] := {47} tii[24,120] := {3} tii[24,121] := {60} tii[24,122] := {12} tii[24,123] := {30} tii[24,124] := {1} tii[24,125] := {4} tii[24,126] := {18} cell#126 , |C| = 245 special orbit = [4, 4, 4, 2] special rep = [[2, 2], [2, 1]] , dim = 140 cell rep = phi[[2, 2, 1],[2]]+phi[[2, 2],[2, 1]] TII depth = 4 TII multiplicity polynomial = 105*X^2+35*X TII subcells: tii[18,1] := {155, 244} tii[18,2] := {71, 159} tii[18,3] := {178, 241} tii[18,4] := {149, 221} tii[18,5] := {119, 167} tii[18,6] := {198, 239} tii[18,7] := {194, 224} tii[18,8] := {172} tii[18,9] := {195} tii[18,10] := {215, 243} tii[18,11] := {226, 240} tii[18,12] := {235} tii[18,13] := {27, 182} tii[18,14] := {83, 232} tii[18,15] := {14, 162} tii[18,16] := {50, 133} tii[18,17] := {41, 202} tii[18,18] := {123, 204} tii[18,19] := {22, 86} tii[18,20] := {106, 238} tii[18,21] := {43, 206} tii[18,22] := {64, 223} tii[18,23] := {59, 218} tii[18,24] := {70, 115} tii[18,25] := {130, 242} tii[18,26] := {148, 192} tii[18,27] := {81, 228} tii[18,28] := {51, 92} tii[18,29] := {121} tii[18,30] := {76} tii[18,31] := {107, 236} tii[18,32] := {152} tii[18,33] := {171, 211} tii[18,34] := {196} tii[18,35] := {26, 136} tii[18,36] := {60, 181} tii[18,37] := {36, 110} tii[18,38] := {131, 231} tii[18,39] := {62, 185} tii[18,40] := {85, 207} tii[18,41] := {33, 111} tii[18,42] := {80, 201} tii[18,43] := {94, 142} tii[18,44] := {54, 134} tii[18,45] := {20, 88} tii[18,46] := {156, 237} tii[18,47] := {147} tii[18,48] := {105, 216} tii[18,49] := {173, 210} tii[18,50] := {74, 163} tii[18,51] := {72, 118} tii[18,52] := {38, 116} tii[18,53] := {175} tii[18,54] := {132, 229} tii[18,55] := {103, 190} tii[18,56] := {102} tii[18,57] := {97, 180} tii[18,58] := {122} tii[18,59] := {193, 225} tii[18,60] := {100} tii[18,61] := {126, 203} tii[18,62] := {213} tii[18,63] := {153} tii[18,64] := {177} tii[18,65] := {104, 188} tii[18,66] := {95, 145} tii[18,67] := {179, 233} tii[18,68] := {129, 205} tii[18,69] := {127} tii[18,70] := {157, 222} tii[18,71] := {212, 234} tii[18,72] := {146, 187} tii[18,73] := {150} tii[18,74] := {227} tii[18,75] := {174, 209} tii[18,76] := {214} tii[18,77] := {8, 135} tii[18,78] := {6, 137} tii[18,79] := {16, 161} tii[18,80] := {2, 113} tii[18,81] := {12, 65} tii[18,82] := {28, 186} tii[18,83] := {9, 144} tii[18,84] := {46, 208} tii[18,85] := {42, 200} tii[18,86] := {21, 49} tii[18,87] := {63, 220} tii[18,88] := {39} tii[18,89] := {19, 87} tii[18,90] := {35, 109} tii[18,91] := {7, 138} tii[18,92] := {29, 184} tii[18,93] := {10, 66} tii[18,94] := {53, 139} tii[18,95] := {23, 90} tii[18,96] := {18, 168} tii[18,97] := {77, 169} tii[18,98] := {61, 217} tii[18,99] := {34, 69} tii[18,100] := {98} tii[18,101] := {73, 158} tii[18,102] := {4, 47} tii[18,103] := {30, 189} tii[18,104] := {56} tii[18,105] := {101, 183} tii[18,106] := {84, 230} tii[18,107] := {128} tii[18,108] := {75} tii[18,109] := {13, 68} tii[18,110] := {154} tii[18,111] := {40} tii[18,112] := {96, 140} tii[18,113] := {125, 170} tii[18,114] := {99} tii[18,115] := {176} tii[18,116] := {15, 112} tii[18,117] := {44, 160} tii[18,118] := {31, 143} tii[18,119] := {11, 67} tii[18,120] := {82, 199} tii[18,121] := {52, 93} tii[18,122] := {45, 165} tii[18,123] := {24, 91} tii[18,124] := {78} tii[18,125] := {108, 219} tii[18,126] := {58} tii[18,127] := {120, 164} tii[18,128] := {124} tii[18,129] := {55, 141} tii[18,130] := {151, 191} tii[18,131] := {79} tii[18,132] := {197} tii[18,133] := {0, 89} tii[18,134] := {3, 117} tii[18,135] := {1, 32} tii[18,136] := {17, 166} tii[18,137] := {5, 48} tii[18,138] := {25} tii[18,139] := {37, 114} tii[18,140] := {57} cell#127 , |C| = 126 special orbit = [6, 2, 2, 2, 2] special rep = [[3, 1, 1], [1, 1]] , dim = 126 cell rep = phi[[3, 1, 1],[1, 1]] TII depth = 4 TII multiplicity polynomial = 126*X TII subcells: tii[24,1] := {100} tii[24,2] := {120} tii[24,3] := {125} tii[24,4] := {92} tii[24,5] := {117} tii[24,6] := {99} tii[24,7] := {25} tii[24,8] := {31} tii[24,9] := {29} tii[24,10] := {76} tii[24,11] := {37} tii[24,12] := {110} tii[24,13] := {49} tii[24,14] := {54} tii[24,15] := {55} tii[24,16] := {123} tii[24,17] := {43} tii[24,18] := {73} tii[24,19] := {74} tii[24,20] := {91} tii[24,21] := {105} tii[24,22] := {69} tii[24,23] := {122} tii[24,24] := {66} tii[24,25] := {88} tii[24,26] := {89} tii[24,27] := {104} tii[24,28] := {114} tii[24,29] := {85} tii[24,30] := {102} tii[24,31] := {57} tii[24,32] := {30} tii[24,33] := {78} tii[24,34] := {79} tii[24,35] := {28} tii[24,36] := {96} tii[24,37] := {97} tii[24,38] := {109} tii[24,39] := {101} tii[24,40] := {86} tii[24,41] := {48} tii[24,42] := {42} tii[24,43] := {65} tii[24,44] := {64} tii[24,45] := {113} tii[24,46] := {112} tii[24,47] := {115} tii[24,48] := {82} tii[24,49] := {119} tii[24,50] := {121} tii[24,51] := {98} tii[24,52] := {62} tii[24,53] := {80} tii[24,54] := {124} tii[24,55] := {53} tii[24,56] := {27} tii[24,57] := {71} tii[24,58] := {72} tii[24,59] := {90} tii[24,60] := {93} tii[24,61] := {75} tii[24,62] := {41} tii[24,63] := {56} tii[24,64] := {107} tii[24,65] := {63} tii[24,66] := {81} tii[24,67] := {0} tii[24,68] := {16} tii[24,69] := {1} tii[24,70] := {15} tii[24,71] := {2} tii[24,72] := {8} tii[24,73] := {4} tii[24,74] := {35} tii[24,75] := {36} tii[24,76] := {6} tii[24,77] := {24} tii[24,78] := {51} tii[24,79] := {52} tii[24,80] := {14} tii[24,81] := {70} tii[24,82] := {11} tii[24,83] := {46} tii[24,84] := {47} tii[24,85] := {21} tii[24,86] := {61} tii[24,87] := {40} tii[24,88] := {77} tii[24,89] := {7} tii[24,90] := {94} tii[24,91] := {34} tii[24,92] := {95} tii[24,93] := {12} tii[24,94] := {108} tii[24,95] := {22} tii[24,96] := {111} tii[24,97] := {18} tii[24,98] := {67} tii[24,99] := {68} tii[24,100] := {118} tii[24,101] := {33} tii[24,102] := {84} tii[24,103] := {59} tii[24,104] := {106} tii[24,105] := {26} tii[24,106] := {116} tii[24,107] := {50} tii[24,108] := {83} tii[24,109] := {3} tii[24,110] := {23} tii[24,111] := {5} tii[24,112] := {13} tii[24,113] := {10} tii[24,114] := {45} tii[24,115] := {44} tii[24,116] := {20} tii[24,117] := {60} tii[24,118] := {39} tii[24,119] := {87} tii[24,120] := {17} tii[24,121] := {103} tii[24,122] := {32} tii[24,123] := {58} tii[24,124] := {9} tii[24,125] := {19} tii[24,126] := {38} cell#128 , |C| = 315 special orbit = [4, 4, 2, 2, 2] special rep = [[2, 1, 1], [2, 1]] , dim = 210 cell rep = phi[[2, 2, 1],[1, 1]]+phi[[2, 1, 1],[2, 1]] TII depth = 4 TII multiplicity polynomial = 105*X^2+105*X TII subcells: tii[16,1] := {221, 277} tii[16,2] := {290} tii[16,3] := {228, 307} tii[16,4] := {172, 314} tii[16,5] := {299} tii[16,6] := {313} tii[16,7] := {53, 178} tii[16,8] := {153} tii[16,9] := {94, 95} tii[16,10] := {190, 254} tii[16,11] := {82, 208} tii[16,12] := {35, 204} tii[16,13] := {271} tii[16,14] := {123, 203} tii[16,15] := {187} tii[16,16] := {156} tii[16,17] := {195} tii[16,18] := {165, 279} tii[16,19] := {116, 237} tii[16,20] := {103, 304} tii[16,21] := {261} tii[16,22] := {218} tii[16,23] := {137, 257} tii[16,24] := {80, 258} tii[16,25] := {170} tii[16,26] := {106, 274} tii[16,27] := {213} tii[16,28] := {284} tii[16,29] := {245} tii[16,30] := {265} tii[16,31] := {117, 238} tii[16,32] := {131, 132} tii[16,33] := {219} tii[16,34] := {58, 234} tii[16,35] := {158, 233} tii[16,36] := {192} tii[16,37] := {225} tii[16,38] := {163, 164} tii[16,39] := {197, 295} tii[16,40] := {150, 264} tii[16,41] := {193, 259} tii[16,42] := {138, 311} tii[16,43] := {36, 260} tii[16,44] := {128, 198} tii[16,45] := {246} tii[16,46] := {173, 281} tii[16,47] := {115, 282} tii[16,48] := {201} tii[16,49] := {283} tii[16,50] := {223} tii[16,51] := {159, 239} tii[16,52] := {141, 294} tii[16,53] := {242} tii[16,54] := {250} tii[16,55] := {55, 278} tii[16,56] := {248} tii[16,57] := {105, 303} tii[16,58] := {300} tii[16,59] := {269} tii[16,60] := {76, 292} tii[16,61] := {273} tii[16,62] := {286} tii[16,63] := {185, 285} tii[16,64] := {270} tii[16,65] := {202, 297} tii[16,66] := {149, 298} tii[16,67] := {230} tii[16,68] := {267} tii[16,69] := {176, 306} tii[16,70] := {114, 308} tii[16,71] := {256} tii[16,72] := {309} tii[16,73] := {289} tii[16,74] := {287} tii[16,75] := {301} tii[16,76] := {140, 312} tii[16,77] := {302} tii[16,78] := {310} tii[16,79] := {4, 25} tii[16,80] := {18, 113} tii[16,81] := {33} tii[16,82] := {61} tii[16,83] := {13, 45} tii[16,84] := {64, 65} tii[16,85] := {34, 148} tii[16,86] := {5, 67} tii[16,87] := {89, 174} tii[16,88] := {17, 175} tii[16,89] := {56} tii[16,90] := {122} tii[16,91] := {43, 44} tii[16,92] := {20, 111} tii[16,93] := {88} tii[16,94] := {162} tii[16,95] := {63} tii[16,96] := {84} tii[16,97] := {71, 205} tii[16,98] := {100} tii[16,99] := {31, 206} tii[16,100] := {120} tii[16,101] := {47, 227} tii[16,102] := {147} tii[16,103] := {74} tii[16,104] := {184} tii[16,105] := {129, 130} tii[16,106] := {29, 73} tii[16,107] := {68, 69} tii[16,108] := {157, 231} tii[16,109] := {57, 183} tii[16,110] := {16, 232} tii[16,111] := {93, 166} tii[16,112] := {14, 99} tii[16,113] := {191} tii[16,114] := {85} tii[16,115] := {92} tii[16,116] := {124, 209} tii[16,117] := {38, 146} tii[16,118] := {224} tii[16,119] := {121} tii[16,120] := {104, 235} tii[16,121] := {54, 236} tii[16,122] := {6, 134} tii[16,123] := {222} tii[16,124] := {118} tii[16,125] := {136} tii[16,126] := {30, 255} tii[16,127] := {70, 291} tii[16,128] := {66, 133} tii[16,129] := {125} tii[16,130] := {75, 253} tii[16,131] := {249} tii[16,132] := {154} tii[16,133] := {21, 180} tii[16,134] := {46, 272} tii[16,135] := {109} tii[16,136] := {182} tii[16,137] := {91, 179} tii[16,138] := {49, 226} tii[16,139] := {216} tii[16,140] := {51, 280} tii[16,141] := {200} tii[16,142] := {151} tii[16,143] := {142} tii[16,144] := {241} tii[16,145] := {188} tii[16,146] := {72, 293} tii[16,147] := {243} tii[16,148] := {52, 108} tii[16,149] := {86, 215} tii[16,150] := {101, 102} tii[16,151] := {32, 135} tii[16,152] := {119} tii[16,153] := {60, 181} tii[16,154] := {127} tii[16,155] := {155} tii[16,156] := {152} tii[16,157] := {96, 168} tii[16,158] := {15, 169} tii[16,159] := {83, 263} tii[16,160] := {139, 262} tii[16,161] := {171} tii[16,162] := {161} tii[16,163] := {189} tii[16,164] := {110, 276} tii[16,165] := {126, 211} tii[16,166] := {39, 212} tii[16,167] := {214} tii[16,168] := {143} tii[16,169] := {244} tii[16,170] := {79, 252} tii[16,171] := {81, 296} tii[16,172] := {7, 199} tii[16,173] := {229} tii[16,174] := {186} tii[16,175] := {177} tii[16,176] := {194} tii[16,177] := {107, 305} tii[16,178] := {22, 240} tii[16,179] := {266} tii[16,180] := {220} tii[16,181] := {50, 275} tii[16,182] := {268} tii[16,183] := {217} tii[16,184] := {247} tii[16,185] := {207} tii[16,186] := {288} tii[16,187] := {0, 12} tii[16,188] := {11} tii[16,189] := {3, 42} tii[16,190] := {23, 24} tii[16,191] := {19} tii[16,192] := {10, 77} tii[16,193] := {40} tii[16,194] := {28} tii[16,195] := {2, 98} tii[16,196] := {41, 97} tii[16,197] := {37} tii[16,198] := {90} tii[16,199] := {9, 145} tii[16,200] := {62, 144} tii[16,201] := {27, 196} tii[16,202] := {48} tii[16,203] := {1, 167} tii[16,204] := {160} tii[16,205] := {59} tii[16,206] := {8, 210} tii[16,207] := {78} tii[16,208] := {26, 251} tii[16,209] := {87} tii[16,210] := {112} cell#129 , |C| = 245 special orbit = [4, 4, 4, 2] special rep = [[2, 2], [2, 1]] , dim = 140 cell rep = phi[[2, 2, 1],[2]]+phi[[2, 2],[2, 1]] TII depth = 4 TII multiplicity polynomial = 105*X^2+35*X TII subcells: tii[18,1] := {185, 242} tii[18,2] := {110, 111} tii[18,3] := {208, 236} tii[18,4] := {195, 196} tii[18,5] := {154, 155} tii[18,6] := {225, 239} tii[18,7] := {221, 222} tii[18,8] := {200} tii[18,9] := {218} tii[18,10] := {235, 244} tii[18,11] := {240, 241} tii[18,12] := {243} tii[18,13] := {28, 140} tii[18,14] := {108, 215} tii[18,15] := {14, 109} tii[18,16] := {82, 83} tii[18,17] := {50, 167} tii[18,18] := {171, 172} tii[18,19] := {38, 39} tii[18,20] := {138, 228} tii[18,21] := {57, 170} tii[18,22] := {95, 199} tii[18,23] := {75, 192} tii[18,24] := {98, 99} tii[18,25] := {164, 237} tii[18,26] := {183, 184} tii[18,27] := {100, 213} tii[18,28] := {71, 72} tii[18,29] := {151} tii[18,30] := {96} tii[18,31] := {136, 229} tii[18,32] := {179} tii[18,33] := {206, 207} tii[18,34] := {220} tii[18,35] := {31, 80} tii[18,36] := {76, 139} tii[18,37] := {60, 61} tii[18,38] := {165, 214} tii[18,39] := {87, 143} tii[18,40] := {123, 175} tii[18,41] := {53, 54} tii[18,42] := {104, 166} tii[18,43] := {126, 127} tii[18,44] := {88, 89} tii[18,45] := {34, 35} tii[18,46] := {190, 227} tii[18,47] := {177} tii[18,48] := {130, 193} tii[18,49] := {204, 205} tii[18,50] := {114, 115} tii[18,51] := {102, 103} tii[18,52] := {65, 66} tii[18,53] := {201} tii[18,54] := {162, 216} tii[18,55] := {149, 150} tii[18,56] := {125} tii[18,57] := {141, 142} tii[18,58] := {159} tii[18,59] := {223, 224} tii[18,60] := {135} tii[18,61] := {173, 174} tii[18,62] := {231} tii[18,63] := {189} tii[18,64] := {212} tii[18,65] := {134, 180} tii[18,66] := {132, 133} tii[18,67] := {211, 232} tii[18,68] := {158, 203} tii[18,69] := {153} tii[18,70] := {188, 226} tii[18,71] := {233, 234} tii[18,72] := {181, 182} tii[18,73] := {178} tii[18,74] := {238} tii[18,75] := {209, 210} tii[18,76] := {230} tii[18,77] := {5, 90} tii[18,78] := {6, 81} tii[18,79] := {13, 117} tii[18,80] := {1, 56} tii[18,81] := {20, 21} tii[18,82] := {37, 144} tii[18,83] := {12, 94} tii[18,84] := {68, 176} tii[18,85] := {47, 169} tii[18,86] := {26, 27} tii[18,87] := {77, 198} tii[18,88] := {46} tii[18,89] := {32, 33} tii[18,90] := {58, 59} tii[18,91] := {7, 84} tii[18,92] := {29, 145} tii[18,93] := {16, 17} tii[18,94] := {85, 86} tii[18,95] := {41, 42} tii[18,96] := {25, 120} tii[18,97] := {121, 122} tii[18,98] := {70, 194} tii[18,99] := {48, 49} tii[18,100] := {131} tii[18,101] := {112, 113} tii[18,102] := {8, 9} tii[18,103] := {40, 146} tii[18,104] := {69} tii[18,105] := {147, 148} tii[18,106] := {106, 217} tii[18,107] := {163} tii[18,108] := {105} tii[18,109] := {23, 24} tii[18,110] := {191} tii[18,111] := {52} tii[18,112] := {128, 129} tii[18,113] := {160, 161} tii[18,114] := {124} tii[18,115] := {202} tii[18,116] := {15, 55} tii[18,117] := {51, 116} tii[18,118] := {45, 93} tii[18,119] := {18, 19} tii[18,120] := {101, 168} tii[18,121] := {73, 74} tii[18,122] := {64, 118} tii[18,123] := {43, 44} tii[18,124] := {97} tii[18,125] := {137, 197} tii[18,126] := {79} tii[18,127] := {156, 157} tii[18,128] := {152} tii[18,129] := {91, 92} tii[18,130] := {186, 187} tii[18,131] := {107} tii[18,132] := {219} tii[18,133] := {0, 36} tii[18,134] := {4, 67} tii[18,135] := {2, 3} tii[18,136] := {22, 119} tii[18,137] := {10, 11} tii[18,138] := {30} tii[18,139] := {62, 63} tii[18,140] := {78} cell#130 , |C| = 126 special orbit = [6, 2, 2, 2, 2] special rep = [[3, 1, 1], [1, 1]] , dim = 126 cell rep = phi[[3, 1, 1],[1, 1]] TII depth = 4 TII multiplicity polynomial = 126*X TII subcells: tii[24,1] := {125} tii[24,2] := {120} tii[24,3] := {106} tii[24,4] := {104} tii[24,5] := {76} tii[24,6] := {44} tii[24,7] := {89} tii[24,8] := {83} tii[24,9] := {57} tii[24,10] := {124} tii[24,11] := {102} tii[24,12] := {115} tii[24,13] := {65} tii[24,14] := {122} tii[24,15] := {110} tii[24,16] := {92} tii[24,17] := {41} tii[24,18] := {119} tii[24,19] := {101} tii[24,20] := {113} tii[24,21] := {111} tii[24,22] := {81} tii[24,23] := {77} tii[24,24] := {28} tii[24,25] := {98} tii[24,26] := {72} tii[24,27] := {86} tii[24,28] := {68} tii[24,29] := {40} tii[24,30] := {52} tii[24,31] := {109} tii[24,32] := {47} tii[24,33] := {123} tii[24,34] := {114} tii[24,35] := {27} tii[24,36] := {121} tii[24,37] := {108} tii[24,38] := {117} tii[24,39] := {103} tii[24,40] := {97} tii[24,41] := {63} tii[24,42] := {15} tii[24,43] := {55} tii[24,44] := {84} tii[24,45] := {95} tii[24,46] := {116} tii[24,47] := {59} tii[24,48] := {69} tii[24,49] := {107} tii[24,50] := {82} tii[24,51] := {50} tii[24,52] := {24} tii[24,53] := {35} tii[24,54] := {94} tii[24,55] := {75} tii[24,56] := {7} tii[24,57] := {91} tii[24,58] := {62} tii[24,59] := {78} tii[24,60] := {46} tii[24,61] := {34} tii[24,62] := {13} tii[24,63] := {21} tii[24,64] := {60} tii[24,65] := {19} tii[24,66] := {30} tii[24,67] := {4} tii[24,68] := {74} tii[24,69] := {12} tii[24,70] := {58} tii[24,71] := {26} tii[24,72] := {43} tii[24,73] := {18} tii[24,74] := {118} tii[24,75] := {96} tii[24,76] := {32} tii[24,77] := {66} tii[24,78] := {112} tii[24,79] := {88} tii[24,80] := {53} tii[24,81] := {100} tii[24,82] := {25} tii[24,83] := {99} tii[24,84] := {73} tii[24,85] := {42} tii[24,86] := {87} tii[24,87] := {71} tii[24,88] := {90} tii[24,89] := {9} tii[24,90] := {105} tii[24,91] := {49} tii[24,92] := {80} tii[24,93] := {20} tii[24,94] := {93} tii[24,95] := {36} tii[24,96] := {64} tii[24,97] := {14} tii[24,98] := {85} tii[24,99] := {56} tii[24,100] := {79} tii[24,101] := {29} tii[24,102] := {70} tii[24,103] := {54} tii[24,104] := {48} tii[24,105] := {6} tii[24,106] := {61} tii[24,107] := {17} tii[24,108] := {38} tii[24,109] := {3} tii[24,110] := {33} tii[24,111] := {10} tii[24,112] := {22} tii[24,113] := {5} tii[24,114] := {39} tii[24,115] := {67} tii[24,116] := {16} tii[24,117] := {51} tii[24,118] := {37} tii[24,119] := {31} tii[24,120] := {1} tii[24,121] := {45} tii[24,122] := {8} tii[24,123] := {23} tii[24,124] := {0} tii[24,125] := {2} tii[24,126] := {11} cell#131 , |C| = 175 special orbit = [6, 2, 2, 2, 1, 1] special rep = [[3, 1], [1, 1, 1]] , dim = 105 cell rep = phi[[3, 1, 1, 1],[1]]+phi[[3, 1],[1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 70*X^2+35*X TII subcells: tii[23,1] := {105, 174} tii[23,2] := {89, 173} tii[23,3] := {55, 167} tii[23,4] := {127, 171} tii[23,5] := {115, 169} tii[23,6] := {134, 166} tii[23,7] := {63, 156} tii[23,8] := {126, 157} tii[23,9] := {143} tii[23,10] := {136, 161} tii[23,11] := {54, 140} tii[23,12] := {111, 149} tii[23,13] := {132} tii[23,14] := {78, 119} tii[23,15] := {98} tii[23,16] := {102, 164} tii[23,17] := {88, 160} tii[23,18] := {112, 154} tii[23,19] := {37, 138} tii[23,20] := {101, 139} tii[23,21] := {122} tii[23,22] := {87, 137} tii[23,23] := {113, 147} tii[23,24] := {30, 117} tii[23,25] := {85, 129} tii[23,26] := {76, 118} tii[23,27] := {108} tii[23,28] := {97} tii[23,29] := {53, 95} tii[23,30] := {52, 94} tii[23,31] := {71} tii[23,32] := {72} tii[23,33] := {46} tii[23,34] := {86, 128} tii[23,35] := {11, 92} tii[23,36] := {60, 106} tii[23,37] := {82} tii[23,38] := {36, 81} tii[23,39] := {28, 66} tii[23,40] := {43} tii[23,41] := {58} tii[23,42] := {35} tii[23,43] := {9, 38} tii[23,44] := {20} tii[23,45] := {6} tii[23,46] := {16, 146} tii[23,47] := {80, 172} tii[23,48] := {27, 152} tii[23,49] := {56, 168} tii[23,50] := {15, 145} tii[23,51] := {33, 159} tii[23,52] := {51, 165} tii[23,53] := {114, 155} tii[23,54] := {25, 151} tii[23,55] := {64, 170} tii[23,56] := {104, 141} tii[23,57] := {41, 163} tii[23,58] := {124} tii[23,59] := {14, 144} tii[23,60] := {79, 120} tii[23,61] := {32, 158} tii[23,62] := {99} tii[23,63] := {74} tii[23,64] := {61, 116} tii[23,65] := {77, 153} tii[23,66] := {91, 162} tii[23,67] := {49, 93} tii[23,68] := {47, 133} tii[23,69] := {70} tii[23,70] := {68, 150} tii[23,71] := {29, 67} tii[23,72] := {24, 125} tii[23,73] := {90, 130} tii[23,74] := {44} tii[23,75] := {40, 142} tii[23,76] := {109} tii[23,77] := {23} tii[23,78] := {84} tii[23,79] := {10, 39} tii[23,80] := {13, 103} tii[23,81] := {21} tii[23,82] := {31, 123} tii[23,83] := {7} tii[23,84] := {73} tii[23,85] := {2} tii[23,86] := {50, 135} tii[23,87] := {65, 148} tii[23,88] := {26, 110} tii[23,89] := {42, 131} tii[23,90] := {8, 100} tii[23,91] := {62, 107} tii[23,92] := {19, 121} tii[23,93] := {83} tii[23,94] := {59} tii[23,95] := {18, 57} tii[23,96] := {4, 75} tii[23,97] := {34} tii[23,98] := {12, 96} tii[23,99] := {45} tii[23,100] := {17} tii[23,101] := {5} tii[23,102] := {0, 48} tii[23,103] := {3, 69} tii[23,104] := {22} tii[23,105] := {1} cell#132 , |C| = 315 special orbit = [4, 4, 2, 2, 2] special rep = [[2, 1, 1], [2, 1]] , dim = 210 cell rep = phi[[2, 2, 1],[1, 1]]+phi[[2, 1, 1],[2, 1]] TII depth = 4 TII multiplicity polynomial = 105*X^2+105*X TII subcells: tii[16,1] := {234, 289} tii[16,2] := {298} tii[16,3] := {172, 307} tii[16,4] := {107, 314} tii[16,5] := {260} tii[16,6] := {300} tii[16,7] := {72, 192} tii[16,8] := {169} tii[16,9] := {115, 116} tii[16,10] := {205, 267} tii[16,11] := {101, 222} tii[16,12] := {51, 219} tii[16,13] := {280} tii[16,14] := {141, 218} tii[16,15] := {203} tii[16,16] := {174} tii[16,17] := {212} tii[16,18] := {183, 291} tii[16,19] := {133, 251} tii[16,20] := {55, 310} tii[16,21] := {274} tii[16,22] := {233} tii[16,23] := {159, 270} tii[16,24] := {99, 271} tii[16,25] := {189} tii[16,26] := {127, 286} tii[16,27] := {228} tii[16,28] := {295} tii[16,29] := {258} tii[16,30] := {279} tii[16,31] := {71, 252} tii[16,32] := {150, 151} tii[16,33] := {168} tii[16,34] := {28, 247} tii[16,35] := {176, 246} tii[16,36] := {208} tii[16,37] := {239} tii[16,38] := {181, 182} tii[16,39] := {152, 304} tii[16,40] := {100, 278} tii[16,41] := {209, 272} tii[16,42] := {79, 313} tii[16,43] := {15, 273} tii[16,44] := {147, 214} tii[16,45] := {202} tii[16,46] := {125, 293} tii[16,47] := {70, 294} tii[16,48] := {157} tii[16,49] := {248} tii[16,50] := {236} tii[16,51] := {177, 254} tii[16,52] := {92, 303} tii[16,53] := {197} tii[16,54] := {263} tii[16,55] := {26, 290} tii[16,56] := {259} tii[16,57] := {63, 309} tii[16,58] := {277} tii[16,59] := {232} tii[16,60] := {41, 301} tii[16,61] := {285} tii[16,62] := {253} tii[16,63] := {114, 282} tii[16,64] := {217} tii[16,65] := {140, 296} tii[16,66] := {83, 297} tii[16,67] := {173} tii[16,68] := {211} tii[16,69] := {109, 306} tii[16,70] := {58, 308} tii[16,71] := {206} tii[16,72] := {281} tii[16,73] := {243} tii[16,74] := {237} tii[16,75] := {261} tii[16,76] := {80, 312} tii[16,77] := {269} tii[16,78] := {284} tii[16,79] := {10, 40} tii[16,80] := {30, 132} tii[16,81] := {48} tii[16,82] := {78} tii[16,83] := {25, 64} tii[16,84] := {84, 85} tii[16,85] := {50, 166} tii[16,86] := {13, 87} tii[16,87] := {108, 190} tii[16,88] := {29, 191} tii[16,89] := {75} tii[16,90] := {139} tii[16,91] := {61, 62} tii[16,92] := {33, 131} tii[16,93] := {106} tii[16,94] := {180} tii[16,95] := {82} tii[16,96] := {103} tii[16,97] := {91, 220} tii[16,98] := {122} tii[16,99] := {47, 221} tii[16,100] := {137} tii[16,101] := {66, 242} tii[16,102] := {165} tii[16,103] := {95} tii[16,104] := {201} tii[16,105] := {148, 149} tii[16,106] := {45, 93} tii[16,107] := {88, 89} tii[16,108] := {175, 244} tii[16,109] := {76, 199} tii[16,110] := {7, 245} tii[16,111] := {113, 184} tii[16,112] := {27, 120} tii[16,113] := {207} tii[16,114] := {104} tii[16,115] := {112} tii[16,116] := {142, 223} tii[16,117] := {54, 163} tii[16,118] := {238} tii[16,119] := {138} tii[16,120] := {126, 249} tii[16,121] := {73, 250} tii[16,122] := {14, 155} tii[16,123] := {235} tii[16,124] := {135} tii[16,125] := {158} tii[16,126] := {11, 268} tii[16,127] := {39, 299} tii[16,128] := {86, 154} tii[16,129] := {144} tii[16,130] := {96, 266} tii[16,131] := {262} tii[16,132] := {171} tii[16,133] := {34, 195} tii[16,134] := {21, 283} tii[16,135] := {130} tii[16,136] := {198} tii[16,137] := {111, 194} tii[16,138] := {69, 241} tii[16,139] := {231} tii[16,140] := {20, 292} tii[16,141] := {216} tii[16,142] := {167} tii[16,143] := {160} tii[16,144] := {256} tii[16,145] := {204} tii[16,146] := {35, 302} tii[16,147] := {257} tii[16,148] := {24, 128} tii[16,149] := {49, 229} tii[16,150] := {123, 124} tii[16,151] := {12, 156} tii[16,152] := {74} tii[16,153] := {32, 196} tii[16,154] := {146} tii[16,155] := {105} tii[16,156] := {102} tii[16,157] := {117, 186} tii[16,158] := {4, 187} tii[16,159] := {46, 276} tii[16,160] := {90, 275} tii[16,161] := {121} tii[16,162] := {179} tii[16,163] := {136} tii[16,164] := {65, 288} tii[16,165] := {145, 225} tii[16,166] := {16, 226} tii[16,167] := {164} tii[16,168] := {94} tii[16,169] := {200} tii[16,170] := {42, 265} tii[16,171] := {36, 305} tii[16,172] := {1, 215} tii[16,173] := {188} tii[16,174] := {134} tii[16,175] := {129} tii[16,176] := {210} tii[16,177] := {56, 311} tii[16,178] := {8, 255} tii[16,179] := {227} tii[16,180] := {170} tii[16,181] := {23, 287} tii[16,182] := {230} tii[16,183] := {153} tii[16,184] := {193} tii[16,185] := {143} tii[16,186] := {240} tii[16,187] := {3, 22} tii[16,188] := {19} tii[16,189] := {6, 60} tii[16,190] := {37, 38} tii[16,191] := {31} tii[16,192] := {18, 97} tii[16,193] := {57} tii[16,194] := {44} tii[16,195] := {5, 119} tii[16,196] := {59, 118} tii[16,197] := {53} tii[16,198] := {110} tii[16,199] := {17, 162} tii[16,200] := {81, 161} tii[16,201] := {43, 213} tii[16,202] := {68} tii[16,203] := {0, 185} tii[16,204] := {178} tii[16,205] := {77} tii[16,206] := {2, 224} tii[16,207] := {98} tii[16,208] := {9, 264} tii[16,209] := {52} tii[16,210] := {67} cell#133 , |C| = 189 special orbit = [4, 2, 2, 2, 2, 2] special rep = [[2, 1, 1], [1, 1, 1]] , dim = 105 cell rep = phi[[2, 1, 1, 1],[1, 1]]+phi[[2, 1, 1],[1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 84*X^2+21*X TII subcells: tii[13,1] := {124, 188} tii[13,2] := {79, 180} tii[13,3] := {41, 167} tii[13,4] := {148, 185} tii[13,5] := {103, 169} tii[13,6] := {165, 179} tii[13,7] := {37, 151} tii[13,8] := {78, 155} tii[13,9] := {145, 170} tii[13,10] := {159} tii[13,11] := {100, 137} tii[13,12] := {118} tii[13,13] := {52, 129} tii[13,14] := {70, 105} tii[13,15] := {85} tii[13,16] := {50, 166} tii[13,17] := {22, 127} tii[13,18] := {99, 186} tii[13,19] := {69, 178} tii[13,20] := {59, 171} tii[13,21] := {13, 102} tii[13,22] := {80, 182} tii[13,23] := {49, 164} tii[13,24] := {63, 175} tii[13,25] := {42, 156} tii[13,26] := {21, 125} tii[13,27] := {30, 141} tii[13,28] := {147, 168} tii[13,29] := {90, 184} tii[13,30] := {122, 154} tii[13,31] := {6, 92} tii[13,32] := {104, 187} tii[13,33] := {68, 176} tii[13,34] := {58, 136} tii[13,35] := {139} tii[13,36] := {84, 183} tii[13,37] := {48, 162} tii[13,38] := {28, 152} tii[13,39] := {76, 115} tii[13,40] := {12, 114} tii[13,41] := {101, 138} tii[13,42] := {94} tii[13,43] := {18, 133} tii[13,44] := {119} tii[13,45] := {62, 173} tii[13,46] := {97} tii[13,47] := {20, 134} tii[13,48] := {57, 93} tii[13,49] := {29, 153} tii[13,50] := {73} tii[13,51] := {55} tii[13,52] := {113, 177} tii[13,53] := {128, 181} tii[13,54] := {5, 71} tii[13,55] := {88, 163} tii[13,56] := {107, 174} tii[13,57] := {67, 144} tii[13,58] := {126, 157} tii[13,59] := {23, 130} tii[13,60] := {10, 91} tii[13,61] := {142} tii[13,62] := {83, 158} tii[13,63] := {15, 109} tii[13,64] := {121} tii[13,65] := {17, 112} tii[13,66] := {51, 81} tii[13,67] := {47, 123} tii[13,68] := {25, 132} tii[13,69] := {64} tii[13,70] := {61, 140} tii[13,71] := {96} tii[13,72] := {46} tii[13,73] := {26, 89} tii[13,74] := {38, 108} tii[13,75] := {65} tii[13,76] := {27, 135} tii[13,77] := {36, 150} tii[13,78] := {16, 111} tii[13,79] := {24, 131} tii[13,80] := {9, 87} tii[13,81] := {60, 172} tii[13,82] := {35, 149} tii[13,83] := {14, 106} tii[13,84] := {45, 161} tii[13,85] := {31, 143} tii[13,86] := {34, 146} tii[13,87] := {4, 66} tii[13,88] := {77, 116} tii[13,89] := {95} tii[13,90] := {44, 160} tii[13,91] := {7, 82} tii[13,92] := {19, 120} tii[13,93] := {75} tii[13,94] := {56} tii[13,95] := {1, 54} tii[13,96] := {33, 98} tii[13,97] := {3, 72} tii[13,98] := {43, 117} tii[13,99] := {11, 110} tii[13,100] := {74} tii[13,101] := {40} tii[13,102] := {0, 39} tii[13,103] := {2, 53} tii[13,104] := {8, 86} tii[13,105] := {32} cell#134 , |C| = 245 special orbit = [4, 4, 4, 2] special rep = [[2, 2], [2, 1]] , dim = 140 cell rep = phi[[2, 2, 1],[2]]+phi[[2, 2],[2, 1]] TII depth = 4 TII multiplicity polynomial = 105*X^2+35*X TII subcells: tii[18,1] := {118, 244} tii[18,2] := {94, 177} tii[18,3] := {143, 242} tii[18,4] := {107, 221} tii[18,5] := {142, 189} tii[18,6] := {167, 240} tii[18,7] := {157, 228} tii[18,8] := {180} tii[18,9] := {203} tii[18,10] := {188, 234} tii[18,11] := {200, 227} tii[18,12] := {219} tii[18,13] := {14, 199} tii[18,14] := {56, 232} tii[18,15] := {11, 176} tii[18,16] := {72, 152} tii[18,17] := {24, 217} tii[18,18] := {84, 207} tii[18,19] := {46, 108} tii[18,20] := {75, 239} tii[18,21] := {27, 210} tii[18,22] := {43, 224} tii[18,23] := {36, 229} tii[18,24] := {92, 144} tii[18,25] := {96, 243} tii[18,26] := {106, 197} tii[18,27] := {53, 233} tii[18,28] := {81, 119} tii[18,29] := {128} tii[18,30] := {99} tii[18,31] := {78, 241} tii[18,32] := {162} tii[18,33] := {127, 175} tii[18,34] := {164} tii[18,35] := {19, 150} tii[18,36] := {37, 198} tii[18,37] := {63, 132} tii[18,38] := {97, 231} tii[18,39] := {40, 191} tii[18,40] := {60, 211} tii[18,41] := {23, 126} tii[18,42] := {51, 216} tii[18,43] := {116, 168} tii[18,44] := {74, 156} tii[18,45] := {38, 115} tii[18,46] := {120, 238} tii[18,47] := {155} tii[18,48] := {73, 222} tii[18,49] := {131, 215} tii[18,50] := {49, 171} tii[18,51] := {102, 145} tii[18,52] := {58, 133} tii[18,53] := {184} tii[18,54] := {101, 235} tii[18,55] := {68, 194} tii[18,56] := {122} tii[18,57] := {65, 190} tii[18,58] := {129} tii[18,59] := {153, 196} tii[18,60] := {112} tii[18,61] := {89, 213} tii[18,62] := {185} tii[18,63] := {163} tii[18,64] := {138} tii[18,65] := {70, 206} tii[18,66] := {124, 169} tii[18,67] := {146, 237} tii[18,68] := {95, 218} tii[18,69] := {147} tii[18,70] := {123, 230} tii[18,71] := {178, 214} tii[18,72] := {104, 201} tii[18,73] := {161} tii[18,74] := {204} tii[18,75] := {136, 220} tii[18,76] := {187} tii[18,77] := {6, 158} tii[18,78] := {5, 151} tii[18,79] := {7, 182} tii[18,80] := {1, 141} tii[18,81] := {32, 85} tii[18,82] := {15, 192} tii[18,83] := {3, 160} tii[18,84] := {30, 212} tii[18,85] := {26, 209} tii[18,86] := {45, 76} tii[18,87] := {42, 226} tii[18,88] := {57} tii[18,89] := {13, 103} tii[18,90] := {55, 130} tii[18,91] := {4, 166} tii[18,92] := {16, 202} tii[18,93] := {25, 91} tii[18,94] := {34, 148} tii[18,95] := {41, 109} tii[18,96] := {8, 183} tii[18,97] := {50, 174} tii[18,98] := {39, 223} tii[18,99] := {62, 98} tii[18,100] := {105} tii[18,101] := {48, 170} tii[18,102] := {20, 71} tii[18,103] := {18, 193} tii[18,104] := {77} tii[18,105] := {67, 195} tii[18,106] := {59, 236} tii[18,107] := {137} tii[18,108] := {87} tii[18,109] := {33, 86} tii[18,110] := {114} tii[18,111] := {61} tii[18,112] := {64, 154} tii[18,113] := {88, 186} tii[18,114] := {110} tii[18,115] := {139} tii[18,116] := {10, 140} tii[18,117] := {28, 181} tii[18,118] := {17, 159} tii[18,119] := {31, 93} tii[18,120] := {54, 208} tii[18,121] := {82, 121} tii[18,122] := {29, 172} tii[18,123] := {47, 111} tii[18,124] := {100} tii[18,125] := {79, 225} tii[18,126] := {80} tii[18,127] := {83, 179} tii[18,128] := {134} tii[18,129] := {35, 149} tii[18,130] := {113, 205} tii[18,131] := {90} tii[18,132] := {165} tii[18,133] := {0, 117} tii[18,134] := {2, 135} tii[18,135] := {12, 52} tii[18,136] := {9, 173} tii[18,137] := {21, 66} tii[18,138] := {44} tii[18,139] := {22, 125} tii[18,140] := {69} cell#135 , |C| = 189 special orbit = [4, 2, 2, 2, 2, 2] special rep = [[2, 1, 1], [1, 1, 1]] , dim = 105 cell rep = phi[[2, 1, 1, 1],[1, 1]]+phi[[2, 1, 1],[1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 84*X^2+21*X TII subcells: tii[13,1] := {39, 181} tii[13,2] := {69, 184} tii[13,3] := {79, 188} tii[13,4] := {57, 165} tii[13,5] := {89, 172} tii[13,6] := {75, 147} tii[13,7] := {101, 185} tii[13,8] := {111, 156} tii[13,9] := {85, 127} tii[13,10] := {117} tii[13,11] := {130, 163} tii[13,12] := {146} tii[13,13] := {123, 183} tii[13,14] := {144, 174} tii[13,15] := {158} tii[13,16] := {7, 77} tii[13,17] := {9, 112} tii[13,18] := {27, 167} tii[13,19] := {13, 98} tii[13,20] := {50, 173} tii[13,21] := {16, 135} tii[13,22] := {19, 151} tii[13,23] := {20, 109} tii[13,24] := {26, 142} tii[13,25] := {43, 178} tii[13,26] := {23, 153} tii[13,27] := {32, 166} tii[13,28] := {55, 125} tii[13,29] := {21, 120} tii[13,30] := {67, 104} tii[13,31] := {24, 155} tii[13,32] := {29, 169} tii[13,33] := {30, 131} tii[13,34] := {88, 136} tii[13,35] := {92} tii[13,36] := {38, 161} tii[13,37] := {40, 154} tii[13,38] := {61, 186} tii[13,39] := {107, 145} tii[13,40] := {34, 171} tii[13,41] := {49, 84} tii[13,42] := {124} tii[13,43] := {45, 180} tii[13,44] := {72} tii[13,45] := {51, 176} tii[13,46] := {83} tii[13,47] := {47, 182} tii[13,48] := {100, 137} tii[13,49] := {62, 187} tii[13,50] := {115} tii[13,51] := {94} tii[13,52] := {31, 96} tii[13,53] := {41, 149} tii[13,54] := {35, 134} tii[13,55] := {42, 108} tii[13,56] := {53, 141} tii[13,57] := {58, 132} tii[13,58] := {68, 106} tii[13,59] := {80, 177} tii[13,60] := {48, 152} tii[13,61] := {93} tii[13,62] := {71, 159} tii[13,63] := {63, 164} tii[13,64] := {105} tii[13,65] := {64, 170} tii[13,66] := {122, 157} tii[13,67] := {76, 110} tii[13,68] := {81, 179} tii[13,69] := {139} tii[13,70] := {90, 140} tii[13,71] := {126} tii[13,72] := {119} tii[13,73] := {82, 162} tii[13,74] := {102, 175} tii[13,75] := {143} tii[13,76] := {0, 44} tii[13,77] := {4, 59} tii[13,78] := {1, 60} tii[13,79] := {3, 73} tii[13,80] := {2, 78} tii[13,81] := {11, 129} tii[13,82] := {12, 87} tii[13,83] := {6, 91} tii[13,84] := {18, 118} tii[13,85] := {14, 128} tii[13,86] := {28, 133} tii[13,87] := {5, 99} tii[13,88] := {36, 66} tii[13,89] := {52} tii[13,90] := {37, 160} tii[13,91] := {10, 114} tii[13,92] := {22, 150} tii[13,93] := {65} tii[13,94] := {54} tii[13,95] := {8, 121} tii[13,96] := {56, 86} tii[13,97] := {17, 138} tii[13,98] := {70, 116} tii[13,99] := {33, 168} tii[13,100] := {103} tii[13,101] := {74} tii[13,102] := {15, 97} tii[13,103] := {25, 113} tii[13,104] := {46, 148} tii[13,105] := {95} cell#136 , |C| = 35 special orbit = [2, 2, 2, 2, 2, 2, 2] special rep = [[1, 1, 1, 1], [1, 1, 1]] , dim = 35 cell rep = phi[[1, 1, 1, 1],[1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 35*X TII subcells: tii[5,1] := {34} tii[5,2] := {11} tii[5,3] := {31} tii[5,4] := {16} tii[5,5] := {27} tii[5,6] := {20} tii[5,7] := {23} tii[5,8] := {21} tii[5,9] := {32} tii[5,10] := {26} tii[5,11] := {29} tii[5,12] := {30} tii[5,13] := {33} tii[5,14] := {2} tii[5,15] := {7} tii[5,16] := {4} tii[5,17] := {5} tii[5,18] := {22} tii[5,19] := {6} tii[5,20] := {15} tii[5,21] := {8} tii[5,22] := {18} tii[5,23] := {14} tii[5,24] := {25} tii[5,25] := {9} tii[5,26] := {28} tii[5,27] := {12} tii[5,28] := {19} tii[5,29] := {13} tii[5,30] := {17} tii[5,31] := {24} tii[5,32] := {0} tii[5,33] := {1} tii[5,34] := {3} tii[5,35] := {10} cell#137 , |C| = 315 special orbit = [4, 4, 2, 2, 2] special rep = [[2, 1, 1], [2, 1]] , dim = 210 cell rep = phi[[2, 2, 1],[1, 1]]+phi[[2, 1, 1],[2, 1]] TII depth = 4 TII multiplicity polynomial = 105*X^2+105*X TII subcells: tii[16,1] := {274, 302} tii[16,2] := {290} tii[16,3] := {304, 309} tii[16,4] := {310, 314} tii[16,5] := {289} tii[16,6] := {313} tii[16,7] := {68, 109} tii[16,8] := {90} tii[16,9] := {51, 115} tii[16,10] := {241, 282} tii[16,11] := {100, 147} tii[16,12] := {89, 167} tii[16,13] := {260} tii[16,14] := {166, 218} tii[16,15] := {125} tii[16,16] := {104} tii[16,17] := {149} tii[16,18] := {256, 266} tii[16,19] := {136, 188} tii[16,20] := {277, 300} tii[16,21] := {224} tii[16,22] := {164} tii[16,23] := {222, 235} tii[16,24] := {158, 223} tii[16,25] := {103} tii[16,26] := {213, 252} tii[16,27] := {148} tii[16,28] := {262} tii[16,29] := {200} tii[16,30] := {228} tii[16,31] := {137, 189} tii[16,32] := {78, 157} tii[16,33] := {168} tii[16,34] := {123, 208} tii[16,35] := {207, 255} tii[16,36] := {142} tii[16,37] := {193} tii[16,38] := {114, 199} tii[16,39] := {285, 295} tii[16,40] := {177, 227} tii[16,41] := {246, 284} tii[16,42] := {298, 311} tii[16,43] := {165, 247} tii[16,44] := {160, 219} tii[16,45] := {206} tii[16,46] := {258, 270} tii[16,47] := {201, 259} tii[16,48] := {141} tii[16,49] := {261} tii[16,50] := {185} tii[16,51] := {210, 269} tii[16,52] := {251, 283} tii[16,53] := {192} tii[16,54] := {233} tii[16,55] := {203, 275} tii[16,56] := {221} tii[16,57] := {278, 307} tii[16,58] := {291} tii[16,59] := {240} tii[16,60] := {250, 294} tii[16,61] := {268} tii[16,62] := {264} tii[16,63] := {216, 263} tii[16,64] := {245} tii[16,65] := {287, 296} tii[16,66] := {243, 288} tii[16,67] := {184} tii[16,68] := {232} tii[16,69] := {280, 303} tii[16,70] := {276, 305} tii[16,71] := {220} tii[16,72] := {306} tii[16,73] := {273} tii[16,74] := {267} tii[16,75] := {293} tii[16,76] := {299, 312} tii[16,77] := {297} tii[16,78] := {308} tii[16,79] := {1, 12} tii[16,80] := {26, 50} tii[16,81] := {7} tii[16,82] := {21} tii[16,83] := {4, 23} tii[16,84] := {30, 80} tii[16,85] := {44, 77} tii[16,86] := {13, 31} tii[16,87] := {126, 179} tii[16,88] := {60, 127} tii[16,89] := {18} tii[16,90] := {71} tii[16,91] := {22, 59} tii[16,92] := {27, 64} tii[16,93] := {39} tii[16,94] := {110} tii[16,95] := {36} tii[16,96] := {33} tii[16,97] := {143, 155} tii[16,98] := {46} tii[16,99] := {87, 144} tii[16,100] := {63} tii[16,101] := {134, 178} tii[16,102] := {76} tii[16,103] := {28} tii[16,104] := {113} tii[16,105] := {79, 156} tii[16,106] := {10, 42} tii[16,107] := {41, 88} tii[16,108] := {204, 253} tii[16,109] := {69, 112} tii[16,110] := {124, 205} tii[16,111] := {116, 180} tii[16,112] := {25, 52} tii[16,113] := {140} tii[16,114] := {34} tii[16,115] := {61} tii[16,116] := {169, 231} tii[16,117] := {45, 97} tii[16,118] := {191} tii[16,119] := {65} tii[16,120] := {186, 198} tii[16,121] := {121, 187} tii[16,122] := {32, 84} tii[16,123] := {181} tii[16,124] := {57} tii[16,125] := {72} tii[16,126] := {163, 242} tii[16,127] := {248, 292} tii[16,128] := {83, 139} tii[16,129] := {73} tii[16,130] := {174, 217} tii[16,131] := {229} tii[16,132] := {96} tii[16,133] := {62, 131} tii[16,134] := {212, 265} tii[16,135] := {48} tii[16,136] := {111} tii[16,137] := {130, 194} tii[16,138] := {135, 196} tii[16,139] := {153} tii[16,140] := {202, 257} tii[16,141] := {138} tii[16,142] := {82} tii[16,143] := {74} tii[16,144] := {190} tii[16,145] := {128} tii[16,146] := {249, 281} tii[16,147] := {195} tii[16,148] := {24, 67} tii[16,149] := {101, 152} tii[16,150] := {66, 122} tii[16,151] := {43, 81} tii[16,152] := {58} tii[16,153] := {70, 133} tii[16,154] := {91} tii[16,155] := {98} tii[16,156] := {86} tii[16,157] := {119, 183} tii[16,158] := {53, 120} tii[16,159] := {162, 226} tii[16,160] := {225, 239} tii[16,161] := {105} tii[16,162] := {106} tii[16,163] := {132} tii[16,164] := {214, 254} tii[16,165] := {172, 234} tii[16,166] := {92, 173} tii[16,167] := {150} tii[16,168] := {75} tii[16,169] := {197} tii[16,170] := {176, 238} tii[16,171] := {244, 286} tii[16,172] := {85, 161} tii[16,173] := {182} tii[16,174] := {118} tii[16,175] := {108} tii[16,176] := {146} tii[16,177] := {279, 301} tii[16,178] := {129, 211} tii[16,179] := {230} tii[16,180] := {171} tii[16,181] := {215, 272} tii[16,182] := {237} tii[16,183] := {159} tii[16,184] := {209} tii[16,185] := {145} tii[16,186] := {271} tii[16,187] := {0, 6} tii[16,188] := {2} tii[16,189] := {5, 17} tii[16,190] := {11, 35} tii[16,191] := {3} tii[16,192] := {14, 40} tii[16,193] := {20} tii[16,194] := {9} tii[16,195] := {16, 56} tii[16,196] := {55, 102} tii[16,197] := {8} tii[16,198] := {47} tii[16,199] := {38, 95} tii[16,200] := {94, 151} tii[16,201] := {99, 154} tii[16,202] := {15} tii[16,203] := {54, 117} tii[16,204] := {107} tii[16,205] := {19} tii[16,206] := {93, 170} tii[16,207] := {29} tii[16,208] := {175, 236} tii[16,209] := {37} tii[16,210] := {49} cell#138 , |C| = 189 special orbit = [4, 2, 2, 2, 2, 2] special rep = [[2, 1, 1], [1, 1, 1]] , dim = 105 cell rep = phi[[2, 1, 1, 1],[1, 1]]+phi[[2, 1, 1],[1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 84*X^2+21*X TII subcells: tii[13,1] := {39, 181} tii[13,2] := {69, 184} tii[13,3] := {79, 188} tii[13,4] := {57, 165} tii[13,5] := {89, 172} tii[13,6] := {75, 147} tii[13,7] := {101, 185} tii[13,8] := {111, 156} tii[13,9] := {85, 127} tii[13,10] := {117} tii[13,11] := {130, 163} tii[13,12] := {146} tii[13,13] := {123, 183} tii[13,14] := {144, 174} tii[13,15] := {158} tii[13,16] := {7, 77} tii[13,17] := {9, 112} tii[13,18] := {27, 167} tii[13,19] := {13, 98} tii[13,20] := {50, 173} tii[13,21] := {16, 135} tii[13,22] := {19, 151} tii[13,23] := {20, 109} tii[13,24] := {26, 142} tii[13,25] := {43, 178} tii[13,26] := {23, 153} tii[13,27] := {32, 166} tii[13,28] := {55, 125} tii[13,29] := {21, 120} tii[13,30] := {67, 104} tii[13,31] := {24, 155} tii[13,32] := {29, 169} tii[13,33] := {30, 131} tii[13,34] := {88, 136} tii[13,35] := {92} tii[13,36] := {38, 161} tii[13,37] := {40, 154} tii[13,38] := {61, 186} tii[13,39] := {107, 145} tii[13,40] := {34, 171} tii[13,41] := {49, 84} tii[13,42] := {124} tii[13,43] := {45, 180} tii[13,44] := {72} tii[13,45] := {51, 176} tii[13,46] := {83} tii[13,47] := {47, 182} tii[13,48] := {100, 137} tii[13,49] := {62, 187} tii[13,50] := {115} tii[13,51] := {94} tii[13,52] := {31, 96} tii[13,53] := {41, 149} tii[13,54] := {35, 134} tii[13,55] := {42, 108} tii[13,56] := {53, 141} tii[13,57] := {58, 132} tii[13,58] := {68, 106} tii[13,59] := {80, 177} tii[13,60] := {48, 152} tii[13,61] := {93} tii[13,62] := {71, 159} tii[13,63] := {63, 164} tii[13,64] := {105} tii[13,65] := {64, 170} tii[13,66] := {122, 157} tii[13,67] := {76, 110} tii[13,68] := {81, 179} tii[13,69] := {139} tii[13,70] := {90, 140} tii[13,71] := {126} tii[13,72] := {119} tii[13,73] := {82, 162} tii[13,74] := {102, 175} tii[13,75] := {143} tii[13,76] := {0, 44} tii[13,77] := {4, 59} tii[13,78] := {1, 60} tii[13,79] := {3, 73} tii[13,80] := {2, 78} tii[13,81] := {11, 129} tii[13,82] := {12, 87} tii[13,83] := {6, 91} tii[13,84] := {18, 118} tii[13,85] := {14, 128} tii[13,86] := {28, 133} tii[13,87] := {5, 99} tii[13,88] := {36, 66} tii[13,89] := {52} tii[13,90] := {37, 160} tii[13,91] := {10, 114} tii[13,92] := {22, 150} tii[13,93] := {65} tii[13,94] := {54} tii[13,95] := {8, 121} tii[13,96] := {56, 86} tii[13,97] := {17, 138} tii[13,98] := {70, 116} tii[13,99] := {33, 168} tii[13,100] := {103} tii[13,101] := {74} tii[13,102] := {15, 97} tii[13,103] := {25, 113} tii[13,104] := {46, 148} tii[13,105] := {95} cell#139 , |C| = 35 special orbit = [2, 2, 2, 2, 2, 2, 2] special rep = [[1, 1, 1, 1], [1, 1, 1]] , dim = 35 cell rep = phi[[1, 1, 1, 1],[1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 35*X TII subcells: tii[5,1] := {34} tii[5,2] := {11} tii[5,3] := {31} tii[5,4] := {16} tii[5,5] := {27} tii[5,6] := {20} tii[5,7] := {23} tii[5,8] := {21} tii[5,9] := {32} tii[5,10] := {26} tii[5,11] := {29} tii[5,12] := {30} tii[5,13] := {33} tii[5,14] := {2} tii[5,15] := {7} tii[5,16] := {4} tii[5,17] := {5} tii[5,18] := {22} tii[5,19] := {6} tii[5,20] := {15} tii[5,21] := {8} tii[5,22] := {18} tii[5,23] := {14} tii[5,24] := {25} tii[5,25] := {9} tii[5,26] := {28} tii[5,27] := {12} tii[5,28] := {19} tii[5,29] := {13} tii[5,30] := {17} tii[5,31] := {24} tii[5,32] := {0} tii[5,33] := {1} tii[5,34] := {3} tii[5,35] := {10} cell#140 , |C| = 175 special orbit = [4, 4, 3, 3] special rep = [[2, 1], [2, 2]] , dim = 140 cell rep = phi[[2, 2, 2],[1]]+phi[[2, 1],[2, 2]] TII depth = 4 TII multiplicity polynomial = 35*X^2+105*X TII subcells: tii[17,1] := {131, 161} tii[17,2] := {141} tii[17,3] := {160, 173} tii[17,4] := {101} tii[17,5] := {171} tii[17,6] := {174} tii[17,7] := {139} tii[17,8] := {157} tii[17,9] := {21, 46} tii[17,10] := {109, 148} tii[17,11] := {122} tii[17,12] := {76, 112} tii[17,13] := {49} tii[17,14] := {73} tii[17,15] := {130, 162} tii[17,16] := {102} tii[17,17] := {118, 149} tii[17,18] := {40} tii[17,19] := {154} tii[17,20] := {135} tii[17,21] := {63} tii[17,22] := {167} tii[17,23] := {121} tii[17,24] := {145} tii[17,25] := {104} tii[17,26] := {35, 67} tii[17,27] := {98, 133} tii[17,28] := {70} tii[17,29] := {95} tii[17,30] := {45, 87} tii[17,31] := {147, 169} tii[17,32] := {111, 150} tii[17,33] := {68, 110} tii[17,34] := {165} tii[17,35] := {138, 163} tii[17,36] := {23} tii[17,37] := {80} tii[17,38] := {79} tii[17,39] := {93, 137} tii[17,40] := {172} tii[17,41] := {152} tii[17,42] := {42} tii[17,43] := {106} tii[17,44] := {99} tii[17,45] := {155} tii[17,46] := {100} tii[17,47] := {143} tii[17,48] := {125} tii[17,49] := {126} tii[17,50] := {81} tii[17,51] := {168} tii[17,52] := {159} tii[17,53] := {153, 170} tii[17,54] := {39} tii[17,55] := {164} tii[17,56] := {62} tii[17,57] := {120} tii[17,58] := {57} tii[17,59] := {166} tii[17,60] := {144} tii[17,61] := {103} tii[17,62] := {82} tii[17,63] := {128} tii[17,64] := {123} tii[17,65] := {12, 29} tii[17,66] := {55, 91} tii[17,67] := {30} tii[17,68] := {5, 17} tii[17,69] := {52} tii[17,70] := {9} tii[17,71] := {16} tii[17,72] := {75, 113} tii[17,73] := {10} tii[17,74] := {92} tii[17,75] := {34} tii[17,76] := {53} tii[17,77] := {28, 66} tii[17,78] := {11, 31} tii[17,79] := {90, 132} tii[17,80] := {47, 88} tii[17,81] := {59} tii[17,82] := {18} tii[17,83] := {71, 115} tii[17,84] := {84} tii[17,85] := {97, 134} tii[17,86] := {78} tii[17,87] := {24} tii[17,88] := {140} tii[17,89] := {36, 69} tii[17,90] := {33} tii[17,91] := {114} tii[17,92] := {105} tii[17,93] := {158} tii[17,94] := {124} tii[17,95] := {15} tii[17,96] := {43} tii[17,97] := {56, 94} tii[17,98] := {146} tii[17,99] := {65} tii[17,100] := {96} tii[17,101] := {58} tii[17,102] := {26} tii[17,103] := {142} tii[17,104] := {83} tii[17,105] := {129} tii[17,106] := {86} tii[17,107] := {20, 50} tii[17,108] := {32} tii[17,109] := {54, 89} tii[17,110] := {119, 151} tii[17,111] := {13} tii[17,112] := {51} tii[17,113] := {77, 116} tii[17,114] := {136} tii[17,115] := {27} tii[17,116] := {6} tii[17,117] := {44} tii[17,118] := {117} tii[17,119] := {38} tii[17,120] := {156} tii[17,121] := {14} tii[17,122] := {60} tii[17,123] := {61} tii[17,124] := {127} tii[17,125] := {64} tii[17,126] := {108} tii[17,127] := {25} tii[17,128] := {85} tii[17,129] := {1, 8} tii[17,130] := {3} tii[17,131] := {0} tii[17,132] := {22, 48} tii[17,133] := {19} tii[17,134] := {37, 72} tii[17,135] := {4} tii[17,136] := {74} tii[17,137] := {41} tii[17,138] := {7} tii[17,139] := {107} tii[17,140] := {2} cell#141 , |C| = 315 special orbit = [4, 4, 2, 2, 2] special rep = [[2, 1, 1], [2, 1]] , dim = 210 cell rep = phi[[2, 2, 1],[1, 1]]+phi[[2, 1, 1],[2, 1]] TII depth = 4 TII multiplicity polynomial = 105*X^2+105*X TII subcells: tii[16,1] := {304, 313} tii[16,2] := {309} tii[16,3] := {267, 312} tii[16,4] := {204, 314} tii[16,5] := {279} tii[16,6] := {281} tii[16,7] := {61, 123} tii[16,8] := {80} tii[16,9] := {120, 198} tii[16,10] := {290, 306} tii[16,11] := {89, 160} tii[16,12] := {95, 145} tii[16,13] := {297} tii[16,14] := {240, 273} tii[16,15] := {111} tii[16,16] := {182} tii[16,17] := {228} tii[16,18] := {268, 292} tii[16,19] := {122, 196} tii[16,20] := {130, 298} tii[16,21] := {280} tii[16,22] := {147} tii[16,23] := {239, 272} tii[16,24] := {163, 211} tii[16,25] := {181} tii[16,26] := {208, 259} tii[16,27] := {227} tii[16,28] := {253} tii[16,29] := {178} tii[16,30] := {225} tii[16,31] := {62, 199} tii[16,32] := {158, 235} tii[16,33] := {79} tii[16,34] := {67, 183} tii[16,35] := {270, 295} tii[16,36] := {219} tii[16,37] := {261} tii[16,38] := {197, 266} tii[16,39] := {236, 305} tii[16,40] := {88, 233} tii[16,41] := {291, 308} tii[16,42] := {167, 310} tii[16,43] := {44, 220} tii[16,44] := {237, 276} tii[16,45] := {109} tii[16,46] := {203, 293} tii[16,47] := {124, 245} tii[16,48] := {142} tii[16,49] := {252} tii[16,50] := {251} tii[16,51] := {271, 303} tii[16,52] := {171, 286} tii[16,53] := {189} tii[16,54] := {288} tii[16,55] := {65, 250} tii[16,56] := {278} tii[16,57] := {131, 299} tii[16,58] := {221} tii[16,59] := {140} tii[16,60] := {101, 285} tii[16,61] := {301} tii[16,62] := {188} tii[16,63] := {121, 265} tii[16,64] := {146} tii[16,65] := {238, 307} tii[16,66] := {162, 275} tii[16,67] := {180} tii[16,68] := {226} tii[16,69] := {207, 302} tii[16,70] := {125, 296} tii[16,71] := {213} tii[16,72] := {254} tii[16,73] := {177} tii[16,74] := {256} tii[16,75] := {224} tii[16,76] := {172, 311} tii[16,77] := {212} tii[16,78] := {255} tii[16,79] := {2, 12} tii[16,80] := {32, 69} tii[16,81] := {16} tii[16,82] := {31} tii[16,83] := {3, 22} tii[16,84] := {87, 161} tii[16,85] := {42, 94} tii[16,86] := {13, 39} tii[16,87] := {205, 244} tii[16,88] := {68, 110} tii[16,89] := {19} tii[16,90] := {143} tii[16,91] := {75, 128} tii[16,92] := {28, 71} tii[16,93] := {36} tii[16,94] := {190} tii[16,95] := {98} tii[16,96] := {34} tii[16,97] := {169, 210} tii[16,98] := {108} tii[16,99] := {93, 141} tii[16,100] := {56} tii[16,101] := {136, 192} tii[16,102] := {154} tii[16,103] := {81} tii[16,104] := {119} tii[16,105] := {159, 234} tii[16,106] := {11, 38} tii[16,107] := {104, 165} tii[16,108] := {269, 294} tii[16,109] := {66, 129} tii[16,110] := {27, 184} tii[16,111] := {200, 246} tii[16,112] := {23, 63} tii[16,113] := {218} tii[16,114] := {35} tii[16,115] := {132} tii[16,116] := {241, 287} tii[16,117] := {45, 99} tii[16,118] := {260} tii[16,119] := {57} tii[16,120] := {206, 243} tii[16,121] := {127, 176} tii[16,122] := {40, 76} tii[16,123] := {248} tii[16,124] := {54} tii[16,125] := {144} tii[16,126] := {41, 217} tii[16,127] := {97, 282} tii[16,128] := {164, 215} tii[16,129] := {148} tii[16,130] := {174, 229} tii[16,131] := {284} tii[16,132] := {85} tii[16,133] := {72, 115} tii[16,134] := {73, 258} tii[16,135] := {114} tii[16,136] := {191} tii[16,137] := {209, 262} tii[16,138] := {137, 195} tii[16,139] := {156} tii[16,140] := {64, 247} tii[16,141] := {214} tii[16,142] := {78} tii[16,143] := {150} tii[16,144] := {257} tii[16,145] := {117} tii[16,146] := {100, 283} tii[16,147] := {194} tii[16,148] := {4, 60} tii[16,149] := {43, 166} tii[16,150] := {138, 202} tii[16,151] := {14, 90} tii[16,152] := {20} tii[16,153] := {29, 133} tii[16,154] := {170} tii[16,155] := {37} tii[16,156] := {33} tii[16,157] := {201, 249} tii[16,158] := {24, 105} tii[16,159] := {92, 216} tii[16,160] := {168, 274} tii[16,161] := {107} tii[16,162] := {185} tii[16,163] := {55} tii[16,164] := {135, 263} tii[16,165] := {242, 289} tii[16,166] := {46, 151} tii[16,167] := {153} tii[16,168] := {82} tii[16,169] := {118} tii[16,170] := {102, 232} tii[16,171] := {91, 277} tii[16,172] := {15, 139} tii[16,173] := {175} tii[16,174] := {52} tii[16,175] := {113} tii[16,176] := {222} tii[16,177] := {134, 300} tii[16,178] := {30, 187} tii[16,179] := {223} tii[16,180] := {83} tii[16,181] := {74, 264} tii[16,182] := {155} tii[16,183] := {77} tii[16,184] := {116} tii[16,185] := {149} tii[16,186] := {193} tii[16,187] := {0, 6} tii[16,188] := {1} tii[16,189] := {8, 26} tii[16,190] := {51, 96} tii[16,191] := {7} tii[16,192] := {18, 48} tii[16,193] := {70} tii[16,194] := {49} tii[16,195] := {25, 53} tii[16,196] := {126, 179} tii[16,197] := {9} tii[16,198] := {112} tii[16,199] := {47, 84} tii[16,200] := {173, 230} tii[16,201] := {103, 157} tii[16,202] := {58} tii[16,203] := {5, 106} tii[16,204] := {186} tii[16,205] := {21} tii[16,206] := {17, 152} tii[16,207] := {86} tii[16,208] := {50, 231} tii[16,209] := {10} tii[16,210] := {59} cell#142 , |C| = 175 special orbit = [4, 4, 3, 3] special rep = [[2, 1], [2, 2]] , dim = 140 cell rep = phi[[2, 2, 2],[1]]+phi[[2, 1],[2, 2]] TII depth = 4 TII multiplicity polynomial = 35*X^2+105*X TII subcells: tii[17,1] := {131, 161} tii[17,2] := {141} tii[17,3] := {160, 173} tii[17,4] := {101} tii[17,5] := {171} tii[17,6] := {174} tii[17,7] := {139} tii[17,8] := {157} tii[17,9] := {21, 46} tii[17,10] := {109, 148} tii[17,11] := {122} tii[17,12] := {76, 112} tii[17,13] := {49} tii[17,14] := {73} tii[17,15] := {130, 162} tii[17,16] := {102} tii[17,17] := {118, 149} tii[17,18] := {40} tii[17,19] := {154} tii[17,20] := {135} tii[17,21] := {63} tii[17,22] := {167} tii[17,23] := {121} tii[17,24] := {145} tii[17,25] := {104} tii[17,26] := {35, 67} tii[17,27] := {98, 133} tii[17,28] := {70} tii[17,29] := {95} tii[17,30] := {45, 87} tii[17,31] := {147, 169} tii[17,32] := {111, 150} tii[17,33] := {68, 110} tii[17,34] := {165} tii[17,35] := {138, 163} tii[17,36] := {23} tii[17,37] := {80} tii[17,38] := {79} tii[17,39] := {93, 137} tii[17,40] := {172} tii[17,41] := {152} tii[17,42] := {42} tii[17,43] := {106} tii[17,44] := {99} tii[17,45] := {155} tii[17,46] := {100} tii[17,47] := {143} tii[17,48] := {125} tii[17,49] := {126} tii[17,50] := {81} tii[17,51] := {168} tii[17,52] := {159} tii[17,53] := {153, 170} tii[17,54] := {39} tii[17,55] := {164} tii[17,56] := {62} tii[17,57] := {120} tii[17,58] := {57} tii[17,59] := {166} tii[17,60] := {144} tii[17,61] := {103} tii[17,62] := {82} tii[17,63] := {128} tii[17,64] := {123} tii[17,65] := {12, 29} tii[17,66] := {55, 91} tii[17,67] := {30} tii[17,68] := {5, 17} tii[17,69] := {52} tii[17,70] := {9} tii[17,71] := {16} tii[17,72] := {75, 113} tii[17,73] := {10} tii[17,74] := {92} tii[17,75] := {34} tii[17,76] := {53} tii[17,77] := {28, 66} tii[17,78] := {11, 31} tii[17,79] := {90, 132} tii[17,80] := {47, 88} tii[17,81] := {59} tii[17,82] := {18} tii[17,83] := {71, 115} tii[17,84] := {84} tii[17,85] := {97, 134} tii[17,86] := {78} tii[17,87] := {24} tii[17,88] := {140} tii[17,89] := {36, 69} tii[17,90] := {33} tii[17,91] := {114} tii[17,92] := {105} tii[17,93] := {158} tii[17,94] := {124} tii[17,95] := {15} tii[17,96] := {43} tii[17,97] := {56, 94} tii[17,98] := {146} tii[17,99] := {65} tii[17,100] := {96} tii[17,101] := {58} tii[17,102] := {26} tii[17,103] := {142} tii[17,104] := {83} tii[17,105] := {129} tii[17,106] := {86} tii[17,107] := {20, 50} tii[17,108] := {32} tii[17,109] := {54, 89} tii[17,110] := {119, 151} tii[17,111] := {13} tii[17,112] := {51} tii[17,113] := {77, 116} tii[17,114] := {136} tii[17,115] := {27} tii[17,116] := {6} tii[17,117] := {44} tii[17,118] := {117} tii[17,119] := {38} tii[17,120] := {156} tii[17,121] := {14} tii[17,122] := {60} tii[17,123] := {61} tii[17,124] := {127} tii[17,125] := {64} tii[17,126] := {108} tii[17,127] := {25} tii[17,128] := {85} tii[17,129] := {1, 8} tii[17,130] := {3} tii[17,131] := {0} tii[17,132] := {22, 48} tii[17,133] := {19} tii[17,134] := {37, 72} tii[17,135] := {4} tii[17,136] := {74} tii[17,137] := {41} tii[17,138] := {7} tii[17,139] := {107} tii[17,140] := {2} cell#143 , |C| = 315 special orbit = [4, 4, 2, 2, 2] special rep = [[2, 1, 1], [2, 1]] , dim = 210 cell rep = phi[[2, 2, 1],[1, 1]]+phi[[2, 1, 1],[2, 1]] TII depth = 4 TII multiplicity polynomial = 105*X^2+105*X TII subcells: tii[16,1] := {304, 313} tii[16,2] := {309} tii[16,3] := {267, 312} tii[16,4] := {204, 314} tii[16,5] := {279} tii[16,6] := {281} tii[16,7] := {61, 123} tii[16,8] := {80} tii[16,9] := {120, 198} tii[16,10] := {290, 306} tii[16,11] := {89, 160} tii[16,12] := {95, 145} tii[16,13] := {297} tii[16,14] := {240, 273} tii[16,15] := {111} tii[16,16] := {182} tii[16,17] := {228} tii[16,18] := {268, 292} tii[16,19] := {122, 196} tii[16,20] := {130, 298} tii[16,21] := {280} tii[16,22] := {147} tii[16,23] := {239, 272} tii[16,24] := {163, 211} tii[16,25] := {181} tii[16,26] := {208, 259} tii[16,27] := {227} tii[16,28] := {253} tii[16,29] := {178} tii[16,30] := {225} tii[16,31] := {62, 199} tii[16,32] := {158, 235} tii[16,33] := {79} tii[16,34] := {67, 183} tii[16,35] := {270, 295} tii[16,36] := {219} tii[16,37] := {261} tii[16,38] := {197, 266} tii[16,39] := {236, 305} tii[16,40] := {88, 233} tii[16,41] := {291, 308} tii[16,42] := {167, 310} tii[16,43] := {44, 220} tii[16,44] := {237, 276} tii[16,45] := {109} tii[16,46] := {203, 293} tii[16,47] := {124, 245} tii[16,48] := {142} tii[16,49] := {252} tii[16,50] := {251} tii[16,51] := {271, 303} tii[16,52] := {171, 286} tii[16,53] := {189} tii[16,54] := {288} tii[16,55] := {65, 250} tii[16,56] := {278} tii[16,57] := {131, 299} tii[16,58] := {221} tii[16,59] := {140} tii[16,60] := {101, 285} tii[16,61] := {301} tii[16,62] := {188} tii[16,63] := {121, 265} tii[16,64] := {146} tii[16,65] := {238, 307} tii[16,66] := {162, 275} tii[16,67] := {180} tii[16,68] := {226} tii[16,69] := {207, 302} tii[16,70] := {125, 296} tii[16,71] := {213} tii[16,72] := {254} tii[16,73] := {177} tii[16,74] := {256} tii[16,75] := {224} tii[16,76] := {172, 311} tii[16,77] := {212} tii[16,78] := {255} tii[16,79] := {2, 12} tii[16,80] := {32, 69} tii[16,81] := {16} tii[16,82] := {31} tii[16,83] := {3, 22} tii[16,84] := {87, 161} tii[16,85] := {42, 94} tii[16,86] := {13, 39} tii[16,87] := {205, 244} tii[16,88] := {68, 110} tii[16,89] := {19} tii[16,90] := {143} tii[16,91] := {75, 128} tii[16,92] := {28, 71} tii[16,93] := {36} tii[16,94] := {190} tii[16,95] := {98} tii[16,96] := {34} tii[16,97] := {169, 210} tii[16,98] := {108} tii[16,99] := {93, 141} tii[16,100] := {56} tii[16,101] := {136, 192} tii[16,102] := {154} tii[16,103] := {81} tii[16,104] := {119} tii[16,105] := {159, 234} tii[16,106] := {11, 38} tii[16,107] := {104, 165} tii[16,108] := {269, 294} tii[16,109] := {66, 129} tii[16,110] := {27, 184} tii[16,111] := {200, 246} tii[16,112] := {23, 63} tii[16,113] := {218} tii[16,114] := {35} tii[16,115] := {132} tii[16,116] := {241, 287} tii[16,117] := {45, 99} tii[16,118] := {260} tii[16,119] := {57} tii[16,120] := {206, 243} tii[16,121] := {127, 176} tii[16,122] := {40, 76} tii[16,123] := {248} tii[16,124] := {54} tii[16,125] := {144} tii[16,126] := {41, 217} tii[16,127] := {97, 282} tii[16,128] := {164, 215} tii[16,129] := {148} tii[16,130] := {174, 229} tii[16,131] := {284} tii[16,132] := {85} tii[16,133] := {72, 115} tii[16,134] := {73, 258} tii[16,135] := {114} tii[16,136] := {191} tii[16,137] := {209, 262} tii[16,138] := {137, 195} tii[16,139] := {156} tii[16,140] := {64, 247} tii[16,141] := {214} tii[16,142] := {78} tii[16,143] := {150} tii[16,144] := {257} tii[16,145] := {117} tii[16,146] := {100, 283} tii[16,147] := {194} tii[16,148] := {4, 60} tii[16,149] := {43, 166} tii[16,150] := {138, 202} tii[16,151] := {14, 90} tii[16,152] := {20} tii[16,153] := {29, 133} tii[16,154] := {170} tii[16,155] := {37} tii[16,156] := {33} tii[16,157] := {201, 249} tii[16,158] := {24, 105} tii[16,159] := {92, 216} tii[16,160] := {168, 274} tii[16,161] := {107} tii[16,162] := {185} tii[16,163] := {55} tii[16,164] := {135, 263} tii[16,165] := {242, 289} tii[16,166] := {46, 151} tii[16,167] := {153} tii[16,168] := {82} tii[16,169] := {118} tii[16,170] := {102, 232} tii[16,171] := {91, 277} tii[16,172] := {15, 139} tii[16,173] := {175} tii[16,174] := {52} tii[16,175] := {113} tii[16,176] := {222} tii[16,177] := {134, 300} tii[16,178] := {30, 187} tii[16,179] := {223} tii[16,180] := {83} tii[16,181] := {74, 264} tii[16,182] := {155} tii[16,183] := {77} tii[16,184] := {116} tii[16,185] := {149} tii[16,186] := {193} tii[16,187] := {0, 6} tii[16,188] := {1} tii[16,189] := {8, 26} tii[16,190] := {51, 96} tii[16,191] := {7} tii[16,192] := {18, 48} tii[16,193] := {70} tii[16,194] := {49} tii[16,195] := {25, 53} tii[16,196] := {126, 179} tii[16,197] := {9} tii[16,198] := {112} tii[16,199] := {47, 84} tii[16,200] := {173, 230} tii[16,201] := {103, 157} tii[16,202] := {58} tii[16,203] := {5, 106} tii[16,204] := {186} tii[16,205] := {21} tii[16,206] := {17, 152} tii[16,207] := {86} tii[16,208] := {50, 231} tii[16,209] := {10} tii[16,210] := {59} cell#144 , |C| = 126 special orbit = [6, 2, 2, 2, 2] special rep = [[3, 1, 1], [1, 1]] , dim = 126 cell rep = phi[[3, 1, 1],[1, 1]] TII depth = 4 TII multiplicity polynomial = 126*X TII subcells: tii[24,1] := {125} tii[24,2] := {121} tii[24,3] := {112} tii[24,4] := {107} tii[24,5] := {89} tii[24,6] := {61} tii[24,7] := {52} tii[24,8] := {55} tii[24,9] := {60} tii[24,10] := {123} tii[24,11] := {67} tii[24,12] := {115} tii[24,13] := {40} tii[24,14] := {120} tii[24,15] := {83} tii[24,16] := {102} tii[24,17] := {45} tii[24,18] := {117} tii[24,19] := {98} tii[24,20] := {113} tii[24,21] := {108} tii[24,22] := {54} tii[24,23] := {90} tii[24,24] := {33} tii[24,25] := {101} tii[24,26] := {71} tii[24,27] := {93} tii[24,28] := {76} tii[24,29] := {43} tii[24,30] := {65} tii[24,31] := {82} tii[24,32] := {26} tii[24,33] := {124} tii[24,34] := {96} tii[24,35] := {32} tii[24,36] := {122} tii[24,37] := {109} tii[24,38] := {119} tii[24,39] := {84} tii[24,40] := {97} tii[24,41] := {38} tii[24,42] := {20} tii[24,43] := {56} tii[24,44] := {88} tii[24,45] := {99} tii[24,46] := {118} tii[24,47] := {74} tii[24,48] := {77} tii[24,49] := {114} tii[24,50] := {87} tii[24,51] := {62} tii[24,52] := {29} tii[24,53] := {49} tii[24,54] := {106} tii[24,55] := {53} tii[24,56] := {13} tii[24,57] := {100} tii[24,58] := {70} tii[24,59] := {92} tii[24,60] := {57} tii[24,61] := {46} tii[24,62] := {18} tii[24,63] := {36} tii[24,64] := {78} tii[24,65] := {28} tii[24,66] := {48} tii[24,67] := {0} tii[24,68] := {39} tii[24,69] := {3} tii[24,70] := {30} tii[24,71] := {9} tii[24,72] := {21} tii[24,73] := {8} tii[24,74] := {116} tii[24,75] := {69} tii[24,76] := {16} tii[24,77] := {44} tii[24,78] := {111} tii[24,79] := {86} tii[24,80] := {34} tii[24,81] := {105} tii[24,82] := {27} tii[24,83] := {103} tii[24,84] := {73} tii[24,85] := {47} tii[24,86] := {95} tii[24,87] := {81} tii[24,88] := {68} tii[24,89] := {4} tii[24,90] := {110} tii[24,91] := {31} tii[24,92] := {85} tii[24,93] := {10} tii[24,94] := {104} tii[24,95] := {22} tii[24,96] := {72} tii[24,97] := {17} tii[24,98] := {91} tii[24,99] := {59} tii[24,100] := {94} tii[24,101] := {35} tii[24,102] := {80} tii[24,103] := {66} tii[24,104] := {58} tii[24,105] := {12} tii[24,106] := {79} tii[24,107] := {24} tii[24,108] := {51} tii[24,109] := {1} tii[24,110] := {19} tii[24,111] := {5} tii[24,112] := {14} tii[24,113] := {11} tii[24,114] := {42} tii[24,115] := {75} tii[24,116] := {23} tii[24,117] := {64} tii[24,118] := {50} tii[24,119] := {41} tii[24,120] := {6} tii[24,121] := {63} tii[24,122] := {15} tii[24,123] := {37} tii[24,124] := {2} tii[24,125] := {7} tii[24,126] := {25} cell#145 , |C| = 315 special orbit = [4, 4, 2, 2, 2] special rep = [[2, 1, 1], [2, 1]] , dim = 210 cell rep = phi[[2, 2, 1],[1, 1]]+phi[[2, 1, 1],[2, 1]] TII depth = 4 TII multiplicity polynomial = 105*X^2+105*X TII subcells: tii[16,1] := {228, 313} tii[16,2] := {295} tii[16,3] := {165, 314} tii[16,4] := {130, 305} tii[16,5] := {261} tii[16,6] := {263} tii[16,7] := {129, 167} tii[16,8] := {146} tii[16,9] := {194, 227} tii[16,10] := {197, 309} tii[16,11] := {97, 199} tii[16,12] := {44, 210} tii[16,13] := {280} tii[16,14] := {163, 294} tii[16,15] := {111} tii[16,16] := {235} tii[16,17] := {271} tii[16,18] := {166, 302} tii[16,19] := {128, 226} tii[16,20] := {68, 282} tii[16,21] := {262} tii[16,22] := {145} tii[16,23] := {142, 293} tii[16,24] := {94, 255} tii[16,25] := {173} tii[16,26] := {115, 285} tii[16,27] := {221} tii[16,28] := {240} tii[16,29] := {171} tii[16,30] := {219} tii[16,31] := {67, 229} tii[16,32] := {225, 254} tii[16,33] := {82} tii[16,34] := {27, 238} tii[16,35] := {196, 306} tii[16,36] := {260} tii[16,37] := {290} tii[16,38] := {195, 275} tii[16,39] := {134, 310} tii[16,40] := {95, 253} tii[16,41] := {207, 312} tii[16,42] := {98, 296} tii[16,43] := {18, 211} tii[16,44] := {159, 292} tii[16,45] := {110} tii[16,46] := {109, 304} tii[16,47] := {65, 277} tii[16,48] := {139} tii[16,49] := {239} tii[16,50] := {236} tii[16,51] := {180, 308} tii[16,52] := {84, 299} tii[16,53] := {188} tii[16,54] := {272} tii[16,55] := {33, 234} tii[16,56] := {258} tii[16,57] := {71, 284} tii[16,58] := {212} tii[16,59] := {138} tii[16,60] := {48, 270} tii[16,61] := {288} tii[16,62] := {187} tii[16,63] := {127, 274} tii[16,64] := {144} tii[16,65] := {141, 311} tii[16,66] := {93, 291} tii[16,67] := {172} tii[16,68] := {220} tii[16,69] := {114, 307} tii[16,70] := {75, 278} tii[16,71] := {201} tii[16,72] := {241} tii[16,73] := {170} tii[16,74] := {244} tii[16,75] := {218} tii[16,76] := {101, 300} tii[16,77] := {200} tii[16,78] := {243} tii[16,79] := {11, 35} tii[16,80] := {69, 112} tii[16,81] := {37} tii[16,82] := {61} tii[16,83] := {24, 54} tii[16,84] := {162, 198} tii[16,85] := {99, 143} tii[16,86] := {43, 78} tii[16,87] := {131, 281} tii[16,88] := {34, 179} tii[16,89] := {58} tii[16,90] := {206} tii[16,91] := {126, 176} tii[16,92] := {74, 119} tii[16,93] := {90} tii[16,94] := {249} tii[16,95] := {149} tii[16,96] := {81} tii[16,97] := {100, 264} tii[16,98] := {174} tii[16,99] := {53, 204} tii[16,100] := {122} tii[16,101] := {73, 247} tii[16,102] := {222} tii[16,103] := {152} tii[16,104] := {192} tii[16,105] := {161, 252} tii[16,106] := {12, 77} tii[16,107] := {160, 208} tii[16,108] := {175, 303} tii[16,109] := {70, 177} tii[16,110] := {7, 178} tii[16,111] := {125, 276} tii[16,112] := {26, 105} tii[16,113] := {205} tii[16,114] := {38} tii[16,115] := {181} tii[16,116] := {148, 298} tii[16,117] := {50, 153} tii[16,118] := {248} tii[16,119] := {62} tii[16,120] := {113, 283} tii[16,121] := {66, 233} tii[16,122] := {13, 136} tii[16,123] := {231} tii[16,124] := {56} tii[16,125] := {140} tii[16,126] := {17, 203} tii[16,127] := {46, 265} tii[16,128] := {103, 257} tii[16,129] := {214} tii[16,130] := {85, 269} tii[16,131] := {267} tii[16,132] := {88} tii[16,133] := {29, 185} tii[16,134] := {28, 246} tii[16,135] := {118} tii[16,136] := {189} tii[16,137] := {132, 287} tii[16,138] := {63, 250} tii[16,139] := {158} tii[16,140] := {32, 230} tii[16,141] := {202} tii[16,142] := {80} tii[16,143] := {151} tii[16,144] := {245} tii[16,145] := {121} tii[16,146] := {47, 266} tii[16,147] := {191} tii[16,148] := {4, 104} tii[16,149] := {45, 209} tii[16,150] := {193, 237} tii[16,151] := {14, 135} tii[16,152] := {20} tii[16,153] := {30, 184} tii[16,154] := {213} tii[16,155] := {40} tii[16,156] := {36} tii[16,157] := {133, 279} tii[16,158] := {5, 168} tii[16,159] := {42, 259} tii[16,160] := {83, 297} tii[16,161] := {108} tii[16,162] := {242} tii[16,163] := {60} tii[16,164] := {59, 289} tii[16,165] := {164, 301} tii[16,166] := {15, 216} tii[16,167] := {156} tii[16,168] := {86} tii[16,169] := {124} tii[16,170] := {41, 273} tii[16,171] := {52, 256} tii[16,172] := {1, 137} tii[16,173] := {169} tii[16,174] := {55} tii[16,175] := {116} tii[16,176] := {215} tii[16,177] := {72, 286} tii[16,178] := {8, 186} tii[16,179] := {217} tii[16,180] := {87} tii[16,181] := {31, 251} tii[16,182] := {157} tii[16,183] := {79} tii[16,184] := {120} tii[16,185] := {150} tii[16,186] := {190} tii[16,187] := {3, 21} tii[16,188] := {9} tii[16,189] := {25, 57} tii[16,190] := {96, 147} tii[16,191] := {22} tii[16,192] := {49, 89} tii[16,193] := {117} tii[16,194] := {91} tii[16,195] := {6, 107} tii[16,196] := {76, 232} tii[16,197] := {39} tii[16,198] := {183} tii[16,199] := {19, 155} tii[16,200] := {102, 268} tii[16,201] := {51, 224} tii[16,202] := {123} tii[16,203] := {0, 106} tii[16,204] := {182} tii[16,205] := {23} tii[16,206] := {2, 154} tii[16,207] := {92} tii[16,208] := {16, 223} tii[16,209] := {10} tii[16,210] := {64} cell#146 , |C| = 126 special orbit = [6, 2, 2, 2, 2] special rep = [[3, 1, 1], [1, 1]] , dim = 126 cell rep = phi[[3, 1, 1],[1, 1]] TII depth = 4 TII multiplicity polynomial = 126*X TII subcells: tii[24,1] := {125} tii[24,2] := {121} tii[24,3] := {112} tii[24,4] := {107} tii[24,5] := {89} tii[24,6] := {61} tii[24,7] := {52} tii[24,8] := {55} tii[24,9] := {60} tii[24,10] := {123} tii[24,11] := {67} tii[24,12] := {115} tii[24,13] := {40} tii[24,14] := {120} tii[24,15] := {83} tii[24,16] := {102} tii[24,17] := {45} tii[24,18] := {117} tii[24,19] := {98} tii[24,20] := {113} tii[24,21] := {108} tii[24,22] := {54} tii[24,23] := {90} tii[24,24] := {33} tii[24,25] := {101} tii[24,26] := {71} tii[24,27] := {93} tii[24,28] := {76} tii[24,29] := {43} tii[24,30] := {65} tii[24,31] := {82} tii[24,32] := {26} tii[24,33] := {124} tii[24,34] := {96} tii[24,35] := {32} tii[24,36] := {122} tii[24,37] := {109} tii[24,38] := {119} tii[24,39] := {84} tii[24,40] := {97} tii[24,41] := {38} tii[24,42] := {20} tii[24,43] := {56} tii[24,44] := {88} tii[24,45] := {99} tii[24,46] := {118} tii[24,47] := {74} tii[24,48] := {77} tii[24,49] := {114} tii[24,50] := {87} tii[24,51] := {62} tii[24,52] := {29} tii[24,53] := {49} tii[24,54] := {106} tii[24,55] := {53} tii[24,56] := {13} tii[24,57] := {100} tii[24,58] := {70} tii[24,59] := {92} tii[24,60] := {57} tii[24,61] := {46} tii[24,62] := {18} tii[24,63] := {36} tii[24,64] := {78} tii[24,65] := {28} tii[24,66] := {48} tii[24,67] := {0} tii[24,68] := {39} tii[24,69] := {3} tii[24,70] := {30} tii[24,71] := {9} tii[24,72] := {21} tii[24,73] := {8} tii[24,74] := {116} tii[24,75] := {69} tii[24,76] := {16} tii[24,77] := {44} tii[24,78] := {111} tii[24,79] := {86} tii[24,80] := {34} tii[24,81] := {105} tii[24,82] := {27} tii[24,83] := {103} tii[24,84] := {73} tii[24,85] := {47} tii[24,86] := {95} tii[24,87] := {81} tii[24,88] := {68} tii[24,89] := {4} tii[24,90] := {110} tii[24,91] := {31} tii[24,92] := {85} tii[24,93] := {10} tii[24,94] := {104} tii[24,95] := {22} tii[24,96] := {72} tii[24,97] := {17} tii[24,98] := {91} tii[24,99] := {59} tii[24,100] := {94} tii[24,101] := {35} tii[24,102] := {80} tii[24,103] := {66} tii[24,104] := {58} tii[24,105] := {12} tii[24,106] := {79} tii[24,107] := {24} tii[24,108] := {51} tii[24,109] := {1} tii[24,110] := {19} tii[24,111] := {5} tii[24,112] := {14} tii[24,113] := {11} tii[24,114] := {42} tii[24,115] := {75} tii[24,116] := {23} tii[24,117] := {64} tii[24,118] := {50} tii[24,119] := {41} tii[24,120] := {6} tii[24,121] := {63} tii[24,122] := {15} tii[24,123] := {37} tii[24,124] := {2} tii[24,125] := {7} tii[24,126] := {25} cell#147 , |C| = 315 special orbit = [4, 4, 2, 2, 2] special rep = [[2, 1, 1], [2, 1]] , dim = 210 cell rep = phi[[2, 2, 1],[1, 1]]+phi[[2, 1, 1],[2, 1]] TII depth = 4 TII multiplicity polynomial = 105*X^2+105*X TII subcells: tii[16,1] := {228, 313} tii[16,2] := {295} tii[16,3] := {165, 314} tii[16,4] := {130, 305} tii[16,5] := {261} tii[16,6] := {263} tii[16,7] := {129, 167} tii[16,8] := {146} tii[16,9] := {194, 227} tii[16,10] := {197, 309} tii[16,11] := {97, 199} tii[16,12] := {44, 210} tii[16,13] := {280} tii[16,14] := {163, 294} tii[16,15] := {111} tii[16,16] := {235} tii[16,17] := {271} tii[16,18] := {166, 302} tii[16,19] := {128, 226} tii[16,20] := {68, 282} tii[16,21] := {262} tii[16,22] := {145} tii[16,23] := {142, 293} tii[16,24] := {94, 255} tii[16,25] := {173} tii[16,26] := {115, 285} tii[16,27] := {221} tii[16,28] := {240} tii[16,29] := {171} tii[16,30] := {219} tii[16,31] := {67, 229} tii[16,32] := {225, 254} tii[16,33] := {82} tii[16,34] := {27, 238} tii[16,35] := {196, 306} tii[16,36] := {260} tii[16,37] := {290} tii[16,38] := {195, 275} tii[16,39] := {134, 310} tii[16,40] := {95, 253} tii[16,41] := {207, 312} tii[16,42] := {98, 296} tii[16,43] := {18, 211} tii[16,44] := {159, 292} tii[16,45] := {110} tii[16,46] := {109, 304} tii[16,47] := {65, 277} tii[16,48] := {139} tii[16,49] := {239} tii[16,50] := {236} tii[16,51] := {180, 308} tii[16,52] := {84, 299} tii[16,53] := {188} tii[16,54] := {272} tii[16,55] := {33, 234} tii[16,56] := {258} tii[16,57] := {71, 284} tii[16,58] := {212} tii[16,59] := {138} tii[16,60] := {48, 270} tii[16,61] := {288} tii[16,62] := {187} tii[16,63] := {127, 274} tii[16,64] := {144} tii[16,65] := {141, 311} tii[16,66] := {93, 291} tii[16,67] := {172} tii[16,68] := {220} tii[16,69] := {114, 307} tii[16,70] := {75, 278} tii[16,71] := {201} tii[16,72] := {241} tii[16,73] := {170} tii[16,74] := {244} tii[16,75] := {218} tii[16,76] := {101, 300} tii[16,77] := {200} tii[16,78] := {243} tii[16,79] := {11, 35} tii[16,80] := {69, 112} tii[16,81] := {37} tii[16,82] := {61} tii[16,83] := {24, 54} tii[16,84] := {162, 198} tii[16,85] := {99, 143} tii[16,86] := {43, 78} tii[16,87] := {131, 281} tii[16,88] := {34, 179} tii[16,89] := {58} tii[16,90] := {206} tii[16,91] := {126, 176} tii[16,92] := {74, 119} tii[16,93] := {90} tii[16,94] := {249} tii[16,95] := {149} tii[16,96] := {81} tii[16,97] := {100, 264} tii[16,98] := {174} tii[16,99] := {53, 204} tii[16,100] := {122} tii[16,101] := {73, 247} tii[16,102] := {222} tii[16,103] := {152} tii[16,104] := {192} tii[16,105] := {161, 252} tii[16,106] := {12, 77} tii[16,107] := {160, 208} tii[16,108] := {175, 303} tii[16,109] := {70, 177} tii[16,110] := {7, 178} tii[16,111] := {125, 276} tii[16,112] := {26, 105} tii[16,113] := {205} tii[16,114] := {38} tii[16,115] := {181} tii[16,116] := {148, 298} tii[16,117] := {50, 153} tii[16,118] := {248} tii[16,119] := {62} tii[16,120] := {113, 283} tii[16,121] := {66, 233} tii[16,122] := {13, 136} tii[16,123] := {231} tii[16,124] := {56} tii[16,125] := {140} tii[16,126] := {17, 203} tii[16,127] := {46, 265} tii[16,128] := {103, 257} tii[16,129] := {214} tii[16,130] := {85, 269} tii[16,131] := {267} tii[16,132] := {88} tii[16,133] := {29, 185} tii[16,134] := {28, 246} tii[16,135] := {118} tii[16,136] := {189} tii[16,137] := {132, 287} tii[16,138] := {63, 250} tii[16,139] := {158} tii[16,140] := {32, 230} tii[16,141] := {202} tii[16,142] := {80} tii[16,143] := {151} tii[16,144] := {245} tii[16,145] := {121} tii[16,146] := {47, 266} tii[16,147] := {191} tii[16,148] := {4, 104} tii[16,149] := {45, 209} tii[16,150] := {193, 237} tii[16,151] := {14, 135} tii[16,152] := {20} tii[16,153] := {30, 184} tii[16,154] := {213} tii[16,155] := {40} tii[16,156] := {36} tii[16,157] := {133, 279} tii[16,158] := {5, 168} tii[16,159] := {42, 259} tii[16,160] := {83, 297} tii[16,161] := {108} tii[16,162] := {242} tii[16,163] := {60} tii[16,164] := {59, 289} tii[16,165] := {164, 301} tii[16,166] := {15, 216} tii[16,167] := {156} tii[16,168] := {86} tii[16,169] := {124} tii[16,170] := {41, 273} tii[16,171] := {52, 256} tii[16,172] := {1, 137} tii[16,173] := {169} tii[16,174] := {55} tii[16,175] := {116} tii[16,176] := {215} tii[16,177] := {72, 286} tii[16,178] := {8, 186} tii[16,179] := {217} tii[16,180] := {87} tii[16,181] := {31, 251} tii[16,182] := {157} tii[16,183] := {79} tii[16,184] := {120} tii[16,185] := {150} tii[16,186] := {190} tii[16,187] := {3, 21} tii[16,188] := {9} tii[16,189] := {25, 57} tii[16,190] := {96, 147} tii[16,191] := {22} tii[16,192] := {49, 89} tii[16,193] := {117} tii[16,194] := {91} tii[16,195] := {6, 107} tii[16,196] := {76, 232} tii[16,197] := {39} tii[16,198] := {183} tii[16,199] := {19, 155} tii[16,200] := {102, 268} tii[16,201] := {51, 224} tii[16,202] := {123} tii[16,203] := {0, 106} tii[16,204] := {182} tii[16,205] := {23} tii[16,206] := {2, 154} tii[16,207] := {92} tii[16,208] := {16, 223} tii[16,209] := {10} tii[16,210] := {64} cell#148 , |C| = 55 special orbit = [8, 2, 1, 1, 1, 1] special rep = [[4], [1, 1, 1]] , dim = 35 cell rep = phi[[4, 1, 1, 1],[]]+phi[[4],[1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 20*X^2+15*X TII subcells: tii[31,1] := {42, 54} tii[31,2] := {41, 53} tii[31,3] := {43, 52} tii[31,4] := {40, 50} tii[31,5] := {47} tii[31,6] := {34, 51} tii[31,7] := {35, 49} tii[31,8] := {33, 46} tii[31,9] := {39} tii[31,10] := {27, 45} tii[31,11] := {25, 38} tii[31,12] := {32} tii[31,13] := {17, 30} tii[31,14] := {22} tii[31,15] := {15} tii[31,16] := {24, 48} tii[31,17] := {26, 44} tii[31,18] := {23, 37} tii[31,19] := {31} tii[31,20] := {18, 36} tii[31,21] := {16, 29} tii[31,22] := {21} tii[31,23] := {10, 20} tii[31,24] := {14} tii[31,25] := {8} tii[31,26] := {11, 28} tii[31,27] := {9, 19} tii[31,28] := {13} tii[31,29] := {5, 12} tii[31,30] := {7} tii[31,31] := {4} tii[31,32] := {2, 6} tii[31,33] := {3} tii[31,34] := {1} tii[31,35] := {0} cell#149 , |C| = 315 special orbit = [4, 4, 2, 2, 2] special rep = [[2, 1, 1], [2, 1]] , dim = 210 cell rep = phi[[2, 2, 1],[1, 1]]+phi[[2, 1, 1],[2, 1]] TII depth = 4 TII multiplicity polynomial = 105*X^2+105*X TII subcells: tii[16,1] := {251, 314} tii[16,2] := {299} tii[16,3] := {182, 309} tii[16,4] := {119, 291} tii[16,5] := {267} tii[16,6] := {218} tii[16,7] := {134, 207} tii[16,8] := {155} tii[16,9] := {205, 266} tii[16,10] := {220, 313} tii[16,11] := {99, 239} tii[16,12] := {53, 227} tii[16,13] := {286} tii[16,14] := {156, 305} tii[16,15] := {118} tii[16,16] := {256} tii[16,17] := {281} tii[16,18] := {208, 308} tii[16,19] := {132, 264} tii[16,20] := {59, 249} tii[16,21] := {275} tii[16,22] := {154} tii[16,23] := {171, 303} tii[16,24] := {109, 277} tii[16,25] := {187} tii[16,26] := {139, 296} tii[16,27] := {230} tii[16,28] := {248} tii[16,29] := {184} tii[16,30] := {233} tii[16,31] := {68, 206} tii[16,32] := {219, 276} tii[16,33] := {85} tii[16,34] := {32, 190} tii[16,35] := {192, 307} tii[16,36] := {269} tii[16,37] := {288} tii[16,38] := {181, 294} tii[16,39] := {170, 301} tii[16,40] := {97, 238} tii[16,41] := {226, 312} tii[16,42] := {86, 274} tii[16,43] := {17, 153} tii[16,44] := {168, 300} tii[16,45] := {116} tii[16,46] := {136, 290} tii[16,47] := {78, 252} tii[16,48] := {150} tii[16,49] := {250} tii[16,50] := {243} tii[16,51] := {193, 310} tii[16,52] := {105, 280} tii[16,53] := {196} tii[16,54] := {270} tii[16,55] := {30, 183} tii[16,56] := {268} tii[16,57] := {72, 247} tii[16,58] := {216} tii[16,59] := {147} tii[16,60] := {47, 232} tii[16,61] := {289} tii[16,62] := {198} tii[16,63] := {111, 265} tii[16,64] := {84} tii[16,65] := {152, 304} tii[16,66] := {95, 278} tii[16,67] := {178} tii[16,68] := {215} tii[16,69] := {121, 297} tii[16,70] := {67, 253} tii[16,71] := {212} tii[16,72] := {180} tii[16,73] := {114} tii[16,74] := {246} tii[16,75] := {164} tii[16,76] := {87, 282} tii[16,77] := {149} tii[16,78] := {200} tii[16,79] := {14, 41} tii[16,80] := {80, 137} tii[16,81] := {44} tii[16,82] := {76} tii[16,83] := {22, 66} tii[16,84] := {169, 240} tii[16,85] := {102, 173} tii[16,86] := {43, 101} tii[16,87] := {120, 293} tii[16,88] := {33, 191} tii[16,89] := {58} tii[16,90] := {225} tii[16,91] := {143, 209} tii[16,92] := {75, 142} tii[16,93] := {93} tii[16,94] := {258} tii[16,95] := {175} tii[16,96] := {83} tii[16,97] := {104, 273} tii[16,98] := {188} tii[16,99] := {52, 222} tii[16,100] := {127} tii[16,101] := {74, 260} tii[16,102] := {231} tii[16,103] := {160} tii[16,104] := {201} tii[16,105] := {145, 285} tii[16,106] := {10, 96} tii[16,107] := {177, 241} tii[16,108] := {189, 311} tii[16,109] := {71, 210} tii[16,110] := {7, 117} tii[16,111] := {131, 295} tii[16,112] := {24, 135} tii[16,113] := {213} tii[16,114] := {37} tii[16,115] := {211} tii[16,116] := {157, 306} tii[16,117] := {48, 176} tii[16,118] := {245} tii[16,119] := {63} tii[16,120] := {138, 292} tii[16,121] := {79, 254} tii[16,122] := {16, 146} tii[16,123] := {242} tii[16,124] := {57} tii[16,125] := {151} tii[16,126] := {15, 148} tii[16,127] := {46, 217} tii[16,128] := {98, 279} tii[16,129] := {229} tii[16,130] := {106, 283} tii[16,131] := {271} tii[16,132] := {92} tii[16,133] := {34, 195} tii[16,134] := {27, 199} tii[16,135] := {124} tii[16,136] := {197} tii[16,137] := {123, 298} tii[16,138] := {77, 263} tii[16,139] := {165} tii[16,140] := {23, 185} tii[16,141] := {224} tii[16,142] := {82} tii[16,143] := {158} tii[16,144] := {262} tii[16,145] := {126} tii[16,146] := {39, 234} tii[16,147] := {203} tii[16,148] := {3, 65} tii[16,149] := {45, 172} tii[16,150] := {204, 257} tii[16,151] := {11, 100} tii[16,152] := {20} tii[16,153] := {28, 141} tii[16,154] := {228} tii[16,155] := {40} tii[16,156] := {36} tii[16,157] := {133, 287} tii[16,158] := {5, 112} tii[16,159] := {51, 221} tii[16,160] := {103, 272} tii[16,161] := {115} tii[16,162] := {244} tii[16,163] := {62} tii[16,164] := {73, 259} tii[16,165] := {159, 302} tii[16,166] := {18, 161} tii[16,167] := {163} tii[16,168] := {88} tii[16,169] := {129} tii[16,170] := {49, 236} tii[16,171] := {42, 223} tii[16,172] := {1, 81} tii[16,173] := {186} tii[16,174] := {55} tii[16,175] := {122} tii[16,176] := {214} tii[16,177] := {60, 261} tii[16,178] := {8, 125} tii[16,179] := {235} tii[16,180] := {90} tii[16,181] := {29, 202} tii[16,182] := {166} tii[16,183] := {35} tii[16,184] := {61} tii[16,185] := {144} tii[16,186] := {130} tii[16,187] := {4, 25} tii[16,188] := {12} tii[16,189] := {31, 70} tii[16,190] := {110, 174} tii[16,191] := {26} tii[16,192] := {54, 107} tii[16,193] := {140} tii[16,194] := {108} tii[16,195] := {6, 113} tii[16,196] := {69, 255} tii[16,197] := {38} tii[16,198] := {194} tii[16,199] := {19, 162} tii[16,200] := {89, 284} tii[16,201] := {50, 237} tii[16,202] := {128} tii[16,203] := {0, 56} tii[16,204] := {179} tii[16,205] := {21} tii[16,206] := {2, 91} tii[16,207] := {94} tii[16,208] := {13, 167} tii[16,209] := {9} tii[16,210] := {64} cell#150 , |C| = 55 special orbit = [8, 2, 1, 1, 1, 1] special rep = [[4], [1, 1, 1]] , dim = 35 cell rep = phi[[4, 1, 1, 1],[]]+phi[[4],[1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 20*X^2+15*X TII subcells: tii[31,1] := {42, 54} tii[31,2] := {40, 53} tii[31,3] := {43, 52} tii[31,4] := {41, 50} tii[31,5] := {47} tii[31,6] := {33, 51} tii[31,7] := {35, 49} tii[31,8] := {34, 46} tii[31,9] := {39} tii[31,10] := {27, 45} tii[31,11] := {25, 38} tii[31,12] := {32} tii[31,13] := {17, 30} tii[31,14] := {22} tii[31,15] := {15} tii[31,16] := {23, 48} tii[31,17] := {26, 44} tii[31,18] := {24, 37} tii[31,19] := {31} tii[31,20] := {18, 36} tii[31,21] := {16, 29} tii[31,22] := {21} tii[31,23] := {10, 20} tii[31,24] := {14} tii[31,25] := {8} tii[31,26] := {11, 28} tii[31,27] := {9, 19} tii[31,28] := {13} tii[31,29] := {5, 12} tii[31,30] := {7} tii[31,31] := {4} tii[31,32] := {2, 6} tii[31,33] := {3} tii[31,34] := {1} tii[31,35] := {0} cell#151 , |C| = 140 special orbit = [6, 4, 1, 1, 1, 1] special rep = [[3], [2, 1, 1]] , dim = 105 cell rep = phi[[3, 2, 1, 1],[]]+phi[[3],[2, 1, 1]] TII depth = 3 TII multiplicity polynomial = 35*X^2+70*X TII subcells: tii[25,1] := {129, 139} tii[25,2] := {111, 135} tii[25,3] := {132} tii[25,4] := {138} tii[25,5] := {116, 136} tii[25,6] := {92, 127} tii[25,7] := {99, 131} tii[25,8] := {91, 121} tii[25,9] := {120} tii[25,10] := {105} tii[25,11] := {134} tii[25,12] := {69, 113} tii[25,13] := {54, 95} tii[25,14] := {102} tii[25,15] := {74} tii[25,16] := {125} tii[25,17] := {80} tii[25,18] := {62} tii[25,19] := {108} tii[25,20] := {126} tii[25,21] := {98, 130} tii[25,22] := {68, 112} tii[25,23] := {76, 118} tii[25,24] := {66, 103} tii[25,25] := {101} tii[25,26] := {83} tii[25,27] := {124} tii[25,28] := {55, 100} tii[25,29] := {47, 93} tii[25,30] := {34, 71} tii[25,31] := {46, 81} tii[25,32] := {79} tii[25,33] := {51} tii[25,34] := {60} tii[25,35] := {107} tii[25,36] := {29, 59} tii[25,37] := {57} tii[25,38] := {41} tii[25,39] := {42} tii[25,40] := {88} tii[25,41] := {25} tii[25,42] := {109} tii[25,43] := {28, 70} tii[25,44] := {19, 49} tii[25,45] := {56} tii[25,46] := {31} tii[25,47] := {87} tii[25,48] := {10, 30} tii[25,49] := {37} tii[25,50] := {23} tii[25,51] := {17} tii[25,52] := {64} tii[25,53] := {9} tii[25,54] := {89} tii[25,55] := {21} tii[25,56] := {11} tii[25,57] := {43} tii[25,58] := {5} tii[25,59] := {65} tii[25,60] := {90} tii[25,61] := {117, 137} tii[25,62] := {110, 133} tii[25,63] := {122} tii[25,64] := {77, 119} tii[25,65] := {97, 128} tii[25,66] := {67, 104} tii[25,67] := {115} tii[25,68] := {84} tii[25,69] := {48, 82} tii[25,70] := {123} tii[25,71] := {63} tii[25,72] := {44} tii[25,73] := {36, 78} tii[25,74] := {75, 114} tii[25,75] := {27, 58} tii[25,76] := {39} tii[25,77] := {96} tii[25,78] := {15, 38} tii[25,79] := {35, 72} tii[25,80] := {106} tii[25,81] := {24} tii[25,82] := {52} tii[25,83] := {13} tii[25,84] := {33} tii[25,85] := {7, 22} tii[25,86] := {86} tii[25,87] := {12} tii[25,88] := {45} tii[25,89] := {6} tii[25,90] := {1} tii[25,91] := {53, 94} tii[25,92] := {73} tii[25,93] := {20, 50} tii[25,94] := {85} tii[25,95] := {32} tii[25,96] := {18} tii[25,97] := {4, 16} tii[25,98] := {61} tii[25,99] := {8} tii[25,100] := {26} tii[25,101] := {3} tii[25,102] := {0} tii[25,103] := {40} tii[25,104] := {14} tii[25,105] := {2} cell#152 , |C| = 140 special orbit = [6, 4, 1, 1, 1, 1] special rep = [[3], [2, 1, 1]] , dim = 105 cell rep = phi[[3, 2, 1, 1],[]]+phi[[3],[2, 1, 1]] TII depth = 3 TII multiplicity polynomial = 35*X^2+70*X TII subcells: tii[25,1] := {129, 139} tii[25,2] := {111, 135} tii[25,3] := {132} tii[25,4] := {138} tii[25,5] := {116, 136} tii[25,6] := {92, 127} tii[25,7] := {99, 131} tii[25,8] := {91, 121} tii[25,9] := {120} tii[25,10] := {105} tii[25,11] := {134} tii[25,12] := {69, 113} tii[25,13] := {54, 95} tii[25,14] := {102} tii[25,15] := {74} tii[25,16] := {125} tii[25,17] := {80} tii[25,18] := {62} tii[25,19] := {108} tii[25,20] := {126} tii[25,21] := {98, 130} tii[25,22] := {68, 112} tii[25,23] := {76, 118} tii[25,24] := {66, 103} tii[25,25] := {101} tii[25,26] := {83} tii[25,27] := {124} tii[25,28] := {55, 100} tii[25,29] := {47, 93} tii[25,30] := {34, 71} tii[25,31] := {46, 81} tii[25,32] := {79} tii[25,33] := {51} tii[25,34] := {60} tii[25,35] := {107} tii[25,36] := {29, 59} tii[25,37] := {57} tii[25,38] := {41} tii[25,39] := {42} tii[25,40] := {88} tii[25,41] := {25} tii[25,42] := {109} tii[25,43] := {28, 70} tii[25,44] := {19, 49} tii[25,45] := {56} tii[25,46] := {31} tii[25,47] := {87} tii[25,48] := {10, 30} tii[25,49] := {37} tii[25,50] := {23} tii[25,51] := {17} tii[25,52] := {64} tii[25,53] := {9} tii[25,54] := {89} tii[25,55] := {21} tii[25,56] := {11} tii[25,57] := {43} tii[25,58] := {5} tii[25,59] := {65} tii[25,60] := {90} tii[25,61] := {117, 137} tii[25,62] := {110, 133} tii[25,63] := {122} tii[25,64] := {77, 119} tii[25,65] := {97, 128} tii[25,66] := {67, 104} tii[25,67] := {115} tii[25,68] := {84} tii[25,69] := {48, 82} tii[25,70] := {123} tii[25,71] := {63} tii[25,72] := {44} tii[25,73] := {36, 78} tii[25,74] := {75, 114} tii[25,75] := {27, 58} tii[25,76] := {39} tii[25,77] := {96} tii[25,78] := {15, 38} tii[25,79] := {35, 72} tii[25,80] := {106} tii[25,81] := {24} tii[25,82] := {52} tii[25,83] := {13} tii[25,84] := {33} tii[25,85] := {7, 22} tii[25,86] := {86} tii[25,87] := {12} tii[25,88] := {45} tii[25,89] := {6} tii[25,90] := {1} tii[25,91] := {53, 94} tii[25,92] := {73} tii[25,93] := {20, 50} tii[25,94] := {85} tii[25,95] := {32} tii[25,96] := {18} tii[25,97] := {4, 16} tii[25,98] := {61} tii[25,99] := {8} tii[25,100] := {26} tii[25,101] := {3} tii[25,102] := {0} tii[25,103] := {40} tii[25,104] := {14} tii[25,105] := {2} cell#153 , |C| = 126 special orbit = [5, 5, 1, 1, 1, 1] special rep = [[2], [3, 1, 1]] , dim = 126 cell rep = phi[[2],[3, 1, 1]] TII depth = 6 TII multiplicity polynomial = 126*X TII subcells: tii[19,1] := {100} tii[19,2] := {118} tii[19,3] := {123} tii[19,4] := {88} tii[19,5] := {62} tii[19,6] := {110} tii[19,7] := {84} tii[19,8] := {119} tii[19,9] := {75} tii[19,10] := {61} tii[19,11] := {102} tii[19,12] := {83} tii[19,13] := {50} tii[19,14] := {114} tii[19,15] := {111} tii[19,16] := {106} tii[19,17] := {120} tii[19,18] := {124} tii[19,19] := {74} tii[19,20] := {46} tii[19,21] := {101} tii[19,22] := {67} tii[19,23] := {113} tii[19,24] := {59} tii[19,25] := {45} tii[19,26] := {31} tii[19,27] := {90} tii[19,28] := {66} tii[19,29] := {34} tii[19,30] := {53} tii[19,31] := {108} tii[19,32] := {21} tii[19,33] := {103} tii[19,34] := {15} tii[19,35] := {94} tii[19,36] := {40} tii[19,37] := {115} tii[19,38] := {57} tii[19,39] := {121} tii[19,40] := {44} tii[19,41] := {30} tii[19,42] := {78} tii[19,43] := {52} tii[19,44] := {22} tii[19,45] := {98} tii[19,46] := {20} tii[19,47] := {91} tii[19,48] := {81} tii[19,49] := {39} tii[19,50] := {14} tii[19,51] := {109} tii[19,52] := {56} tii[19,53] := {9} tii[19,54] := {117} tii[19,55] := {104} tii[19,56] := {95} tii[19,57] := {116} tii[19,58] := {86} tii[19,59] := {122} tii[19,60] := {125} tii[19,61] := {77} tii[19,62] := {97} tii[19,63] := {89} tii[19,64] := {47} tii[19,65] := {79} tii[19,66] := {107} tii[19,67] := {68} tii[19,68] := {33} tii[19,69] := {112} tii[19,70] := {25} tii[19,71] := {55} tii[19,72] := {72} tii[19,73] := {76} tii[19,74] := {19} tii[19,75] := {38} tii[19,76] := {63} tii[19,77] := {96} tii[19,78] := {11} tii[19,79] := {48} tii[19,80] := {51} tii[19,81] := {7} tii[19,82] := {105} tii[19,83] := {26} tii[19,84] := {69} tii[19,85] := {37} tii[19,86] := {41} tii[19,87] := {28} tii[19,88] := {87} tii[19,89] := {6} tii[19,90] := {93} tii[19,91] := {3} tii[19,92] := {16} tii[19,93] := {1} tii[19,94] := {29} tii[19,95] := {99} tii[19,96] := {43} tii[19,97] := {60} tii[19,98] := {82} tii[19,99] := {49} tii[19,100] := {32} tii[19,101] := {35} tii[19,102] := {92} tii[19,103] := {54} tii[19,104] := {24} tii[19,105] := {17} tii[19,106] := {71} tii[19,107] := {12} tii[19,108] := {23} tii[19,109] := {80} tii[19,110] := {27} tii[19,111] := {8} tii[19,112] := {10} tii[19,113] := {85} tii[19,114] := {42} tii[19,115] := {5} tii[19,116] := {2} tii[19,117] := {58} tii[19,118] := {65} tii[19,119] := {70} tii[19,120] := {73} tii[19,121] := {64} tii[19,122] := {36} tii[19,123] := {18} tii[19,124] := {13} tii[19,125] := {4} tii[19,126] := {0} cell#154 , |C| = 175 special orbit = [6, 2, 2, 2, 1, 1] special rep = [[3, 1], [1, 1, 1]] , dim = 105 cell rep = phi[[3, 1, 1, 1],[1]]+phi[[3, 1],[1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 70*X^2+35*X TII subcells: tii[23,1] := {117, 173} tii[23,2] := {75, 165} tii[23,3] := {70, 146} tii[23,4] := {138, 172} tii[23,5] := {52, 157} tii[23,6] := {121, 169} tii[23,7] := {45, 125} tii[23,8] := {139, 164} tii[23,9] := {156} tii[23,10] := {74, 152} tii[23,11] := {30, 103} tii[23,12] := {93, 134} tii[23,13] := {119} tii[23,14] := {44, 89} tii[23,15] := {72} tii[23,16] := {149, 174} tii[23,17] := {34, 141} tii[23,18] := {137, 171} tii[23,19] := {29, 100} tii[23,20] := {151, 168} tii[23,21] := {163} tii[23,22] := {116, 166} tii[23,23] := {51, 129} tii[23,24] := {17, 77} tii[23,25] := {67, 113} tii[23,26] := {128, 160} tii[23,27] := {95} tii[23,28] := {154} tii[23,29] := {108, 147} tii[23,30] := {28, 64} tii[23,31] := {48} tii[23,32] := {133} tii[23,33] := {145} tii[23,34] := {66, 142} tii[23,35] := {9, 55} tii[23,36] := {80, 123} tii[23,37] := {110} tii[23,38] := {58, 101} tii[23,39] := {16, 42} tii[23,40] := {32} tii[23,41] := {84} tii[23,42] := {99} tii[23,43] := {25, 56} tii[23,44] := {40} tii[23,45] := {54} tii[23,46] := {6, 148} tii[23,47] := {92, 170} tii[23,48] := {14, 136} tii[23,49] := {69, 167} tii[23,50] := {26, 150} tii[23,51] := {46, 162} tii[23,52] := {11, 115} tii[23,53] := {98, 161} tii[23,54] := {21, 127} tii[23,55] := {53, 159} tii[23,56] := {118, 155} tii[23,57] := {36, 153} tii[23,58] := {140} tii[23,59] := {27, 107} tii[23,60] := {94, 135} tii[23,61] := {47, 132} tii[23,62] := {120} tii[23,63] := {97} tii[23,64] := {91, 158} tii[23,65] := {4, 90} tii[23,66] := {35, 143} tii[23,67] := {106, 144} tii[23,68] := {12, 105} tii[23,69] := {131} tii[23,70] := {23, 130} tii[23,71] := {82, 126} tii[23,72] := {15, 81} tii[23,73] := {68, 114} tii[23,74] := {112} tii[23,75] := {31, 111} tii[23,76] := {96} tii[23,77] := {124} tii[23,78] := {73} tii[23,79] := {60, 104} tii[23,80] := {8, 59} tii[23,81] := {86} tii[23,82] := {19, 85} tii[23,83] := {102} tii[23,84] := {50} tii[23,85] := {88} tii[23,86] := {1, 65} tii[23,87] := {22, 122} tii[23,88] := {5, 79} tii[23,89] := {13, 109} tii[23,90] := {7, 57} tii[23,91] := {43, 87} tii[23,92] := {18, 83} tii[23,93] := {71} tii[23,94] := {49} tii[23,95] := {38, 78} tii[23,96] := {2, 37} tii[23,97] := {62} tii[23,98] := {10, 61} tii[23,99] := {33} tii[23,100] := {76} tii[23,101] := {63} tii[23,102] := {0, 24} tii[23,103] := {3, 39} tii[23,104] := {20} tii[23,105] := {41} cell#155 , |C| = 175 special orbit = [6, 2, 2, 2, 1, 1] special rep = [[3, 1], [1, 1, 1]] , dim = 105 cell rep = phi[[3, 1, 1, 1],[1]]+phi[[3, 1],[1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 70*X^2+35*X TII subcells: tii[23,1] := {148, 172} tii[23,2] := {112, 157} tii[23,3] := {122, 123} tii[23,4] := {162, 174} tii[23,5] := {83, 141} tii[23,6] := {154, 171} tii[23,7] := {95, 96} tii[23,8] := {165, 166} tii[23,9] := {170} tii[23,10] := {111, 151} tii[23,11] := {64, 65} tii[23,12] := {133, 134} tii[23,13] := {149} tii[23,14] := {80, 81} tii[23,15] := {106} tii[23,16] := {155, 173} tii[23,17] := {52, 116} tii[23,18] := {146, 168} tii[23,19] := {62, 63} tii[23,20] := {159, 160} tii[23,21] := {167} tii[23,22] := {126, 158} tii[23,23] := {82, 132} tii[23,24] := {37, 38} tii[23,25] := {107, 108} tii[23,26] := {143, 144} tii[23,27] := {130} tii[23,28] := {156} tii[23,29] := {124, 125} tii[23,30] := {50, 51} tii[23,31] := {77} tii[23,32] := {140} tii[23,33] := {128} tii[23,34] := {70, 117} tii[23,35] := {16, 17} tii[23,36] := {92, 93} tii[23,37] := {113} tii[23,38] := {66, 67} tii[23,39] := {26, 27} tii[23,40] := {48} tii[23,41] := {88} tii[23,42] := {75} tii[23,43] := {18, 19} tii[23,44] := {30} tii[23,45] := {23} tii[23,46] := {56, 57} tii[23,47] := {129, 169} tii[23,48] := {31, 90} tii[23,49] := {104, 161} tii[23,50] := {49, 118} tii[23,51] := {84, 147} tii[23,52] := {25, 58} tii[23,53] := {137, 164} tii[23,54] := {33, 91} tii[23,55] := {85, 145} tii[23,56] := {152, 153} tii[23,57] := {74, 127} tii[23,58] := {163} tii[23,59] := {60, 61} tii[23,60] := {135, 136} tii[23,61] := {101, 102} tii[23,62] := {150} tii[23,63] := {139} tii[23,64] := {99, 142} tii[23,65] := {9, 32} tii[23,66] := {53, 121} tii[23,67] := {119, 120} tii[23,68] := {11, 59} tii[23,69] := {138} tii[23,70] := {45, 100} tii[23,71] := {97, 98} tii[23,72] := {35, 36} tii[23,73] := {109, 110} tii[23,74] := {115} tii[23,75] := {72, 73} tii[23,76] := {131} tii[23,77] := {103} tii[23,78] := {114} tii[23,79] := {68, 69} tii[23,80] := {14, 15} tii[23,81] := {89} tii[23,82] := {43, 44} tii[23,83] := {76} tii[23,84] := {87} tii[23,85] := {47} tii[23,86] := {2, 10} tii[23,87] := {28, 94} tii[23,88] := {3, 34} tii[23,89] := {22, 71} tii[23,90] := {12, 13} tii[23,91] := {78, 79} tii[23,92] := {41, 42} tii[23,93] := {105} tii[23,94] := {86} tii[23,95] := {39, 40} tii[23,96] := {4, 5} tii[23,97] := {55} tii[23,98] := {20, 21} tii[23,99] := {54} tii[23,100] := {46} tii[23,101] := {24} tii[23,102] := {0, 1} tii[23,103] := {6, 7} tii[23,104] := {29} tii[23,105] := {8} cell#156 , |C| = 427 special orbit = [4, 4, 2, 2, 1, 1] special rep = [[2, 1], [2, 1, 1]] , dim = 210 cell rep = phi[[2, 2, 1, 1],[1]]+phi[[2, 1, 1, 1],[2]]+phi[[2, 2],[1, 1, 1]]+phi[[2, 1],[2, 1, 1]] TII depth = 3 TII multiplicity polynomial = 49*X^4+70*X^2+91*X TII subcells: tii[15,1] := {161, 303, 370, 424} tii[15,2] := {298, 397} tii[15,3] := {247, 302} tii[15,4] := {120, 261, 393, 419} tii[15,5] := {53, 207, 367, 396} tii[15,6] := {255, 375} tii[15,7] := {308} tii[15,8] := {359} tii[15,9] := {160, 219, 408, 425} tii[15,10] := {297, 348} tii[15,11] := {116, 184, 406, 421} tii[15,12] := {225} tii[15,13] := {144, 416} tii[15,14] := {283} tii[15,15] := {333, 378} tii[15,16] := {353} tii[15,17] := {201, 260} tii[15,18] := {82, 217, 369, 410} tii[15,19] := {209, 346} tii[15,20] := {30, 166, 335, 374} tii[15,21] := {268} tii[15,22] := {324} tii[15,23] := {159, 218} tii[15,24] := {118, 174, 392, 420} tii[15,25] := {21, 126, 296, 347} tii[15,26] := {115, 183} tii[15,27] := {253, 312} tii[15,28] := {79, 138, 389, 411} tii[15,29] := {178} tii[15,30] := {224} tii[15,31] := {143} tii[15,32] := {103, 401} tii[15,33] := {237} tii[15,34] := {282} tii[15,35] := {40, 89, 332, 377} tii[15,36] := {180} tii[15,37] := {292, 349} tii[15,38] := {148} tii[15,39] := {60, 352} tii[15,40] := {316} tii[15,41] := {239} tii[15,42] := {288} tii[15,43] := {81, 133, 409, 426} tii[15,44] := {208, 273} tii[15,45] := {50, 99, 407, 422} tii[15,46] := {134} tii[15,47] := {69, 417} tii[15,48] := {193} tii[15,49] := {28, 67, 390, 414} tii[15,50] := {97} tii[15,51] := {249, 314} tii[15,52] := {70} tii[15,53] := {277} tii[15,54] := {44, 402} tii[15,55] := {151} tii[15,56] := {24, 387} tii[15,57] := {196} tii[15,58] := {294, 351} tii[15,59] := {318} tii[15,60] := {285} tii[15,61] := {117, 173, 291, 339} tii[15,62] := {86, 252, 311, 413} tii[15,63] := {177, 343} tii[15,64] := {236, 386} tii[15,65] := {96, 216, 248, 368} tii[15,66] := {203, 262} tii[15,67] := {125, 271, 345, 423} tii[15,68] := {62, 199, 264, 394} tii[15,69] := {41, 167, 336, 376} tii[15,70] := {165, 309} tii[15,71] := {270} tii[15,72] := {157, 229} tii[15,73] := {90, 230, 320, 418} tii[15,74] := {214, 360} tii[15,75] := {326} tii[15,76] := {188} tii[15,77] := {206, 342} tii[15,78] := {226} tii[15,79] := {65, 127, 365, 399} tii[15,80] := {258, 385} tii[15,81] := {192} tii[15,82] := {93, 381} tii[15,83] := {284} tii[15,84] := {330} tii[15,85] := {119, 175} tii[15,86] := {64, 202, 259, 338} tii[15,87] := {200, 272} tii[15,88] := {87, 228, 373, 412} tii[15,89] := {8, 88, 254, 313} tii[15,90] := {80, 139} tii[15,91] := {37, 156, 304, 371} tii[15,92] := {179} tii[15,93] := {124, 269} tii[15,94] := {231} tii[15,95] := {104} tii[15,96] := {57, 187, 355, 404} tii[15,97] := {238} tii[15,98] := {171, 325} tii[15,99] := {136} tii[15,100] := {83, 140, 391, 415} tii[15,101] := {18, 132, 295, 341} tii[15,102] := {164, 306} tii[15,103] := {181} tii[15,104] := {20, 55, 293, 350} tii[15,105] := {52, 101} tii[15,106] := {275} tii[15,107] := {108, 403} tii[15,108] := {107} tii[15,109] := {213, 357} tii[15,110] := {34, 317} tii[15,111] := {195} tii[15,112] := {32, 168, 337, 384} tii[15,113] := {149} tii[15,114] := {240} tii[15,115] := {73} tii[15,116] := {243} tii[15,117] := {74, 388} tii[15,118] := {47} tii[15,119] := {289} tii[15,120] := {98} tii[15,121] := {7, 31, 334, 379} tii[15,122] := {205, 267} tii[15,123] := {191} tii[15,124] := {71} tii[15,125] := {257, 323} tii[15,126] := {152} tii[15,127] := {16, 354} tii[15,128] := {5, 327} tii[15,129] := {197} tii[15,130] := {329} tii[15,131] := {49} tii[15,132] := {245} tii[15,133] := {39, 158, 215, 301} tii[15,134] := {54, 182, 344, 395} tii[15,135] := {155, 227} tii[15,136] := {19, 114, 263, 340} tii[15,137] := {85, 223} tii[15,138] := {33, 142, 319, 383} tii[15,139] := {186} tii[15,140] := {131, 281} tii[15,141] := {123, 265} tii[15,142] := {84, 141} tii[15,143] := {6, 94, 250, 305} tii[15,144] := {135} tii[15,145] := {51, 100, 364, 398} tii[15,146] := {232} tii[15,147] := {170, 321} tii[15,148] := {109} tii[15,149] := {72, 380} tii[15,150] := {15, 128, 299, 356} tii[15,151] := {106} tii[15,152] := {194} tii[15,153] := {75} tii[15,154] := {46, 362} tii[15,155] := {242} tii[15,156] := {14, 42, 366, 400} tii[15,157] := {3, 63, 204, 266} tii[15,158] := {66} tii[15,159] := {162, 221} tii[15,160] := {190} tii[15,161] := {146} tii[15,162] := {23, 382} tii[15,163] := {43} tii[15,164] := {9, 91, 256, 322} tii[15,165] := {211, 279} tii[15,166] := {110} tii[15,167] := {11, 361} tii[15,168] := {112} tii[15,169] := {35, 328} tii[15,170] := {286} tii[15,171] := {154} tii[15,172] := {25} tii[15,173] := {4, 331} tii[15,174] := {198} tii[15,175] := {122, 176} tii[15,176] := {105} tii[15,177] := {169, 235} tii[15,178] := {48} tii[15,179] := {241} tii[15,180] := {244} tii[15,181] := {78, 137, 246, 310} tii[15,182] := {102, 274} tii[15,183] := {36, 172, 220, 372} tii[15,184] := {121, 185} tii[15,185] := {145, 315} tii[15,186] := {56, 210, 278, 405} tii[15,187] := {150} tii[15,188] := {111} tii[15,189] := {10, 95, 251, 307} tii[15,190] := {29, 68} tii[15,191] := {130, 276} tii[15,192] := {234} tii[15,193] := {22, 129, 300, 358} tii[15,194] := {45} tii[15,195] := {153} tii[15,196] := {26} tii[15,197] := {61, 363} tii[15,198] := {12} tii[15,199] := {0, 38, 163, 222} tii[15,200] := {147} tii[15,201] := {92, 233} tii[15,202] := {2, 58, 212, 280} tii[15,203] := {77} tii[15,204] := {113} tii[15,205] := {17, 287} tii[15,206] := {27} tii[15,207] := {1, 290} tii[15,208] := {59, 189} tii[15,209] := {76} tii[15,210] := {13} cell#157 , |C| = 315 special orbit = [4, 4, 2, 2, 2] special rep = [[2, 1, 1], [2, 1]] , dim = 210 cell rep = phi[[2, 2, 1],[1, 1]]+phi[[2, 1, 1],[2, 1]] TII depth = 4 TII multiplicity polynomial = 105*X^2+105*X TII subcells: tii[16,1] := {251, 314} tii[16,2] := {299} tii[16,3] := {182, 309} tii[16,4] := {119, 291} tii[16,5] := {267} tii[16,6] := {218} tii[16,7] := {134, 207} tii[16,8] := {155} tii[16,9] := {205, 266} tii[16,10] := {220, 313} tii[16,11] := {99, 239} tii[16,12] := {53, 227} tii[16,13] := {286} tii[16,14] := {156, 305} tii[16,15] := {118} tii[16,16] := {256} tii[16,17] := {281} tii[16,18] := {208, 308} tii[16,19] := {132, 264} tii[16,20] := {59, 249} tii[16,21] := {275} tii[16,22] := {154} tii[16,23] := {171, 303} tii[16,24] := {109, 277} tii[16,25] := {187} tii[16,26] := {139, 296} tii[16,27] := {230} tii[16,28] := {248} tii[16,29] := {184} tii[16,30] := {233} tii[16,31] := {68, 206} tii[16,32] := {219, 276} tii[16,33] := {85} tii[16,34] := {32, 190} tii[16,35] := {192, 307} tii[16,36] := {269} tii[16,37] := {288} tii[16,38] := {181, 294} tii[16,39] := {170, 301} tii[16,40] := {97, 238} tii[16,41] := {226, 312} tii[16,42] := {86, 274} tii[16,43] := {17, 153} tii[16,44] := {168, 300} tii[16,45] := {116} tii[16,46] := {136, 290} tii[16,47] := {78, 252} tii[16,48] := {150} tii[16,49] := {250} tii[16,50] := {243} tii[16,51] := {193, 310} tii[16,52] := {105, 280} tii[16,53] := {196} tii[16,54] := {270} tii[16,55] := {30, 183} tii[16,56] := {268} tii[16,57] := {72, 247} tii[16,58] := {216} tii[16,59] := {147} tii[16,60] := {47, 232} tii[16,61] := {289} tii[16,62] := {198} tii[16,63] := {111, 265} tii[16,64] := {84} tii[16,65] := {152, 304} tii[16,66] := {95, 278} tii[16,67] := {178} tii[16,68] := {215} tii[16,69] := {121, 297} tii[16,70] := {67, 253} tii[16,71] := {212} tii[16,72] := {180} tii[16,73] := {114} tii[16,74] := {246} tii[16,75] := {164} tii[16,76] := {87, 282} tii[16,77] := {149} tii[16,78] := {200} tii[16,79] := {14, 41} tii[16,80] := {80, 137} tii[16,81] := {44} tii[16,82] := {76} tii[16,83] := {22, 66} tii[16,84] := {169, 240} tii[16,85] := {102, 173} tii[16,86] := {43, 101} tii[16,87] := {120, 293} tii[16,88] := {33, 191} tii[16,89] := {58} tii[16,90] := {225} tii[16,91] := {143, 209} tii[16,92] := {75, 142} tii[16,93] := {93} tii[16,94] := {258} tii[16,95] := {175} tii[16,96] := {83} tii[16,97] := {104, 273} tii[16,98] := {188} tii[16,99] := {52, 222} tii[16,100] := {127} tii[16,101] := {74, 260} tii[16,102] := {231} tii[16,103] := {160} tii[16,104] := {201} tii[16,105] := {145, 285} tii[16,106] := {10, 96} tii[16,107] := {177, 241} tii[16,108] := {189, 311} tii[16,109] := {71, 210} tii[16,110] := {7, 117} tii[16,111] := {131, 295} tii[16,112] := {24, 135} tii[16,113] := {213} tii[16,114] := {37} tii[16,115] := {211} tii[16,116] := {157, 306} tii[16,117] := {48, 176} tii[16,118] := {245} tii[16,119] := {63} tii[16,120] := {138, 292} tii[16,121] := {79, 254} tii[16,122] := {16, 146} tii[16,123] := {242} tii[16,124] := {57} tii[16,125] := {151} tii[16,126] := {15, 148} tii[16,127] := {46, 217} tii[16,128] := {98, 279} tii[16,129] := {229} tii[16,130] := {106, 283} tii[16,131] := {271} tii[16,132] := {92} tii[16,133] := {34, 195} tii[16,134] := {27, 199} tii[16,135] := {124} tii[16,136] := {197} tii[16,137] := {123, 298} tii[16,138] := {77, 263} tii[16,139] := {165} tii[16,140] := {23, 185} tii[16,141] := {224} tii[16,142] := {82} tii[16,143] := {158} tii[16,144] := {262} tii[16,145] := {126} tii[16,146] := {39, 234} tii[16,147] := {203} tii[16,148] := {3, 65} tii[16,149] := {45, 172} tii[16,150] := {204, 257} tii[16,151] := {11, 100} tii[16,152] := {20} tii[16,153] := {28, 141} tii[16,154] := {228} tii[16,155] := {40} tii[16,156] := {36} tii[16,157] := {133, 287} tii[16,158] := {5, 112} tii[16,159] := {51, 221} tii[16,160] := {103, 272} tii[16,161] := {115} tii[16,162] := {244} tii[16,163] := {62} tii[16,164] := {73, 259} tii[16,165] := {159, 302} tii[16,166] := {18, 161} tii[16,167] := {163} tii[16,168] := {88} tii[16,169] := {129} tii[16,170] := {49, 236} tii[16,171] := {42, 223} tii[16,172] := {1, 81} tii[16,173] := {186} tii[16,174] := {55} tii[16,175] := {122} tii[16,176] := {214} tii[16,177] := {60, 261} tii[16,178] := {8, 125} tii[16,179] := {235} tii[16,180] := {90} tii[16,181] := {29, 202} tii[16,182] := {166} tii[16,183] := {35} tii[16,184] := {61} tii[16,185] := {144} tii[16,186] := {130} tii[16,187] := {4, 25} tii[16,188] := {12} tii[16,189] := {31, 70} tii[16,190] := {110, 174} tii[16,191] := {26} tii[16,192] := {54, 107} tii[16,193] := {140} tii[16,194] := {108} tii[16,195] := {6, 113} tii[16,196] := {69, 255} tii[16,197] := {38} tii[16,198] := {194} tii[16,199] := {19, 162} tii[16,200] := {89, 284} tii[16,201] := {50, 237} tii[16,202] := {128} tii[16,203] := {0, 56} tii[16,204] := {179} tii[16,205] := {21} tii[16,206] := {2, 91} tii[16,207] := {94} tii[16,208] := {13, 167} tii[16,209] := {9} tii[16,210] := {64} cell#158 , |C| = 175 special orbit = [6, 2, 2, 2, 1, 1] special rep = [[3, 1], [1, 1, 1]] , dim = 105 cell rep = phi[[3, 1, 1, 1],[1]]+phi[[3, 1],[1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 70*X^2+35*X TII subcells: tii[23,1] := {117, 173} tii[23,2] := {75, 165} tii[23,3] := {70, 146} tii[23,4] := {138, 172} tii[23,5] := {52, 157} tii[23,6] := {121, 169} tii[23,7] := {45, 125} tii[23,8] := {139, 164} tii[23,9] := {156} tii[23,10] := {74, 152} tii[23,11] := {30, 103} tii[23,12] := {93, 134} tii[23,13] := {119} tii[23,14] := {44, 89} tii[23,15] := {72} tii[23,16] := {149, 174} tii[23,17] := {34, 141} tii[23,18] := {137, 171} tii[23,19] := {29, 100} tii[23,20] := {151, 168} tii[23,21] := {163} tii[23,22] := {116, 166} tii[23,23] := {51, 129} tii[23,24] := {17, 77} tii[23,25] := {67, 113} tii[23,26] := {128, 160} tii[23,27] := {95} tii[23,28] := {154} tii[23,29] := {108, 147} tii[23,30] := {28, 64} tii[23,31] := {48} tii[23,32] := {133} tii[23,33] := {145} tii[23,34] := {66, 142} tii[23,35] := {9, 55} tii[23,36] := {80, 123} tii[23,37] := {110} tii[23,38] := {58, 101} tii[23,39] := {16, 42} tii[23,40] := {32} tii[23,41] := {84} tii[23,42] := {99} tii[23,43] := {25, 56} tii[23,44] := {40} tii[23,45] := {54} tii[23,46] := {6, 148} tii[23,47] := {92, 170} tii[23,48] := {14, 136} tii[23,49] := {69, 167} tii[23,50] := {26, 150} tii[23,51] := {46, 162} tii[23,52] := {11, 115} tii[23,53] := {98, 161} tii[23,54] := {21, 127} tii[23,55] := {53, 159} tii[23,56] := {118, 155} tii[23,57] := {36, 153} tii[23,58] := {140} tii[23,59] := {27, 107} tii[23,60] := {94, 135} tii[23,61] := {47, 132} tii[23,62] := {120} tii[23,63] := {97} tii[23,64] := {91, 158} tii[23,65] := {4, 90} tii[23,66] := {35, 143} tii[23,67] := {106, 144} tii[23,68] := {12, 105} tii[23,69] := {131} tii[23,70] := {23, 130} tii[23,71] := {82, 126} tii[23,72] := {15, 81} tii[23,73] := {68, 114} tii[23,74] := {112} tii[23,75] := {31, 111} tii[23,76] := {96} tii[23,77] := {124} tii[23,78] := {73} tii[23,79] := {60, 104} tii[23,80] := {8, 59} tii[23,81] := {86} tii[23,82] := {19, 85} tii[23,83] := {102} tii[23,84] := {50} tii[23,85] := {88} tii[23,86] := {1, 65} tii[23,87] := {22, 122} tii[23,88] := {5, 79} tii[23,89] := {13, 109} tii[23,90] := {7, 57} tii[23,91] := {43, 87} tii[23,92] := {18, 83} tii[23,93] := {71} tii[23,94] := {49} tii[23,95] := {38, 78} tii[23,96] := {2, 37} tii[23,97] := {62} tii[23,98] := {10, 61} tii[23,99] := {33} tii[23,100] := {76} tii[23,101] := {63} tii[23,102] := {0, 24} tii[23,103] := {3, 39} tii[23,104] := {20} tii[23,105] := {41} cell#159 , |C| = 175 special orbit = [6, 2, 2, 2, 1, 1] special rep = [[3, 1], [1, 1, 1]] , dim = 105 cell rep = phi[[3, 1, 1, 1],[1]]+phi[[3, 1],[1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 70*X^2+35*X TII subcells: tii[23,1] := {148, 172} tii[23,2] := {112, 157} tii[23,3] := {122, 123} tii[23,4] := {162, 174} tii[23,5] := {83, 141} tii[23,6] := {154, 171} tii[23,7] := {95, 96} tii[23,8] := {165, 166} tii[23,9] := {170} tii[23,10] := {111, 151} tii[23,11] := {64, 65} tii[23,12] := {133, 134} tii[23,13] := {149} tii[23,14] := {80, 81} tii[23,15] := {106} tii[23,16] := {155, 173} tii[23,17] := {52, 116} tii[23,18] := {146, 168} tii[23,19] := {62, 63} tii[23,20] := {159, 160} tii[23,21] := {167} tii[23,22] := {126, 158} tii[23,23] := {82, 132} tii[23,24] := {37, 38} tii[23,25] := {107, 108} tii[23,26] := {143, 144} tii[23,27] := {130} tii[23,28] := {156} tii[23,29] := {124, 125} tii[23,30] := {50, 51} tii[23,31] := {77} tii[23,32] := {140} tii[23,33] := {128} tii[23,34] := {70, 117} tii[23,35] := {16, 17} tii[23,36] := {92, 93} tii[23,37] := {113} tii[23,38] := {66, 67} tii[23,39] := {26, 27} tii[23,40] := {48} tii[23,41] := {88} tii[23,42] := {75} tii[23,43] := {18, 19} tii[23,44] := {30} tii[23,45] := {23} tii[23,46] := {56, 57} tii[23,47] := {129, 169} tii[23,48] := {31, 90} tii[23,49] := {104, 161} tii[23,50] := {49, 118} tii[23,51] := {84, 147} tii[23,52] := {25, 58} tii[23,53] := {137, 164} tii[23,54] := {33, 91} tii[23,55] := {85, 145} tii[23,56] := {152, 153} tii[23,57] := {74, 127} tii[23,58] := {163} tii[23,59] := {60, 61} tii[23,60] := {135, 136} tii[23,61] := {101, 102} tii[23,62] := {150} tii[23,63] := {139} tii[23,64] := {99, 142} tii[23,65] := {9, 32} tii[23,66] := {53, 121} tii[23,67] := {119, 120} tii[23,68] := {11, 59} tii[23,69] := {138} tii[23,70] := {45, 100} tii[23,71] := {97, 98} tii[23,72] := {35, 36} tii[23,73] := {109, 110} tii[23,74] := {115} tii[23,75] := {72, 73} tii[23,76] := {131} tii[23,77] := {103} tii[23,78] := {114} tii[23,79] := {68, 69} tii[23,80] := {14, 15} tii[23,81] := {89} tii[23,82] := {43, 44} tii[23,83] := {76} tii[23,84] := {87} tii[23,85] := {47} tii[23,86] := {2, 10} tii[23,87] := {28, 94} tii[23,88] := {3, 34} tii[23,89] := {22, 71} tii[23,90] := {12, 13} tii[23,91] := {78, 79} tii[23,92] := {41, 42} tii[23,93] := {105} tii[23,94] := {86} tii[23,95] := {39, 40} tii[23,96] := {4, 5} tii[23,97] := {55} tii[23,98] := {20, 21} tii[23,99] := {54} tii[23,100] := {46} tii[23,101] := {24} tii[23,102] := {0, 1} tii[23,103] := {6, 7} tii[23,104] := {29} tii[23,105] := {8} cell#160 , |C| = 427 special orbit = [4, 4, 2, 2, 1, 1] special rep = [[2, 1], [2, 1, 1]] , dim = 210 cell rep = phi[[2, 2, 1, 1],[1]]+phi[[2, 1, 1, 1],[2]]+phi[[2, 2],[1, 1, 1]]+phi[[2, 1],[2, 1, 1]] TII depth = 3 TII multiplicity polynomial = 49*X^4+70*X^2+91*X TII subcells: tii[15,1] := {161, 303, 370, 424} tii[15,2] := {298, 397} tii[15,3] := {247, 302} tii[15,4] := {120, 261, 393, 419} tii[15,5] := {53, 207, 367, 396} tii[15,6] := {255, 375} tii[15,7] := {308} tii[15,8] := {359} tii[15,9] := {160, 219, 408, 425} tii[15,10] := {297, 348} tii[15,11] := {116, 184, 406, 421} tii[15,12] := {225} tii[15,13] := {144, 416} tii[15,14] := {283} tii[15,15] := {333, 378} tii[15,16] := {353} tii[15,17] := {201, 260} tii[15,18] := {82, 217, 369, 410} tii[15,19] := {209, 346} tii[15,20] := {30, 166, 335, 374} tii[15,21] := {268} tii[15,22] := {324} tii[15,23] := {159, 218} tii[15,24] := {118, 174, 392, 420} tii[15,25] := {21, 126, 296, 347} tii[15,26] := {115, 183} tii[15,27] := {253, 312} tii[15,28] := {79, 138, 389, 411} tii[15,29] := {178} tii[15,30] := {224} tii[15,31] := {143} tii[15,32] := {103, 401} tii[15,33] := {237} tii[15,34] := {282} tii[15,35] := {40, 89, 332, 377} tii[15,36] := {180} tii[15,37] := {292, 349} tii[15,38] := {148} tii[15,39] := {60, 352} tii[15,40] := {316} tii[15,41] := {239} tii[15,42] := {288} tii[15,43] := {81, 133, 409, 426} tii[15,44] := {208, 273} tii[15,45] := {50, 99, 407, 422} tii[15,46] := {134} tii[15,47] := {69, 417} tii[15,48] := {193} tii[15,49] := {28, 67, 390, 414} tii[15,50] := {97} tii[15,51] := {249, 314} tii[15,52] := {70} tii[15,53] := {277} tii[15,54] := {44, 402} tii[15,55] := {151} tii[15,56] := {24, 387} tii[15,57] := {196} tii[15,58] := {294, 351} tii[15,59] := {318} tii[15,60] := {285} tii[15,61] := {117, 173, 291, 339} tii[15,62] := {86, 252, 311, 413} tii[15,63] := {177, 343} tii[15,64] := {236, 386} tii[15,65] := {96, 216, 248, 368} tii[15,66] := {203, 262} tii[15,67] := {125, 271, 345, 423} tii[15,68] := {62, 199, 264, 394} tii[15,69] := {41, 167, 336, 376} tii[15,70] := {165, 309} tii[15,71] := {270} tii[15,72] := {157, 229} tii[15,73] := {90, 230, 320, 418} tii[15,74] := {214, 360} tii[15,75] := {326} tii[15,76] := {188} tii[15,77] := {206, 342} tii[15,78] := {226} tii[15,79] := {65, 127, 365, 399} tii[15,80] := {258, 385} tii[15,81] := {192} tii[15,82] := {93, 381} tii[15,83] := {284} tii[15,84] := {330} tii[15,85] := {119, 175} tii[15,86] := {64, 202, 259, 338} tii[15,87] := {200, 272} tii[15,88] := {87, 228, 373, 412} tii[15,89] := {8, 88, 254, 313} tii[15,90] := {80, 139} tii[15,91] := {37, 156, 304, 371} tii[15,92] := {179} tii[15,93] := {124, 269} tii[15,94] := {231} tii[15,95] := {104} tii[15,96] := {57, 187, 355, 404} tii[15,97] := {238} tii[15,98] := {171, 325} tii[15,99] := {136} tii[15,100] := {83, 140, 391, 415} tii[15,101] := {18, 132, 295, 341} tii[15,102] := {164, 306} tii[15,103] := {181} tii[15,104] := {20, 55, 293, 350} tii[15,105] := {52, 101} tii[15,106] := {275} tii[15,107] := {108, 403} tii[15,108] := {107} tii[15,109] := {213, 357} tii[15,110] := {34, 317} tii[15,111] := {195} tii[15,112] := {32, 168, 337, 384} tii[15,113] := {149} tii[15,114] := {240} tii[15,115] := {73} tii[15,116] := {243} tii[15,117] := {74, 388} tii[15,118] := {47} tii[15,119] := {289} tii[15,120] := {98} tii[15,121] := {7, 31, 334, 379} tii[15,122] := {205, 267} tii[15,123] := {191} tii[15,124] := {71} tii[15,125] := {257, 323} tii[15,126] := {152} tii[15,127] := {16, 354} tii[15,128] := {5, 327} tii[15,129] := {197} tii[15,130] := {329} tii[15,131] := {49} tii[15,132] := {245} tii[15,133] := {39, 158, 215, 301} tii[15,134] := {54, 182, 344, 395} tii[15,135] := {155, 227} tii[15,136] := {19, 114, 263, 340} tii[15,137] := {85, 223} tii[15,138] := {33, 142, 319, 383} tii[15,139] := {186} tii[15,140] := {131, 281} tii[15,141] := {123, 265} tii[15,142] := {84, 141} tii[15,143] := {6, 94, 250, 305} tii[15,144] := {135} tii[15,145] := {51, 100, 364, 398} tii[15,146] := {232} tii[15,147] := {170, 321} tii[15,148] := {109} tii[15,149] := {72, 380} tii[15,150] := {15, 128, 299, 356} tii[15,151] := {106} tii[15,152] := {194} tii[15,153] := {75} tii[15,154] := {46, 362} tii[15,155] := {242} tii[15,156] := {14, 42, 366, 400} tii[15,157] := {3, 63, 204, 266} tii[15,158] := {66} tii[15,159] := {162, 221} tii[15,160] := {190} tii[15,161] := {146} tii[15,162] := {23, 382} tii[15,163] := {43} tii[15,164] := {9, 91, 256, 322} tii[15,165] := {211, 279} tii[15,166] := {110} tii[15,167] := {11, 361} tii[15,168] := {112} tii[15,169] := {35, 328} tii[15,170] := {286} tii[15,171] := {154} tii[15,172] := {25} tii[15,173] := {4, 331} tii[15,174] := {198} tii[15,175] := {122, 176} tii[15,176] := {105} tii[15,177] := {169, 235} tii[15,178] := {48} tii[15,179] := {241} tii[15,180] := {244} tii[15,181] := {78, 137, 246, 310} tii[15,182] := {102, 274} tii[15,183] := {36, 172, 220, 372} tii[15,184] := {121, 185} tii[15,185] := {145, 315} tii[15,186] := {56, 210, 278, 405} tii[15,187] := {150} tii[15,188] := {111} tii[15,189] := {10, 95, 251, 307} tii[15,190] := {29, 68} tii[15,191] := {130, 276} tii[15,192] := {234} tii[15,193] := {22, 129, 300, 358} tii[15,194] := {45} tii[15,195] := {153} tii[15,196] := {26} tii[15,197] := {61, 363} tii[15,198] := {12} tii[15,199] := {0, 38, 163, 222} tii[15,200] := {147} tii[15,201] := {92, 233} tii[15,202] := {2, 58, 212, 280} tii[15,203] := {77} tii[15,204] := {113} tii[15,205] := {17, 287} tii[15,206] := {27} tii[15,207] := {1, 290} tii[15,208] := {59, 189} tii[15,209] := {76} tii[15,210] := {13} cell#161 , |C| = 427 special orbit = [4, 4, 2, 2, 1, 1] special rep = [[2, 1], [2, 1, 1]] , dim = 210 cell rep = phi[[2, 2, 1, 1],[1]]+phi[[2, 1, 1, 1],[2]]+phi[[2, 2],[1, 1, 1]]+phi[[2, 1],[2, 1, 1]] TII depth = 3 TII multiplicity polynomial = 49*X^4+70*X^2+91*X TII subcells: tii[15,1] := {175, 253, 422, 426} tii[15,2] := {218, 425} tii[15,3] := {140, 273} tii[15,4] := {236, 316, 409, 423} tii[15,5] := {216, 343, 344, 392} tii[15,6] := {283, 417} tii[15,7] := {247} tii[15,8] := {321} tii[15,9] := {297, 365, 416, 419} tii[15,10] := {342, 399} tii[15,11] := {337, 396, 397, 408} tii[15,12] := {246} tii[15,13] := {387, 413} tii[15,14] := {320} tii[15,15] := {381, 418} tii[15,16] := {402} tii[15,17] := {91, 206} tii[15,18] := {174, 252, 382, 411} tii[15,19] := {217, 398} tii[15,20] := {153, 281, 282, 351} tii[15,21] := {181} tii[15,22] := {256} tii[15,23] := {56, 142} tii[15,24] := {235, 314, 393, 403} tii[15,25] := {105, 219, 220, 300} tii[15,26] := {41, 104} tii[15,27] := {280, 361} tii[15,28] := {275, 359, 360, 375} tii[15,29] := {180} tii[15,30] := {126} tii[15,31] := {67} tii[15,32] := {347, 388} tii[15,33] := {255} tii[15,34] := {190} tii[15,35] := {150, 248, 249, 268} tii[15,36] := {82} tii[15,37] := {335, 400} tii[15,38] := {52} tii[15,39] := {231, 299} tii[15,40] := {366} tii[15,41] := {135} tii[15,42] := {198} tii[15,43] := {271, 288, 383, 412} tii[15,44] := {215, 309} tii[15,45] := {303, 339, 340, 390} tii[15,46] := {125} tii[15,47] := {371, 376} tii[15,48] := {189} tii[15,49] := {243, 286, 287, 352} tii[15,50] := {81} tii[15,51] := {274, 364} tii[15,52] := {51} tii[15,53] := {317} tii[15,54] := {323, 330} tii[15,55] := {134} tii[15,56] := {296, 349} tii[15,57] := {197} tii[15,58] := {336, 401} tii[15,59] := {367} tii[15,60] := {325} tii[15,61] := {9, 44, 204, 334} tii[15,62] := {77, 138, 385, 415} tii[15,63] := {33, 308} tii[15,64] := {71, 373} tii[15,65] := {22, 75, 272, 380} tii[15,66] := {92, 207} tii[15,67] := {121, 196, 410, 424} tii[15,68] := {46, 95, 338, 394} tii[15,69] := {154, 284, 285, 354} tii[15,70] := {63, 358} tii[15,71] := {182} tii[15,72] := {74, 152} tii[15,73] := {79, 167, 386, 421} tii[15,74] := {114, 406} tii[15,75] := {257} tii[15,76] := {108} tii[15,77] := {101, 395} tii[15,78] := {128} tii[15,79] := {213, 312, 313, 332} tii[15,80] := {165, 420} tii[15,81] := {86} tii[15,82] := {294, 353} tii[15,83] := {192} tii[15,84] := {264} tii[15,85] := {31, 93} tii[15,86] := {42, 119, 205, 333} tii[15,87] := {118, 214} tii[15,88] := {176, 261, 384, 414} tii[15,89] := {65, 155, 156, 239} tii[15,90] := {20, 64} tii[15,91] := {76, 143, 276, 355} tii[15,92] := {80} tii[15,93] := {103, 307} tii[15,94] := {159} tii[15,95] := {35} tii[15,96] := {122, 230, 345, 405} tii[15,97] := {133} tii[15,98] := {168, 372} tii[15,99] := {48} tii[15,100] := {278, 362, 363, 379} tii[15,101] := {97, 210, 211, 306} tii[15,102] := {149, 356} tii[15,103] := {183} tii[15,104] := {102, 184, 185, 202} tii[15,105] := {10, 34} tii[15,106] := {186} tii[15,107] := {348, 391} tii[15,108] := {27} tii[15,109] := {229, 404} tii[15,110] := {169, 238} tii[15,111] := {87} tii[15,112] := {161, 291, 292, 374} tii[15,113] := {132} tii[15,114] := {258} tii[15,115] := {18} tii[15,116] := {136} tii[15,117] := {295, 378} tii[15,118] := {8} tii[15,119] := {328} tii[15,120] := {26} tii[15,121] := {124, 157, 158, 240} tii[15,122] := {209, 305} tii[15,123] := {188} tii[15,124] := {12} tii[15,125] := {290, 369} tii[15,126] := {53} tii[15,127] := {194, 203} tii[15,128] := {171, 237} tii[15,129] := {90} tii[15,130] := {377} tii[15,131] := {5} tii[15,132] := {139} tii[15,133] := {21, 73, 141, 270} tii[15,134] := {120, 195, 341, 389} tii[15,135] := {72, 151} tii[15,136] := {45, 94, 208, 302} tii[15,137] := {62, 245} tii[15,138] := {78, 166, 289, 370} tii[15,139] := {107} tii[15,140] := {113, 319} tii[15,141] := {100, 304} tii[15,142] := {23, 66} tii[15,143] := {57, 145, 146, 242} tii[15,144] := {127} tii[15,145] := {212, 310, 311, 331} tii[15,146] := {129} tii[15,147] := {164, 368} tii[15,148] := {38} tii[15,149] := {293, 350} tii[15,150] := {109, 225, 226, 322} tii[15,151] := {85} tii[15,152] := {191} tii[15,153] := {19} tii[15,154] := {232, 327} tii[15,155] := {263} tii[15,156] := {179, 221, 222, 301} tii[15,157] := {32, 98, 99, 178} tii[15,158] := {49} tii[15,159] := {144, 241} tii[15,160] := {84} tii[15,161] := {130} tii[15,162] := {260, 269} tii[15,163] := {28} tii[15,164] := {70, 162, 163, 259} tii[15,165] := {224, 318} tii[15,166] := {88} tii[15,167] := {234, 298} tii[15,168] := {29} tii[15,169] := {170, 265} tii[15,170] := {326} tii[15,171] := {137} tii[15,172] := {14} tii[15,173] := {172, 267} tii[15,174] := {200} tii[15,175] := {96, 177} tii[15,176] := {83} tii[15,177] := {160, 254} tii[15,178] := {30} tii[15,179] := {262} tii[15,180] := {266} tii[15,181] := {4, 25, 173, 279} tii[15,182] := {11, 223} tii[15,183] := {24, 61, 277, 357} tii[15,184] := {43, 106} tii[15,185] := {17, 250} tii[15,186] := {47, 115, 346, 407} tii[15,187] := {69} tii[15,188] := {40} tii[15,189] := {58, 147, 148, 244} tii[15,190] := {3, 16} tii[15,191] := {37, 315} tii[15,192] := {131} tii[15,193] := {110, 227, 228, 324} tii[15,194] := {7} tii[15,195] := {54} tii[15,196] := {2} tii[15,197] := {233, 329} tii[15,198] := {0} tii[15,199] := {15, 59, 60, 123} tii[15,200] := {50} tii[15,201] := {68, 251} tii[15,202] := {39, 111, 112, 193} tii[15,203] := {13} tii[15,204] := {89} tii[15,205] := {116, 199} tii[15,206] := {1} tii[15,207] := {117, 201} tii[15,208] := {36, 187} tii[15,209] := {55} tii[15,210] := {6} cell#162 , |C| = 189 special orbit = [4, 2, 2, 2, 2, 2] special rep = [[2, 1, 1], [1, 1, 1]] , dim = 105 cell rep = phi[[2, 1, 1, 1],[1, 1]]+phi[[2, 1, 1],[1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 84*X^2+21*X TII subcells: tii[13,1] := {68, 180} tii[13,2] := {79, 188} tii[13,3] := {78, 177} tii[13,4] := {89, 174} tii[13,5] := {99, 187} tii[13,6] := {113, 156} tii[13,7] := {57, 162} tii[13,8] := {120, 183} tii[13,9] := {134, 135} tii[13,10] := {153} tii[13,11] := {142, 176} tii[13,12] := {161} tii[13,13] := {77, 149} tii[13,14] := {96, 137} tii[13,15] := {114} tii[13,16] := {12, 101} tii[13,17] := {9, 109} tii[13,18] := {51, 165} tii[13,19] := {18, 124} tii[13,20] := {58, 185} tii[13,21] := {15, 136} tii[13,22] := {37, 146} tii[13,23] := {19, 147} tii[13,24] := {34, 164} tii[13,25] := {44, 182} tii[13,26] := {21, 155} tii[13,27] := {33, 171} tii[13,28] := {88, 132} tii[13,29] := {26, 150} tii[13,30] := {106, 107} tii[13,31] := {22, 108} tii[13,32] := {52, 167} tii[13,33] := {28, 168} tii[13,34] := {98, 170} tii[13,35] := {127} tii[13,36] := {48, 179} tii[13,37] := {42, 181} tii[13,38] := {59, 169} tii[13,39] := {119, 160} tii[13,40] := {31, 131} tii[13,41] := {86, 87} tii[13,42] := {140} tii[13,43] := {47, 151} tii[13,44] := {103} tii[13,45] := {62, 186} tii[13,46] := {95} tii[13,47] := {41, 145} tii[13,48] := {97, 138} tii[13,49] := {61, 163} tii[13,50] := {115} tii[13,51] := {94} tii[13,52] := {36, 139} tii[13,53] := {71, 158} tii[13,54] := {14, 85} tii[13,55] := {39, 159} tii[13,56] := {63, 173} tii[13,57] := {56, 175} tii[13,58] := {110, 111} tii[13,59] := {43, 148} tii[13,60] := {20, 104} tii[13,61] := {130} tii[13,62] := {81, 184} tii[13,63] := {32, 125} tii[13,64] := {118} tii[13,65] := {29, 121} tii[13,66] := {75, 112} tii[13,67] := {76, 157} tii[13,68] := {45, 143} tii[13,69] := {90} tii[13,70] := {100, 172} tii[13,71] := {141} tii[13,72] := {72} tii[13,73] := {40, 105} tii[13,74] := {60, 126} tii[13,75] := {93} tii[13,76] := {0, 38} tii[13,77] := {7, 82} tii[13,78] := {1, 49} tii[13,79] := {3, 70} tii[13,80] := {2, 65} tii[13,81] := {27, 122} tii[13,82] := {13, 123} tii[13,83] := {6, 92} tii[13,84] := {23, 144} tii[13,85] := {17, 129} tii[13,86] := {30, 166} tii[13,87] := {5, 84} tii[13,88] := {66, 67} tii[13,89] := {83} tii[13,90] := {46, 178} tii[13,91] := {11, 116} tii[13,92] := {25, 154} tii[13,93] := {73} tii[13,94] := {54} tii[13,95] := {8, 64} tii[13,96] := {55, 133} tii[13,97] := {16, 91} tii[13,98] := {80, 152} tii[13,99] := {35, 128} tii[13,100] := {117} tii[13,101] := {74} tii[13,102] := {4, 50} tii[13,103] := {10, 69} tii[13,104] := {24, 102} tii[13,105] := {53} cell#163 , |C| = 427 special orbit = [4, 4, 2, 2, 1, 1] special rep = [[2, 1], [2, 1, 1]] , dim = 210 cell rep = phi[[2, 2, 1, 1],[1]]+phi[[2, 1, 1, 1],[2]]+phi[[2, 2],[1, 1, 1]]+phi[[2, 1],[2, 1, 1]] TII depth = 3 TII multiplicity polynomial = 49*X^4+70*X^2+91*X TII subcells: tii[15,1] := {175, 253, 422, 426} tii[15,2] := {218, 425} tii[15,3] := {140, 273} tii[15,4] := {236, 316, 409, 423} tii[15,5] := {216, 343, 344, 392} tii[15,6] := {283, 417} tii[15,7] := {247} tii[15,8] := {321} tii[15,9] := {297, 365, 416, 419} tii[15,10] := {342, 399} tii[15,11] := {337, 396, 397, 408} tii[15,12] := {246} tii[15,13] := {387, 413} tii[15,14] := {320} tii[15,15] := {381, 418} tii[15,16] := {402} tii[15,17] := {91, 206} tii[15,18] := {174, 252, 382, 411} tii[15,19] := {217, 398} tii[15,20] := {153, 281, 282, 351} tii[15,21] := {181} tii[15,22] := {256} tii[15,23] := {56, 142} tii[15,24] := {235, 314, 393, 403} tii[15,25] := {105, 219, 220, 300} tii[15,26] := {41, 104} tii[15,27] := {280, 361} tii[15,28] := {275, 359, 360, 375} tii[15,29] := {180} tii[15,30] := {126} tii[15,31] := {67} tii[15,32] := {347, 388} tii[15,33] := {255} tii[15,34] := {190} tii[15,35] := {150, 248, 249, 268} tii[15,36] := {82} tii[15,37] := {335, 400} tii[15,38] := {52} tii[15,39] := {231, 299} tii[15,40] := {366} tii[15,41] := {135} tii[15,42] := {198} tii[15,43] := {271, 288, 383, 412} tii[15,44] := {215, 309} tii[15,45] := {303, 339, 340, 390} tii[15,46] := {125} tii[15,47] := {371, 376} tii[15,48] := {189} tii[15,49] := {243, 286, 287, 352} tii[15,50] := {81} tii[15,51] := {274, 364} tii[15,52] := {51} tii[15,53] := {317} tii[15,54] := {323, 330} tii[15,55] := {134} tii[15,56] := {296, 349} tii[15,57] := {197} tii[15,58] := {336, 401} tii[15,59] := {367} tii[15,60] := {325} tii[15,61] := {9, 44, 204, 334} tii[15,62] := {77, 138, 385, 415} tii[15,63] := {33, 308} tii[15,64] := {71, 373} tii[15,65] := {22, 75, 272, 380} tii[15,66] := {92, 207} tii[15,67] := {121, 196, 410, 424} tii[15,68] := {46, 95, 338, 394} tii[15,69] := {154, 284, 285, 354} tii[15,70] := {63, 358} tii[15,71] := {182} tii[15,72] := {74, 152} tii[15,73] := {79, 167, 386, 421} tii[15,74] := {114, 406} tii[15,75] := {257} tii[15,76] := {108} tii[15,77] := {101, 395} tii[15,78] := {128} tii[15,79] := {213, 312, 313, 332} tii[15,80] := {165, 420} tii[15,81] := {86} tii[15,82] := {294, 353} tii[15,83] := {192} tii[15,84] := {264} tii[15,85] := {31, 93} tii[15,86] := {42, 119, 205, 333} tii[15,87] := {118, 214} tii[15,88] := {176, 261, 384, 414} tii[15,89] := {65, 155, 156, 239} tii[15,90] := {20, 64} tii[15,91] := {76, 143, 276, 355} tii[15,92] := {80} tii[15,93] := {103, 307} tii[15,94] := {159} tii[15,95] := {35} tii[15,96] := {122, 230, 345, 405} tii[15,97] := {133} tii[15,98] := {168, 372} tii[15,99] := {48} tii[15,100] := {278, 362, 363, 379} tii[15,101] := {97, 210, 211, 306} tii[15,102] := {149, 356} tii[15,103] := {183} tii[15,104] := {102, 184, 185, 202} tii[15,105] := {10, 34} tii[15,106] := {186} tii[15,107] := {348, 391} tii[15,108] := {27} tii[15,109] := {229, 404} tii[15,110] := {169, 238} tii[15,111] := {87} tii[15,112] := {161, 291, 292, 374} tii[15,113] := {132} tii[15,114] := {258} tii[15,115] := {18} tii[15,116] := {136} tii[15,117] := {295, 378} tii[15,118] := {8} tii[15,119] := {328} tii[15,120] := {26} tii[15,121] := {124, 157, 158, 240} tii[15,122] := {209, 305} tii[15,123] := {188} tii[15,124] := {12} tii[15,125] := {290, 369} tii[15,126] := {53} tii[15,127] := {194, 203} tii[15,128] := {171, 237} tii[15,129] := {90} tii[15,130] := {377} tii[15,131] := {5} tii[15,132] := {139} tii[15,133] := {21, 73, 141, 270} tii[15,134] := {120, 195, 341, 389} tii[15,135] := {72, 151} tii[15,136] := {45, 94, 208, 302} tii[15,137] := {62, 245} tii[15,138] := {78, 166, 289, 370} tii[15,139] := {107} tii[15,140] := {113, 319} tii[15,141] := {100, 304} tii[15,142] := {23, 66} tii[15,143] := {57, 145, 146, 242} tii[15,144] := {127} tii[15,145] := {212, 310, 311, 331} tii[15,146] := {129} tii[15,147] := {164, 368} tii[15,148] := {38} tii[15,149] := {293, 350} tii[15,150] := {109, 225, 226, 322} tii[15,151] := {85} tii[15,152] := {191} tii[15,153] := {19} tii[15,154] := {232, 327} tii[15,155] := {263} tii[15,156] := {179, 221, 222, 301} tii[15,157] := {32, 98, 99, 178} tii[15,158] := {49} tii[15,159] := {144, 241} tii[15,160] := {84} tii[15,161] := {130} tii[15,162] := {260, 269} tii[15,163] := {28} tii[15,164] := {70, 162, 163, 259} tii[15,165] := {224, 318} tii[15,166] := {88} tii[15,167] := {234, 298} tii[15,168] := {29} tii[15,169] := {170, 265} tii[15,170] := {326} tii[15,171] := {137} tii[15,172] := {14} tii[15,173] := {172, 267} tii[15,174] := {200} tii[15,175] := {96, 177} tii[15,176] := {83} tii[15,177] := {160, 254} tii[15,178] := {30} tii[15,179] := {262} tii[15,180] := {266} tii[15,181] := {4, 25, 173, 279} tii[15,182] := {11, 223} tii[15,183] := {24, 61, 277, 357} tii[15,184] := {43, 106} tii[15,185] := {17, 250} tii[15,186] := {47, 115, 346, 407} tii[15,187] := {69} tii[15,188] := {40} tii[15,189] := {58, 147, 148, 244} tii[15,190] := {3, 16} tii[15,191] := {37, 315} tii[15,192] := {131} tii[15,193] := {110, 227, 228, 324} tii[15,194] := {7} tii[15,195] := {54} tii[15,196] := {2} tii[15,197] := {233, 329} tii[15,198] := {0} tii[15,199] := {15, 59, 60, 123} tii[15,200] := {50} tii[15,201] := {68, 251} tii[15,202] := {39, 111, 112, 193} tii[15,203] := {13} tii[15,204] := {89} tii[15,205] := {116, 199} tii[15,206] := {1} tii[15,207] := {117, 201} tii[15,208] := {36, 187} tii[15,209] := {55} tii[15,210] := {6} cell#164 , |C| = 189 special orbit = [4, 2, 2, 2, 2, 2] special rep = [[2, 1, 1], [1, 1, 1]] , dim = 105 cell rep = phi[[2, 1, 1, 1],[1, 1]]+phi[[2, 1, 1],[1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 84*X^2+21*X TII subcells: tii[13,1] := {68, 180} tii[13,2] := {79, 188} tii[13,3] := {78, 177} tii[13,4] := {89, 174} tii[13,5] := {99, 187} tii[13,6] := {113, 156} tii[13,7] := {57, 162} tii[13,8] := {120, 183} tii[13,9] := {134, 135} tii[13,10] := {153} tii[13,11] := {142, 176} tii[13,12] := {161} tii[13,13] := {77, 149} tii[13,14] := {96, 137} tii[13,15] := {114} tii[13,16] := {12, 101} tii[13,17] := {9, 109} tii[13,18] := {51, 165} tii[13,19] := {18, 124} tii[13,20] := {58, 185} tii[13,21] := {15, 136} tii[13,22] := {37, 146} tii[13,23] := {19, 147} tii[13,24] := {34, 164} tii[13,25] := {44, 182} tii[13,26] := {21, 155} tii[13,27] := {33, 171} tii[13,28] := {88, 132} tii[13,29] := {26, 150} tii[13,30] := {106, 107} tii[13,31] := {22, 108} tii[13,32] := {52, 167} tii[13,33] := {28, 168} tii[13,34] := {98, 170} tii[13,35] := {127} tii[13,36] := {48, 179} tii[13,37] := {42, 181} tii[13,38] := {59, 169} tii[13,39] := {119, 160} tii[13,40] := {31, 131} tii[13,41] := {86, 87} tii[13,42] := {140} tii[13,43] := {47, 151} tii[13,44] := {103} tii[13,45] := {62, 186} tii[13,46] := {95} tii[13,47] := {41, 145} tii[13,48] := {97, 138} tii[13,49] := {61, 163} tii[13,50] := {115} tii[13,51] := {94} tii[13,52] := {36, 139} tii[13,53] := {71, 158} tii[13,54] := {14, 85} tii[13,55] := {39, 159} tii[13,56] := {63, 173} tii[13,57] := {56, 175} tii[13,58] := {110, 111} tii[13,59] := {43, 148} tii[13,60] := {20, 104} tii[13,61] := {130} tii[13,62] := {81, 184} tii[13,63] := {32, 125} tii[13,64] := {118} tii[13,65] := {29, 121} tii[13,66] := {75, 112} tii[13,67] := {76, 157} tii[13,68] := {45, 143} tii[13,69] := {90} tii[13,70] := {100, 172} tii[13,71] := {141} tii[13,72] := {72} tii[13,73] := {40, 105} tii[13,74] := {60, 126} tii[13,75] := {93} tii[13,76] := {0, 38} tii[13,77] := {7, 82} tii[13,78] := {1, 49} tii[13,79] := {3, 70} tii[13,80] := {2, 65} tii[13,81] := {27, 122} tii[13,82] := {13, 123} tii[13,83] := {6, 92} tii[13,84] := {23, 144} tii[13,85] := {17, 129} tii[13,86] := {30, 166} tii[13,87] := {5, 84} tii[13,88] := {66, 67} tii[13,89] := {83} tii[13,90] := {46, 178} tii[13,91] := {11, 116} tii[13,92] := {25, 154} tii[13,93] := {73} tii[13,94] := {54} tii[13,95] := {8, 64} tii[13,96] := {55, 133} tii[13,97] := {16, 91} tii[13,98] := {80, 152} tii[13,99] := {35, 128} tii[13,100] := {117} tii[13,101] := {74} tii[13,102] := {4, 50} tii[13,103] := {10, 69} tii[13,104] := {24, 102} tii[13,105] := {53} cell#165 , |C| = 553 special orbit = [6, 4, 2, 2] special rep = [[3, 1], [2, 1]] , dim = 210 cell rep = phi[[3, 2, 1],[1]]+phi[[3, 1, 1],[2]]+phi[[3, 2],[1, 1]]+phi[[3, 1],[2, 1]] TII depth = 3 TII multiplicity polynomial = 91*X^4+70*X^2+49*X TII subcells: tii[26,1] := {267, 268, 506, 507} tii[26,2] := {305, 306, 491, 492} tii[26,3] := {452, 453} tii[26,4] := {347, 348} tii[26,5] := {212, 213, 529, 530} tii[26,6] := {429, 430} tii[26,7] := {110, 111, 525, 526} tii[26,8] := {247, 248, 458, 459} tii[26,9] := {104, 105, 519, 520} tii[26,10] := {412, 413} tii[26,11] := {493} tii[26,12] := {516} tii[26,13] := {233, 234, 532, 533} tii[26,14] := {335, 336} tii[26,15] := {194, 195, 471, 472} tii[26,16] := {181, 182, 543, 544} tii[26,17] := {102, 103, 469, 470} tii[26,18] := {367, 368} tii[26,19] := {229, 230, 549, 550} tii[26,20] := {426} tii[26,21] := {281, 552} tii[26,22] := {466} tii[26,23] := {249, 250, 502, 503} tii[26,24] := {414, 415} tii[26,25] := {204, 205, 523, 524} tii[26,26] := {342} tii[26,27] := {243, 536} tii[26,28] := {406} tii[26,29] := {456, 457} tii[26,30] := {486} tii[26,31] := {36, 37, 186, 187} tii[26,32] := {94, 95, 220, 221} tii[26,33] := {164, 165, 450, 451} tii[26,34] := {150, 151, 381, 382} tii[26,35] := {200, 201} tii[26,36] := {279, 280} tii[26,37] := {69, 70, 240, 241} tii[26,38] := {290, 291} tii[26,39] := {222, 223, 484, 485} tii[26,40] := {386, 387} tii[26,41] := {40, 41, 294, 295} tii[26,42] := {71, 72, 500, 501} tii[26,43] := {142, 143, 273, 274} tii[26,44] := {238, 239} tii[26,45] := {63, 64, 496, 497} tii[26,46] := {176, 177, 446, 447} tii[26,47] := {61, 62, 339, 340} tii[26,48] := {206, 207, 424, 425} tii[26,49] := {464} tii[26,50] := {288, 289} tii[26,51] := {255, 256} tii[26,52] := {122, 123, 403, 404} tii[26,53] := {494} tii[26,54] := {334} tii[26,55] := {327, 328} tii[26,56] := {192, 193, 321, 322} tii[26,57] := {359, 360} tii[26,58] := {85, 86, 527, 528} tii[26,59] := {261, 262, 462, 463} tii[26,60] := {144, 145, 365, 366} tii[26,61] := {319, 320} tii[26,62] := {34, 35, 487, 488} tii[26,63] := {130, 131, 539, 540} tii[26,64] := {435} tii[26,65] := {315, 316} tii[26,66] := {358} tii[26,67] := {224, 225, 420, 421} tii[26,68] := {178, 546} tii[26,69] := {375, 376} tii[26,70] := {477} tii[26,71] := {361, 362} tii[26,72] := {67, 68, 514, 515} tii[26,73] := {394} tii[26,74] := {89, 531} tii[26,75] := {353} tii[26,76] := {416, 417} tii[26,77] := {442} tii[26,78] := {482} tii[26,79] := {38, 39, 300, 301} tii[26,80] := {298, 299} tii[26,81] := {162, 163, 511, 512} tii[26,82] := {92, 93, 218, 219} tii[26,83] := {16, 17, 351, 352} tii[26,84] := {345, 346} tii[26,85] := {148, 149, 379, 380} tii[26,86] := {124, 125, 480, 481} tii[26,87] := {28, 29, 392, 393} tii[26,88] := {198, 199} tii[26,89] := {385} tii[26,90] := {77, 78, 440, 441} tii[26,91] := {277, 278} tii[26,92] := {132, 133, 541, 542} tii[26,93] := {6, 7, 398, 399} tii[26,94] := {140, 141, 269, 270} tii[26,95] := {307, 308} tii[26,96] := {202, 203, 422, 423} tii[26,97] := {179, 180, 547, 548} tii[26,98] := {96, 97, 313, 314} tii[26,99] := {12, 13, 433, 434} tii[26,100] := {396, 397} tii[26,101] := {83, 84, 508, 509} tii[26,102] := {65, 66, 454, 455} tii[26,103] := {263, 264} tii[26,104] := {395} tii[26,105] := {253, 254} tii[26,106] := {228, 551} tii[26,107] := {46, 47, 475, 476} tii[26,108] := {166, 167, 373, 374} tii[26,109] := {428} tii[26,110] := {303} tii[26,111] := {325, 326} tii[26,112] := {443} tii[26,113] := {154, 155, 537, 538} tii[26,114] := {26, 27, 467, 468} tii[26,115] := {309, 310} tii[26,116] := {341} tii[26,117] := {106, 107, 489, 490} tii[26,118] := {465} tii[26,119] := {191, 545} tii[26,120] := {296} tii[26,121] := {369, 370} tii[26,122] := {138, 513} tii[26,123] := {405} tii[26,124] := {75, 76, 504, 505} tii[26,125] := {135, 534} tii[26,126] := {448} tii[26,127] := {90, 91, 292, 293} tii[26,128] := {286, 287} tii[26,129] := {146, 147, 444, 445} tii[26,130] := {51, 52, 337, 338} tii[26,131] := {196, 197} tii[26,132] := {333} tii[26,133] := {112, 113, 401, 402} tii[26,134] := {275, 276} tii[26,135] := {152, 153, 498, 499} tii[26,136] := {24, 25, 388, 389} tii[26,137] := {251, 252} tii[26,138] := {283} tii[26,139] := {383} tii[26,140] := {190, 518} tii[26,141] := {323, 324} tii[26,142] := {73, 74, 436, 437} tii[26,143] := {235} tii[26,144] := {355} tii[26,145] := {134, 495} tii[26,146] := {407} tii[26,147] := {311, 312} tii[26,148] := {297} tii[26,149] := {371, 372} tii[26,150] := {449} tii[26,151] := {14, 15, 136, 137} tii[26,152] := {32, 33, 128, 129} tii[26,153] := {81, 82} tii[26,154] := {18, 19, 236, 237} tii[26,155] := {183, 184} tii[26,156] := {30, 31, 284, 285} tii[26,157] := {231, 232} tii[26,158] := {126, 127, 408, 409} tii[26,159] := {59, 60, 174, 175} tii[26,160] := {79, 80, 356, 357} tii[26,161] := {282} tii[26,162] := {120, 121} tii[26,163] := {55, 56, 259, 260} tii[26,164] := {210, 211} tii[26,165] := {160, 161} tii[26,166] := {246} tii[26,167] := {116, 117, 331, 332} tii[26,168] := {189} tii[26,169] := {0, 1, 349, 350} tii[26,170] := {343, 344} tii[26,171] := {100, 101, 226, 227} tii[26,172] := {4, 5, 390, 391} tii[26,173] := {48, 49, 478, 479} tii[26,174] := {384} tii[26,175] := {170, 171} tii[26,176] := {22, 23, 438, 439} tii[26,177] := {98, 99, 317, 318} tii[26,178] := {8, 9, 431, 432} tii[26,179] := {265, 266} tii[26,180] := {108, 109, 521, 522} tii[26,181] := {427} tii[26,182] := {216, 217} tii[26,183] := {139, 535} tii[26,184] := {304} tii[26,185] := {42, 43, 473, 474} tii[26,186] := {168, 169, 377, 378} tii[26,187] := {87, 517} tii[26,188] := {244} tii[26,189] := {2, 3, 410, 411} tii[26,190] := {400} tii[26,191] := {271, 272} tii[26,192] := {20, 21, 460, 461} tii[26,193] := {302} tii[26,194] := {50, 510} tii[26,195] := {57, 58, 172, 173} tii[26,196] := {118, 119} tii[26,197] := {53, 54, 257, 258} tii[26,198] := {208, 209} tii[26,199] := {158, 159} tii[26,200] := {114, 115, 329, 330} tii[26,201] := {245} tii[26,202] := {188} tii[26,203] := {10, 11, 363, 364} tii[26,204] := {354} tii[26,205] := {214, 215} tii[26,206] := {44, 45, 418, 419} tii[26,207] := {242} tii[26,208] := {88, 483} tii[26,209] := {156, 157} tii[26,210] := {185} cell#166 , |C| = 175 special orbit = [4, 4, 3, 3] special rep = [[2, 1], [2, 2]] , dim = 140 cell rep = phi[[2, 2, 2],[1]]+phi[[2, 1],[2, 2]] TII depth = 4 TII multiplicity polynomial = 35*X^2+105*X TII subcells: tii[17,1] := {128, 129} tii[17,2] := {139} tii[17,3] := {159, 160} tii[17,4] := {149} tii[17,5] := {171} tii[17,6] := {174} tii[17,7] := {169} tii[17,8] := {173} tii[17,9] := {16, 17} tii[17,10] := {106, 107} tii[17,11] := {120} tii[17,12] := {68, 69} tii[17,13] := {40} tii[17,14] := {62} tii[17,15] := {126, 127} tii[17,16] := {113} tii[17,17] := {109, 110} tii[17,18] := {50} tii[17,19] := {153} tii[17,20] := {123} tii[17,21] := {77} tii[17,22] := {167} tii[17,23] := {130} tii[17,24] := {151} tii[17,25] := {116} tii[17,26] := {30, 31} tii[17,27] := {90, 91} tii[17,28] := {60} tii[17,29] := {83} tii[17,30] := {44, 45} tii[17,31] := {144, 145} tii[17,32] := {111, 112} tii[17,33] := {64, 65} tii[17,34] := {165} tii[17,35] := {131, 132} tii[17,36] := {67} tii[17,37] := {133} tii[17,38] := {81} tii[17,39] := {94, 95} tii[17,40] := {172} tii[17,41] := {142} tii[17,42] := {97} tii[17,43] := {102} tii[17,44] := {100} tii[17,45] := {154} tii[17,46] := {146} tii[17,47] := {141} tii[17,48] := {122} tii[17,49] := {163} tii[17,50] := {134} tii[17,51] := {168} tii[17,52] := {158} tii[17,53] := {147, 148} tii[17,54] := {87} tii[17,55] := {157} tii[17,56] := {118} tii[17,57] := {161} tii[17,58] := {108} tii[17,59] := {166} tii[17,60] := {170} tii[17,61] := {150} tii[17,62] := {135} tii[17,63] := {164} tii[17,64] := {162} tii[17,65] := {8, 9} tii[17,66] := {52, 53} tii[17,67] := {25} tii[17,68] := {4, 5} tii[17,69] := {43} tii[17,70] := {7} tii[17,71] := {20} tii[17,72] := {70, 71} tii[17,73] := {12} tii[17,74] := {85} tii[17,75] := {39} tii[17,76] := {58} tii[17,77] := {28, 29} tii[17,78] := {10, 11} tii[17,79] := {88, 89} tii[17,80] := {46, 47} tii[17,81] := {59} tii[17,82] := {15} tii[17,83] := {73, 74} tii[17,84] := {82} tii[17,85] := {92, 93} tii[17,86] := {80} tii[17,87] := {34} tii[17,88] := {138} tii[17,89] := {32, 33} tii[17,90] := {26} tii[17,91] := {105} tii[17,92] := {101} tii[17,93] := {156} tii[17,94] := {121} tii[17,95] := {23} tii[17,96] := {57} tii[17,97] := {55, 56} tii[17,98] := {143} tii[17,99] := {79} tii[17,100] := {84} tii[17,101] := {66} tii[17,102] := {35} tii[17,103] := {140} tii[17,104] := {96} tii[17,105] := {137} tii[17,106] := {98} tii[17,107] := {21, 22} tii[17,108] := {27} tii[17,109] := {48, 49} tii[17,110] := {114, 115} tii[17,111] := {51} tii[17,112] := {42} tii[17,113] := {75, 76} tii[17,114] := {125} tii[17,115] := {78} tii[17,116] := {36} tii[17,117] := {99} tii[17,118] := {104} tii[17,119] := {86} tii[17,120] := {155} tii[17,121] := {54} tii[17,122] := {61} tii[17,123] := {117} tii[17,124] := {124} tii[17,125] := {119} tii[17,126] := {152} tii[17,127] := {72} tii[17,128] := {136} tii[17,129] := {0, 1} tii[17,130] := {3} tii[17,131] := {2} tii[17,132] := {18, 19} tii[17,133] := {14} tii[17,134] := {37, 38} tii[17,135] := {6} tii[17,136] := {63} tii[17,137] := {41} tii[17,138] := {13} tii[17,139] := {103} tii[17,140] := {24} cell#167 , |C| = 315 special orbit = [4, 4, 2, 2, 2] special rep = [[2, 1, 1], [2, 1]] , dim = 210 cell rep = phi[[2, 2, 1],[1, 1]]+phi[[2, 1, 1],[2, 1]] TII depth = 4 TII multiplicity polynomial = 105*X^2+105*X TII subcells: tii[16,1] := {258, 313} tii[16,2] := {310} tii[16,3] := {197, 314} tii[16,4] := {139, 312} tii[16,5] := {284} tii[16,6] := {311} tii[16,7] := {71, 123} tii[16,8] := {106} tii[16,9] := {128, 190} tii[16,10] := {229, 305} tii[16,11] := {99, 156} tii[16,12] := {55, 154} tii[16,13] := {300} tii[16,14] := {173, 280} tii[16,15] := {138} tii[16,16] := {203} tii[16,17] := {242} tii[16,18] := {198, 293} tii[16,19] := {130, 189} tii[16,20] := {80, 291} tii[16,21] := {285} tii[16,22] := {172} tii[16,23] := {171, 279} tii[16,24] := {102, 217} tii[16,25] := {202} tii[16,26] := {146, 252} tii[16,27] := {241} tii[16,28] := {263} tii[16,29] := {200} tii[16,30] := {239} tii[16,31] := {70, 191} tii[16,32] := {162, 223} tii[16,33] := {174} tii[16,34] := {34, 188} tii[16,35] := {206, 299} tii[16,36] := {234} tii[16,37] := {268} tii[16,38] := {196, 250} tii[16,39] := {164, 306} tii[16,40] := {97, 222} tii[16,41] := {235, 309} tii[16,42] := {107, 304} tii[16,43] := {21, 220} tii[16,44] := {165, 272} tii[16,45] := {205} tii[16,46] := {137, 298} tii[16,47] := {72, 247} tii[16,48] := {167} tii[16,49] := {262} tii[16,50] := {261} tii[16,51] := {209, 296} tii[16,52] := {112, 277} tii[16,53] := {211} tii[16,54] := {289} tii[16,55] := {32, 245} tii[16,56] := {283} tii[16,57] := {81, 292} tii[16,58] := {286} tii[16,59] := {232} tii[16,60] := {60, 275} tii[16,61] := {303} tii[16,62] := {266} tii[16,63] := {129, 249} tii[16,64] := {236} tii[16,65] := {170, 308} tii[16,66] := {101, 271} tii[16,67] := {201} tii[16,68] := {240} tii[16,69] := {145, 295} tii[16,70] := {74, 290} tii[16,71] := {230} tii[16,72] := {301} tii[16,73] := {260} tii[16,74] := {264} tii[16,75] := {288} tii[16,76] := {113, 307} tii[16,77] := {282} tii[16,78] := {302} tii[16,79] := {2, 14} tii[16,80] := {35, 69} tii[16,81] := {20} tii[16,82] := {42} tii[16,83] := {7, 28} tii[16,84] := {98, 155} tii[16,85] := {54, 95} tii[16,86] := {17, 44} tii[16,87] := {140, 256} tii[16,88] := {36, 122} tii[16,89] := {33} tii[16,90] := {168} tii[16,91] := {73, 126} tii[16,92] := {39, 68} tii[16,93] := {61} tii[16,94] := {212} tii[16,95] := {117} tii[16,96] := {48} tii[16,97] := {109, 228} tii[16,98] := {136} tii[16,99] := {51, 153} tii[16,100] := {82} tii[16,101] := {85, 193} tii[16,102] := {183} tii[16,103] := {111} tii[16,104] := {151} tii[16,105] := {163, 221} tii[16,106] := {15, 45} tii[16,107] := {100, 159} tii[16,108] := {204, 297} tii[16,109] := {79, 127} tii[16,110] := {11, 187} tii[16,111] := {132, 246} tii[16,112] := {30, 66} tii[16,113] := {233} tii[16,114] := {52} tii[16,115] := {150} tii[16,116] := {178, 276} tii[16,117] := {58, 94} tii[16,118] := {267} tii[16,119] := {86} tii[16,120] := {141, 257} tii[16,121] := {77, 186} tii[16,122] := {18, 91} tii[16,123] := {259} tii[16,124] := {76} tii[16,125] := {169} tii[16,126] := {19, 216} tii[16,127] := {56, 273} tii[16,128] := {103, 218} tii[16,129] := {177} tii[16,130] := {116, 225} tii[16,131] := {287} tii[16,132] := {114} tii[16,133] := {40, 124} tii[16,134] := {41, 251} tii[16,135] := {144} tii[16,136] := {213} tii[16,137] := {148, 253} tii[16,138] := {90, 195} tii[16,139] := {184} tii[16,140] := {31, 244} tii[16,141] := {231} tii[16,142] := {104} tii[16,143] := {176} tii[16,144] := {265} tii[16,145] := {147} tii[16,146] := {59, 274} tii[16,147] := {214} tii[16,148] := {29, 67} tii[16,149] := {53, 160} tii[16,150] := {131, 194} tii[16,151] := {16, 92} tii[16,152] := {78} tii[16,153] := {38, 125} tii[16,154] := {181} tii[16,155] := {118} tii[16,156] := {105} tii[16,157] := {133, 248} tii[16,158] := {8, 121} tii[16,159] := {49, 219} tii[16,160] := {108, 281} tii[16,161] := {135} tii[16,162] := {208} tii[16,163] := {149} tii[16,164] := {84, 254} tii[16,165] := {180, 278} tii[16,166] := {23, 158} tii[16,167] := {182} tii[16,168] := {110} tii[16,169] := {215} tii[16,170] := {62, 227} tii[16,171] := {47, 270} tii[16,172] := {3, 152} tii[16,173] := {199} tii[16,174] := {134} tii[16,175] := {142} tii[16,176] := {237} tii[16,177] := {83, 294} tii[16,178] := {13, 192} tii[16,179] := {238} tii[16,180] := {179} tii[16,181] := {43, 255} tii[16,182] := {243} tii[16,183] := {166} tii[16,184] := {210} tii[16,185] := {175} tii[16,186] := {269} tii[16,187] := {0, 6} tii[16,188] := {5} tii[16,189] := {9, 27} tii[16,190] := {50, 96} tii[16,191] := {12} tii[16,192] := {24, 46} tii[16,193] := {87} tii[16,194] := {64} tii[16,195] := {10, 65} tii[16,196] := {75, 185} tii[16,197] := {22} tii[16,198] := {143} tii[16,199] := {25, 93} tii[16,200] := {115, 224} tii[16,201] := {63, 161} tii[16,202] := {89} tii[16,203] := {1, 120} tii[16,204] := {207} tii[16,205] := {37} tii[16,206] := {4, 157} tii[16,207] := {119} tii[16,208] := {26, 226} tii[16,209] := {57} tii[16,210] := {88} cell#168 , |C| = 55 special orbit = [8, 2, 1, 1, 1, 1] special rep = [[4], [1, 1, 1]] , dim = 35 cell rep = phi[[4, 1, 1, 1],[]]+phi[[4],[1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 20*X^2+15*X TII subcells: tii[31,1] := {37, 54} tii[31,2] := {41, 53} tii[31,3] := {36, 52} tii[31,4] := {42, 50} tii[31,5] := {47} tii[31,6] := {32, 51} tii[31,7] := {27, 49} tii[31,8] := {33, 46} tii[31,9] := {43} tii[31,10] := {18, 45} tii[31,11] := {24, 40} tii[31,12] := {35} tii[31,13] := {14, 31} tii[31,14] := {26} tii[31,15] := {30} tii[31,16] := {22, 48} tii[31,17] := {17, 44} tii[31,18] := {23, 39} tii[31,19] := {34} tii[31,20] := {10, 38} tii[31,21] := {13, 29} tii[31,22] := {25} tii[31,23] := {8, 21} tii[31,24] := {16} tii[31,25] := {20} tii[31,26] := {4, 28} tii[31,27] := {7, 19} tii[31,28] := {15} tii[31,29] := {1, 12} tii[31,30] := {9} tii[31,31] := {11} tii[31,32] := {0, 6} tii[31,33] := {2} tii[31,34] := {5} tii[31,35] := {3} cell#169 , |C| = 140 special orbit = [6, 4, 1, 1, 1, 1] special rep = [[3], [2, 1, 1]] , dim = 105 cell rep = phi[[3, 2, 1, 1],[]]+phi[[3],[2, 1, 1]] TII depth = 3 TII multiplicity polynomial = 35*X^2+70*X TII subcells: tii[25,1] := {83, 136} tii[25,2] := {110, 132} tii[25,3] := {135} tii[25,4] := {139} tii[25,5] := {61, 126} tii[25,6] := {92, 121} tii[25,7] := {45, 115} tii[25,8] := {62, 102} tii[25,9] := {125} tii[25,10] := {85} tii[25,11] := {137} tii[25,12] := {73, 107} tii[25,13] := {52, 91} tii[25,14] := {112} tii[25,15] := {80} tii[25,16] := {130} tii[25,17] := {120} tii[25,18] := {106} tii[25,19] := {133} tii[25,20] := {138} tii[25,21] := {40, 113} tii[25,22] := {72, 105} tii[25,23] := {27, 97} tii[25,24] := {41, 81} tii[25,25] := {111} tii[25,26] := {63} tii[25,27] := {129} tii[25,28] := {14, 78} tii[25,29] := {50, 88} tii[25,30] := {32, 69} tii[25,31] := {23, 58} tii[25,32] := {94} tii[25,33] := {56} tii[25,34] := {43} tii[25,35] := {117} tii[25,36] := {12, 39} tii[25,37] := {104} tii[25,38] := {87} tii[25,39] := {26} tii[25,40] := {122} tii[25,41] := {38} tii[25,42] := {134} tii[25,43] := {31, 67} tii[25,44] := {17, 47} tii[25,45] := {75} tii[25,46] := {34} tii[25,47] := {100} tii[25,48] := {6, 30} tii[25,49] := {86} tii[25,50] := {66} tii[25,51] := {19} tii[25,52] := {108} tii[25,53] := {29} tii[25,54] := {124} tii[25,55] := {76} tii[25,56] := {54} tii[25,57] := {101} tii[25,58] := {36} tii[25,59] := {119} tii[25,60] := {131} tii[25,61] := {65, 128} tii[25,62] := {84, 118} tii[25,63] := {103} tii[25,64] := {28, 98} tii[25,65] := {93, 123} tii[25,66] := {42, 82} tii[25,67] := {116} tii[25,68] := {64} tii[25,69] := {24, 60} tii[25,70] := {127} tii[25,71] := {44} tii[25,72] := {59} tii[25,73] := {5, 55} tii[25,74] := {74, 109} tii[25,75] := {11, 37} tii[25,76] := {25} tii[25,77] := {99} tii[25,78] := {2, 22} tii[25,79] := {33, 71} tii[25,80] := {114} tii[25,81] := {13} tii[25,82] := {57} tii[25,83] := {21} tii[25,84] := {70} tii[25,85] := {0, 10} tii[25,86] := {96} tii[25,87] := {3} tii[25,88] := {90} tii[25,89] := {9} tii[25,90] := {4} tii[25,91] := {51, 89} tii[25,92] := {79} tii[25,93] := {18, 49} tii[25,94] := {95} tii[25,95] := {35} tii[25,96] := {48} tii[25,97] := {1, 16} tii[25,98] := {77} tii[25,99] := {7} tii[25,100] := {68} tii[25,101] := {15} tii[25,102] := {8} tii[25,103] := {53} tii[25,104] := {46} tii[25,105] := {20} cell#170 , |C| = 126 special orbit = [6, 2, 2, 2, 2] special rep = [[3, 1, 1], [1, 1]] , dim = 126 cell rep = phi[[3, 1, 1],[1, 1]] TII depth = 4 TII multiplicity polynomial = 126*X TII subcells: tii[24,1] := {125} tii[24,2] := {112} tii[24,3] := {124} tii[24,4] := {76} tii[24,5] := {108} tii[24,6] := {81} tii[24,7] := {83} tii[24,8] := {55} tii[24,9] := {51} tii[24,10] := {123} tii[24,11] := {102} tii[24,12] := {95} tii[24,13] := {36} tii[24,14] := {118} tii[24,15] := {92} tii[24,16] := {119} tii[24,17] := {32} tii[24,18] := {106} tii[24,19] := {107} tii[24,20] := {117} tii[24,21] := {88} tii[24,22] := {54} tii[24,23] := {116} tii[24,24] := {50} tii[24,25] := {70} tii[24,26] := {71} tii[24,27] := {86} tii[24,28] := {99} tii[24,29] := {67} tii[24,30] := {84} tii[24,31] := {109} tii[24,32] := {22} tii[24,33] := {122} tii[24,34] := {101} tii[24,35] := {21} tii[24,36] := {114} tii[24,37] := {115} tii[24,38] := {121} tii[24,39] := {82} tii[24,40] := {68} tii[24,41] := {35} tii[24,42] := {31} tii[24,43] := {49} tii[24,44] := {48} tii[24,45] := {98} tii[24,46] := {97} tii[24,47] := {100} tii[24,48] := {63} tii[24,49] := {111} tii[24,50] := {113} tii[24,51] := {80} tii[24,52] := {46} tii[24,53] := {61} tii[24,54] := {120} tii[24,55] := {40} tii[24,56] := {20} tii[24,57] := {56} tii[24,58] := {57} tii[24,59] := {75} tii[24,60] := {77} tii[24,61] := {58} tii[24,62] := {30} tii[24,63] := {41} tii[24,64] := {93} tii[24,65] := {47} tii[24,66] := {62} tii[24,67] := {3} tii[24,68] := {60} tii[24,69] := {9} tii[24,70] := {42} tii[24,71] := {17} tii[24,72] := {27} tii[24,73] := {7} tii[24,74] := {105} tii[24,75] := {74} tii[24,76] := {12} tii[24,77] := {39} tii[24,78] := {90} tii[24,79] := {91} tii[24,80] := {25} tii[24,81] := {104} tii[24,82] := {19} tii[24,83] := {72} tii[24,84] := {73} tii[24,85] := {38} tii[24,86] := {87} tii[24,87] := {65} tii[24,88] := {59} tii[24,89] := {2} tii[24,90] := {78} tii[24,91] := {26} tii[24,92] := {79} tii[24,93] := {6} tii[24,94] := {94} tii[24,95] := {15} tii[24,96] := {96} tii[24,97] := {11} tii[24,98] := {52} tii[24,99] := {53} tii[24,100] := {110} tii[24,101] := {24} tii[24,102] := {66} tii[24,103] := {44} tii[24,104] := {89} tii[24,105] := {18} tii[24,106] := {103} tii[24,107] := {37} tii[24,108] := {64} tii[24,109] := {0} tii[24,110] := {16} tii[24,111] := {1} tii[24,112] := {8} tii[24,113] := {5} tii[24,114] := {34} tii[24,115] := {33} tii[24,116] := {14} tii[24,117] := {45} tii[24,118] := {29} tii[24,119] := {69} tii[24,120] := {10} tii[24,121] := {85} tii[24,122] := {23} tii[24,123] := {43} tii[24,124] := {4} tii[24,125] := {13} tii[24,126] := {28} cell#171 , |C| = 175 special orbit = [6, 2, 2, 2, 1, 1] special rep = [[3, 1], [1, 1, 1]] , dim = 105 cell rep = phi[[3, 1, 1, 1],[1]]+phi[[3, 1],[1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 70*X^2+35*X TII subcells: tii[23,1] := {62, 173} tii[23,2] := {57, 165} tii[23,3] := {55, 144} tii[23,4] := {85, 172} tii[23,5] := {37, 154} tii[23,6] := {105, 169} tii[23,7] := {35, 121} tii[23,8] := {129, 162} tii[23,9] := {150} tii[23,10] := {56, 149} tii[23,11] := {54, 96} tii[23,12] := {75, 132} tii[23,13] := {106} tii[23,14] := {73, 125} tii[23,15] := {108} tii[23,16] := {104, 174} tii[23,17] := {24, 136} tii[23,18] := {116, 171} tii[23,19] := {23, 95} tii[23,20] := {140, 168} tii[23,21] := {157} tii[23,22] := {91, 166} tii[23,23] := {36, 128} tii[23,24] := {34, 70} tii[23,25] := {52, 110} tii[23,26] := {114, 160} tii[23,27] := {78} tii[23,28] := {142} tii[23,29] := {138, 164} tii[23,30] := {50, 98} tii[23,31] := {80} tii[23,32] := {158} tii[23,33] := {163} tii[23,34] := {47, 137} tii[23,35] := {22, 49} tii[23,36] := {64, 123} tii[23,37] := {93} tii[23,38] := {86, 135} tii[23,39] := {32, 72} tii[23,40] := {59} tii[23,41] := {120} tii[23,42] := {134} tii[23,43] := {51, 100} tii[23,44] := {81} tii[23,45] := {99} tii[23,46] := {1, 103} tii[23,47] := {43, 170} tii[23,48] := {4, 115} tii[23,49] := {29, 167} tii[23,50] := {10, 139} tii[23,51] := {18, 156} tii[23,52] := {8, 90} tii[23,53] := {77, 161} tii[23,54] := {13, 113} tii[23,55] := {40, 159} tii[23,56] := {102, 151} tii[23,57] := {27, 141} tii[23,58] := {130} tii[23,59] := {21, 89} tii[23,60] := {76, 133} tii[23,61] := {39, 119} tii[23,62] := {107} tii[23,63] := {82} tii[23,64] := {67, 155} tii[23,65] := {3, 66} tii[23,66] := {28, 145} tii[23,67] := {88, 146} tii[23,68] := {7, 87} tii[23,69] := {118} tii[23,70] := {16, 117} tii[23,71] := {112, 153} tii[23,72] := {12, 65} tii[23,73] := {53, 111} tii[23,74] := {143} tii[23,75] := {26, 94} tii[23,76] := {79} tii[23,77] := {152} tii[23,78] := {60} tii[23,79] := {101, 148} tii[23,80] := {20, 45} tii[23,81] := {131} tii[23,82] := {38, 69} tii[23,83] := {147} tii[23,84] := {83} tii[23,85] := {124} tii[23,86] := {0, 46} tii[23,87] := {17, 122} tii[23,88] := {2, 63} tii[23,89] := {9, 92} tii[23,90] := {6, 44} tii[23,91] := {33, 84} tii[23,92] := {15, 68} tii[23,93] := {58} tii[23,94] := {41} tii[23,95] := {74, 127} tii[23,96] := {11, 30} tii[23,97] := {109} tii[23,98] := {25, 48} tii[23,99] := {61} tii[23,100] := {126} tii[23,101] := {97} tii[23,102] := {5, 19} tii[23,103] := {14, 31} tii[23,104] := {42} tii[23,105] := {71} cell#172 , |C| = 126 special orbit = [6, 2, 2, 2, 2] special rep = [[3, 1, 1], [1, 1]] , dim = 126 cell rep = phi[[3, 1, 1],[1, 1]] TII depth = 4 TII multiplicity polynomial = 126*X TII subcells: tii[24,1] := {125} tii[24,2] := {113} tii[24,3] := {124} tii[24,4] := {77} tii[24,5] := {108} tii[24,6] := {81} tii[24,7] := {83} tii[24,8] := {55} tii[24,9] := {51} tii[24,10] := {123} tii[24,11] := {102} tii[24,12] := {96} tii[24,13] := {36} tii[24,14] := {118} tii[24,15] := {92} tii[24,16] := {119} tii[24,17] := {32} tii[24,18] := {107} tii[24,19] := {106} tii[24,20] := {117} tii[24,21] := {89} tii[24,22] := {54} tii[24,23] := {116} tii[24,24] := {50} tii[24,25] := {71} tii[24,26] := {70} tii[24,27] := {86} tii[24,28] := {99} tii[24,29] := {67} tii[24,30] := {84} tii[24,31] := {109} tii[24,32] := {22} tii[24,33] := {122} tii[24,34] := {101} tii[24,35] := {21} tii[24,36] := {115} tii[24,37] := {114} tii[24,38] := {121} tii[24,39] := {82} tii[24,40] := {69} tii[24,41] := {35} tii[24,42] := {31} tii[24,43] := {48} tii[24,44] := {49} tii[24,45] := {97} tii[24,46] := {98} tii[24,47] := {100} tii[24,48] := {63} tii[24,49] := {111} tii[24,50] := {112} tii[24,51] := {80} tii[24,52] := {46} tii[24,53] := {61} tii[24,54] := {120} tii[24,55] := {40} tii[24,56] := {20} tii[24,57] := {57} tii[24,58] := {56} tii[24,59] := {75} tii[24,60] := {76} tii[24,61] := {58} tii[24,62] := {30} tii[24,63] := {41} tii[24,64] := {93} tii[24,65] := {47} tii[24,66] := {62} tii[24,67] := {3} tii[24,68] := {60} tii[24,69] := {9} tii[24,70] := {42} tii[24,71] := {17} tii[24,72] := {27} tii[24,73] := {7} tii[24,74] := {105} tii[24,75] := {74} tii[24,76] := {12} tii[24,77] := {39} tii[24,78] := {91} tii[24,79] := {90} tii[24,80] := {25} tii[24,81] := {104} tii[24,82] := {19} tii[24,83] := {73} tii[24,84] := {72} tii[24,85] := {38} tii[24,86] := {87} tii[24,87] := {65} tii[24,88] := {59} tii[24,89] := {2} tii[24,90] := {79} tii[24,91] := {26} tii[24,92] := {78} tii[24,93] := {6} tii[24,94] := {94} tii[24,95] := {15} tii[24,96] := {95} tii[24,97] := {11} tii[24,98] := {53} tii[24,99] := {52} tii[24,100] := {110} tii[24,101] := {24} tii[24,102] := {66} tii[24,103] := {44} tii[24,104] := {88} tii[24,105] := {18} tii[24,106] := {103} tii[24,107] := {37} tii[24,108] := {64} tii[24,109] := {0} tii[24,110] := {16} tii[24,111] := {1} tii[24,112] := {8} tii[24,113] := {5} tii[24,114] := {33} tii[24,115] := {34} tii[24,116] := {14} tii[24,117] := {45} tii[24,118] := {29} tii[24,119] := {68} tii[24,120] := {10} tii[24,121] := {85} tii[24,122] := {23} tii[24,123] := {43} tii[24,124] := {4} tii[24,125] := {13} tii[24,126] := {28} cell#173 , |C| = 175 special orbit = [6, 2, 2, 2, 1, 1] special rep = [[3, 1], [1, 1, 1]] , dim = 105 cell rep = phi[[3, 1, 1, 1],[1]]+phi[[3, 1],[1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 70*X^2+35*X TII subcells: tii[23,1] := {108, 174} tii[23,2] := {46, 170} tii[23,3] := {97, 171} tii[23,4] := {134, 172} tii[23,5] := {35, 162} tii[23,6] := {106, 168} tii[23,7] := {85, 165} tii[23,8] := {124, 160} tii[23,9] := {150} tii[23,10] := {62, 149} tii[23,11] := {113, 155} tii[23,12] := {82, 132} tii[23,13] := {118} tii[23,14] := {135, 161} tii[23,15] := {148} tii[23,16] := {107, 167} tii[23,17] := {13, 147} tii[23,18] := {77, 158} tii[23,19] := {54, 154} tii[23,20] := {95, 143} tii[23,21] := {128} tii[23,22] := {45, 142} tii[23,23] := {33, 127} tii[23,24] := {84, 138} tii[23,25] := {48, 103} tii[23,26] := {67, 121} tii[23,27] := {89} tii[23,28] := {100} tii[23,29] := {40, 94} tii[23,30] := {109, 146} tii[23,31] := {126} tii[23,32] := {71} tii[23,33] := {93} tii[23,34] := {11, 99} tii[23,35] := {53, 114} tii[23,36] := {23, 74} tii[23,37] := {58} tii[23,38] := {6, 44} tii[23,39] := {80, 125} tii[23,40] := {98} tii[23,41] := {30} tii[23,42] := {43} tii[23,43] := {64, 115} tii[23,44] := {87} tii[23,45] := {60} tii[23,46] := {55, 152} tii[23,47] := {79, 173} tii[23,48] := {27, 133} tii[23,49] := {51, 169} tii[23,50] := {52, 145} tii[23,51] := {72, 163} tii[23,52] := {7, 119} tii[23,53] := {78, 159} tii[23,54] := {26, 136} tii[23,55] := {25, 164} tii[23,56] := {96, 144} tii[23,57] := {42, 157} tii[23,58] := {129} tii[23,59] := {47, 153} tii[23,60] := {68, 123} tii[23,61] := {69, 166} tii[23,62] := {101} tii[23,63] := {122} tii[23,64] := {22, 120} tii[23,65] := {4, 91} tii[23,66] := {15, 151} tii[23,67] := {39, 92} tii[23,68] := {16, 110} tii[23,69] := {70} tii[23,70] := {31, 141} tii[23,71] := {17, 66} tii[23,72] := {36, 137} tii[23,73] := {50, 105} tii[23,74] := {41} tii[23,75] := {57, 156} tii[23,76] := {90} tii[23,77] := {65} tii[23,78] := {104} tii[23,79] := {5, 38} tii[23,80] := {63, 112} tii[23,81] := {18} tii[23,82] := {86, 140} tii[23,83] := {37} tii[23,84] := {131} tii[23,85] := {19} tii[23,86] := {0, 61} tii[23,87] := {2, 130} tii[23,88] := {3, 81} tii[23,89] := {9, 117} tii[23,90] := {14, 111} tii[23,91] := {24, 76} tii[23,92] := {29, 139} tii[23,93] := {59} tii[23,94] := {75} tii[23,95] := {1, 21} tii[23,96] := {34, 83} tii[23,97] := {8} tii[23,98] := {56, 116} tii[23,99] := {102} tii[23,100] := {20} tii[23,101] := {10} tii[23,102] := {12, 49} tii[23,103] := {28, 88} tii[23,104] := {73} tii[23,105] := {32} cell#174 , |C| = 175 special orbit = [6, 2, 2, 2, 1, 1] special rep = [[3, 1], [1, 1, 1]] , dim = 105 cell rep = phi[[3, 1, 1, 1],[1]]+phi[[3, 1],[1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 70*X^2+35*X TII subcells: tii[23,1] := {132, 172} tii[23,2] := {126, 163} tii[23,3] := {89, 139} tii[23,4] := {151, 174} tii[23,5] := {103, 153} tii[23,6] := {159, 171} tii[23,7] := {62, 118} tii[23,8] := {150, 168} tii[23,9] := {162} tii[23,10] := {125, 160} tii[23,11] := {35, 92} tii[23,12] := {110, 147} tii[23,13] := {129} tii[23,14] := {59, 106} tii[23,15] := {79} tii[23,16] := {144, 173} tii[23,17] := {74, 134} tii[23,18] := {152, 169} tii[23,19] := {34, 91} tii[23,20] := {143, 165} tii[23,21] := {157} tii[23,22] := {133, 164} tii[23,23] := {102, 146} tii[23,24] := {16, 63} tii[23,25] := {82, 127} tii[23,26] := {124, 155} tii[23,27] := {107} tii[23,28] := {141} tii[23,29] := {101, 140} tii[23,30] := {31, 76} tii[23,31] := {51} tii[23,32] := {121} tii[23,33] := {99} tii[23,34] := {85, 135} tii[23,35] := {5, 36} tii[23,36] := {72, 116} tii[23,37] := {95} tii[23,38] := {46, 93} tii[23,39] := {14, 49} tii[23,40] := {26} tii[23,41] := {67} tii[23,42] := {41} tii[23,43] := {11, 37} tii[23,44] := {19} tii[23,45] := {7} tii[23,46] := {45, 81} tii[23,47] := {114, 170} tii[23,48] := {55, 111} tii[23,49] := {90, 166} tii[23,50] := {44, 136} tii[23,51] := {66, 158} tii[23,52] := {83, 84} tii[23,53] := {145, 167} tii[23,54] := {54, 115} tii[23,55] := {104, 156} tii[23,56] := {131, 161} tii[23,57] := {77, 142} tii[23,58] := {149} tii[23,59] := {43, 88} tii[23,60] := {113, 148} tii[23,61] := {65, 123} tii[23,62] := {130} tii[23,63] := {109} tii[23,64] := {112, 154} tii[23,65] := {56, 57} tii[23,66] := {75, 138} tii[23,67] := {100, 137} tii[23,68] := {28, 87} tii[23,69] := {120} tii[23,70] := {50, 122} tii[23,71] := {73, 119} tii[23,72] := {23, 61} tii[23,73] := {86, 128} tii[23,74] := {96} tii[23,75] := {38, 98} tii[23,76] := {108} tii[23,77] := {71} tii[23,78] := {80} tii[23,79] := {47, 94} tii[23,80] := {10, 33} tii[23,81] := {68} tii[23,82] := {18, 70} tii[23,83] := {42} tii[23,84] := {53} tii[23,85] := {22} tii[23,86] := {29, 30} tii[23,87] := {48, 117} tii[23,88] := {13, 60} tii[23,89] := {25, 97} tii[23,90] := {9, 32} tii[23,91] := {58, 105} tii[23,92] := {17, 69} tii[23,93] := {78} tii[23,94] := {52} tii[23,95] := {24, 64} tii[23,96] := {3, 15} tii[23,97] := {39} tii[23,98] := {6, 40} tii[23,99] := {27} tii[23,100] := {21} tii[23,101] := {8} tii[23,102] := {0, 4} tii[23,103] := {1, 20} tii[23,104] := {12} tii[23,105] := {2} cell#175 , |C| = 315 special orbit = [4, 4, 2, 2, 2] special rep = [[2, 1, 1], [2, 1]] , dim = 210 cell rep = phi[[2, 2, 1],[1, 1]]+phi[[2, 1, 1],[2, 1]] TII depth = 4 TII multiplicity polynomial = 105*X^2+105*X TII subcells: tii[16,1] := {301, 302} tii[16,2] := {314} tii[16,3] := {276, 277} tii[16,4] := {207, 208} tii[16,5] := {310} tii[16,6] := {294} tii[16,7] := {118, 119} tii[16,8] := {147} tii[16,9] := {200, 201} tii[16,10] := {295, 296} tii[16,11] := {158, 159} tii[16,12] := {106, 107} tii[16,13] := {313} tii[16,14] := {250, 251} tii[16,15] := {188} tii[16,16] := {262} tii[16,17] := {291} tii[16,18] := {274, 275} tii[16,19] := {196, 197} tii[16,20] := {126, 127} tii[16,21] := {309} tii[16,22] := {229} tii[16,23] := {246, 247} tii[16,24] := {177, 178} tii[16,25] := {260} tii[16,26] := {213, 214} tii[16,27] := {289} tii[16,28] := {299} tii[16,29] := {258} tii[16,30] := {292} tii[16,31] := {116, 117} tii[16,32] := {223, 224} tii[16,33] := {146} tii[16,34] := {69, 70} tii[16,35] := {263, 264} tii[16,36] := {281} tii[16,37] := {298} tii[16,38] := {256, 257} tii[16,39] := {243, 244} tii[16,40] := {154, 155} tii[16,41] := {287, 288} tii[16,42] := {167, 168} tii[16,43] := {43, 44} tii[16,44] := {239, 240} tii[16,45] := {187} tii[16,46] := {205, 206} tii[16,47] := {137, 138} tii[16,48] := {226} tii[16,49] := {300} tii[16,50] := {297} tii[16,51] := {265, 266} tii[16,52] := {169, 170} tii[16,53] := {268} tii[16,54] := {308} tii[16,55] := {65, 66} tii[16,56] := {307} tii[16,57] := {124, 125} tii[16,58] := {283} tii[16,59] := {225} tii[16,60] := {90, 91} tii[16,61] := {312} tii[16,62] := {271} tii[16,63] := {198, 199} tii[16,64] := {162} tii[16,65] := {248, 249} tii[16,66] := {179, 180} tii[16,67] := {261} tii[16,68] := {290} tii[16,69] := {215, 216} tii[16,70] := {139, 140} tii[16,71] := {285} tii[16,72] := {273} tii[16,73] := {204} tii[16,74] := {306} tii[16,75] := {254} tii[16,76] := {171, 172} tii[16,77] := {245} tii[16,78] := {280} tii[16,79] := {5, 6} tii[16,80] := {55, 56} tii[16,81] := {26} tii[16,82] := {52} tii[16,83] := {14, 15} tii[16,84] := {156, 157} tii[16,85] := {84, 85} tii[16,86] := {33, 34} tii[16,87] := {211, 212} tii[16,88] := {71, 72} tii[16,89] := {50} tii[16,90] := {227} tii[16,91] := {120, 121} tii[16,92] := {61, 62} tii[16,93] := {79} tii[16,94] := {269} tii[16,95] := {152} tii[16,96] := {76} tii[16,97] := {165, 166} tii[16,98] := {184} tii[16,99] := {102, 103} tii[16,100] := {111} tii[16,101] := {130, 131} tii[16,102] := {236} tii[16,103] := {149} tii[16,104] := {195} tii[16,105] := {241, 242} tii[16,106] := {29, 30} tii[16,107] := {160, 161} tii[16,108] := {278, 279} tii[16,109] := {122, 123} tii[16,110] := {22, 23} tii[16,111] := {220, 221} tii[16,112] := {53, 54} tii[16,113] := {286} tii[16,114] := {77} tii[16,115] := {193} tii[16,116] := {252, 253} tii[16,117] := {94, 95} tii[16,118] := {304} tii[16,119] := {112} tii[16,120] := {209, 210} tii[16,121] := {141, 142} tii[16,122] := {41, 42} tii[16,123] := {303} tii[16,124] := {109} tii[16,125] := {228} tii[16,126] := {39, 40} tii[16,127] := {88, 89} tii[16,128] := {181, 182} tii[16,129] := {232} tii[16,130] := {173, 174} tii[16,131] := {311} tii[16,132] := {151} tii[16,133] := {73, 74} tii[16,134] := {57, 58} tii[16,135] := {191} tii[16,136] := {270} tii[16,137] := {217, 218} tii[16,138] := {135, 136} tii[16,139] := {237} tii[16,140] := {67, 68} tii[16,141] := {284} tii[16,142] := {145} tii[16,143] := {230} tii[16,144] := {305} tii[16,145] := {192} tii[16,146] := {92, 93} tii[16,147] := {272} tii[16,148] := {12, 13} tii[16,149] := {82, 83} tii[16,150] := {185, 186} tii[16,151] := {31, 32} tii[16,152] := {49} tii[16,153] := {59, 60} tii[16,154] := {222} tii[16,155] := {78} tii[16,156] := {75} tii[16,157] := {202, 203} tii[16,158] := {18, 19} tii[16,159] := {100, 101} tii[16,160] := {163, 164} tii[16,161] := {183} tii[16,162] := {255} tii[16,163] := {110} tii[16,164] := {128, 129} tii[16,165] := {233, 234} tii[16,166] := {45, 46} tii[16,167] := {235} tii[16,168] := {148} tii[16,169] := {194} tii[16,170] := {96, 97} tii[16,171] := {104, 105} tii[16,172] := {7, 8} tii[16,173] := {259} tii[16,174] := {108} tii[16,175] := {189} tii[16,176] := {282} tii[16,177] := {132, 133} tii[16,178] := {24, 25} tii[16,179] := {293} tii[16,180] := {150} tii[16,181] := {63, 64} tii[16,182] := {238} tii[16,183] := {81} tii[16,184] := {134} tii[16,185] := {231} tii[16,186] := {219} tii[16,187] := {0, 1} tii[16,188] := {4} tii[16,189] := {16, 17} tii[16,190] := {86, 87} tii[16,191] := {11} tii[16,192] := {35, 36} tii[16,193] := {115} tii[16,194] := {80} tii[16,195] := {20, 21} tii[16,196] := {143, 144} tii[16,197] := {28} tii[16,198] := {190} tii[16,199] := {47, 48} tii[16,200] := {175, 176} tii[16,201] := {98, 99} tii[16,202] := {114} tii[16,203] := {2, 3} tii[16,204] := {267} tii[16,205] := {51} tii[16,206] := {9, 10} tii[16,207] := {153} tii[16,208] := {37, 38} tii[16,209] := {27} tii[16,210] := {113} cell#176 , |C| = 427 special orbit = [4, 4, 2, 2, 1, 1] special rep = [[2, 1], [2, 1, 1]] , dim = 210 cell rep = phi[[2, 2, 1, 1],[1]]+phi[[2, 1, 1, 1],[2]]+phi[[2, 2],[1, 1, 1]]+phi[[2, 1],[2, 1, 1]] TII depth = 3 TII multiplicity polynomial = 49*X^4+70*X^2+91*X TII subcells: tii[15,1] := {148, 277, 343, 424} tii[15,2] := {309, 421} tii[15,3] := {145, 241} tii[15,4] := {199, 297, 323, 416} tii[15,5] := {109, 212, 307, 374} tii[15,6] := {350, 407} tii[15,7] := {257} tii[15,8] := {315} tii[15,9] := {247, 325, 362, 425} tii[15,10] := {383, 413} tii[15,11] := {195, 285, 380, 418} tii[15,12] := {327} tii[15,13] := {237, 411} tii[15,14] := {368} tii[15,15] := {406, 423} tii[15,16] := {415} tii[15,17] := {98, 187} tii[15,18] := {147, 249, 276, 396} tii[15,19] := {308, 384} tii[15,20] := {64, 161, 259, 336} tii[15,21] := {206} tii[15,22] := {269} tii[15,23] := {57, 136} tii[15,24] := {196, 280, 322, 417} tii[15,25] := {33, 112, 211, 294} tii[15,26] := {30, 94} tii[15,27] := {349, 394} tii[15,28] := {144, 235, 344, 399} tii[15,29] := {281} tii[15,30] := {157} tii[15,31] := {77} tii[15,32] := {185, 388} tii[15,33] := {331} tii[15,34] := {223} tii[15,35] := {58, 134, 253, 340} tii[15,36] := {181} tii[15,37] := {379, 414} tii[15,38] := {135} tii[15,39] := {91, 316} tii[15,40] := {395} tii[15,41] := {242} tii[15,42] := {293} tii[15,43] := {176, 250, 363, 426} tii[15,44] := {324, 385} tii[15,45] := {126, 210, 381, 419} tii[15,46] := {255} tii[15,47] := {164, 412} tii[15,48] := {313} tii[15,49] := {86, 163, 346, 404} tii[15,50] := {208} tii[15,51] := {364, 408} tii[15,52] := {168} tii[15,53] := {386} tii[15,54] := {119, 390} tii[15,55] := {271} tii[15,56] := {79, 403} tii[15,57] := {320} tii[15,58] := {393, 422} tii[15,59] := {409} tii[15,60] := {392} tii[15,61] := {48, 49, 197, 288} tii[15,62] := {67, 178, 261, 402} tii[15,63] := {107, 305} tii[15,64] := {174, 355} tii[15,65] := {84, 85, 248, 330} tii[15,66] := {99, 189} tii[15,67] := {111, 229, 306, 420} tii[15,68] := {47, 130, 200, 366} tii[15,69] := {65, 162, 260, 338} tii[15,70] := {156, 348} tii[15,71] := {207} tii[15,72] := {60, 143} tii[15,73] := {71, 180, 264, 398} tii[15,74] := {222, 389} tii[15,75] := {270} tii[15,76] := {124} tii[15,77] := {203, 382} tii[15,78] := {233} tii[15,79] := {101, 184, 302, 376} tii[15,80] := {267, 410} tii[15,81] := {188} tii[15,82] := {138, 357} tii[15,83] := {291} tii[15,84] := {337} tii[15,85] := {28, 90} tii[15,86] := {127, 128, 198, 287} tii[15,87] := {102, 194} tii[15,88] := {159, 258, 278, 401} tii[15,89] := {13, 66, 160, 246} tii[15,90] := {10, 53} tii[15,91] := {81, 151, 177, 328} tii[15,92] := {106} tii[15,93] := {205, 304} tii[15,94] := {172} tii[15,95] := {39} tii[15,96] := {114, 216, 230, 369} tii[15,97] := {173} tii[15,98] := {268, 354} tii[15,99] := {132} tii[15,100] := {149, 236, 347, 405} tii[15,101] := {45, 104, 201, 284} tii[15,102] := {252, 345} tii[15,103] := {283} tii[15,104] := {29, 88, 204, 296} tii[15,105] := {2, 27} tii[15,106] := {215} tii[15,107] := {190, 391} tii[15,108] := {89} tii[15,109] := {312, 387} tii[15,110] := {51, 272} tii[15,111] := {191} tii[15,112] := {69, 171, 265, 334} tii[15,113] := {240} tii[15,114] := {333} tii[15,115] := {15} tii[15,116] := {245} tii[15,117] := {139, 360} tii[15,118] := {26} tii[15,119] := {373} tii[15,120] := {108} tii[15,121] := {22, 68, 254, 342} tii[15,122] := {298, 365} tii[15,123] := {286} tii[15,124] := {74} tii[15,125] := {351, 397} tii[15,126] := {175} tii[15,127] := {37, 317} tii[15,128] := {16, 341} tii[15,129] := {226} tii[15,130] := {400} tii[15,131] := {42} tii[15,132] := {275} tii[15,133] := {82, 83, 146, 239} tii[15,134] := {110, 209, 228, 372} tii[15,135] := {59, 141} tii[15,136] := {46, 103, 129, 282} tii[15,137] := {155, 256} tii[15,138] := {70, 169, 179, 332} tii[15,139] := {123} tii[15,140] := {221, 314} tii[15,141] := {202, 299} tii[15,142] := {12, 56} tii[15,143] := {19, 61, 153, 232} tii[15,144] := {231} tii[15,145] := {100, 183, 301, 375} tii[15,146] := {166} tii[15,147] := {266, 352} tii[15,148] := {40} tii[15,149] := {137, 356} tii[15,150] := {34, 121, 217, 290} tii[15,151] := {186} tii[15,152] := {289} tii[15,153] := {55} tii[15,154] := {92, 318} tii[15,155] := {335} tii[15,156] := {50, 113, 303, 378} tii[15,157] := {7, 31, 105, 182} tii[15,158] := {158} tii[15,159] := {251, 326} tii[15,160] := {117} tii[15,161] := {238} tii[15,162] := {75, 358} tii[15,163] := {118} tii[15,164] := {14, 76, 170, 243} tii[15,165] := {311, 367} tii[15,166] := {224} tii[15,167] := {43, 377} tii[15,168] := {93} tii[15,169] := {54, 273} tii[15,170] := {371} tii[15,171] := {274} tii[15,172] := {80} tii[15,173] := {18, 339} tii[15,174] := {321} tii[15,175] := {227, 300} tii[15,176] := {213} tii[15,177] := {279, 353} tii[15,178] := {125} tii[15,179] := {359} tii[15,180] := {361} tii[15,181] := {23, 24, 150, 244} tii[15,182] := {41, 220} tii[15,183] := {21, 87, 152, 329} tii[15,184] := {32, 97} tii[15,185] := {73, 263} tii[15,186] := {36, 131, 219, 370} tii[15,187] := {78} tii[15,188] := {96} tii[15,189] := {20, 63, 154, 234} tii[15,190] := {0, 9} tii[15,191] := {116, 310} tii[15,192] := {167} tii[15,193] := {35, 122, 218, 292} tii[15,194] := {4} tii[15,195] := {142} tii[15,196] := {8} tii[15,197] := {95, 319} tii[15,198] := {6} tii[15,199] := {1, 11, 62, 133} tii[15,200] := {72} tii[15,201] := {165, 262} tii[15,202] := {3, 38, 120, 192} tii[15,203] := {52} tii[15,204] := {193} tii[15,205] := {25, 225} tii[15,206] := {17} tii[15,207] := {5, 295} tii[15,208] := {115, 214} tii[15,209] := {140} tii[15,210] := {44} cell#177 , |C| = 189 special orbit = [4, 2, 2, 2, 2, 2] special rep = [[2, 1, 1], [1, 1, 1]] , dim = 105 cell rep = phi[[2, 1, 1, 1],[1, 1]]+phi[[2, 1, 1],[1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 84*X^2+21*X TII subcells: tii[13,1] := {127, 188} tii[13,2] := {79, 183} tii[13,3] := {52, 158} tii[13,4] := {149, 187} tii[13,5] := {104, 178} tii[13,6] := {165, 182} tii[13,7] := {34, 139} tii[13,8] := {92, 166} tii[13,9] := {146, 173} tii[13,10] := {161} tii[13,11] := {114, 151} tii[13,12] := {134} tii[13,13] := {51, 131} tii[13,14] := {69, 106} tii[13,15] := {85} tii[13,16] := {49, 156} tii[13,17] := {21, 115} tii[13,18] := {100, 185} tii[13,19] := {68, 171} tii[13,20] := {57, 174} tii[13,21] := {13, 103} tii[13,22] := {80, 179} tii[13,23] := {48, 155} tii[13,24] := {61, 169} tii[13,25] := {40, 159} tii[13,26] := {20, 128} tii[13,27] := {28, 144} tii[13,28] := {148, 172} tii[13,29] := {90, 181} tii[13,30] := {124, 157} tii[13,31] := {11, 78} tii[13,32] := {105, 186} tii[13,33] := {67, 170} tii[13,34] := {71, 150} tii[13,35] := {142} tii[13,36] := {84, 180} tii[13,37] := {47, 163} tii[13,38] := {36, 140} tii[13,39] := {91, 132} tii[13,40] := {18, 101} tii[13,41] := {102, 141} tii[13,42] := {110} tii[13,43] := {24, 120} tii[13,44] := {121} tii[13,45] := {60, 175} tii[13,46] := {97} tii[13,47] := {27, 125} tii[13,48] := {70, 107} tii[13,49] := {38, 143} tii[13,50] := {86} tii[13,51] := {64} tii[13,52] := {113, 177} tii[13,53] := {130, 184} tii[13,54] := {4, 56} tii[13,55] := {88, 164} tii[13,56] := {108, 176} tii[13,57] := {66, 153} tii[13,58] := {129, 160} tii[13,59] := {22, 116} tii[13,60] := {10, 76} tii[13,61] := {145} tii[13,62] := {83, 167} tii[13,63] := {14, 94} tii[13,64] := {123} tii[13,65] := {17, 99} tii[13,66] := {50, 81} tii[13,67] := {54, 135} tii[13,68] := {23, 119} tii[13,69] := {62} tii[13,70] := {72, 152} tii[13,71] := {111} tii[13,72] := {44} tii[13,73] := {26, 89} tii[13,74] := {37, 109} tii[13,75] := {63} tii[13,76] := {6, 126} tii[13,77] := {35, 138} tii[13,78] := {12, 98} tii[13,79] := {25, 118} tii[13,80] := {7, 75} tii[13,81] := {58, 168} tii[13,82] := {33, 137} tii[13,83] := {15, 93} tii[13,84] := {43, 154} tii[13,85] := {29, 136} tii[13,86] := {32, 147} tii[13,87] := {3, 65} tii[13,88] := {77, 117} tii[13,89] := {95} tii[13,90] := {42, 162} tii[13,91] := {8, 82} tii[13,92] := {19, 122} tii[13,93] := {74} tii[13,94] := {55} tii[13,95] := {1, 46} tii[13,96] := {39, 112} tii[13,97] := {5, 59} tii[13,98] := {53, 133} tii[13,99] := {16, 96} tii[13,100] := {87} tii[13,101] := {45} tii[13,102] := {0, 31} tii[13,103] := {2, 41} tii[13,104] := {9, 73} tii[13,105] := {30} cell#178 , |C| = 315 special orbit = [4, 4, 2, 2, 2] special rep = [[2, 1, 1], [2, 1]] , dim = 210 cell rep = phi[[2, 2, 1],[1, 1]]+phi[[2, 1, 1],[2, 1]] TII depth = 4 TII multiplicity polynomial = 105*X^2+105*X TII subcells: tii[16,1] := {258, 313} tii[16,2] := {310} tii[16,3] := {197, 314} tii[16,4] := {139, 312} tii[16,5] := {284} tii[16,6] := {311} tii[16,7] := {71, 123} tii[16,8] := {106} tii[16,9] := {128, 190} tii[16,10] := {229, 305} tii[16,11] := {99, 156} tii[16,12] := {55, 154} tii[16,13] := {300} tii[16,14] := {173, 280} tii[16,15] := {138} tii[16,16] := {203} tii[16,17] := {242} tii[16,18] := {198, 293} tii[16,19] := {130, 189} tii[16,20] := {80, 291} tii[16,21] := {285} tii[16,22] := {172} tii[16,23] := {171, 279} tii[16,24] := {102, 217} tii[16,25] := {202} tii[16,26] := {146, 252} tii[16,27] := {241} tii[16,28] := {263} tii[16,29] := {200} tii[16,30] := {239} tii[16,31] := {70, 191} tii[16,32] := {162, 223} tii[16,33] := {174} tii[16,34] := {34, 188} tii[16,35] := {206, 299} tii[16,36] := {234} tii[16,37] := {268} tii[16,38] := {196, 250} tii[16,39] := {164, 306} tii[16,40] := {97, 222} tii[16,41] := {235, 309} tii[16,42] := {107, 304} tii[16,43] := {21, 220} tii[16,44] := {165, 272} tii[16,45] := {205} tii[16,46] := {137, 298} tii[16,47] := {72, 247} tii[16,48] := {167} tii[16,49] := {262} tii[16,50] := {261} tii[16,51] := {209, 296} tii[16,52] := {112, 277} tii[16,53] := {211} tii[16,54] := {289} tii[16,55] := {32, 245} tii[16,56] := {283} tii[16,57] := {81, 292} tii[16,58] := {286} tii[16,59] := {232} tii[16,60] := {60, 275} tii[16,61] := {303} tii[16,62] := {266} tii[16,63] := {129, 249} tii[16,64] := {236} tii[16,65] := {170, 308} tii[16,66] := {101, 271} tii[16,67] := {201} tii[16,68] := {240} tii[16,69] := {145, 295} tii[16,70] := {74, 290} tii[16,71] := {230} tii[16,72] := {301} tii[16,73] := {260} tii[16,74] := {264} tii[16,75] := {288} tii[16,76] := {113, 307} tii[16,77] := {282} tii[16,78] := {302} tii[16,79] := {2, 14} tii[16,80] := {35, 69} tii[16,81] := {20} tii[16,82] := {42} tii[16,83] := {7, 28} tii[16,84] := {98, 155} tii[16,85] := {54, 95} tii[16,86] := {17, 44} tii[16,87] := {140, 256} tii[16,88] := {36, 122} tii[16,89] := {33} tii[16,90] := {168} tii[16,91] := {73, 126} tii[16,92] := {39, 68} tii[16,93] := {61} tii[16,94] := {212} tii[16,95] := {117} tii[16,96] := {48} tii[16,97] := {109, 228} tii[16,98] := {136} tii[16,99] := {51, 153} tii[16,100] := {82} tii[16,101] := {85, 193} tii[16,102] := {183} tii[16,103] := {111} tii[16,104] := {151} tii[16,105] := {163, 221} tii[16,106] := {15, 45} tii[16,107] := {100, 159} tii[16,108] := {204, 297} tii[16,109] := {79, 127} tii[16,110] := {11, 187} tii[16,111] := {132, 246} tii[16,112] := {30, 66} tii[16,113] := {233} tii[16,114] := {52} tii[16,115] := {150} tii[16,116] := {178, 276} tii[16,117] := {58, 94} tii[16,118] := {267} tii[16,119] := {86} tii[16,120] := {141, 257} tii[16,121] := {77, 186} tii[16,122] := {18, 91} tii[16,123] := {259} tii[16,124] := {76} tii[16,125] := {169} tii[16,126] := {19, 216} tii[16,127] := {56, 273} tii[16,128] := {103, 218} tii[16,129] := {177} tii[16,130] := {116, 225} tii[16,131] := {287} tii[16,132] := {114} tii[16,133] := {40, 124} tii[16,134] := {41, 251} tii[16,135] := {144} tii[16,136] := {213} tii[16,137] := {148, 253} tii[16,138] := {90, 195} tii[16,139] := {184} tii[16,140] := {31, 244} tii[16,141] := {231} tii[16,142] := {104} tii[16,143] := {176} tii[16,144] := {265} tii[16,145] := {147} tii[16,146] := {59, 274} tii[16,147] := {214} tii[16,148] := {29, 67} tii[16,149] := {53, 160} tii[16,150] := {131, 194} tii[16,151] := {16, 92} tii[16,152] := {78} tii[16,153] := {38, 125} tii[16,154] := {181} tii[16,155] := {118} tii[16,156] := {105} tii[16,157] := {133, 248} tii[16,158] := {8, 121} tii[16,159] := {49, 219} tii[16,160] := {108, 281} tii[16,161] := {135} tii[16,162] := {208} tii[16,163] := {149} tii[16,164] := {84, 254} tii[16,165] := {180, 278} tii[16,166] := {23, 158} tii[16,167] := {182} tii[16,168] := {110} tii[16,169] := {215} tii[16,170] := {62, 227} tii[16,171] := {47, 270} tii[16,172] := {3, 152} tii[16,173] := {199} tii[16,174] := {134} tii[16,175] := {142} tii[16,176] := {237} tii[16,177] := {83, 294} tii[16,178] := {13, 192} tii[16,179] := {238} tii[16,180] := {179} tii[16,181] := {43, 255} tii[16,182] := {243} tii[16,183] := {166} tii[16,184] := {210} tii[16,185] := {175} tii[16,186] := {269} tii[16,187] := {0, 6} tii[16,188] := {5} tii[16,189] := {9, 27} tii[16,190] := {50, 96} tii[16,191] := {12} tii[16,192] := {24, 46} tii[16,193] := {87} tii[16,194] := {64} tii[16,195] := {10, 65} tii[16,196] := {75, 185} tii[16,197] := {22} tii[16,198] := {143} tii[16,199] := {25, 93} tii[16,200] := {115, 224} tii[16,201] := {63, 161} tii[16,202] := {89} tii[16,203] := {1, 120} tii[16,204] := {207} tii[16,205] := {37} tii[16,206] := {4, 157} tii[16,207] := {119} tii[16,208] := {26, 226} tii[16,209] := {57} tii[16,210] := {88} cell#179 , |C| = 55 special orbit = [8, 2, 1, 1, 1, 1] special rep = [[4], [1, 1, 1]] , dim = 35 cell rep = phi[[4, 1, 1, 1],[]]+phi[[4],[1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 20*X^2+15*X TII subcells: tii[31,1] := {37, 54} tii[31,2] := {41, 53} tii[31,3] := {36, 52} tii[31,4] := {42, 50} tii[31,5] := {47} tii[31,6] := {32, 51} tii[31,7] := {27, 49} tii[31,8] := {33, 46} tii[31,9] := {43} tii[31,10] := {18, 45} tii[31,11] := {24, 40} tii[31,12] := {35} tii[31,13] := {14, 31} tii[31,14] := {26} tii[31,15] := {30} tii[31,16] := {22, 48} tii[31,17] := {17, 44} tii[31,18] := {23, 39} tii[31,19] := {34} tii[31,20] := {10, 38} tii[31,21] := {13, 29} tii[31,22] := {25} tii[31,23] := {8, 21} tii[31,24] := {16} tii[31,25] := {20} tii[31,26] := {4, 28} tii[31,27] := {7, 19} tii[31,28] := {15} tii[31,29] := {1, 12} tii[31,30] := {9} tii[31,31] := {11} tii[31,32] := {0, 6} tii[31,33] := {2} tii[31,34] := {5} tii[31,35] := {3} cell#180 , |C| = 140 special orbit = [6, 4, 1, 1, 1, 1] special rep = [[3], [2, 1, 1]] , dim = 105 cell rep = phi[[3, 2, 1, 1],[]]+phi[[3],[2, 1, 1]] TII depth = 3 TII multiplicity polynomial = 35*X^2+70*X TII subcells: tii[25,1] := {83, 136} tii[25,2] := {110, 132} tii[25,3] := {135} tii[25,4] := {139} tii[25,5] := {61, 126} tii[25,6] := {92, 121} tii[25,7] := {45, 115} tii[25,8] := {62, 102} tii[25,9] := {125} tii[25,10] := {85} tii[25,11] := {137} tii[25,12] := {73, 107} tii[25,13] := {52, 91} tii[25,14] := {112} tii[25,15] := {80} tii[25,16] := {130} tii[25,17] := {120} tii[25,18] := {106} tii[25,19] := {133} tii[25,20] := {138} tii[25,21] := {40, 113} tii[25,22] := {72, 105} tii[25,23] := {27, 97} tii[25,24] := {41, 81} tii[25,25] := {111} tii[25,26] := {63} tii[25,27] := {129} tii[25,28] := {14, 78} tii[25,29] := {50, 88} tii[25,30] := {32, 69} tii[25,31] := {23, 58} tii[25,32] := {94} tii[25,33] := {56} tii[25,34] := {43} tii[25,35] := {117} tii[25,36] := {12, 39} tii[25,37] := {104} tii[25,38] := {87} tii[25,39] := {26} tii[25,40] := {122} tii[25,41] := {38} tii[25,42] := {134} tii[25,43] := {31, 67} tii[25,44] := {17, 47} tii[25,45] := {75} tii[25,46] := {34} tii[25,47] := {100} tii[25,48] := {6, 30} tii[25,49] := {86} tii[25,50] := {66} tii[25,51] := {19} tii[25,52] := {108} tii[25,53] := {29} tii[25,54] := {124} tii[25,55] := {76} tii[25,56] := {54} tii[25,57] := {101} tii[25,58] := {36} tii[25,59] := {119} tii[25,60] := {131} tii[25,61] := {65, 128} tii[25,62] := {84, 118} tii[25,63] := {103} tii[25,64] := {28, 98} tii[25,65] := {93, 123} tii[25,66] := {42, 82} tii[25,67] := {116} tii[25,68] := {64} tii[25,69] := {24, 60} tii[25,70] := {127} tii[25,71] := {44} tii[25,72] := {59} tii[25,73] := {5, 55} tii[25,74] := {74, 109} tii[25,75] := {11, 37} tii[25,76] := {25} tii[25,77] := {99} tii[25,78] := {2, 22} tii[25,79] := {33, 71} tii[25,80] := {114} tii[25,81] := {13} tii[25,82] := {57} tii[25,83] := {21} tii[25,84] := {70} tii[25,85] := {0, 10} tii[25,86] := {96} tii[25,87] := {3} tii[25,88] := {90} tii[25,89] := {9} tii[25,90] := {4} tii[25,91] := {51, 89} tii[25,92] := {79} tii[25,93] := {18, 49} tii[25,94] := {95} tii[25,95] := {35} tii[25,96] := {48} tii[25,97] := {1, 16} tii[25,98] := {77} tii[25,99] := {7} tii[25,100] := {68} tii[25,101] := {15} tii[25,102] := {8} tii[25,103] := {53} tii[25,104] := {46} tii[25,105] := {20} cell#181 , |C| = 175 special orbit = [6, 2, 2, 2, 1, 1] special rep = [[3, 1], [1, 1, 1]] , dim = 105 cell rep = phi[[3, 1, 1, 1],[1]]+phi[[3, 1],[1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 70*X^2+35*X TII subcells: tii[23,1] := {62, 173} tii[23,2] := {57, 165} tii[23,3] := {55, 144} tii[23,4] := {85, 172} tii[23,5] := {37, 154} tii[23,6] := {105, 169} tii[23,7] := {35, 121} tii[23,8] := {129, 162} tii[23,9] := {150} tii[23,10] := {56, 149} tii[23,11] := {54, 96} tii[23,12] := {75, 132} tii[23,13] := {106} tii[23,14] := {73, 125} tii[23,15] := {108} tii[23,16] := {104, 174} tii[23,17] := {24, 136} tii[23,18] := {116, 171} tii[23,19] := {23, 95} tii[23,20] := {140, 168} tii[23,21] := {157} tii[23,22] := {91, 166} tii[23,23] := {36, 128} tii[23,24] := {34, 70} tii[23,25] := {52, 110} tii[23,26] := {114, 160} tii[23,27] := {78} tii[23,28] := {142} tii[23,29] := {138, 164} tii[23,30] := {50, 98} tii[23,31] := {80} tii[23,32] := {158} tii[23,33] := {163} tii[23,34] := {47, 137} tii[23,35] := {22, 49} tii[23,36] := {64, 123} tii[23,37] := {93} tii[23,38] := {86, 135} tii[23,39] := {32, 72} tii[23,40] := {59} tii[23,41] := {120} tii[23,42] := {134} tii[23,43] := {51, 100} tii[23,44] := {81} tii[23,45] := {99} tii[23,46] := {1, 103} tii[23,47] := {43, 170} tii[23,48] := {4, 115} tii[23,49] := {29, 167} tii[23,50] := {10, 139} tii[23,51] := {18, 156} tii[23,52] := {8, 90} tii[23,53] := {77, 161} tii[23,54] := {13, 113} tii[23,55] := {40, 159} tii[23,56] := {102, 151} tii[23,57] := {27, 141} tii[23,58] := {130} tii[23,59] := {21, 89} tii[23,60] := {76, 133} tii[23,61] := {39, 119} tii[23,62] := {107} tii[23,63] := {82} tii[23,64] := {67, 155} tii[23,65] := {3, 66} tii[23,66] := {28, 145} tii[23,67] := {88, 146} tii[23,68] := {7, 87} tii[23,69] := {118} tii[23,70] := {16, 117} tii[23,71] := {112, 153} tii[23,72] := {12, 65} tii[23,73] := {53, 111} tii[23,74] := {143} tii[23,75] := {26, 94} tii[23,76] := {79} tii[23,77] := {152} tii[23,78] := {60} tii[23,79] := {101, 148} tii[23,80] := {20, 45} tii[23,81] := {131} tii[23,82] := {38, 69} tii[23,83] := {147} tii[23,84] := {83} tii[23,85] := {124} tii[23,86] := {0, 46} tii[23,87] := {17, 122} tii[23,88] := {2, 63} tii[23,89] := {9, 92} tii[23,90] := {6, 44} tii[23,91] := {33, 84} tii[23,92] := {15, 68} tii[23,93] := {58} tii[23,94] := {41} tii[23,95] := {74, 127} tii[23,96] := {11, 30} tii[23,97] := {109} tii[23,98] := {25, 48} tii[23,99] := {61} tii[23,100] := {126} tii[23,101] := {97} tii[23,102] := {5, 19} tii[23,103] := {14, 31} tii[23,104] := {42} tii[23,105] := {71} cell#182 , |C| = 175 special orbit = [6, 2, 2, 2, 1, 1] special rep = [[3, 1], [1, 1, 1]] , dim = 105 cell rep = phi[[3, 1, 1, 1],[1]]+phi[[3, 1],[1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 70*X^2+35*X TII subcells: tii[23,1] := {108, 174} tii[23,2] := {46, 170} tii[23,3] := {97, 171} tii[23,4] := {134, 172} tii[23,5] := {35, 162} tii[23,6] := {106, 168} tii[23,7] := {85, 165} tii[23,8] := {124, 160} tii[23,9] := {150} tii[23,10] := {62, 149} tii[23,11] := {113, 155} tii[23,12] := {82, 132} tii[23,13] := {118} tii[23,14] := {135, 161} tii[23,15] := {148} tii[23,16] := {107, 167} tii[23,17] := {13, 147} tii[23,18] := {77, 158} tii[23,19] := {54, 154} tii[23,20] := {95, 143} tii[23,21] := {128} tii[23,22] := {45, 142} tii[23,23] := {33, 127} tii[23,24] := {84, 138} tii[23,25] := {48, 103} tii[23,26] := {67, 121} tii[23,27] := {89} tii[23,28] := {100} tii[23,29] := {40, 94} tii[23,30] := {109, 146} tii[23,31] := {126} tii[23,32] := {71} tii[23,33] := {93} tii[23,34] := {11, 99} tii[23,35] := {53, 114} tii[23,36] := {23, 74} tii[23,37] := {58} tii[23,38] := {6, 44} tii[23,39] := {80, 125} tii[23,40] := {98} tii[23,41] := {30} tii[23,42] := {43} tii[23,43] := {64, 115} tii[23,44] := {87} tii[23,45] := {60} tii[23,46] := {55, 152} tii[23,47] := {79, 173} tii[23,48] := {27, 133} tii[23,49] := {51, 169} tii[23,50] := {52, 145} tii[23,51] := {72, 163} tii[23,52] := {7, 119} tii[23,53] := {78, 159} tii[23,54] := {26, 136} tii[23,55] := {25, 164} tii[23,56] := {96, 144} tii[23,57] := {42, 157} tii[23,58] := {129} tii[23,59] := {47, 153} tii[23,60] := {68, 123} tii[23,61] := {69, 166} tii[23,62] := {101} tii[23,63] := {122} tii[23,64] := {22, 120} tii[23,65] := {4, 91} tii[23,66] := {15, 151} tii[23,67] := {39, 92} tii[23,68] := {16, 110} tii[23,69] := {70} tii[23,70] := {31, 141} tii[23,71] := {17, 66} tii[23,72] := {36, 137} tii[23,73] := {50, 105} tii[23,74] := {41} tii[23,75] := {57, 156} tii[23,76] := {90} tii[23,77] := {65} tii[23,78] := {104} tii[23,79] := {5, 38} tii[23,80] := {63, 112} tii[23,81] := {18} tii[23,82] := {86, 140} tii[23,83] := {37} tii[23,84] := {131} tii[23,85] := {19} tii[23,86] := {0, 61} tii[23,87] := {2, 130} tii[23,88] := {3, 81} tii[23,89] := {9, 117} tii[23,90] := {14, 111} tii[23,91] := {24, 76} tii[23,92] := {29, 139} tii[23,93] := {59} tii[23,94] := {75} tii[23,95] := {1, 21} tii[23,96] := {34, 83} tii[23,97] := {8} tii[23,98] := {56, 116} tii[23,99] := {102} tii[23,100] := {20} tii[23,101] := {10} tii[23,102] := {12, 49} tii[23,103] := {28, 88} tii[23,104] := {73} tii[23,105] := {32} cell#183 , |C| = 175 special orbit = [6, 2, 2, 2, 1, 1] special rep = [[3, 1], [1, 1, 1]] , dim = 105 cell rep = phi[[3, 1, 1, 1],[1]]+phi[[3, 1],[1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 70*X^2+35*X TII subcells: tii[23,1] := {132, 172} tii[23,2] := {126, 163} tii[23,3] := {89, 139} tii[23,4] := {151, 174} tii[23,5] := {103, 153} tii[23,6] := {159, 171} tii[23,7] := {62, 118} tii[23,8] := {150, 168} tii[23,9] := {162} tii[23,10] := {125, 160} tii[23,11] := {35, 92} tii[23,12] := {110, 147} tii[23,13] := {129} tii[23,14] := {59, 106} tii[23,15] := {79} tii[23,16] := {144, 173} tii[23,17] := {74, 134} tii[23,18] := {152, 169} tii[23,19] := {34, 91} tii[23,20] := {143, 165} tii[23,21] := {157} tii[23,22] := {133, 164} tii[23,23] := {102, 146} tii[23,24] := {16, 63} tii[23,25] := {82, 127} tii[23,26] := {124, 155} tii[23,27] := {107} tii[23,28] := {141} tii[23,29] := {101, 140} tii[23,30] := {31, 76} tii[23,31] := {51} tii[23,32] := {121} tii[23,33] := {99} tii[23,34] := {85, 135} tii[23,35] := {5, 36} tii[23,36] := {72, 116} tii[23,37] := {95} tii[23,38] := {46, 93} tii[23,39] := {14, 49} tii[23,40] := {26} tii[23,41] := {67} tii[23,42] := {41} tii[23,43] := {11, 37} tii[23,44] := {19} tii[23,45] := {7} tii[23,46] := {45, 81} tii[23,47] := {114, 170} tii[23,48] := {55, 111} tii[23,49] := {90, 166} tii[23,50] := {44, 136} tii[23,51] := {66, 158} tii[23,52] := {83, 84} tii[23,53] := {145, 167} tii[23,54] := {54, 115} tii[23,55] := {104, 156} tii[23,56] := {131, 161} tii[23,57] := {77, 142} tii[23,58] := {149} tii[23,59] := {43, 88} tii[23,60] := {113, 148} tii[23,61] := {65, 123} tii[23,62] := {130} tii[23,63] := {109} tii[23,64] := {112, 154} tii[23,65] := {56, 57} tii[23,66] := {75, 138} tii[23,67] := {100, 137} tii[23,68] := {28, 87} tii[23,69] := {120} tii[23,70] := {50, 122} tii[23,71] := {73, 119} tii[23,72] := {23, 61} tii[23,73] := {86, 128} tii[23,74] := {96} tii[23,75] := {38, 98} tii[23,76] := {108} tii[23,77] := {71} tii[23,78] := {80} tii[23,79] := {47, 94} tii[23,80] := {10, 33} tii[23,81] := {68} tii[23,82] := {18, 70} tii[23,83] := {42} tii[23,84] := {53} tii[23,85] := {22} tii[23,86] := {29, 30} tii[23,87] := {48, 117} tii[23,88] := {13, 60} tii[23,89] := {25, 97} tii[23,90] := {9, 32} tii[23,91] := {58, 105} tii[23,92] := {17, 69} tii[23,93] := {78} tii[23,94] := {52} tii[23,95] := {24, 64} tii[23,96] := {3, 15} tii[23,97] := {39} tii[23,98] := {6, 40} tii[23,99] := {27} tii[23,100] := {21} tii[23,101] := {8} tii[23,102] := {0, 4} tii[23,103] := {1, 20} tii[23,104] := {12} tii[23,105] := {2} cell#184 , |C| = 427 special orbit = [4, 4, 2, 2, 1, 1] special rep = [[2, 1], [2, 1, 1]] , dim = 210 cell rep = phi[[2, 2, 1, 1],[1]]+phi[[2, 1, 1, 1],[2]]+phi[[2, 2],[1, 1, 1]]+phi[[2, 1],[2, 1, 1]] TII depth = 3 TII multiplicity polynomial = 49*X^4+70*X^2+91*X TII subcells: tii[15,1] := {148, 277, 343, 424} tii[15,2] := {309, 421} tii[15,3] := {145, 241} tii[15,4] := {199, 297, 323, 416} tii[15,5] := {109, 212, 307, 374} tii[15,6] := {350, 407} tii[15,7] := {257} tii[15,8] := {315} tii[15,9] := {247, 325, 362, 425} tii[15,10] := {383, 413} tii[15,11] := {195, 285, 380, 418} tii[15,12] := {327} tii[15,13] := {237, 411} tii[15,14] := {368} tii[15,15] := {406, 423} tii[15,16] := {415} tii[15,17] := {98, 187} tii[15,18] := {147, 249, 276, 396} tii[15,19] := {308, 384} tii[15,20] := {64, 161, 259, 336} tii[15,21] := {206} tii[15,22] := {269} tii[15,23] := {57, 136} tii[15,24] := {196, 280, 322, 417} tii[15,25] := {33, 112, 211, 294} tii[15,26] := {30, 94} tii[15,27] := {349, 394} tii[15,28] := {144, 235, 344, 399} tii[15,29] := {281} tii[15,30] := {157} tii[15,31] := {77} tii[15,32] := {185, 388} tii[15,33] := {331} tii[15,34] := {223} tii[15,35] := {58, 134, 253, 340} tii[15,36] := {181} tii[15,37] := {379, 414} tii[15,38] := {135} tii[15,39] := {91, 316} tii[15,40] := {395} tii[15,41] := {242} tii[15,42] := {293} tii[15,43] := {176, 250, 363, 426} tii[15,44] := {324, 385} tii[15,45] := {126, 210, 381, 419} tii[15,46] := {255} tii[15,47] := {164, 412} tii[15,48] := {313} tii[15,49] := {86, 163, 346, 404} tii[15,50] := {208} tii[15,51] := {364, 408} tii[15,52] := {168} tii[15,53] := {386} tii[15,54] := {119, 390} tii[15,55] := {271} tii[15,56] := {79, 403} tii[15,57] := {320} tii[15,58] := {393, 422} tii[15,59] := {409} tii[15,60] := {392} tii[15,61] := {48, 49, 197, 288} tii[15,62] := {67, 178, 261, 402} tii[15,63] := {107, 305} tii[15,64] := {174, 355} tii[15,65] := {84, 85, 248, 330} tii[15,66] := {99, 189} tii[15,67] := {111, 229, 306, 420} tii[15,68] := {47, 130, 200, 366} tii[15,69] := {65, 162, 260, 338} tii[15,70] := {156, 348} tii[15,71] := {207} tii[15,72] := {60, 143} tii[15,73] := {71, 180, 264, 398} tii[15,74] := {222, 389} tii[15,75] := {270} tii[15,76] := {124} tii[15,77] := {203, 382} tii[15,78] := {233} tii[15,79] := {101, 184, 302, 376} tii[15,80] := {267, 410} tii[15,81] := {188} tii[15,82] := {138, 357} tii[15,83] := {291} tii[15,84] := {337} tii[15,85] := {28, 90} tii[15,86] := {127, 128, 198, 287} tii[15,87] := {102, 194} tii[15,88] := {159, 258, 278, 401} tii[15,89] := {13, 66, 160, 246} tii[15,90] := {10, 53} tii[15,91] := {81, 151, 177, 328} tii[15,92] := {106} tii[15,93] := {205, 304} tii[15,94] := {172} tii[15,95] := {39} tii[15,96] := {114, 216, 230, 369} tii[15,97] := {173} tii[15,98] := {268, 354} tii[15,99] := {132} tii[15,100] := {149, 236, 347, 405} tii[15,101] := {45, 104, 201, 284} tii[15,102] := {252, 345} tii[15,103] := {283} tii[15,104] := {29, 88, 204, 296} tii[15,105] := {2, 27} tii[15,106] := {215} tii[15,107] := {190, 391} tii[15,108] := {89} tii[15,109] := {312, 387} tii[15,110] := {51, 272} tii[15,111] := {191} tii[15,112] := {69, 171, 265, 334} tii[15,113] := {240} tii[15,114] := {333} tii[15,115] := {15} tii[15,116] := {245} tii[15,117] := {139, 360} tii[15,118] := {26} tii[15,119] := {373} tii[15,120] := {108} tii[15,121] := {22, 68, 254, 342} tii[15,122] := {298, 365} tii[15,123] := {286} tii[15,124] := {74} tii[15,125] := {351, 397} tii[15,126] := {175} tii[15,127] := {37, 317} tii[15,128] := {16, 341} tii[15,129] := {226} tii[15,130] := {400} tii[15,131] := {42} tii[15,132] := {275} tii[15,133] := {82, 83, 146, 239} tii[15,134] := {110, 209, 228, 372} tii[15,135] := {59, 141} tii[15,136] := {46, 103, 129, 282} tii[15,137] := {155, 256} tii[15,138] := {70, 169, 179, 332} tii[15,139] := {123} tii[15,140] := {221, 314} tii[15,141] := {202, 299} tii[15,142] := {12, 56} tii[15,143] := {19, 61, 153, 232} tii[15,144] := {231} tii[15,145] := {100, 183, 301, 375} tii[15,146] := {166} tii[15,147] := {266, 352} tii[15,148] := {40} tii[15,149] := {137, 356} tii[15,150] := {34, 121, 217, 290} tii[15,151] := {186} tii[15,152] := {289} tii[15,153] := {55} tii[15,154] := {92, 318} tii[15,155] := {335} tii[15,156] := {50, 113, 303, 378} tii[15,157] := {7, 31, 105, 182} tii[15,158] := {158} tii[15,159] := {251, 326} tii[15,160] := {117} tii[15,161] := {238} tii[15,162] := {75, 358} tii[15,163] := {118} tii[15,164] := {14, 76, 170, 243} tii[15,165] := {311, 367} tii[15,166] := {224} tii[15,167] := {43, 377} tii[15,168] := {93} tii[15,169] := {54, 273} tii[15,170] := {371} tii[15,171] := {274} tii[15,172] := {80} tii[15,173] := {18, 339} tii[15,174] := {321} tii[15,175] := {227, 300} tii[15,176] := {213} tii[15,177] := {279, 353} tii[15,178] := {125} tii[15,179] := {359} tii[15,180] := {361} tii[15,181] := {23, 24, 150, 244} tii[15,182] := {41, 220} tii[15,183] := {21, 87, 152, 329} tii[15,184] := {32, 97} tii[15,185] := {73, 263} tii[15,186] := {36, 131, 219, 370} tii[15,187] := {78} tii[15,188] := {96} tii[15,189] := {20, 63, 154, 234} tii[15,190] := {0, 9} tii[15,191] := {116, 310} tii[15,192] := {167} tii[15,193] := {35, 122, 218, 292} tii[15,194] := {4} tii[15,195] := {142} tii[15,196] := {8} tii[15,197] := {95, 319} tii[15,198] := {6} tii[15,199] := {1, 11, 62, 133} tii[15,200] := {72} tii[15,201] := {165, 262} tii[15,202] := {3, 38, 120, 192} tii[15,203] := {52} tii[15,204] := {193} tii[15,205] := {25, 225} tii[15,206] := {17} tii[15,207] := {5, 295} tii[15,208] := {115, 214} tii[15,209] := {140} tii[15,210] := {44} cell#185 , |C| = 189 special orbit = [4, 2, 2, 2, 2, 2] special rep = [[2, 1, 1], [1, 1, 1]] , dim = 105 cell rep = phi[[2, 1, 1, 1],[1, 1]]+phi[[2, 1, 1],[1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 84*X^2+21*X TII subcells: tii[13,1] := {127, 188} tii[13,2] := {79, 183} tii[13,3] := {52, 158} tii[13,4] := {149, 187} tii[13,5] := {104, 178} tii[13,6] := {165, 182} tii[13,7] := {34, 139} tii[13,8] := {92, 166} tii[13,9] := {146, 173} tii[13,10] := {161} tii[13,11] := {114, 151} tii[13,12] := {134} tii[13,13] := {51, 131} tii[13,14] := {69, 106} tii[13,15] := {85} tii[13,16] := {49, 156} tii[13,17] := {21, 115} tii[13,18] := {100, 185} tii[13,19] := {68, 171} tii[13,20] := {57, 174} tii[13,21] := {13, 103} tii[13,22] := {80, 179} tii[13,23] := {48, 155} tii[13,24] := {61, 169} tii[13,25] := {40, 159} tii[13,26] := {20, 128} tii[13,27] := {28, 144} tii[13,28] := {148, 172} tii[13,29] := {90, 181} tii[13,30] := {124, 157} tii[13,31] := {11, 78} tii[13,32] := {105, 186} tii[13,33] := {67, 170} tii[13,34] := {71, 150} tii[13,35] := {142} tii[13,36] := {84, 180} tii[13,37] := {47, 163} tii[13,38] := {36, 140} tii[13,39] := {91, 132} tii[13,40] := {18, 101} tii[13,41] := {102, 141} tii[13,42] := {110} tii[13,43] := {24, 120} tii[13,44] := {121} tii[13,45] := {60, 175} tii[13,46] := {97} tii[13,47] := {27, 125} tii[13,48] := {70, 107} tii[13,49] := {38, 143} tii[13,50] := {86} tii[13,51] := {64} tii[13,52] := {113, 177} tii[13,53] := {130, 184} tii[13,54] := {4, 56} tii[13,55] := {88, 164} tii[13,56] := {108, 176} tii[13,57] := {66, 153} tii[13,58] := {129, 160} tii[13,59] := {22, 116} tii[13,60] := {10, 76} tii[13,61] := {145} tii[13,62] := {83, 167} tii[13,63] := {14, 94} tii[13,64] := {123} tii[13,65] := {17, 99} tii[13,66] := {50, 81} tii[13,67] := {54, 135} tii[13,68] := {23, 119} tii[13,69] := {62} tii[13,70] := {72, 152} tii[13,71] := {111} tii[13,72] := {44} tii[13,73] := {26, 89} tii[13,74] := {37, 109} tii[13,75] := {63} tii[13,76] := {6, 126} tii[13,77] := {35, 138} tii[13,78] := {12, 98} tii[13,79] := {25, 118} tii[13,80] := {7, 75} tii[13,81] := {58, 168} tii[13,82] := {33, 137} tii[13,83] := {15, 93} tii[13,84] := {43, 154} tii[13,85] := {29, 136} tii[13,86] := {32, 147} tii[13,87] := {3, 65} tii[13,88] := {77, 117} tii[13,89] := {95} tii[13,90] := {42, 162} tii[13,91] := {8, 82} tii[13,92] := {19, 122} tii[13,93] := {74} tii[13,94] := {55} tii[13,95] := {1, 46} tii[13,96] := {39, 112} tii[13,97] := {5, 59} tii[13,98] := {53, 133} tii[13,99] := {16, 96} tii[13,100] := {87} tii[13,101] := {45} tii[13,102] := {0, 31} tii[13,103] := {2, 41} tii[13,104] := {9, 73} tii[13,105] := {30} cell#186 , |C| = 189 special orbit = [4, 2, 2, 2, 2, 2] special rep = [[2, 1, 1], [1, 1, 1]] , dim = 105 cell rep = phi[[2, 1, 1, 1],[1, 1]]+phi[[2, 1, 1],[1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 84*X^2+21*X TII subcells: tii[13,1] := {56, 183} tii[13,2] := {100, 185} tii[13,3] := {112, 159} tii[13,4] := {81, 187} tii[13,5] := {126, 188} tii[13,6] := {106, 180} tii[13,7] := {86, 138} tii[13,8] := {151, 182} tii[13,9] := {123, 167} tii[13,10] := {156} tii[13,11] := {168, 186} tii[13,12] := {179} tii[13,13] := {99, 152} tii[13,14] := {122, 163} tii[13,15] := {143} tii[13,16] := {8, 70} tii[13,17] := {11, 61} tii[13,18] := {37, 172} tii[13,19] := {17, 93} tii[13,20] := {72, 176} tii[13,21] := {21, 87} tii[13,22] := {26, 157} tii[13,23] := {27, 109} tii[13,24] := {36, 142} tii[13,25] := {64, 160} tii[13,26] := {33, 111} tii[13,27] := {45, 141} tii[13,28] := {79, 165} tii[13,29] := {28, 118} tii[13,30] := {96, 145} tii[13,31] := {34, 62} tii[13,32] := {40, 175} tii[13,33] := {41, 136} tii[13,34] := {125, 170} tii[13,35] := {130} tii[13,36] := {54, 162} tii[13,37] := {57, 158} tii[13,38] := {88, 139} tii[13,39] := {148, 178} tii[13,40] := {50, 85} tii[13,41] := {71, 121} tii[13,42] := {164} tii[13,43] := {66, 115} tii[13,44] := {103} tii[13,45] := {74, 177} tii[13,46] := {120} tii[13,47] := {69, 110} tii[13,48] := {135, 171} tii[13,49] := {89, 140} tii[13,50] := {154} tii[13,51] := {132} tii[13,52] := {43, 134} tii[13,53] := {59, 181} tii[13,54] := {20, 42} tii[13,55] := {60, 149} tii[13,56] := {76, 174} tii[13,57] := {82, 169} tii[13,58] := {98, 147} tii[13,59] := {63, 113} tii[13,60] := {32, 58} tii[13,61] := {131} tii[13,62] := {102, 184} tii[13,63] := {44, 90} tii[13,64] := {146} tii[13,65] := {49, 83} tii[13,66] := {108, 153} tii[13,67] := {107, 150} tii[13,68] := {65, 114} tii[13,69] := {128} tii[13,70] := {127, 173} tii[13,71] := {166} tii[13,72] := {104} tii[13,73] := {55, 97} tii[13,74] := {73, 129} tii[13,75] := {119} tii[13,76] := {0, 9} tii[13,77] := {4, 51} tii[13,78] := {1, 19} tii[13,79] := {3, 35} tii[13,80] := {2, 24} tii[13,81] := {15, 133} tii[13,82] := {16, 84} tii[13,83] := {7, 46} tii[13,84] := {23, 116} tii[13,85] := {18, 92} tii[13,86] := {38, 137} tii[13,87] := {6, 39} tii[13,88] := {52, 95} tii[13,89] := {75} tii[13,90] := {53, 161} tii[13,91] := {13, 67} tii[13,92] := {31, 117} tii[13,93] := {94} tii[13,94] := {78} tii[13,95] := {10, 25} tii[13,96] := {80, 124} tii[13,97] := {22, 47} tii[13,98] := {101, 155} tii[13,99] := {48, 91} tii[13,100] := {144} tii[13,101] := {105} tii[13,102] := {5, 14} tii[13,103] := {12, 29} tii[13,104] := {30, 68} tii[13,105] := {77} cell#187 , |C| = 175 special orbit = [3, 3, 2, 2, 2, 2] special rep = [[1, 1, 1], [2, 1, 1]] , dim = 105 cell rep = phi[[1, 1, 1, 1],[2, 1]]+phi[[1, 1, 1],[2, 1, 1]] TII depth = 3 TII multiplicity polynomial = 70*X^2+35*X TII subcells: tii[8,1] := {63, 159} tii[8,2] := {103, 173} tii[8,3] := {84, 146} tii[8,4] := {125, 168} tii[8,5] := {104, 131} tii[8,6] := {73} tii[8,7] := {96} tii[8,8] := {123, 148} tii[8,9] := {133} tii[8,10] := {144, 174} tii[8,11] := {157, 169} tii[8,12] := {164} tii[8,13] := {16, 105} tii[8,14] := {48, 147} tii[8,15] := {26, 127} tii[8,16] := {12, 93} tii[8,17] := {23, 118} tii[8,18] := {64, 161} tii[8,19] := {37, 142} tii[8,20] := {49, 151} tii[8,21] := {55} tii[8,22] := {38, 145} tii[8,23] := {83, 114} tii[8,24] := {21, 113} tii[8,25] := {77} tii[8,26] := {35, 137} tii[8,27] := {31, 130} tii[8,28] := {85, 170} tii[8,29] := {40} tii[8,30] := {101, 132} tii[8,31] := {53, 158} tii[8,32] := {29} tii[8,33] := {50, 153} tii[8,34] := {115} tii[8,35] := {65, 165} tii[8,36] := {59} tii[8,37] := {79} tii[8,38] := {70, 166} tii[8,39] := {124, 149} tii[8,40] := {86, 171} tii[8,41] := {134} tii[8,42] := {119} tii[8,43] := {54, 126} tii[8,44] := {32, 92} tii[8,45] := {51, 117} tii[8,46] := {46, 111} tii[8,47] := {56} tii[8,48] := {106, 160} tii[8,49] := {71, 141} tii[8,50] := {67, 135} tii[8,51] := {78} tii[8,52] := {42} tii[8,53] := {87, 150} tii[8,54] := {99} tii[8,55] := {90, 156} tii[8,56] := {143, 162} tii[8,57] := {61, 91} tii[8,58] := {57} tii[8,59] := {107, 163} tii[8,60] := {152} tii[8,61] := {88, 116} tii[8,62] := {120} tii[8,63] := {138} tii[8,64] := {110, 167} tii[8,65] := {128, 172} tii[8,66] := {154} tii[8,67] := {2, 47} tii[8,68] := {5, 68} tii[8,69] := {4, 62} tii[8,70] := {7, 74} tii[8,71] := {10, 89} tii[8,72] := {14, 97} tii[8,73] := {3, 58} tii[8,74] := {24, 121} tii[8,75] := {28} tii[8,76] := {20, 112} tii[8,77] := {9, 82} tii[8,78] := {8, 76} tii[8,79] := {43} tii[8,80] := {18} tii[8,81] := {34, 136} tii[8,82] := {17, 109} tii[8,83] := {36, 140} tii[8,84] := {60} tii[8,85] := {11} tii[8,86] := {80} tii[8,87] := {15, 102} tii[8,88] := {45, 72} tii[8,89] := {41} tii[8,90] := {13, 94} tii[8,91] := {27, 129} tii[8,92] := {66, 95} tii[8,93] := {19} tii[8,94] := {52, 155} tii[8,95] := {98} tii[8,96] := {100} tii[8,97] := {25, 81} tii[8,98] := {22, 75} tii[8,99] := {39, 108} tii[8,100] := {30} tii[8,101] := {69, 139} tii[8,102] := {122} tii[8,103] := {0, 33} tii[8,104] := {1, 44} tii[8,105] := {6} cell#188 , |C| = 189 special orbit = [4, 2, 2, 2, 2, 2] special rep = [[2, 1, 1], [1, 1, 1]] , dim = 105 cell rep = phi[[2, 1, 1, 1],[1, 1]]+phi[[2, 1, 1],[1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 84*X^2+21*X TII subcells: tii[13,1] := {56, 183} tii[13,2] := {100, 185} tii[13,3] := {112, 159} tii[13,4] := {81, 187} tii[13,5] := {126, 188} tii[13,6] := {106, 180} tii[13,7] := {86, 138} tii[13,8] := {151, 182} tii[13,9] := {123, 167} tii[13,10] := {156} tii[13,11] := {168, 186} tii[13,12] := {179} tii[13,13] := {99, 152} tii[13,14] := {122, 163} tii[13,15] := {143} tii[13,16] := {8, 70} tii[13,17] := {11, 61} tii[13,18] := {37, 172} tii[13,19] := {17, 93} tii[13,20] := {72, 176} tii[13,21] := {21, 87} tii[13,22] := {26, 157} tii[13,23] := {27, 109} tii[13,24] := {36, 142} tii[13,25] := {64, 160} tii[13,26] := {33, 111} tii[13,27] := {45, 141} tii[13,28] := {79, 165} tii[13,29] := {28, 118} tii[13,30] := {96, 145} tii[13,31] := {34, 62} tii[13,32] := {40, 175} tii[13,33] := {41, 136} tii[13,34] := {125, 170} tii[13,35] := {130} tii[13,36] := {54, 162} tii[13,37] := {57, 158} tii[13,38] := {88, 139} tii[13,39] := {148, 178} tii[13,40] := {50, 85} tii[13,41] := {71, 121} tii[13,42] := {164} tii[13,43] := {66, 115} tii[13,44] := {103} tii[13,45] := {74, 177} tii[13,46] := {120} tii[13,47] := {69, 110} tii[13,48] := {135, 171} tii[13,49] := {89, 140} tii[13,50] := {154} tii[13,51] := {132} tii[13,52] := {43, 134} tii[13,53] := {59, 181} tii[13,54] := {20, 42} tii[13,55] := {60, 149} tii[13,56] := {76, 174} tii[13,57] := {82, 169} tii[13,58] := {98, 147} tii[13,59] := {63, 113} tii[13,60] := {32, 58} tii[13,61] := {131} tii[13,62] := {102, 184} tii[13,63] := {44, 90} tii[13,64] := {146} tii[13,65] := {49, 83} tii[13,66] := {108, 153} tii[13,67] := {107, 150} tii[13,68] := {65, 114} tii[13,69] := {128} tii[13,70] := {127, 173} tii[13,71] := {166} tii[13,72] := {104} tii[13,73] := {55, 97} tii[13,74] := {73, 129} tii[13,75] := {119} tii[13,76] := {0, 9} tii[13,77] := {4, 51} tii[13,78] := {1, 19} tii[13,79] := {3, 35} tii[13,80] := {2, 24} tii[13,81] := {15, 133} tii[13,82] := {16, 84} tii[13,83] := {7, 46} tii[13,84] := {23, 116} tii[13,85] := {18, 92} tii[13,86] := {38, 137} tii[13,87] := {6, 39} tii[13,88] := {52, 95} tii[13,89] := {75} tii[13,90] := {53, 161} tii[13,91] := {13, 67} tii[13,92] := {31, 117} tii[13,93] := {94} tii[13,94] := {78} tii[13,95] := {10, 25} tii[13,96] := {80, 124} tii[13,97] := {22, 47} tii[13,98] := {101, 155} tii[13,99] := {48, 91} tii[13,100] := {144} tii[13,101] := {105} tii[13,102] := {5, 14} tii[13,103] := {12, 29} tii[13,104] := {30, 68} tii[13,105] := {77} cell#189 , |C| = 175 special orbit = [3, 3, 2, 2, 2, 2] special rep = [[1, 1, 1], [2, 1, 1]] , dim = 105 cell rep = phi[[1, 1, 1, 1],[2, 1]]+phi[[1, 1, 1],[2, 1, 1]] TII depth = 3 TII multiplicity polynomial = 70*X^2+35*X TII subcells: tii[8,1] := {63, 159} tii[8,2] := {103, 173} tii[8,3] := {84, 146} tii[8,4] := {125, 168} tii[8,5] := {104, 131} tii[8,6] := {73} tii[8,7] := {96} tii[8,8] := {123, 148} tii[8,9] := {133} tii[8,10] := {144, 174} tii[8,11] := {157, 169} tii[8,12] := {164} tii[8,13] := {16, 105} tii[8,14] := {48, 147} tii[8,15] := {26, 127} tii[8,16] := {12, 93} tii[8,17] := {23, 118} tii[8,18] := {64, 161} tii[8,19] := {37, 142} tii[8,20] := {49, 151} tii[8,21] := {55} tii[8,22] := {38, 145} tii[8,23] := {83, 114} tii[8,24] := {21, 113} tii[8,25] := {77} tii[8,26] := {35, 137} tii[8,27] := {31, 130} tii[8,28] := {85, 170} tii[8,29] := {40} tii[8,30] := {101, 132} tii[8,31] := {53, 158} tii[8,32] := {29} tii[8,33] := {50, 153} tii[8,34] := {115} tii[8,35] := {65, 165} tii[8,36] := {59} tii[8,37] := {79} tii[8,38] := {70, 166} tii[8,39] := {124, 149} tii[8,40] := {86, 171} tii[8,41] := {134} tii[8,42] := {119} tii[8,43] := {54, 126} tii[8,44] := {32, 92} tii[8,45] := {51, 117} tii[8,46] := {46, 111} tii[8,47] := {56} tii[8,48] := {106, 160} tii[8,49] := {71, 141} tii[8,50] := {67, 135} tii[8,51] := {78} tii[8,52] := {42} tii[8,53] := {87, 150} tii[8,54] := {99} tii[8,55] := {90, 156} tii[8,56] := {143, 162} tii[8,57] := {61, 91} tii[8,58] := {57} tii[8,59] := {107, 163} tii[8,60] := {152} tii[8,61] := {88, 116} tii[8,62] := {120} tii[8,63] := {138} tii[8,64] := {110, 167} tii[8,65] := {128, 172} tii[8,66] := {154} tii[8,67] := {2, 47} tii[8,68] := {5, 68} tii[8,69] := {4, 62} tii[8,70] := {7, 74} tii[8,71] := {10, 89} tii[8,72] := {14, 97} tii[8,73] := {3, 58} tii[8,74] := {24, 121} tii[8,75] := {28} tii[8,76] := {20, 112} tii[8,77] := {9, 82} tii[8,78] := {8, 76} tii[8,79] := {43} tii[8,80] := {18} tii[8,81] := {34, 136} tii[8,82] := {17, 109} tii[8,83] := {36, 140} tii[8,84] := {60} tii[8,85] := {11} tii[8,86] := {80} tii[8,87] := {15, 102} tii[8,88] := {45, 72} tii[8,89] := {41} tii[8,90] := {13, 94} tii[8,91] := {27, 129} tii[8,92] := {66, 95} tii[8,93] := {19} tii[8,94] := {52, 155} tii[8,95] := {98} tii[8,96] := {100} tii[8,97] := {25, 81} tii[8,98] := {22, 75} tii[8,99] := {39, 108} tii[8,100] := {30} tii[8,101] := {69, 139} tii[8,102] := {122} tii[8,103] := {0, 33} tii[8,104] := {1, 44} tii[8,105] := {6} cell#190 , |C| = 35 special orbit = [2, 2, 2, 2, 2, 2, 2] special rep = [[1, 1, 1, 1], [1, 1, 1]] , dim = 35 cell rep = phi[[1, 1, 1, 1],[1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 35*X TII subcells: tii[5,1] := {34} tii[5,2] := {11} tii[5,3] := {31} tii[5,4] := {16} tii[5,5] := {27} tii[5,6] := {20} tii[5,7] := {23} tii[5,8] := {21} tii[5,9] := {32} tii[5,10] := {26} tii[5,11] := {29} tii[5,12] := {30} tii[5,13] := {33} tii[5,14] := {2} tii[5,15] := {7} tii[5,16] := {4} tii[5,17] := {5} tii[5,18] := {22} tii[5,19] := {6} tii[5,20] := {15} tii[5,21] := {8} tii[5,22] := {18} tii[5,23] := {14} tii[5,24] := {25} tii[5,25] := {9} tii[5,26] := {28} tii[5,27] := {12} tii[5,28] := {19} tii[5,29] := {13} tii[5,30] := {17} tii[5,31] := {24} tii[5,32] := {0} tii[5,33] := {1} tii[5,34] := {3} tii[5,35] := {10} cell#191 , |C| = 35 special orbit = [2, 2, 2, 2, 2, 2, 2] special rep = [[1, 1, 1, 1], [1, 1, 1]] , dim = 35 cell rep = phi[[1, 1, 1, 1],[1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 35*X TII subcells: tii[5,1] := {34} tii[5,2] := {11} tii[5,3] := {31} tii[5,4] := {16} tii[5,5] := {27} tii[5,6] := {20} tii[5,7] := {23} tii[5,8] := {21} tii[5,9] := {32} tii[5,10] := {26} tii[5,11] := {29} tii[5,12] := {30} tii[5,13] := {33} tii[5,14] := {2} tii[5,15] := {7} tii[5,16] := {4} tii[5,17] := {5} tii[5,18] := {22} tii[5,19] := {6} tii[5,20] := {15} tii[5,21] := {8} tii[5,22] := {18} tii[5,23] := {14} tii[5,24] := {25} tii[5,25] := {9} tii[5,26] := {28} tii[5,27] := {12} tii[5,28] := {19} tii[5,29] := {13} tii[5,30] := {17} tii[5,31] := {24} tii[5,32] := {0} tii[5,33] := {1} tii[5,34] := {3} tii[5,35] := {10} cell#192 , |C| = 35 special orbit = [2, 2, 2, 2, 2, 2, 2] special rep = [[1, 1, 1, 1], [1, 1, 1]] , dim = 35 cell rep = phi[[1, 1, 1, 1],[1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 35*X TII subcells: tii[5,1] := {34} tii[5,2] := {12} tii[5,3] := {33} tii[5,4] := {17} tii[5,5] := {29} tii[5,6] := {21} tii[5,7] := {25} tii[5,8] := {18} tii[5,9] := {31} tii[5,10] := {23} tii[5,11] := {27} tii[5,12] := {28} tii[5,13] := {32} tii[5,14] := {2} tii[5,15] := {7} tii[5,16] := {4} tii[5,17] := {5} tii[5,18] := {24} tii[5,19] := {6} tii[5,20] := {16} tii[5,21] := {8} tii[5,22] := {19} tii[5,23] := {15} tii[5,24] := {26} tii[5,25] := {9} tii[5,26] := {30} tii[5,27] := {13} tii[5,28] := {20} tii[5,29] := {11} tii[5,30] := {14} tii[5,31] := {22} tii[5,32] := {0} tii[5,33] := {1} tii[5,34] := {3} tii[5,35] := {10} cell#193 , |C| = 56 special orbit = [2, 2, 2, 2, 2, 2, 1, 1] special rep = [[1, 1, 1], [1, 1, 1, 1]] , dim = 35 cell rep = phi[[1, 1, 1, 1, 1],[1, 1]]+phi[[1, 1, 1],[1, 1, 1, 1]] TII depth = 2 TII multiplicity polynomial = 21*X^2+14*X TII subcells: tii[4,1] := {22, 55} tii[4,2] := {31, 52} tii[4,3] := {38, 48} tii[4,4] := {43} tii[4,5] := {21, 47} tii[4,6] := {29, 40} tii[4,7] := {34} tii[4,8] := {20, 33} tii[4,9] := {26} tii[4,10] := {18} tii[4,11] := {2, 39} tii[4,12] := {13, 53} tii[4,13] := {5, 46} tii[4,14] := {7, 50} tii[4,15] := {9, 51} tii[4,16] := {30, 41} tii[4,17] := {15, 54} tii[4,18] := {35} tii[4,19] := {28} tii[4,20] := {12, 25} tii[4,21] := {16, 45} tii[4,22] := {17} tii[4,23] := {23, 49} tii[4,24] := {10} tii[4,25] := {36} tii[4,26] := {6} tii[4,27] := {8, 37} tii[4,28] := {14, 42} tii[4,29] := {27} tii[4,30] := {11} tii[4,31] := {0, 24} tii[4,32] := {1, 32} tii[4,33] := {4, 44} tii[4,34] := {19} tii[4,35] := {3} cell#194 , |C| = 35 special orbit = [2, 2, 2, 2, 2, 2, 2] special rep = [[1, 1, 1, 1], [1, 1, 1]] , dim = 35 cell rep = phi[[1, 1, 1, 1],[1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 35*X TII subcells: tii[5,1] := {34} tii[5,2] := {12} tii[5,3] := {33} tii[5,4] := {17} tii[5,5] := {29} tii[5,6] := {21} tii[5,7] := {25} tii[5,8] := {18} tii[5,9] := {31} tii[5,10] := {23} tii[5,11] := {27} tii[5,12] := {28} tii[5,13] := {32} tii[5,14] := {2} tii[5,15] := {7} tii[5,16] := {4} tii[5,17] := {5} tii[5,18] := {24} tii[5,19] := {6} tii[5,20] := {16} tii[5,21] := {8} tii[5,22] := {19} tii[5,23] := {15} tii[5,24] := {26} tii[5,25] := {9} tii[5,26] := {30} tii[5,27] := {13} tii[5,28] := {20} tii[5,29] := {11} tii[5,30] := {14} tii[5,31] := {22} tii[5,32] := {0} tii[5,33] := {1} tii[5,34] := {3} tii[5,35] := {10} cell#195 , |C| = 56 special orbit = [2, 2, 2, 2, 2, 2, 1, 1] special rep = [[1, 1, 1], [1, 1, 1, 1]] , dim = 35 cell rep = phi[[1, 1, 1, 1, 1],[1, 1]]+phi[[1, 1, 1],[1, 1, 1, 1]] TII depth = 2 TII multiplicity polynomial = 21*X^2+14*X TII subcells: tii[4,1] := {22, 55} tii[4,2] := {31, 52} tii[4,3] := {38, 48} tii[4,4] := {43} tii[4,5] := {21, 47} tii[4,6] := {29, 40} tii[4,7] := {34} tii[4,8] := {20, 33} tii[4,9] := {26} tii[4,10] := {18} tii[4,11] := {2, 39} tii[4,12] := {13, 53} tii[4,13] := {5, 46} tii[4,14] := {7, 50} tii[4,15] := {9, 51} tii[4,16] := {30, 41} tii[4,17] := {15, 54} tii[4,18] := {35} tii[4,19] := {28} tii[4,20] := {12, 25} tii[4,21] := {16, 45} tii[4,22] := {17} tii[4,23] := {23, 49} tii[4,24] := {10} tii[4,25] := {36} tii[4,26] := {6} tii[4,27] := {8, 37} tii[4,28] := {14, 42} tii[4,29] := {27} tii[4,30] := {11} tii[4,31] := {0, 24} tii[4,32] := {1, 32} tii[4,33] := {4, 44} tii[4,34] := {19} tii[4,35] := {3} cell#196 , |C| = 427 special orbit = [4, 4, 2, 2, 1, 1] special rep = [[2, 1], [2, 1, 1]] , dim = 210 cell rep = phi[[2, 2, 1, 1],[1]]+phi[[2, 1, 1, 1],[2]]+phi[[2, 2],[1, 1, 1]]+phi[[2, 1],[2, 1, 1]] TII depth = 3 TII multiplicity polynomial = 49*X^4+70*X^2+91*X TII subcells: tii[15,1] := {168, 305, 360, 413} tii[15,2] := {333, 334} tii[15,3] := {273, 367} tii[15,4] := {122, 253, 390, 423} tii[15,5] := {69, 156, 398, 399} tii[15,6] := {282, 283} tii[15,7] := {357} tii[15,8] := {391} tii[15,9] := {167, 275, 409, 426} tii[15,10] := {335, 336} tii[15,11] := {146, 229, 420, 421} tii[15,12] := {265} tii[15,13] := {181, 425} tii[15,14] := {319} tii[15,15] := {358, 359} tii[15,16] := {387} tii[15,17] := {252, 350} tii[15,18] := {82, 199, 377, 418} tii[15,19] := {230, 231} tii[15,20] := {37, 108, 384, 385} tii[15,21] := {331} tii[15,22] := {381} tii[15,23] := {198, 306} tii[15,24] := {121, 220, 402, 424} tii[15,25] := {17, 70, 352, 353} tii[15,26] := {162, 258} tii[15,27] := {284, 285} tii[15,28] := {99, 179, 415, 416} tii[15,29] := {213} tii[15,30] := {280} tii[15,31] := {207} tii[15,32] := {134, 422} tii[15,33] := {268} tii[15,34] := {345} tii[15,35] := {34, 87, 374, 375} tii[15,36] := {228} tii[15,37] := {316, 317} tii[15,38] := {184} tii[15,39] := {56, 394} tii[15,40] := {356} tii[15,41] := {299} tii[15,42] := {347} tii[15,43] := {102, 200, 376, 414} tii[15,44] := {260, 261} tii[15,45] := {79, 154, 395, 396} tii[15,46] := {176} tii[15,47] := {112, 410} tii[15,48] := {243} tii[15,49] := {48, 110, 372, 373} tii[15,50] := {128} tii[15,51] := {288, 289} tii[15,52] := {92} tii[15,53] := {325} tii[15,54] := {74, 393} tii[15,55] := {191} tii[15,56] := {44, 382} tii[15,57] := {246} tii[15,58] := {233, 234} tii[15,59] := {272} tii[15,60] := {248} tii[15,61] := {62, 147, 150, 219} tii[15,62] := {106, 205, 271, 369} tii[15,63] := {127, 226} tii[15,64] := {190, 297} tii[15,65] := {100, 101, 197, 274} tii[15,66] := {218, 327} tii[15,67] := {130, 259, 321, 397} tii[15,68] := {61, 151, 221, 328} tii[15,69] := {38, 109, 370, 371} tii[15,70] := {174, 175} tii[15,71] := {315} tii[15,72] := {196, 281} tii[15,73] := {88, 208, 296, 378} tii[15,74] := {241, 242} tii[15,75] := {361} tii[15,76] := {235} tii[15,77] := {224, 225} tii[15,78] := {266} tii[15,79] := {66, 132, 388, 389} tii[15,80] := {294, 295} tii[15,81] := {216} tii[15,82] := {95, 406} tii[15,83] := {320} tii[15,84] := {363} tii[15,85] := {148, 254} tii[15,86] := {63, 64, 251, 326} tii[15,87] := {250, 332} tii[15,88] := {86, 204, 362, 417} tii[15,89] := {5, 39, 310, 311} tii[15,90] := {117, 203} tii[15,91] := {31, 104, 276, 368} tii[15,92] := {227} tii[15,93] := {125, 126} tii[15,94] := {290} tii[15,95] := {158} tii[15,96] := {52, 160, 344, 403} tii[15,97] := {298} tii[15,98] := {188, 189} tii[15,99] := {177} tii[15,100] := {103, 180, 407, 408} tii[15,101] := {24, 68, 329, 330} tii[15,102] := {171, 172} tii[15,103] := {214} tii[15,104] := {15, 51, 339, 340} tii[15,105] := {80, 157} tii[15,106] := {318} tii[15,107] := {139, 419} tii[15,108] := {138} tii[15,109] := {239, 240} tii[15,110] := {27, 366} tii[15,111] := {244} tii[15,112] := {41, 115, 379, 380} tii[15,113] := {165} tii[15,114] := {269} tii[15,115] := {113} tii[15,116] := {300} tii[15,117] := {96, 411} tii[15,118] := {78} tii[15,119] := {322} tii[15,120] := {129} tii[15,121] := {11, 40, 286, 287} tii[15,122] := {222, 223} tii[15,123] := {215} tii[15,124] := {93} tii[15,125] := {292, 293} tii[15,126] := {192} tii[15,127] := {20, 324} tii[15,128] := {7, 301} tii[15,129] := {247} tii[15,130] := {364} tii[15,131] := {60} tii[15,132] := {194} tii[15,133] := {32, 33, 212, 304} tii[15,134] := {50, 155, 346, 405} tii[15,135] := {211, 309} tii[15,136] := {14, 67, 255, 351} tii[15,137] := {83, 84} tii[15,138] := {26, 114, 314, 386} tii[15,139] := {262} tii[15,140] := {140, 141} tii[15,141] := {123, 124} tii[15,142] := {118, 206} tii[15,143] := {9, 35, 307, 308} tii[15,144] := {163} tii[15,145] := {65, 131, 400, 401} tii[15,146] := {291} tii[15,147] := {186, 187} tii[15,148] := {159} tii[15,149] := {94, 412} tii[15,150] := {18, 76, 354, 355} tii[15,151] := {119} tii[15,152] := {217} tii[15,153] := {116} tii[15,154] := {57, 404} tii[15,155] := {270} tii[15,156] := {25, 71, 337, 338} tii[15,157] := {3, 16, 256, 257} tii[15,158] := {85} tii[15,159] := {169, 170} tii[15,160] := {236} tii[15,161] := {164} tii[15,162] := {42, 365} tii[15,163] := {55} tii[15,164] := {6, 43, 312, 313} tii[15,165] := {237, 238} tii[15,166] := {142} tii[15,167] := {22, 348} tii[15,168] := {144} tii[15,169] := {28, 383} tii[15,170] := {323} tii[15,171] := {193} tii[15,172] := {29} tii[15,173] := {8, 303} tii[15,174] := {145} tii[15,175] := {152, 153} tii[15,176] := {137} tii[15,177] := {209, 210} tii[15,178] := {58} tii[15,179] := {302} tii[15,180] := {195} tii[15,181] := {47, 98, 107, 178} tii[15,182] := {73, 133} tii[15,183] := {46, 105, 173, 279} tii[15,184] := {149, 232} tii[15,185] := {89, 182} tii[15,186] := {72, 161, 245, 343} tii[15,187] := {185} tii[15,188] := {143} tii[15,189] := {10, 36, 277, 278} tii[15,190] := {49, 111} tii[15,191] := {135, 136} tii[15,192] := {267} tii[15,193] := {19, 77, 341, 342} tii[15,194] := {75} tii[15,195] := {166} tii[15,196] := {45} tii[15,197] := {59, 392} tii[15,198] := {23} tii[15,199] := {0, 4, 201, 202} tii[15,200] := {183} tii[15,201] := {90, 91} tii[15,202] := {1, 21, 263, 264} tii[15,203] := {97} tii[15,204] := {120} tii[15,205] := {12, 349} tii[15,206] := {30} tii[15,207] := {2, 249} tii[15,208] := {53, 54} tii[15,209] := {81} tii[15,210] := {13} cell#197 , |C| = 189 special orbit = [4, 2, 2, 2, 2, 2] special rep = [[2, 1, 1], [1, 1, 1]] , dim = 105 cell rep = phi[[2, 1, 1, 1],[1, 1]]+phi[[2, 1, 1],[1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 84*X^2+21*X TII subcells: tii[13,1] := {100, 188} tii[13,2] := {92, 180} tii[13,3] := {56, 158} tii[13,4] := {121, 187} tii[13,5] := {115, 174} tii[13,6] := {140, 184} tii[13,7] := {39, 141} tii[13,8] := {93, 162} tii[13,9] := {155, 179} tii[13,10] := {170} tii[13,11] := {113, 152} tii[13,12] := {138} tii[13,13] := {55, 125} tii[13,14] := {70, 110} tii[13,15] := {96} tii[13,16] := {16, 134} tii[13,17] := {17, 128} tii[13,18] := {80, 186} tii[13,19] := {23, 153} tii[13,20] := {73, 171} tii[13,21] := {20, 105} tii[13,22] := {63, 182} tii[13,23] := {34, 164} tii[13,24] := {48, 177} tii[13,25] := {57, 161} tii[13,26] := {28, 126} tii[13,27] := {43, 148} tii[13,28] := {120, 176} tii[13,29] := {33, 163} tii[13,30] := {135, 168} tii[13,31] := {13, 86} tii[13,32] := {81, 185} tii[13,33] := {46, 172} tii[13,34] := {72, 145} tii[13,35] := {156} tii[13,36] := {64, 181} tii[13,37] := {52, 159} tii[13,38] := {40, 144} tii[13,39] := {90, 132} tii[13,40] := {19, 103} tii[13,41] := {112, 151} tii[13,42] := {116} tii[13,43] := {31, 129} tii[13,44] := {137} tii[13,45] := {74, 173} tii[13,46] := {118} tii[13,47] := {27, 122} tii[13,48] := {71, 111} tii[13,49] := {42, 143} tii[13,50] := {97} tii[13,51] := {78} tii[13,52] := {45, 154} tii[13,53] := {101, 183} tii[13,54] := {8, 66} tii[13,55] := {62, 165} tii[13,56] := {82, 178} tii[13,57] := {69, 146} tii[13,58] := {136, 169} tii[13,59] := {29, 124} tii[13,60] := {12, 84} tii[13,61] := {157} tii[13,62] := {95, 166} tii[13,63] := {21, 107} tii[13,64] := {139} tii[13,65] := {18, 102} tii[13,66] := {54, 89} tii[13,67] := {53, 127} tii[13,68] := {30, 123} tii[13,69] := {76} tii[13,70] := {75, 149} tii[13,71] := {119} tii[13,72] := {60} tii[13,73] := {26, 85} tii[13,74] := {41, 108} tii[13,75] := {77} tii[13,76] := {0, 51} tii[13,77] := {10, 114} tii[13,78] := {2, 68} tii[13,79] := {6, 94} tii[13,80] := {5, 83} tii[13,81] := {47, 175} tii[13,82] := {24, 147} tii[13,83] := {11, 106} tii[13,84] := {35, 167} tii[13,85] := {25, 150} tii[13,86] := {38, 142} tii[13,87] := {7, 65} tii[13,88] := {91, 133} tii[13,89] := {117} tii[13,90] := {59, 160} tii[13,91] := {14, 87} tii[13,92] := {32, 131} tii[13,93] := {99} tii[13,94] := {79} tii[13,95] := {3, 49} tii[13,96] := {37, 104} tii[13,97] := {9, 67} tii[13,98] := {58, 130} tii[13,99] := {22, 109} tii[13,100] := {98} tii[13,101] := {61} tii[13,102] := {1, 36} tii[13,103] := {4, 50} tii[13,104] := {15, 88} tii[13,105] := {44} cell#198 , |C| = 427 special orbit = [4, 4, 2, 2, 1, 1] special rep = [[2, 1], [2, 1, 1]] , dim = 210 cell rep = phi[[2, 2, 1, 1],[1]]+phi[[2, 1, 1, 1],[2]]+phi[[2, 2],[1, 1, 1]]+phi[[2, 1],[2, 1, 1]] TII depth = 3 TII multiplicity polynomial = 49*X^4+70*X^2+91*X TII subcells: tii[15,1] := {168, 305, 360, 413} tii[15,2] := {333, 334} tii[15,3] := {273, 367} tii[15,4] := {122, 253, 390, 423} tii[15,5] := {69, 156, 398, 399} tii[15,6] := {282, 283} tii[15,7] := {357} tii[15,8] := {391} tii[15,9] := {167, 275, 409, 426} tii[15,10] := {335, 336} tii[15,11] := {146, 229, 420, 421} tii[15,12] := {265} tii[15,13] := {181, 425} tii[15,14] := {319} tii[15,15] := {358, 359} tii[15,16] := {387} tii[15,17] := {252, 350} tii[15,18] := {82, 199, 377, 418} tii[15,19] := {230, 231} tii[15,20] := {37, 108, 384, 385} tii[15,21] := {331} tii[15,22] := {381} tii[15,23] := {198, 306} tii[15,24] := {121, 220, 402, 424} tii[15,25] := {17, 70, 352, 353} tii[15,26] := {162, 258} tii[15,27] := {284, 285} tii[15,28] := {99, 179, 415, 416} tii[15,29] := {213} tii[15,30] := {280} tii[15,31] := {207} tii[15,32] := {134, 422} tii[15,33] := {268} tii[15,34] := {345} tii[15,35] := {34, 87, 374, 375} tii[15,36] := {228} tii[15,37] := {316, 317} tii[15,38] := {184} tii[15,39] := {56, 394} tii[15,40] := {356} tii[15,41] := {299} tii[15,42] := {347} tii[15,43] := {102, 200, 376, 414} tii[15,44] := {260, 261} tii[15,45] := {79, 154, 395, 396} tii[15,46] := {176} tii[15,47] := {112, 410} tii[15,48] := {243} tii[15,49] := {48, 110, 372, 373} tii[15,50] := {128} tii[15,51] := {288, 289} tii[15,52] := {92} tii[15,53] := {325} tii[15,54] := {74, 393} tii[15,55] := {191} tii[15,56] := {44, 382} tii[15,57] := {246} tii[15,58] := {233, 234} tii[15,59] := {272} tii[15,60] := {248} tii[15,61] := {62, 147, 150, 219} tii[15,62] := {106, 205, 271, 369} tii[15,63] := {127, 226} tii[15,64] := {190, 297} tii[15,65] := {100, 101, 197, 274} tii[15,66] := {218, 327} tii[15,67] := {130, 259, 321, 397} tii[15,68] := {61, 151, 221, 328} tii[15,69] := {38, 109, 370, 371} tii[15,70] := {174, 175} tii[15,71] := {315} tii[15,72] := {196, 281} tii[15,73] := {88, 208, 296, 378} tii[15,74] := {241, 242} tii[15,75] := {361} tii[15,76] := {235} tii[15,77] := {224, 225} tii[15,78] := {266} tii[15,79] := {66, 132, 388, 389} tii[15,80] := {294, 295} tii[15,81] := {216} tii[15,82] := {95, 406} tii[15,83] := {320} tii[15,84] := {363} tii[15,85] := {148, 254} tii[15,86] := {63, 64, 251, 326} tii[15,87] := {250, 332} tii[15,88] := {86, 204, 362, 417} tii[15,89] := {5, 39, 310, 311} tii[15,90] := {117, 203} tii[15,91] := {31, 104, 276, 368} tii[15,92] := {227} tii[15,93] := {125, 126} tii[15,94] := {290} tii[15,95] := {158} tii[15,96] := {52, 160, 344, 403} tii[15,97] := {298} tii[15,98] := {188, 189} tii[15,99] := {177} tii[15,100] := {103, 180, 407, 408} tii[15,101] := {24, 68, 329, 330} tii[15,102] := {171, 172} tii[15,103] := {214} tii[15,104] := {15, 51, 339, 340} tii[15,105] := {80, 157} tii[15,106] := {318} tii[15,107] := {139, 419} tii[15,108] := {138} tii[15,109] := {239, 240} tii[15,110] := {27, 366} tii[15,111] := {244} tii[15,112] := {41, 115, 379, 380} tii[15,113] := {165} tii[15,114] := {269} tii[15,115] := {113} tii[15,116] := {300} tii[15,117] := {96, 411} tii[15,118] := {78} tii[15,119] := {322} tii[15,120] := {129} tii[15,121] := {11, 40, 286, 287} tii[15,122] := {222, 223} tii[15,123] := {215} tii[15,124] := {93} tii[15,125] := {292, 293} tii[15,126] := {192} tii[15,127] := {20, 324} tii[15,128] := {7, 301} tii[15,129] := {247} tii[15,130] := {364} tii[15,131] := {60} tii[15,132] := {194} tii[15,133] := {32, 33, 212, 304} tii[15,134] := {50, 155, 346, 405} tii[15,135] := {211, 309} tii[15,136] := {14, 67, 255, 351} tii[15,137] := {83, 84} tii[15,138] := {26, 114, 314, 386} tii[15,139] := {262} tii[15,140] := {140, 141} tii[15,141] := {123, 124} tii[15,142] := {118, 206} tii[15,143] := {9, 35, 307, 308} tii[15,144] := {163} tii[15,145] := {65, 131, 400, 401} tii[15,146] := {291} tii[15,147] := {186, 187} tii[15,148] := {159} tii[15,149] := {94, 412} tii[15,150] := {18, 76, 354, 355} tii[15,151] := {119} tii[15,152] := {217} tii[15,153] := {116} tii[15,154] := {57, 404} tii[15,155] := {270} tii[15,156] := {25, 71, 337, 338} tii[15,157] := {3, 16, 256, 257} tii[15,158] := {85} tii[15,159] := {169, 170} tii[15,160] := {236} tii[15,161] := {164} tii[15,162] := {42, 365} tii[15,163] := {55} tii[15,164] := {6, 43, 312, 313} tii[15,165] := {237, 238} tii[15,166] := {142} tii[15,167] := {22, 348} tii[15,168] := {144} tii[15,169] := {28, 383} tii[15,170] := {323} tii[15,171] := {193} tii[15,172] := {29} tii[15,173] := {8, 303} tii[15,174] := {145} tii[15,175] := {152, 153} tii[15,176] := {137} tii[15,177] := {209, 210} tii[15,178] := {58} tii[15,179] := {302} tii[15,180] := {195} tii[15,181] := {47, 98, 107, 178} tii[15,182] := {73, 133} tii[15,183] := {46, 105, 173, 279} tii[15,184] := {149, 232} tii[15,185] := {89, 182} tii[15,186] := {72, 161, 245, 343} tii[15,187] := {185} tii[15,188] := {143} tii[15,189] := {10, 36, 277, 278} tii[15,190] := {49, 111} tii[15,191] := {135, 136} tii[15,192] := {267} tii[15,193] := {19, 77, 341, 342} tii[15,194] := {75} tii[15,195] := {166} tii[15,196] := {45} tii[15,197] := {59, 392} tii[15,198] := {23} tii[15,199] := {0, 4, 201, 202} tii[15,200] := {183} tii[15,201] := {90, 91} tii[15,202] := {1, 21, 263, 264} tii[15,203] := {97} tii[15,204] := {120} tii[15,205] := {12, 349} tii[15,206] := {30} tii[15,207] := {2, 249} tii[15,208] := {53, 54} tii[15,209] := {81} tii[15,210] := {13} cell#199 , |C| = 189 special orbit = [4, 2, 2, 2, 2, 2] special rep = [[2, 1, 1], [1, 1, 1]] , dim = 105 cell rep = phi[[2, 1, 1, 1],[1, 1]]+phi[[2, 1, 1],[1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 84*X^2+21*X TII subcells: tii[13,1] := {100, 188} tii[13,2] := {92, 180} tii[13,3] := {56, 158} tii[13,4] := {121, 187} tii[13,5] := {115, 174} tii[13,6] := {140, 184} tii[13,7] := {39, 141} tii[13,8] := {93, 162} tii[13,9] := {155, 179} tii[13,10] := {170} tii[13,11] := {113, 152} tii[13,12] := {138} tii[13,13] := {55, 125} tii[13,14] := {70, 110} tii[13,15] := {96} tii[13,16] := {16, 134} tii[13,17] := {17, 128} tii[13,18] := {80, 186} tii[13,19] := {23, 153} tii[13,20] := {73, 171} tii[13,21] := {20, 105} tii[13,22] := {63, 182} tii[13,23] := {34, 164} tii[13,24] := {48, 177} tii[13,25] := {57, 161} tii[13,26] := {28, 126} tii[13,27] := {43, 148} tii[13,28] := {120, 176} tii[13,29] := {33, 163} tii[13,30] := {135, 168} tii[13,31] := {13, 86} tii[13,32] := {81, 185} tii[13,33] := {46, 172} tii[13,34] := {72, 145} tii[13,35] := {156} tii[13,36] := {64, 181} tii[13,37] := {52, 159} tii[13,38] := {40, 144} tii[13,39] := {90, 132} tii[13,40] := {19, 103} tii[13,41] := {112, 151} tii[13,42] := {116} tii[13,43] := {31, 129} tii[13,44] := {137} tii[13,45] := {74, 173} tii[13,46] := {118} tii[13,47] := {27, 122} tii[13,48] := {71, 111} tii[13,49] := {42, 143} tii[13,50] := {97} tii[13,51] := {78} tii[13,52] := {45, 154} tii[13,53] := {101, 183} tii[13,54] := {8, 66} tii[13,55] := {62, 165} tii[13,56] := {82, 178} tii[13,57] := {69, 146} tii[13,58] := {136, 169} tii[13,59] := {29, 124} tii[13,60] := {12, 84} tii[13,61] := {157} tii[13,62] := {95, 166} tii[13,63] := {21, 107} tii[13,64] := {139} tii[13,65] := {18, 102} tii[13,66] := {54, 89} tii[13,67] := {53, 127} tii[13,68] := {30, 123} tii[13,69] := {76} tii[13,70] := {75, 149} tii[13,71] := {119} tii[13,72] := {60} tii[13,73] := {26, 85} tii[13,74] := {41, 108} tii[13,75] := {77} tii[13,76] := {0, 51} tii[13,77] := {10, 114} tii[13,78] := {2, 68} tii[13,79] := {6, 94} tii[13,80] := {5, 83} tii[13,81] := {47, 175} tii[13,82] := {24, 147} tii[13,83] := {11, 106} tii[13,84] := {35, 167} tii[13,85] := {25, 150} tii[13,86] := {38, 142} tii[13,87] := {7, 65} tii[13,88] := {91, 133} tii[13,89] := {117} tii[13,90] := {59, 160} tii[13,91] := {14, 87} tii[13,92] := {32, 131} tii[13,93] := {99} tii[13,94] := {79} tii[13,95] := {3, 49} tii[13,96] := {37, 104} tii[13,97] := {9, 67} tii[13,98] := {58, 130} tii[13,99] := {22, 109} tii[13,100] := {98} tii[13,101] := {61} tii[13,102] := {1, 36} tii[13,103] := {4, 50} tii[13,104] := {15, 88} tii[13,105] := {44} cell#200 , |C| = 427 special orbit = [4, 4, 2, 2, 1, 1] special rep = [[2, 1], [2, 1, 1]] , dim = 210 cell rep = phi[[2, 2, 1, 1],[1]]+phi[[2, 1, 1, 1],[2]]+phi[[2, 2],[1, 1, 1]]+phi[[2, 1],[2, 1, 1]] TII depth = 3 TII multiplicity polynomial = 49*X^4+70*X^2+91*X TII subcells: tii[15,1] := {201, 202, 371, 372} tii[15,2] := {347, 348} tii[15,3] := {281, 282} tii[15,4] := {157, 158, 403, 404} tii[15,5] := {86, 87, 397, 398} tii[15,6] := {306, 307} tii[15,7] := {363} tii[15,8] := {394} tii[15,9] := {185, 186, 412, 413} tii[15,10] := {330, 331} tii[15,11] := {145, 146, 422, 423} tii[15,12] := {277} tii[15,13] := {183, 426} tii[15,14] := {325} tii[15,15] := {369, 370} tii[15,16] := {396} tii[15,17] := {254, 255} tii[15,18] := {116, 117, 392, 393} tii[15,19] := {263, 264} tii[15,20] := {51, 52, 386, 387} tii[15,21] := {329} tii[15,22] := {377} tii[15,23] := {203, 204} tii[15,24] := {143, 144, 405, 406} tii[15,25] := {27, 28, 349, 350} tii[15,26] := {173, 174} tii[15,27] := {289, 290} tii[15,28] := {104, 105, 419, 420} tii[15,29] := {229} tii[15,30] := {288} tii[15,31] := {200} tii[15,32] := {141, 425} tii[15,33] := {279} tii[15,34] := {339} tii[15,35] := {39, 40, 388, 389} tii[15,36] := {262} tii[15,37] := {332, 333} tii[15,38] := {216} tii[15,39] := {67, 408} tii[15,40] := {366} tii[15,41] := {320} tii[15,42] := {361} tii[15,43] := {118, 119, 373, 374} tii[15,44] := {265, 266} tii[15,45] := {84, 85, 401, 402} tii[15,46] := {192} tii[15,47] := {111, 416} tii[15,48] := {251} tii[15,49] := {55, 56, 390, 391} tii[15,50] := {169} tii[15,51] := {310, 311} tii[15,52] := {135} tii[15,53] := {345} tii[15,54] := {74, 409} tii[15,55] := {225} tii[15,56] := {64, 381} tii[15,57] := {274} tii[15,58] := {355, 356} tii[15,59] := {385} tii[15,60] := {362} tii[15,61] := {76, 77, 149, 150} tii[15,62] := {127, 128, 298, 299} tii[15,63] := {167, 168} tii[15,64] := {223, 224} tii[15,65] := {114, 115, 195, 196} tii[15,66] := {232, 233} tii[15,67] := {171, 172, 340, 341} tii[15,68] := {80, 81, 236, 237} tii[15,69] := {53, 54, 367, 368} tii[15,70] := {209, 210} tii[15,71] := {323} tii[15,72] := {193, 194} tii[15,73] := {137, 138, 294, 295} tii[15,74] := {271, 272} tii[15,75] := {364} tii[15,76] := {231} tii[15,77] := {256, 257} tii[15,78] := {287} tii[15,79] := {70, 71, 399, 400} tii[15,80] := {314, 315} tii[15,81] := {244} tii[15,82] := {103, 415} tii[15,83] := {338} tii[15,84] := {380} tii[15,85] := {159, 160} tii[15,86] := {78, 79, 242, 243} tii[15,87] := {240, 241} tii[15,88] := {123, 124, 378, 379} tii[15,89] := {11, 12, 308, 309} tii[15,90] := {125, 126} tii[15,91] := {47, 48, 285, 286} tii[15,92] := {239} tii[15,93] := {165, 166} tii[15,94] := {280} tii[15,95] := {154} tii[15,96] := {93, 94, 336, 337} tii[15,97] := {297} tii[15,98] := {221, 222} tii[15,99] := {211} tii[15,100] := {106, 107, 417, 418} tii[15,101] := {25, 26, 327, 328} tii[15,102] := {205, 206} tii[15,103] := {238} tii[15,104] := {19, 20, 351, 352} tii[15,105] := {88, 89} tii[15,106] := {324} tii[15,107] := {142, 424} tii[15,108] := {177} tii[15,109] := {267, 268} tii[15,110] := {38, 383} tii[15,111] := {273} tii[15,112] := {61, 62, 375, 376} tii[15,113] := {197} tii[15,114] := {296} tii[15,115] := {113} tii[15,116] := {321} tii[15,117] := {112, 414} tii[15,118] := {101} tii[15,119] := {342} tii[15,120] := {170} tii[15,121] := {13, 14, 312, 313} tii[15,122] := {234, 235} tii[15,123] := {230} tii[15,124] := {136} tii[15,125] := {292, 293} tii[15,126] := {226} tii[15,127] := {22, 346} tii[15,128] := {17, 302} tii[15,129] := {275} tii[15,130] := {365} tii[15,131] := {100} tii[15,132] := {228} tii[15,133] := {43, 44, 214, 215} tii[15,134] := {82, 83, 359, 360} tii[15,135] := {212, 213} tii[15,136] := {23, 24, 260, 261} tii[15,137] := {120, 121} tii[15,138] := {59, 60, 318, 319} tii[15,139] := {252} tii[15,140] := {178, 179} tii[15,141] := {161, 162} tii[15,142] := {129, 130} tii[15,143] := {7, 8, 304, 305} tii[15,144] := {191} tii[15,145] := {68, 69, 410, 411} tii[15,146] := {291} tii[15,147] := {217, 218} tii[15,148] := {156} tii[15,149] := {102, 421} tii[15,150] := {31, 32, 357, 358} tii[15,151] := {151} tii[15,152] := {250} tii[15,153] := {140} tii[15,154] := {72, 407} tii[15,155] := {300} tii[15,156] := {29, 30, 353, 354} tii[15,157] := {2, 3, 258, 259} tii[15,158] := {122} tii[15,159] := {187, 188} tii[15,160] := {245} tii[15,161] := {182} tii[15,162] := {42, 384} tii[15,163] := {92} tii[15,164] := {15, 16, 316, 317} tii[15,165] := {246, 247} tii[15,166] := {180} tii[15,167] := {35, 344} tii[15,168] := {181} tii[15,169] := {41, 382} tii[15,170] := {326} tii[15,171] := {227} tii[15,172] := {63} tii[15,173] := {18, 303} tii[15,174] := {276} tii[15,175] := {163, 164} tii[15,176] := {152} tii[15,177] := {219, 220} tii[15,178] := {99} tii[15,179] := {301} tii[15,180] := {322} tii[15,181] := {45, 46, 108, 109} tii[15,182] := {97, 98} tii[15,183] := {49, 50, 189, 190} tii[15,184] := {147, 148} tii[15,185] := {133, 134} tii[15,186] := {95, 96, 248, 249} tii[15,187] := {184} tii[15,188] := {155} tii[15,189] := {9, 10, 283, 284} tii[15,190] := {57, 58} tii[15,191] := {175, 176} tii[15,192] := {278} tii[15,193] := {33, 34, 334, 335} tii[15,194] := {75} tii[15,195] := {199} tii[15,196] := {65} tii[15,197] := {73, 395} tii[15,198] := {37} tii[15,199] := {0, 1, 207, 208} tii[15,200] := {198} tii[15,201] := {131, 132} tii[15,202] := {4, 5, 269, 270} tii[15,203] := {139} tii[15,204] := {153} tii[15,205] := {21, 343} tii[15,206] := {66} tii[15,207] := {6, 253} tii[15,208] := {90, 91} tii[15,209] := {110} tii[15,210] := {36} cell#201 , |C| = 189 special orbit = [4, 2, 2, 2, 2, 2] special rep = [[2, 1, 1], [1, 1, 1]] , dim = 105 cell rep = phi[[2, 1, 1, 1],[1, 1]]+phi[[2, 1, 1],[1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 84*X^2+21*X TII subcells: tii[13,1] := {124, 188} tii[13,2] := {92, 180} tii[13,3] := {53, 154} tii[13,4] := {148, 187} tii[13,5] := {115, 173} tii[13,6] := {164, 184} tii[13,7] := {37, 136} tii[13,8] := {93, 159} tii[13,9] := {153, 178} tii[13,10] := {167} tii[13,11] := {114, 150} tii[13,12] := {132} tii[13,13] := {52, 119} tii[13,14] := {68, 105} tii[13,15] := {84} tii[13,16] := {21, 157} tii[13,17] := {22, 127} tii[13,18] := {101, 186} tii[13,19] := {30, 171} tii[13,20] := {72, 168} tii[13,21] := {18, 104} tii[13,22] := {82, 182} tii[13,23] := {44, 162} tii[13,24] := {64, 175} tii[13,25] := {54, 158} tii[13,26] := {25, 125} tii[13,27] := {41, 142} tii[13,28] := {145, 177} tii[13,29] := {42, 179} tii[13,30] := {134, 165} tii[13,31] := {11, 81} tii[13,32] := {103, 185} tii[13,33] := {58, 170} tii[13,34] := {71, 141} tii[13,35] := {151} tii[13,36] := {86, 181} tii[13,37] := {50, 156} tii[13,38] := {38, 140} tii[13,39] := {90, 129} tii[13,40] := {17, 100} tii[13,41] := {113, 149} tii[13,42] := {107} tii[13,43] := {28, 120} tii[13,44] := {131} tii[13,45] := {73, 169} tii[13,46] := {111} tii[13,47] := {24, 117} tii[13,48] := {69, 106} tii[13,49] := {40, 137} tii[13,50] := {85} tii[13,51] := {66} tii[13,52] := {57, 172} tii[13,53] := {128, 183} tii[13,54] := {6, 60} tii[13,55] := {80, 163} tii[13,56] := {110, 176} tii[13,57] := {70, 146} tii[13,58] := {135, 166} tii[13,59] := {26, 118} tii[13,60] := {10, 77} tii[13,61] := {152} tii[13,62] := {94, 160} tii[13,63] := {19, 97} tii[13,64] := {133} tii[13,65] := {16, 95} tii[13,66] := {49, 83} tii[13,67] := {51, 126} tii[13,68] := {27, 116} tii[13,69] := {62} tii[13,70] := {74, 143} tii[13,71] := {112} tii[13,72] := {47} tii[13,73] := {23, 78} tii[13,74] := {39, 98} tii[13,75] := {65} tii[13,76] := {1, 75} tii[13,77] := {14, 139} tii[13,78] := {4, 96} tii[13,79] := {9, 122} tii[13,80] := {8, 79} tii[13,81] := {61, 174} tii[13,82] := {32, 147} tii[13,83] := {15, 109} tii[13,84] := {46, 161} tii[13,85] := {33, 144} tii[13,86] := {36, 138} tii[13,87] := {5, 59} tii[13,88] := {91, 130} tii[13,89] := {108} tii[13,90] := {56, 155} tii[13,91] := {12, 87} tii[13,92] := {29, 123} tii[13,93] := {89} tii[13,94] := {67} tii[13,95] := {2, 43} tii[13,96] := {35, 102} tii[13,97] := {7, 63} tii[13,98] := {55, 121} tii[13,99] := {20, 99} tii[13,100] := {88} tii[13,101] := {48} tii[13,102] := {0, 31} tii[13,103] := {3, 45} tii[13,104] := {13, 76} tii[13,105] := {34} cell#202 , |C| = 189 special orbit = [4, 2, 2, 2, 2, 2] special rep = [[2, 1, 1], [1, 1, 1]] , dim = 105 cell rep = phi[[2, 1, 1, 1],[1, 1]]+phi[[2, 1, 1],[1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 84*X^2+21*X TII subcells: tii[13,1] := {124, 188} tii[13,2] := {92, 180} tii[13,3] := {53, 154} tii[13,4] := {148, 187} tii[13,5] := {115, 173} tii[13,6] := {164, 184} tii[13,7] := {37, 136} tii[13,8] := {93, 159} tii[13,9] := {153, 178} tii[13,10] := {167} tii[13,11] := {114, 150} tii[13,12] := {132} tii[13,13] := {52, 119} tii[13,14] := {68, 105} tii[13,15] := {84} tii[13,16] := {21, 157} tii[13,17] := {22, 127} tii[13,18] := {101, 186} tii[13,19] := {30, 171} tii[13,20] := {72, 168} tii[13,21] := {18, 104} tii[13,22] := {82, 182} tii[13,23] := {44, 162} tii[13,24] := {64, 175} tii[13,25] := {54, 158} tii[13,26] := {25, 125} tii[13,27] := {41, 142} tii[13,28] := {145, 177} tii[13,29] := {42, 179} tii[13,30] := {134, 165} tii[13,31] := {11, 81} tii[13,32] := {103, 185} tii[13,33] := {58, 170} tii[13,34] := {71, 141} tii[13,35] := {151} tii[13,36] := {86, 181} tii[13,37] := {50, 156} tii[13,38] := {38, 140} tii[13,39] := {90, 129} tii[13,40] := {17, 100} tii[13,41] := {113, 149} tii[13,42] := {107} tii[13,43] := {28, 120} tii[13,44] := {131} tii[13,45] := {73, 169} tii[13,46] := {111} tii[13,47] := {24, 117} tii[13,48] := {69, 106} tii[13,49] := {40, 137} tii[13,50] := {85} tii[13,51] := {66} tii[13,52] := {57, 172} tii[13,53] := {128, 183} tii[13,54] := {6, 60} tii[13,55] := {80, 163} tii[13,56] := {110, 176} tii[13,57] := {70, 146} tii[13,58] := {135, 166} tii[13,59] := {26, 118} tii[13,60] := {10, 77} tii[13,61] := {152} tii[13,62] := {94, 160} tii[13,63] := {19, 97} tii[13,64] := {133} tii[13,65] := {16, 95} tii[13,66] := {49, 83} tii[13,67] := {51, 126} tii[13,68] := {27, 116} tii[13,69] := {62} tii[13,70] := {74, 143} tii[13,71] := {112} tii[13,72] := {47} tii[13,73] := {23, 78} tii[13,74] := {39, 98} tii[13,75] := {65} tii[13,76] := {1, 75} tii[13,77] := {14, 139} tii[13,78] := {4, 96} tii[13,79] := {9, 122} tii[13,80] := {8, 79} tii[13,81] := {61, 174} tii[13,82] := {32, 147} tii[13,83] := {15, 109} tii[13,84] := {46, 161} tii[13,85] := {33, 144} tii[13,86] := {36, 138} tii[13,87] := {5, 59} tii[13,88] := {91, 130} tii[13,89] := {108} tii[13,90] := {56, 155} tii[13,91] := {12, 87} tii[13,92] := {29, 123} tii[13,93] := {89} tii[13,94] := {67} tii[13,95] := {2, 43} tii[13,96] := {35, 102} tii[13,97] := {7, 63} tii[13,98] := {55, 121} tii[13,99] := {20, 99} tii[13,100] := {88} tii[13,101] := {48} tii[13,102] := {0, 31} tii[13,103] := {3, 45} tii[13,104] := {13, 76} tii[13,105] := {34} cell#203 , |C| = 70 special orbit = [3, 3, 3, 3, 2] special rep = [[1, 1, 1], [2, 2]] , dim = 70 cell rep = phi[[1, 1, 1],[2, 2]] TII depth = 3 TII multiplicity polynomial = 70*X TII subcells: tii[10,1] := {69} tii[10,2] := {26} tii[10,3] := {63} tii[10,4] := {41} tii[10,5] := {53} tii[10,6] := {34} tii[10,7] := {67} tii[10,8] := {43} tii[10,9] := {50} tii[10,10] := {61} tii[10,11] := {64} tii[10,12] := {49} tii[10,13] := {60} tii[10,14] := {57} tii[10,15] := {66} tii[10,16] := {62} tii[10,17] := {68} tii[10,18] := {19} tii[10,19] := {4} tii[10,20] := {10} tii[10,21] := {25} tii[10,22] := {38} tii[10,23] := {20} tii[10,24] := {33} tii[10,25] := {8} tii[10,26] := {15} tii[10,27] := {58} tii[10,28] := {32} tii[10,29] := {40} tii[10,30] := {12} tii[10,31] := {45} tii[10,32] := {52} tii[10,33] := {27} tii[10,34] := {21} tii[10,35] := {39} tii[10,36] := {48} tii[10,37] := {35} tii[10,38] := {59} tii[10,39] := {13} tii[10,40] := {22} tii[10,41] := {18} tii[10,42] := {42} tii[10,43] := {29} tii[10,44] := {54} tii[10,45] := {36} tii[10,46] := {47} tii[10,47] := {56} tii[10,48] := {24} tii[10,49] := {44} tii[10,50] := {65} tii[10,51] := {37} tii[10,52] := {55} tii[10,53] := {51} tii[10,54] := {2} tii[10,55] := {6} tii[10,56] := {1} tii[10,57] := {11} tii[10,58] := {7} tii[10,59] := {3} tii[10,60] := {14} tii[10,61] := {31} tii[10,62] := {16} tii[10,63] := {17} tii[10,64] := {5} tii[10,65] := {28} tii[10,66] := {23} tii[10,67] := {46} tii[10,68] := {9} tii[10,69] := {30} tii[10,70] := {0} cell#204 , |C| = 70 special orbit = [3, 3, 3, 3, 2] special rep = [[1, 1, 1], [2, 2]] , dim = 70 cell rep = phi[[1, 1, 1],[2, 2]] TII depth = 3 TII multiplicity polynomial = 70*X TII subcells: tii[10,1] := {69} tii[10,2] := {26} tii[10,3] := {63} tii[10,4] := {41} tii[10,5] := {53} tii[10,6] := {34} tii[10,7] := {67} tii[10,8] := {43} tii[10,9] := {50} tii[10,10] := {61} tii[10,11] := {64} tii[10,12] := {49} tii[10,13] := {60} tii[10,14] := {57} tii[10,15] := {66} tii[10,16] := {62} tii[10,17] := {68} tii[10,18] := {19} tii[10,19] := {4} tii[10,20] := {10} tii[10,21] := {25} tii[10,22] := {38} tii[10,23] := {20} tii[10,24] := {33} tii[10,25] := {8} tii[10,26] := {15} tii[10,27] := {58} tii[10,28] := {32} tii[10,29] := {40} tii[10,30] := {12} tii[10,31] := {45} tii[10,32] := {52} tii[10,33] := {27} tii[10,34] := {21} tii[10,35] := {39} tii[10,36] := {48} tii[10,37] := {35} tii[10,38] := {59} tii[10,39] := {13} tii[10,40] := {22} tii[10,41] := {18} tii[10,42] := {42} tii[10,43] := {29} tii[10,44] := {54} tii[10,45] := {36} tii[10,46] := {47} tii[10,47] := {56} tii[10,48] := {24} tii[10,49] := {44} tii[10,50] := {65} tii[10,51] := {37} tii[10,52] := {55} tii[10,53] := {51} tii[10,54] := {2} tii[10,55] := {6} tii[10,56] := {1} tii[10,57] := {11} tii[10,58] := {7} tii[10,59] := {3} tii[10,60] := {14} tii[10,61] := {31} tii[10,62] := {16} tii[10,63] := {17} tii[10,64] := {5} tii[10,65] := {28} tii[10,66] := {23} tii[10,67] := {46} tii[10,68] := {9} tii[10,69] := {30} tii[10,70] := {0} cell#205 , |C| = 175 special orbit = [3, 3, 2, 2, 2, 2] special rep = [[1, 1, 1], [2, 1, 1]] , dim = 105 cell rep = phi[[1, 1, 1, 1],[2, 1]]+phi[[1, 1, 1],[2, 1, 1]] TII depth = 3 TII multiplicity polynomial = 70*X^2+35*X TII subcells: tii[8,1] := {77, 165} tii[8,2] := {76, 174} tii[8,3] := {98, 160} tii[8,4] := {97, 173} tii[8,5] := {118, 145} tii[8,6] := {86} tii[8,7] := {111} tii[8,8] := {135, 161} tii[8,9] := {148} tii[8,10] := {117, 167} tii[8,11] := {136, 162} tii[8,12] := {149} tii[8,13] := {8, 107} tii[8,14] := {59, 153} tii[8,15] := {14, 125} tii[8,16] := {20, 101} tii[8,17] := {34, 122} tii[8,18] := {44, 166} tii[8,19] := {19, 142} tii[8,20] := {33, 154} tii[8,21] := {67} tii[8,22] := {21, 144} tii[8,23] := {96, 126} tii[8,24] := {30, 121} tii[8,25] := {89} tii[8,26] := {47, 140} tii[8,27] := {41, 138} tii[8,28] := {60, 172} tii[8,29] := {51} tii[8,30] := {115, 146} tii[8,31] := {29, 158} tii[8,32] := {38} tii[8,33] := {62, 156} tii[8,34] := {128} tii[8,35] := {46, 168} tii[8,36] := {71} tii[8,37] := {92} tii[8,38] := {40, 164} tii[8,39] := {94, 127} tii[8,40] := {61, 171} tii[8,41] := {108} tii[8,42] := {91} tii[8,43] := {31, 137} tii[8,44] := {43, 106} tii[8,45] := {64, 132} tii[8,46] := {58, 124} tii[8,47] := {68} tii[8,48] := {78, 170} tii[8,49] := {42, 152} tii[8,50] := {81, 150} tii[8,51] := {90} tii[8,52] := {53} tii[8,53] := {63, 163} tii[8,54] := {114} tii[8,55] := {57, 159} tii[8,56] := {116, 147} tii[8,57] := {75, 105} tii[8,58] := {69} tii[8,59] := {80, 169} tii[8,60] := {129} tii[8,61] := {100, 131} tii[8,62] := {134} tii[8,63] := {113} tii[8,64] := {74, 143} tii[8,65] := {99, 155} tii[8,66] := {133} tii[8,67] := {1, 50} tii[8,68] := {3, 70} tii[8,69] := {2, 66} tii[8,70] := {13, 82} tii[8,71] := {5, 88} tii[8,72] := {24, 103} tii[8,73] := {9, 65} tii[8,74] := {17, 123} tii[8,75] := {36} tii[8,76] := {28, 120} tii[8,77] := {4, 84} tii[8,78] := {15, 83} tii[8,79] := {54} tii[8,80] := {26} tii[8,81] := {45, 139} tii[8,82] := {10, 109} tii[8,83] := {25, 141} tii[8,84] := {72} tii[8,85] := {18} tii[8,86] := {55} tii[8,87] := {7, 104} tii[8,88] := {56, 85} tii[8,89] := {52} tii[8,90] := {22, 102} tii[8,91] := {16, 130} tii[8,92] := {79, 110} tii[8,93] := {27} tii[8,94] := {35, 157} tii[8,95] := {112} tii[8,96] := {73} tii[8,97] := {12, 95} tii[8,98] := {32, 87} tii[8,99] := {23, 119} tii[8,100] := {39} tii[8,101] := {48, 151} tii[8,102] := {93} tii[8,103] := {0, 37} tii[8,104] := {6, 49} tii[8,105] := {11} cell#206 , |C| = 175 special orbit = [3, 3, 2, 2, 2, 2] special rep = [[1, 1, 1], [2, 1, 1]] , dim = 105 cell rep = phi[[1, 1, 1, 1],[2, 1]]+phi[[1, 1, 1],[2, 1, 1]] TII depth = 3 TII multiplicity polynomial = 70*X^2+35*X TII subcells: tii[8,1] := {77, 165} tii[8,2] := {76, 174} tii[8,3] := {98, 160} tii[8,4] := {97, 173} tii[8,5] := {118, 145} tii[8,6] := {86} tii[8,7] := {111} tii[8,8] := {135, 161} tii[8,9] := {148} tii[8,10] := {117, 167} tii[8,11] := {136, 162} tii[8,12] := {149} tii[8,13] := {8, 107} tii[8,14] := {59, 153} tii[8,15] := {14, 125} tii[8,16] := {20, 101} tii[8,17] := {34, 122} tii[8,18] := {44, 166} tii[8,19] := {19, 142} tii[8,20] := {33, 154} tii[8,21] := {67} tii[8,22] := {21, 144} tii[8,23] := {96, 126} tii[8,24] := {30, 121} tii[8,25] := {89} tii[8,26] := {47, 140} tii[8,27] := {41, 138} tii[8,28] := {60, 172} tii[8,29] := {51} tii[8,30] := {115, 146} tii[8,31] := {29, 158} tii[8,32] := {38} tii[8,33] := {62, 156} tii[8,34] := {128} tii[8,35] := {46, 168} tii[8,36] := {71} tii[8,37] := {92} tii[8,38] := {40, 164} tii[8,39] := {94, 127} tii[8,40] := {61, 171} tii[8,41] := {108} tii[8,42] := {91} tii[8,43] := {31, 137} tii[8,44] := {43, 106} tii[8,45] := {64, 132} tii[8,46] := {58, 124} tii[8,47] := {68} tii[8,48] := {78, 170} tii[8,49] := {42, 152} tii[8,50] := {81, 150} tii[8,51] := {90} tii[8,52] := {53} tii[8,53] := {63, 163} tii[8,54] := {114} tii[8,55] := {57, 159} tii[8,56] := {116, 147} tii[8,57] := {75, 105} tii[8,58] := {69} tii[8,59] := {80, 169} tii[8,60] := {129} tii[8,61] := {100, 131} tii[8,62] := {134} tii[8,63] := {113} tii[8,64] := {74, 143} tii[8,65] := {99, 155} tii[8,66] := {133} tii[8,67] := {1, 50} tii[8,68] := {3, 70} tii[8,69] := {2, 66} tii[8,70] := {13, 82} tii[8,71] := {5, 88} tii[8,72] := {24, 103} tii[8,73] := {9, 65} tii[8,74] := {17, 123} tii[8,75] := {36} tii[8,76] := {28, 120} tii[8,77] := {4, 84} tii[8,78] := {15, 83} tii[8,79] := {54} tii[8,80] := {26} tii[8,81] := {45, 139} tii[8,82] := {10, 109} tii[8,83] := {25, 141} tii[8,84] := {72} tii[8,85] := {18} tii[8,86] := {55} tii[8,87] := {7, 104} tii[8,88] := {56, 85} tii[8,89] := {52} tii[8,90] := {22, 102} tii[8,91] := {16, 130} tii[8,92] := {79, 110} tii[8,93] := {27} tii[8,94] := {35, 157} tii[8,95] := {112} tii[8,96] := {73} tii[8,97] := {12, 95} tii[8,98] := {32, 87} tii[8,99] := {23, 119} tii[8,100] := {39} tii[8,101] := {48, 151} tii[8,102] := {93} tii[8,103] := {0, 37} tii[8,104] := {6, 49} tii[8,105] := {11} cell#207 , |C| = 427 special orbit = [4, 4, 2, 2, 1, 1] special rep = [[2, 1], [2, 1, 1]] , dim = 210 cell rep = phi[[2, 2, 1, 1],[1]]+phi[[2, 1, 1, 1],[2]]+phi[[2, 2],[1, 1, 1]]+phi[[2, 1],[2, 1, 1]] TII depth = 3 TII multiplicity polynomial = 49*X^4+70*X^2+91*X TII subcells: tii[15,1] := {139, 216, 282, 423} tii[15,2] := {184, 386} tii[15,3] := {224, 299} tii[15,4] := {99, 240, 258, 421} tii[15,5] := {45, 156, 254, 397} tii[15,6] := {228, 360} tii[15,7] := {312} tii[15,8] := {349} tii[15,9] := {138, 215, 296, 410} tii[15,10] := {272, 345} tii[15,11] := {100, 176, 329, 398} tii[15,12] := {225} tii[15,13] := {148, 370} tii[15,14] := {274} tii[15,15] := {311, 379} tii[15,16] := {350} tii[15,17] := {246, 320} tii[15,18] := {66, 193, 300, 425} tii[15,19] := {185, 325} tii[15,20] := {25, 114, 295, 405} tii[15,21] := {331} tii[15,22] := {369} tii[15,23] := {202, 283} tii[15,24] := {98, 168, 335, 420} tii[15,25] := {12, 81, 334, 387} tii[15,26] := {161, 244} tii[15,27] := {227, 310} tii[15,28] := {67, 134, 366, 412} tii[15,29] := {182} tii[15,30] := {291} tii[15,31] := {220} tii[15,32] := {107, 393} tii[15,33] := {232} tii[15,34] := {338} tii[15,35] := {24, 65, 364, 407} tii[15,36] := {316} tii[15,37] := {270, 348} tii[15,38] := {281} tii[15,39] := {50, 395} tii[15,40] := {314} tii[15,41] := {356} tii[15,42] := {385} tii[15,43] := {120, 194, 355, 426} tii[15,44] := {253, 326} tii[15,45] := {84, 154, 382, 417} tii[15,46] := {208} tii[15,47] := {129, 403} tii[15,48] := {264} tii[15,49] := {57, 115, 400, 424} tii[15,50] := {236} tii[15,51] := {289, 363} tii[15,52] := {192} tii[15,53] := {341} tii[15,54] := {91, 414} tii[15,55] := {284} tii[15,56] := {113, 422} tii[15,57] := {324} tii[15,58] := {328, 391} tii[15,59] := {374} tii[15,60] := {390} tii[15,61] := {8, 34, 245, 319} tii[15,62] := {72, 135, 199, 404} tii[15,63] := {43, 330} tii[15,64] := {75, 368} tii[15,65] := {20, 61, 201, 353} tii[15,66] := {179, 257} tii[15,67] := {105, 177, 243, 415} tii[15,68] := {40, 87, 160, 380} tii[15,69] := {26, 117, 211, 376} tii[15,70] := {69, 290} tii[15,71] := {271} tii[15,72] := {140, 222} tii[15,73] := {74, 130, 219, 401} tii[15,74] := {108, 337} tii[15,75] := {313} tii[15,76] := {190} tii[15,77] := {101, 317} tii[15,78] := {226} tii[15,79] := {42, 97, 252, 346} tii[15,80] := {146, 357} tii[15,81] := {187} tii[15,82] := {77, 306} tii[15,83] := {275} tii[15,84] := {234} tii[15,85] := {159, 241} tii[15,86] := {39, 88, 158, 336} tii[15,87] := {180, 267} tii[15,88] := {71, 196, 223, 413} tii[15,89] := {6, 54, 294, 361} tii[15,90] := {122, 197} tii[15,91] := {22, 121, 126, 367} tii[15,92] := {249} tii[15,93] := {104, 248} tii[15,94] := {231} tii[15,95] := {171} tii[15,96] := {48, 170, 172, 394} tii[15,97] := {303} tii[15,98] := {149, 302} tii[15,99] := {278} tii[15,100] := {68, 137, 293, 377} tii[15,101] := {10, 85, 163, 332} tii[15,102] := {142, 279} tii[15,103] := {183} tii[15,104] := {11, 38, 327, 389} tii[15,105] := {86, 157} tii[15,106] := {273} tii[15,107] := {110, 340} tii[15,108] := {239} tii[15,109] := {189, 322} tii[15,110] := {30, 373} tii[15,111] := {321} tii[15,112] := {29, 131, 218, 371} tii[15,113] := {145} tii[15,114] := {233} tii[15,115] := {132} tii[15,116] := {359} tii[15,117] := {79, 307} tii[15,118] := {155} tii[15,119] := {277} tii[15,120] := {250} tii[15,121] := {18, 55, 365, 409} tii[15,122] := {181, 251} tii[15,123] := {186} tii[15,124] := {214} tii[15,125] := {230, 305} tii[15,126] := {304} tii[15,127] := {36, 396} tii[15,128] := {53, 408} tii[15,129] := {344} tii[15,130] := {315} tii[15,131] := {175} tii[15,132] := {378} tii[15,133] := {21, 119, 127, 354} tii[15,134] := {44, 153, 268, 416} tii[15,135] := {204, 288} tii[15,136] := {9, 83, 164, 381} tii[15,137] := {70, 207} tii[15,138] := {28, 128, 221, 402} tii[15,139] := {262} tii[15,140] := {109, 263} tii[15,141] := {102, 237} tii[15,142] := {125, 200} tii[15,143] := {4, 56, 206, 352} tii[15,144] := {143} tii[15,145] := {41, 95, 333, 399} tii[15,146] := {298} tii[15,147] := {147, 285} tii[15,148] := {174} tii[15,149] := {76, 372} tii[15,150] := {13, 90, 260, 384} tii[15,151] := {106} tii[15,152] := {191} tii[15,153] := {198} tii[15,154] := {51, 342} tii[15,155] := {235} tii[15,156] := {33, 82, 392, 419} tii[15,157] := {1, 32, 247, 318} tii[15,158] := {209} tii[15,159] := {141, 210} tii[15,160] := {256} tii[15,161] := {144} tii[15,162] := {63, 411} tii[15,163] := {167} tii[15,164] := {7, 62, 301, 358} tii[15,165] := {188, 266} tii[15,166] := {265} tii[15,167] := {80, 418} tii[15,168] := {242} tii[15,169] := {31, 375} tii[15,170] := {276} tii[15,171] := {309} tii[15,172] := {133} tii[15,173] := {64, 406} tii[15,174] := {347} tii[15,175] := {162, 238} tii[15,176] := {166} tii[15,177] := {217, 286} tii[15,178] := {152} tii[15,179] := {308} tii[15,180] := {362} tii[15,181] := {3, 19, 203, 287} tii[15,182] := {15, 261} tii[15,183] := {23, 60, 124, 351} tii[15,184] := {103, 178} tii[15,185] := {27, 297} tii[15,186] := {49, 89, 173, 383} tii[15,187] := {150} tii[15,188] := {112} tii[15,189] := {5, 58, 123, 292} tii[15,190] := {59, 118} tii[15,191] := {46, 255} tii[15,192] := {229} tii[15,193] := {14, 92, 169, 339} tii[15,194] := {93} tii[15,195] := {151} tii[15,196] := {116} tii[15,197] := {52, 269} tii[15,198] := {96} tii[15,199] := {0, 17, 205, 280} tii[15,200] := {213} tii[15,201] := {73, 212} tii[15,202] := {2, 35, 259, 323} tii[15,203] := {195} tii[15,204] := {111} tii[15,205] := {16, 343} tii[15,206] := {136} tii[15,207] := {37, 388} tii[15,208] := {47, 165} tii[15,209] := {78} tii[15,210] := {94} cell#208 , |C| = 105 special orbit = [3, 3, 3, 3, 1, 1] special rep = [[1, 1], [2, 2, 1]] , dim = 105 cell rep = phi[[1, 1],[2, 2, 1]] TII depth = 4 TII multiplicity polynomial = 105*X TII subcells: tii[9,1] := {76} tii[9,2] := {96} tii[9,3] := {102} tii[9,4] := {63} tii[9,5] := {51} tii[9,6] := {19} tii[9,7] := {85} tii[9,8] := {32} tii[9,9] := {98} tii[9,10] := {62} tii[9,11] := {53} tii[9,12] := {81} tii[9,13] := {97} tii[9,14] := {103} tii[9,15] := {86} tii[9,16] := {78} tii[9,17] := {99} tii[9,18] := {104} tii[9,19] := {64} tii[9,20] := {29} tii[9,21] := {44} tii[9,22] := {75} tii[9,23] := {92} tii[9,24] := {67} tii[9,25] := {12} tii[9,26] := {40} tii[9,27] := {39} tii[9,28] := {23} tii[9,29] := {56} tii[9,30] := {49} tii[9,31] := {87} tii[9,32] := {7} tii[9,33] := {50} tii[9,34] := {5} tii[9,35] := {68} tii[9,36] := {100} tii[9,37] := {41} tii[9,38] := {69} tii[9,39] := {79} tii[9,40] := {16} tii[9,41] := {93} tii[9,42] := {25} tii[9,43] := {61} tii[9,44] := {88} tii[9,45] := {52} tii[9,46] := {80} tii[9,47] := {94} tii[9,48] := {45} tii[9,49] := {28} tii[9,50] := {43} tii[9,51] := {37} tii[9,52] := {13} tii[9,53] := {74} tii[9,54] := {54} tii[9,55] := {24} tii[9,56] := {9} tii[9,57] := {91} tii[9,58] := {66} tii[9,59] := {35} tii[9,60] := {82} tii[9,61] := {73} tii[9,62] := {27} tii[9,63] := {14} tii[9,64] := {77} tii[9,65] := {65} tii[9,66] := {42} tii[9,67] := {90} tii[9,68] := {101} tii[9,69] := {46} tii[9,70] := {72} tii[9,71] := {57} tii[9,72] := {95} tii[9,73] := {89} tii[9,74] := {70} tii[9,75] := {20} tii[9,76] := {33} tii[9,77] := {15} tii[9,78] := {47} tii[9,79] := {38} tii[9,80] := {4} tii[9,81] := {22} tii[9,82] := {10} tii[9,83] := {2} tii[9,84] := {55} tii[9,85] := {83} tii[9,86] := {59} tii[9,87] := {17} tii[9,88] := {1} tii[9,89] := {26} tii[9,90] := {18} tii[9,91] := {8} tii[9,92] := {30} tii[9,93] := {31} tii[9,94] := {71} tii[9,95] := {3} tii[9,96] := {34} tii[9,97] := {60} tii[9,98] := {84} tii[9,99] := {36} tii[9,100] := {21} tii[9,101] := {6} tii[9,102] := {58} tii[9,103] := {48} tii[9,104] := {11} tii[9,105] := {0} cell#209 , |C| = 175 special orbit = [3, 3, 2, 2, 2, 2] special rep = [[1, 1, 1], [2, 1, 1]] , dim = 105 cell rep = phi[[1, 1, 1, 1],[2, 1]]+phi[[1, 1, 1],[2, 1, 1]] TII depth = 3 TII multiplicity polynomial = 70*X^2+35*X TII subcells: tii[8,1] := {66, 174} tii[8,2] := {65, 166} tii[8,3] := {84, 173} tii[8,4] := {83, 151} tii[8,5] := {104, 170} tii[8,6] := {124} tii[8,7] := {145} tii[8,8] := {121, 159} tii[8,9] := {146} tii[8,10] := {103, 167} tii[8,11] := {122, 160} tii[8,12] := {147} tii[8,13] := {8, 95} tii[8,14] := {49, 172} tii[8,15] := {13, 114} tii[8,16] := {18, 136} tii[8,17] := {30, 154} tii[8,18] := {38, 165} tii[8,19] := {17, 133} tii[8,20] := {29, 156} tii[8,21] := {101} tii[8,22] := {19, 94} tii[8,23] := {82, 161} tii[8,24] := {26, 149} tii[8,25] := {125} tii[8,26] := {41, 164} tii[8,27] := {35, 163} tii[8,28] := {50, 150} tii[8,29] := {81} tii[8,30] := {99, 142} tii[8,31] := {25, 111} tii[8,32] := {68} tii[8,33] := {53, 171} tii[8,34] := {127} tii[8,35] := {40, 139} tii[8,36] := {106} tii[8,37] := {90} tii[8,38] := {34, 134} tii[8,39] := {80, 120} tii[8,40] := {52, 157} tii[8,41] := {107} tii[8,42] := {91} tii[8,43] := {27, 76} tii[8,44] := {37, 137} tii[8,45] := {55, 155} tii[8,46] := {48, 153} tii[8,47] := {102} tii[8,48] := {67, 132} tii[8,49] := {36, 93} tii[8,50] := {71, 169} tii[8,51] := {126} tii[8,52] := {86} tii[8,53] := {54, 117} tii[8,54] := {108} tii[8,55] := {47, 112} tii[8,56] := {100, 143} tii[8,57] := {63, 144} tii[8,58] := {105} tii[8,59] := {70, 140} tii[8,60] := {128} tii[8,61] := {88, 162} tii[8,62] := {130} tii[8,63] := {110} tii[8,64] := {62, 135} tii[8,65] := {87, 158} tii[8,66] := {129} tii[8,67] := {1, 45} tii[8,68] := {3, 61} tii[8,69] := {2, 59} tii[8,70] := {12, 113} tii[8,71] := {5, 78} tii[8,72] := {22, 138} tii[8,73] := {9, 96} tii[8,74] := {16, 118} tii[8,75] := {64} tii[8,76] := {24, 152} tii[8,77] := {4, 75} tii[8,78] := {14, 115} tii[8,79] := {89} tii[8,80] := {51} tii[8,81] := {39, 168} tii[8,82] := {10, 97} tii[8,83] := {23, 141} tii[8,84] := {73} tii[8,85] := {42} tii[8,86] := {57} tii[8,87] := {7, 58} tii[8,88] := {46, 123} tii[8,89] := {85} tii[8,90] := {20, 131} tii[8,91] := {15, 77} tii[8,92] := {69, 148} tii[8,93] := {56} tii[8,94] := {31, 119} tii[8,95] := {109} tii[8,96] := {74} tii[8,97] := {11, 44} tii[8,98] := {28, 116} tii[8,99] := {21, 60} tii[8,100] := {72} tii[8,101] := {43, 98} tii[8,102] := {92} tii[8,103] := {0, 33} tii[8,104] := {6, 79} tii[8,105] := {32} cell#210 , |C| = 50 special orbit = [6, 2, 1, 1, 1, 1, 1, 1] special rep = [[3], [1, 1, 1, 1]] , dim = 35 cell rep = phi[[3, 1, 1, 1, 1],[]]+phi[[3],[1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 15*X^2+20*X TII subcells: tii[22,1] := {41, 49} tii[22,2] := {42, 48} tii[22,3] := {40, 47} tii[22,4] := {45} tii[22,5] := {35, 46} tii[22,6] := {34, 44} tii[22,7] := {39} tii[22,8] := {28, 38} tii[22,9] := {33} tii[22,10] := {26} tii[22,11] := {29, 43} tii[22,12] := {27, 37} tii[22,13] := {32} tii[22,14] := {20, 31} tii[22,15] := {25} tii[22,16] := {18} tii[22,17] := {14, 23} tii[22,18] := {17} tii[22,19] := {12} tii[22,20] := {7} tii[22,21] := {21, 36} tii[22,22] := {19, 30} tii[22,23] := {24} tii[22,24] := {13, 22} tii[22,25] := {16} tii[22,26] := {11} tii[22,27] := {8, 15} tii[22,28] := {10} tii[22,29] := {6} tii[22,30] := {3} tii[22,31] := {4, 9} tii[22,32] := {5} tii[22,33] := {2} tii[22,34] := {1} tii[22,35] := {0} cell#211 , |C| = 189 special orbit = [4, 2, 2, 2, 2, 2] special rep = [[2, 1, 1], [1, 1, 1]] , dim = 105 cell rep = phi[[2, 1, 1, 1],[1, 1]]+phi[[2, 1, 1],[1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 84*X^2+21*X TII subcells: tii[13,1] := {157, 184} tii[13,2] := {126, 166} tii[13,3] := {73, 127} tii[13,4] := {168, 186} tii[13,5] := {140, 173} tii[13,6] := {179, 188} tii[13,7] := {49, 101} tii[13,8] := {112, 160} tii[13,9] := {171, 185} tii[13,10] := {181} tii[13,11] := {138, 169} tii[13,12] := {155} tii[13,13] := {61, 114} tii[13,14] := {83, 131} tii[13,15] := {107} tii[13,16] := {68, 69} tii[13,17] := {30, 74} tii[13,18] := {137, 177} tii[13,19] := {95, 96} tii[13,20] := {100, 149} tii[13,21] := {26, 52} tii[13,22] := {113, 165} tii[13,23] := {67, 124} tii[13,24] := {88, 151} tii[13,25] := {75, 128} tii[13,26] := {41, 72} tii[13,27] := {55, 105} tii[13,28] := {172, 187} tii[13,29] := {121, 122} tii[13,30] := {164, 182} tii[13,31] := {14, 31} tii[13,32] := {141, 178} tii[13,33] := {94, 148} tii[13,34] := {85, 142} tii[13,35] := {175} tii[13,36] := {117, 167} tii[13,37] := {81, 125} tii[13,38] := {53, 102} tii[13,39] := {110, 154} tii[13,40] := {25, 48} tii[13,41] := {147, 174} tii[13,42] := {133} tii[13,43] := {34, 79} tii[13,44] := {162} tii[13,45] := {103, 152} tii[13,46] := {146} tii[13,47] := {40, 71} tii[13,48] := {97, 143} tii[13,49] := {54, 104} tii[13,50] := {118} tii[13,51] := {91} tii[13,52] := {135, 136} tii[13,53] := {153, 183} tii[13,54] := {5, 19} tii[13,55] := {109, 159} tii[13,56] := {132, 176} tii[13,57] := {93, 139} tii[13,58] := {158, 180} tii[13,59] := {32, 76} tii[13,60] := {13, 29} tii[13,61] := {170} tii[13,62] := {116, 163} tii[13,63] := {20, 57} tii[13,64] := {156} tii[13,65] := {24, 47} tii[13,66] := {70, 115} tii[13,67] := {66, 111} tii[13,68] := {33, 78} tii[13,69] := {89} tii[13,70] := {87, 145} tii[13,71] := {134} tii[13,72] := {64} tii[13,73] := {27, 60} tii[13,74] := {42, 90} tii[13,75] := {82} tii[13,76] := {7, 8} tii[13,77] := {50, 51} tii[13,78] := {16, 17} tii[13,79] := {35, 36} tii[13,80] := {9, 28} tii[13,81] := {86, 150} tii[13,82] := {46, 99} tii[13,83] := {21, 56} tii[13,84] := {63, 130} tii[13,85] := {43, 106} tii[13,86] := {59, 98} tii[13,87] := {4, 18} tii[13,88] := {123, 161} tii[13,89] := {144} tii[13,90] := {77, 129} tii[13,91] := {15, 37} tii[13,92] := {38, 80} tii[13,93] := {120} tii[13,94] := {92} tii[13,95] := {1, 10} tii[13,96] := {45, 84} tii[13,97] := {6, 22} tii[13,98] := {62, 119} tii[13,99] := {23, 58} tii[13,100] := {108} tii[13,101] := {65} tii[13,102] := {0, 3} tii[13,103] := {2, 11} tii[13,104] := {12, 39} tii[13,105] := {44} cell#212 , |C| = 105 special orbit = [4, 2, 2, 2, 1, 1, 1, 1] special rep = [[2, 1], [1, 1, 1, 1]] , dim = 70 cell rep = phi[[2, 1, 1, 1, 1],[1]]+phi[[2, 1],[1, 1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 35*X^2+35*X TII subcells: tii[12,1] := {84, 104} tii[12,2] := {54, 101} tii[12,3] := {94, 102} tii[12,4] := {47, 95} tii[12,5] := {82, 98} tii[12,6] := {92} tii[12,7] := {63, 86} tii[12,8] := {76} tii[12,9] := {83, 97} tii[12,10] := {31, 85} tii[12,11] := {69, 90} tii[12,12] := {80} tii[12,13] := {53, 79} tii[12,14] := {46, 74} tii[12,15] := {59} tii[12,16] := {67} tii[12,17] := {51} tii[12,18] := {30, 56} tii[12,19] := {42} tii[12,20] := {27} tii[12,21] := {70, 89} tii[12,22] := {17, 73} tii[12,23] := {52, 78} tii[12,24] := {66} tii[12,25] := {29, 55} tii[12,26] := {37, 64} tii[12,27] := {41} tii[12,28] := {49} tii[12,29] := {35} tii[12,30] := {23, 48} tii[12,31] := {16, 39} tii[12,32] := {34} tii[12,33] := {25} tii[12,34] := {14} tii[12,35] := {21} tii[12,36] := {11} tii[12,37] := {7, 24} tii[12,38] := {13} tii[12,39] := {5} tii[12,40] := {2} tii[12,41] := {62, 100} tii[12,42] := {72, 103} tii[12,43] := {44, 93} tii[12,44] := {57, 99} tii[12,45] := {28, 88} tii[12,46] := {71, 91} tii[12,47] := {40, 96} tii[12,48] := {81} tii[12,49] := {68} tii[12,50] := {19, 77} tii[12,51] := {38, 65} tii[12,52] := {32, 87} tii[12,53] := {50} tii[12,54] := {60} tii[12,55] := {36} tii[12,56] := {22} tii[12,57] := {9, 61} tii[12,58] := {12, 33} tii[12,59] := {20} tii[12,60] := {18, 75} tii[12,61] := {10} tii[12,62] := {43} tii[12,63] := {4} tii[12,64] := {15} tii[12,65] := {1} tii[12,66] := {3, 45} tii[12,67] := {8, 58} tii[12,68] := {26} tii[12,69] := {6} tii[12,70] := {0} cell#213 , |C| = 98 special orbit = [4, 4, 1, 1, 1, 1, 1, 1] special rep = [[2], [2, 1, 1, 1]] , dim = 84 cell rep = phi[[2, 2, 1, 1, 1],[]]+phi[[2],[2, 1, 1, 1]] TII depth = 4 TII multiplicity polynomial = 14*X^2+70*X TII subcells: tii[14,1] := {81, 96} tii[14,2] := {93} tii[14,3] := {97} tii[14,4] := {66, 91} tii[14,5] := {57, 83} tii[14,6] := {85} tii[14,7] := {70} tii[14,8] := {94} tii[14,9] := {73} tii[14,10] := {61} tii[14,11] := {88} tii[14,12] := {95} tii[14,13] := {52, 82} tii[14,14] := {43, 68} tii[14,15] := {72} tii[14,16] := {55} tii[14,17] := {87} tii[14,18] := {31, 54} tii[14,19] := {59} tii[14,20] := {48} tii[14,21] := {41} tii[14,22] := {76} tii[14,23] := {29} tii[14,24] := {89} tii[14,25] := {46} tii[14,26] := {34} tii[14,27] := {63} tii[14,28] := {25} tii[14,29] := {78} tii[14,30] := {90} tii[14,31] := {37, 67} tii[14,32] := {30, 53} tii[14,33] := {58} tii[14,34] := {40} tii[14,35] := {75} tii[14,36] := {20, 38} tii[14,37] := {45} tii[14,38] := {33} tii[14,39] := {27} tii[14,40] := {62} tii[14,41] := {18} tii[14,42] := {77} tii[14,43] := {12, 26} tii[14,44] := {32} tii[14,45] := {17} tii[14,46] := {23} tii[14,47] := {49} tii[14,48] := {14} tii[14,49] := {10} tii[14,50] := {64} tii[14,51] := {5} tii[14,52] := {79} tii[14,53] := {22} tii[14,54] := {13} tii[14,55] := {35} tii[14,56] := {7} tii[14,57] := {51} tii[14,58] := {3} tii[14,59] := {65} tii[14,60] := {80} tii[14,61] := {71, 92} tii[14,62] := {84} tii[14,63] := {44, 69} tii[14,64] := {86} tii[14,65] := {56} tii[14,66] := {42} tii[14,67] := {21, 39} tii[14,68] := {74} tii[14,69] := {28} tii[14,70] := {50} tii[14,71] := {19} tii[14,72] := {11} tii[14,73] := {6, 16} tii[14,74] := {60} tii[14,75] := {9} tii[14,76] := {4} tii[14,77] := {36} tii[14,78] := {15} tii[14,79] := {2} tii[14,80] := {0} tii[14,81] := {47} tii[14,82] := {24} tii[14,83] := {8} tii[14,84] := {1} cell#214 , |C| = 50 special orbit = [6, 2, 1, 1, 1, 1, 1, 1] special rep = [[3], [1, 1, 1, 1]] , dim = 35 cell rep = phi[[3, 1, 1, 1, 1],[]]+phi[[3],[1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 15*X^2+20*X TII subcells: tii[22,1] := {41, 49} tii[22,2] := {42, 48} tii[22,3] := {40, 47} tii[22,4] := {45} tii[22,5] := {35, 46} tii[22,6] := {34, 44} tii[22,7] := {39} tii[22,8] := {28, 38} tii[22,9] := {33} tii[22,10] := {26} tii[22,11] := {29, 43} tii[22,12] := {27, 37} tii[22,13] := {32} tii[22,14] := {20, 31} tii[22,15] := {25} tii[22,16] := {18} tii[22,17] := {14, 23} tii[22,18] := {17} tii[22,19] := {12} tii[22,20] := {7} tii[22,21] := {21, 36} tii[22,22] := {19, 30} tii[22,23] := {24} tii[22,24] := {13, 22} tii[22,25] := {16} tii[22,26] := {11} tii[22,27] := {8, 15} tii[22,28] := {10} tii[22,29] := {6} tii[22,30] := {3} tii[22,31] := {4, 9} tii[22,32] := {5} tii[22,33] := {2} tii[22,34] := {1} tii[22,35] := {0} cell#215 , |C| = 189 special orbit = [4, 2, 2, 2, 2, 2] special rep = [[2, 1, 1], [1, 1, 1]] , dim = 105 cell rep = phi[[2, 1, 1, 1],[1, 1]]+phi[[2, 1, 1],[1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 84*X^2+21*X TII subcells: tii[13,1] := {157, 184} tii[13,2] := {126, 166} tii[13,3] := {73, 127} tii[13,4] := {168, 186} tii[13,5] := {140, 173} tii[13,6] := {179, 188} tii[13,7] := {49, 101} tii[13,8] := {112, 160} tii[13,9] := {171, 185} tii[13,10] := {181} tii[13,11] := {138, 169} tii[13,12] := {155} tii[13,13] := {61, 114} tii[13,14] := {83, 131} tii[13,15] := {107} tii[13,16] := {68, 69} tii[13,17] := {30, 74} tii[13,18] := {137, 177} tii[13,19] := {95, 96} tii[13,20] := {100, 149} tii[13,21] := {26, 52} tii[13,22] := {113, 165} tii[13,23] := {67, 124} tii[13,24] := {88, 151} tii[13,25] := {75, 128} tii[13,26] := {41, 72} tii[13,27] := {55, 105} tii[13,28] := {172, 187} tii[13,29] := {121, 122} tii[13,30] := {164, 182} tii[13,31] := {14, 31} tii[13,32] := {141, 178} tii[13,33] := {94, 148} tii[13,34] := {85, 142} tii[13,35] := {175} tii[13,36] := {117, 167} tii[13,37] := {81, 125} tii[13,38] := {53, 102} tii[13,39] := {110, 154} tii[13,40] := {25, 48} tii[13,41] := {147, 174} tii[13,42] := {133} tii[13,43] := {34, 79} tii[13,44] := {162} tii[13,45] := {103, 152} tii[13,46] := {146} tii[13,47] := {40, 71} tii[13,48] := {97, 143} tii[13,49] := {54, 104} tii[13,50] := {118} tii[13,51] := {91} tii[13,52] := {135, 136} tii[13,53] := {153, 183} tii[13,54] := {5, 19} tii[13,55] := {109, 159} tii[13,56] := {132, 176} tii[13,57] := {93, 139} tii[13,58] := {158, 180} tii[13,59] := {32, 76} tii[13,60] := {13, 29} tii[13,61] := {170} tii[13,62] := {116, 163} tii[13,63] := {20, 57} tii[13,64] := {156} tii[13,65] := {24, 47} tii[13,66] := {70, 115} tii[13,67] := {66, 111} tii[13,68] := {33, 78} tii[13,69] := {89} tii[13,70] := {87, 145} tii[13,71] := {134} tii[13,72] := {64} tii[13,73] := {27, 60} tii[13,74] := {42, 90} tii[13,75] := {82} tii[13,76] := {7, 8} tii[13,77] := {50, 51} tii[13,78] := {16, 17} tii[13,79] := {35, 36} tii[13,80] := {9, 28} tii[13,81] := {86, 150} tii[13,82] := {46, 99} tii[13,83] := {21, 56} tii[13,84] := {63, 130} tii[13,85] := {43, 106} tii[13,86] := {59, 98} tii[13,87] := {4, 18} tii[13,88] := {123, 161} tii[13,89] := {144} tii[13,90] := {77, 129} tii[13,91] := {15, 37} tii[13,92] := {38, 80} tii[13,93] := {120} tii[13,94] := {92} tii[13,95] := {1, 10} tii[13,96] := {45, 84} tii[13,97] := {6, 22} tii[13,98] := {62, 119} tii[13,99] := {23, 58} tii[13,100] := {108} tii[13,101] := {65} tii[13,102] := {0, 3} tii[13,103] := {2, 11} tii[13,104] := {12, 39} tii[13,105] := {44} cell#216 , |C| = 105 special orbit = [4, 2, 2, 2, 1, 1, 1, 1] special rep = [[2, 1], [1, 1, 1, 1]] , dim = 70 cell rep = phi[[2, 1, 1, 1, 1],[1]]+phi[[2, 1],[1, 1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 35*X^2+35*X TII subcells: tii[12,1] := {84, 104} tii[12,2] := {54, 101} tii[12,3] := {94, 102} tii[12,4] := {47, 95} tii[12,5] := {82, 98} tii[12,6] := {92} tii[12,7] := {63, 86} tii[12,8] := {76} tii[12,9] := {83, 97} tii[12,10] := {31, 85} tii[12,11] := {69, 90} tii[12,12] := {80} tii[12,13] := {53, 79} tii[12,14] := {46, 74} tii[12,15] := {59} tii[12,16] := {67} tii[12,17] := {51} tii[12,18] := {30, 56} tii[12,19] := {42} tii[12,20] := {27} tii[12,21] := {70, 89} tii[12,22] := {17, 73} tii[12,23] := {52, 78} tii[12,24] := {66} tii[12,25] := {29, 55} tii[12,26] := {37, 64} tii[12,27] := {41} tii[12,28] := {49} tii[12,29] := {35} tii[12,30] := {23, 48} tii[12,31] := {16, 39} tii[12,32] := {34} tii[12,33] := {25} tii[12,34] := {14} tii[12,35] := {21} tii[12,36] := {11} tii[12,37] := {7, 24} tii[12,38] := {13} tii[12,39] := {5} tii[12,40] := {2} tii[12,41] := {62, 100} tii[12,42] := {72, 103} tii[12,43] := {44, 93} tii[12,44] := {57, 99} tii[12,45] := {28, 88} tii[12,46] := {71, 91} tii[12,47] := {40, 96} tii[12,48] := {81} tii[12,49] := {68} tii[12,50] := {19, 77} tii[12,51] := {38, 65} tii[12,52] := {32, 87} tii[12,53] := {50} tii[12,54] := {60} tii[12,55] := {36} tii[12,56] := {22} tii[12,57] := {9, 61} tii[12,58] := {12, 33} tii[12,59] := {20} tii[12,60] := {18, 75} tii[12,61] := {10} tii[12,62] := {43} tii[12,63] := {4} tii[12,64] := {15} tii[12,65] := {1} tii[12,66] := {3, 45} tii[12,67] := {8, 58} tii[12,68] := {26} tii[12,69] := {6} tii[12,70] := {0} cell#217 , |C| = 98 special orbit = [4, 4, 1, 1, 1, 1, 1, 1] special rep = [[2], [2, 1, 1, 1]] , dim = 84 cell rep = phi[[2, 2, 1, 1, 1],[]]+phi[[2],[2, 1, 1, 1]] TII depth = 4 TII multiplicity polynomial = 14*X^2+70*X TII subcells: tii[14,1] := {81, 96} tii[14,2] := {93} tii[14,3] := {97} tii[14,4] := {66, 91} tii[14,5] := {57, 83} tii[14,6] := {85} tii[14,7] := {70} tii[14,8] := {94} tii[14,9] := {73} tii[14,10] := {61} tii[14,11] := {88} tii[14,12] := {95} tii[14,13] := {52, 82} tii[14,14] := {43, 68} tii[14,15] := {72} tii[14,16] := {55} tii[14,17] := {87} tii[14,18] := {31, 54} tii[14,19] := {59} tii[14,20] := {48} tii[14,21] := {41} tii[14,22] := {76} tii[14,23] := {29} tii[14,24] := {89} tii[14,25] := {46} tii[14,26] := {34} tii[14,27] := {63} tii[14,28] := {25} tii[14,29] := {78} tii[14,30] := {90} tii[14,31] := {37, 67} tii[14,32] := {30, 53} tii[14,33] := {58} tii[14,34] := {40} tii[14,35] := {75} tii[14,36] := {20, 38} tii[14,37] := {45} tii[14,38] := {33} tii[14,39] := {27} tii[14,40] := {62} tii[14,41] := {18} tii[14,42] := {77} tii[14,43] := {12, 26} tii[14,44] := {32} tii[14,45] := {17} tii[14,46] := {23} tii[14,47] := {49} tii[14,48] := {14} tii[14,49] := {10} tii[14,50] := {64} tii[14,51] := {5} tii[14,52] := {79} tii[14,53] := {22} tii[14,54] := {13} tii[14,55] := {35} tii[14,56] := {7} tii[14,57] := {51} tii[14,58] := {3} tii[14,59] := {65} tii[14,60] := {80} tii[14,61] := {71, 92} tii[14,62] := {84} tii[14,63] := {44, 69} tii[14,64] := {86} tii[14,65] := {56} tii[14,66] := {42} tii[14,67] := {21, 39} tii[14,68] := {74} tii[14,69] := {28} tii[14,70] := {50} tii[14,71] := {19} tii[14,72] := {11} tii[14,73] := {6, 16} tii[14,74] := {60} tii[14,75] := {9} tii[14,76] := {4} tii[14,77] := {36} tii[14,78] := {15} tii[14,79] := {2} tii[14,80] := {0} tii[14,81] := {47} tii[14,82] := {24} tii[14,83] := {8} tii[14,84] := {1} cell#218 , |C| = 189 special orbit = [4, 2, 2, 2, 2, 2] special rep = [[2, 1, 1], [1, 1, 1]] , dim = 105 cell rep = phi[[2, 1, 1, 1],[1, 1]]+phi[[2, 1, 1],[1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 84*X^2+21*X TII subcells: tii[13,1] := {78, 171} tii[13,2] := {121, 168} tii[13,3] := {119, 169} tii[13,4] := {84, 179} tii[13,5] := {133, 176} tii[13,6] := {112, 185} tii[13,7] := {91, 147} tii[13,8] := {158, 186} tii[13,9] := {131, 174} tii[13,10] := {163} tii[13,11] := {175, 188} tii[13,12] := {184} tii[13,13] := {120, 170} tii[13,14] := {143, 178} tii[13,15] := {161} tii[13,16] := {14, 30} tii[13,17] := {13, 29} tii[13,18] := {55, 149} tii[13,19] := {26, 46} tii[13,20] := {93, 146} tii[13,21] := {23, 44} tii[13,22] := {38, 130} tii[13,23] := {39, 62} tii[13,24] := {50, 99} tii[13,25] := {67, 122} tii[13,26] := {37, 60} tii[13,27] := {48, 98} tii[13,28] := {103, 181} tii[13,29] := {41, 69} tii[13,30] := {115, 165} tii[13,31] := {40, 65} tii[13,32] := {57, 154} tii[13,33] := {58, 90} tii[13,34] := {145, 183} tii[13,35] := {153} tii[13,36] := {73, 128} tii[13,37] := {79, 118} tii[13,38] := {92, 148} tii[13,39] := {167, 187} tii[13,40] := {54, 89} tii[13,41] := {88, 141} tii[13,42] := {180} tii[13,43] := {70, 127} tii[13,44] := {129} tii[13,45] := {96, 152} tii[13,46] := {140} tii[13,47] := {76, 116} tii[13,48] := {142, 177} tii[13,49] := {94, 150} tii[13,50] := {160} tii[13,51] := {138} tii[13,52] := {45, 80} tii[13,53] := {63, 166} tii[13,54] := {22, 43} tii[13,55] := {64, 106} tii[13,56] := {81, 136} tii[13,57] := {85, 132} tii[13,58] := {105, 156} tii[13,59] := {66, 123} tii[13,60] := {36, 59} tii[13,61] := {137} tii[13,62] := {107, 162} tii[13,63] := {47, 97} tii[13,64] := {155} tii[13,65] := {53, 86} tii[13,66] := {114, 159} tii[13,67] := {113, 157} tii[13,68] := {68, 125} tii[13,69] := {135} tii[13,70] := {134, 182} tii[13,71] := {173} tii[13,72] := {108} tii[13,73] := {77, 117} tii[13,74] := {95, 151} tii[13,75] := {139} tii[13,76] := {0, 2} tii[13,77] := {9, 20} tii[13,78] := {1, 5} tii[13,79] := {4, 11} tii[13,80] := {3, 10} tii[13,81] := {24, 102} tii[13,82] := {25, 42} tii[13,83] := {8, 19} tii[13,84] := {35, 72} tii[13,85] := {21, 52} tii[13,86] := {56, 87} tii[13,87] := {7, 18} tii[13,88] := {61, 111} tii[13,89] := {100} tii[13,90] := {71, 126} tii[13,91] := {16, 32} tii[13,92] := {34, 75} tii[13,93] := {110} tii[13,94] := {83} tii[13,95] := {12, 28} tii[13,96] := {104, 144} tii[13,97] := {27, 49} tii[13,98] := {124, 172} tii[13,99] := {51, 101} tii[13,100] := {164} tii[13,101] := {109} tii[13,102] := {6, 17} tii[13,103] := {15, 31} tii[13,104] := {33, 74} tii[13,105] := {82} cell#219 , |C| = 35 special orbit = [2, 2, 2, 2, 2, 2, 2] special rep = [[1, 1, 1, 1], [1, 1, 1]] , dim = 35 cell rep = phi[[1, 1, 1, 1],[1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 35*X TII subcells: tii[5,1] := {34} tii[5,2] := {12} tii[5,3] := {31} tii[5,4] := {16} tii[5,5] := {27} tii[5,6] := {20} tii[5,7] := {23} tii[5,8] := {21} tii[5,9] := {32} tii[5,10] := {26} tii[5,11] := {29} tii[5,12] := {30} tii[5,13] := {33} tii[5,14] := {2} tii[5,15] := {8} tii[5,16] := {3} tii[5,17] := {6} tii[5,18] := {22} tii[5,19] := {5} tii[5,20] := {15} tii[5,21] := {9} tii[5,22] := {18} tii[5,23] := {14} tii[5,24] := {25} tii[5,25] := {7} tii[5,26] := {28} tii[5,27] := {13} tii[5,28] := {19} tii[5,29] := {11} tii[5,30] := {17} tii[5,31] := {24} tii[5,32] := {0} tii[5,33] := {1} tii[5,34] := {4} tii[5,35] := {10} cell#220 , |C| = 189 special orbit = [4, 2, 2, 2, 2, 2] special rep = [[2, 1, 1], [1, 1, 1]] , dim = 105 cell rep = phi[[2, 1, 1, 1],[1, 1]]+phi[[2, 1, 1],[1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 84*X^2+21*X TII subcells: tii[13,1] := {78, 171} tii[13,2] := {121, 168} tii[13,3] := {119, 169} tii[13,4] := {84, 179} tii[13,5] := {133, 176} tii[13,6] := {112, 185} tii[13,7] := {91, 147} tii[13,8] := {158, 186} tii[13,9] := {131, 174} tii[13,10] := {163} tii[13,11] := {175, 188} tii[13,12] := {184} tii[13,13] := {120, 170} tii[13,14] := {143, 178} tii[13,15] := {161} tii[13,16] := {14, 30} tii[13,17] := {13, 29} tii[13,18] := {55, 149} tii[13,19] := {26, 46} tii[13,20] := {93, 146} tii[13,21] := {23, 44} tii[13,22] := {38, 130} tii[13,23] := {39, 62} tii[13,24] := {50, 99} tii[13,25] := {67, 122} tii[13,26] := {37, 60} tii[13,27] := {48, 98} tii[13,28] := {103, 181} tii[13,29] := {41, 69} tii[13,30] := {115, 165} tii[13,31] := {40, 65} tii[13,32] := {57, 154} tii[13,33] := {58, 90} tii[13,34] := {145, 183} tii[13,35] := {153} tii[13,36] := {73, 128} tii[13,37] := {79, 118} tii[13,38] := {92, 148} tii[13,39] := {167, 187} tii[13,40] := {54, 89} tii[13,41] := {88, 141} tii[13,42] := {180} tii[13,43] := {70, 127} tii[13,44] := {129} tii[13,45] := {96, 152} tii[13,46] := {140} tii[13,47] := {76, 116} tii[13,48] := {142, 177} tii[13,49] := {94, 150} tii[13,50] := {160} tii[13,51] := {138} tii[13,52] := {45, 80} tii[13,53] := {63, 166} tii[13,54] := {22, 43} tii[13,55] := {64, 106} tii[13,56] := {81, 136} tii[13,57] := {85, 132} tii[13,58] := {105, 156} tii[13,59] := {66, 123} tii[13,60] := {36, 59} tii[13,61] := {137} tii[13,62] := {107, 162} tii[13,63] := {47, 97} tii[13,64] := {155} tii[13,65] := {53, 86} tii[13,66] := {114, 159} tii[13,67] := {113, 157} tii[13,68] := {68, 125} tii[13,69] := {135} tii[13,70] := {134, 182} tii[13,71] := {173} tii[13,72] := {108} tii[13,73] := {77, 117} tii[13,74] := {95, 151} tii[13,75] := {139} tii[13,76] := {0, 2} tii[13,77] := {9, 20} tii[13,78] := {1, 5} tii[13,79] := {4, 11} tii[13,80] := {3, 10} tii[13,81] := {24, 102} tii[13,82] := {25, 42} tii[13,83] := {8, 19} tii[13,84] := {35, 72} tii[13,85] := {21, 52} tii[13,86] := {56, 87} tii[13,87] := {7, 18} tii[13,88] := {61, 111} tii[13,89] := {100} tii[13,90] := {71, 126} tii[13,91] := {16, 32} tii[13,92] := {34, 75} tii[13,93] := {110} tii[13,94] := {83} tii[13,95] := {12, 28} tii[13,96] := {104, 144} tii[13,97] := {27, 49} tii[13,98] := {124, 172} tii[13,99] := {51, 101} tii[13,100] := {164} tii[13,101] := {109} tii[13,102] := {6, 17} tii[13,103] := {15, 31} tii[13,104] := {33, 74} tii[13,105] := {82} cell#221 , |C| = 35 special orbit = [2, 2, 2, 2, 2, 2, 2] special rep = [[1, 1, 1, 1], [1, 1, 1]] , dim = 35 cell rep = phi[[1, 1, 1, 1],[1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 35*X TII subcells: tii[5,1] := {34} tii[5,2] := {12} tii[5,3] := {31} tii[5,4] := {16} tii[5,5] := {27} tii[5,6] := {20} tii[5,7] := {23} tii[5,8] := {21} tii[5,9] := {32} tii[5,10] := {26} tii[5,11] := {29} tii[5,12] := {30} tii[5,13] := {33} tii[5,14] := {2} tii[5,15] := {8} tii[5,16] := {3} tii[5,17] := {6} tii[5,18] := {22} tii[5,19] := {5} tii[5,20] := {15} tii[5,21] := {9} tii[5,22] := {18} tii[5,23] := {14} tii[5,24] := {25} tii[5,25] := {7} tii[5,26] := {28} tii[5,27] := {13} tii[5,28] := {19} tii[5,29] := {11} tii[5,30] := {17} tii[5,31] := {24} tii[5,32] := {0} tii[5,33] := {1} tii[5,34] := {4} tii[5,35] := {10} cell#222 , |C| = 105 special orbit = [4, 2, 2, 2, 1, 1, 1, 1] special rep = [[2, 1], [1, 1, 1, 1]] , dim = 70 cell rep = phi[[2, 1, 1, 1, 1],[1]]+phi[[2, 1],[1, 1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 35*X^2+35*X TII subcells: tii[12,1] := {43, 103} tii[12,2] := {38, 93} tii[12,3] := {61, 101} tii[12,4] := {20, 81} tii[12,5] := {76, 97} tii[12,6] := {90} tii[12,7] := {36, 71} tii[12,8] := {57} tii[12,9] := {75, 104} tii[12,10] := {11, 64} tii[12,11] := {84, 100} tii[12,12] := {96} tii[12,13] := {67, 94} tii[12,14] := {18, 52} tii[12,15] := {39} tii[12,16] := {86} tii[12,17] := {92} tii[12,18] := {29, 65} tii[12,19] := {50} tii[12,20] := {63} tii[12,21] := {62, 102} tii[12,22] := {5, 45} tii[12,23] := {77, 98} tii[12,24] := {91} tii[12,25] := {9, 33} tii[12,26] := {55, 88} tii[12,27] := {22} tii[12,28] := {78} tii[12,29] := {87} tii[12,30] := {37, 73} tii[12,31] := {17, 46} tii[12,32] := {58} tii[12,33] := {31} tii[12,34] := {44} tii[12,35] := {72} tii[12,36] := {60} tii[12,37] := {10, 35} tii[12,38] := {23} tii[12,39] := {34} tii[12,40] := {25} tii[12,41] := {3, 74} tii[12,42] := {27, 99} tii[12,43] := {7, 83} tii[12,44] := {15, 95} tii[12,45] := {8, 66} tii[12,46] := {56, 89} tii[12,47] := {21, 85} tii[12,48] := {79} tii[12,49] := {59} tii[12,50] := {4, 47} tii[12,51] := {48, 82} tii[12,52] := {12, 68} tii[12,53] := {69} tii[12,54] := {41} tii[12,55] := {80} tii[12,56] := {70} tii[12,57] := {1, 28} tii[12,58] := {19, 54} tii[12,59] := {40} tii[12,60] := {6, 49} tii[12,61] := {53} tii[12,62] := {24} tii[12,63] := {42} tii[12,64] := {51} tii[12,65] := {26} tii[12,66] := {0, 16} tii[12,67] := {2, 30} tii[12,68] := {13} tii[12,69] := {32} tii[12,70] := {14} cell#223 , |C| = 105 special orbit = [4, 2, 2, 2, 1, 1, 1, 1] special rep = [[2, 1], [1, 1, 1, 1]] , dim = 70 cell rep = phi[[2, 1, 1, 1, 1],[1]]+phi[[2, 1],[1, 1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 35*X^2+35*X TII subcells: tii[12,1] := {66, 99} tii[12,2] := {70, 71} tii[12,3] := {84, 103} tii[12,4] := {52, 53} tii[12,5] := {94, 96} tii[12,6] := {101} tii[12,7] := {62, 64} tii[12,8] := {78} tii[12,9] := {74, 100} tii[12,10] := {30, 31} tii[12,11] := {89, 90} tii[12,12] := {98} tii[12,13] := {72, 73} tii[12,14] := {42, 44} tii[12,15] := {60} tii[12,16] := {88} tii[12,17] := {76} tii[12,18] := {32, 33} tii[12,19] := {50} tii[12,20] := {37} tii[12,21] := {85, 104} tii[12,22] := {11, 12} tii[12,23] := {95, 97} tii[12,24] := {102} tii[12,25] := {19, 21} tii[12,26] := {81, 83} tii[12,27] := {40} tii[12,28] := {93} tii[12,29] := {87} tii[12,30] := {63, 65} tii[12,31] := {13, 14} tii[12,32] := {79} tii[12,33] := {26} tii[12,34] := {17} tii[12,35] := {68} tii[12,36] := {77} tii[12,37] := {20, 22} tii[12,38] := {41} tii[12,39] := {24} tii[12,40] := {39} tii[12,41] := {7, 27} tii[12,42] := {46, 91} tii[12,43] := {8, 51} tii[12,44] := {36, 75} tii[12,45] := {28, 29} tii[12,46] := {80, 82} tii[12,47] := {56, 57} tii[12,48] := {92} tii[12,49] := {86} tii[12,50] := {9, 10} tii[12,51] := {54, 55} tii[12,52] := {34, 35} tii[12,53] := {69} tii[12,54] := {67} tii[12,55] := {58} tii[12,56] := {38} tii[12,57] := {2, 3} tii[12,58] := {43, 45} tii[12,59] := {61} tii[12,60] := {15, 16} tii[12,61] := {48} tii[12,62] := {47} tii[12,63] := {59} tii[12,64] := {18} tii[12,65] := {49} tii[12,66] := {0, 1} tii[12,67] := {4, 5} tii[12,68] := {23} tii[12,69] := {6} tii[12,70] := {25} cell#224 , |C| = 175 special orbit = [3, 3, 2, 2, 2, 2] special rep = [[1, 1, 1], [2, 1, 1]] , dim = 105 cell rep = phi[[1, 1, 1, 1],[2, 1]]+phi[[1, 1, 1],[2, 1, 1]] TII depth = 3 TII multiplicity polynomial = 70*X^2+35*X TII subcells: tii[8,1] := {136, 137} tii[8,2] := {138, 139} tii[8,3] := {147, 148} tii[8,4] := {113, 114} tii[8,5] := {165, 166} tii[8,6] := {144} tii[8,7] := {161} tii[8,8] := {170, 171} tii[8,9] := {174} tii[8,10] := {140, 141} tii[8,11] := {151, 152} tii[8,12] := {164} tii[8,13] := {18, 19} tii[8,14] := {111, 112} tii[8,15] := {31, 32} tii[8,16] := {44, 45} tii[8,17] := {72, 73} tii[8,18] := {87, 88} tii[8,19] := {42, 43} tii[8,20] := {70, 71} tii[8,21] := {127} tii[8,22] := {46, 47} tii[8,23] := {159, 160} tii[8,24] := {66, 67} tii[8,25] := {155} tii[8,26] := {97, 98} tii[8,27] := {85, 86} tii[8,28] := {115, 116} tii[8,29] := {102} tii[8,30] := {167, 168} tii[8,31] := {64, 65} tii[8,32] := {80} tii[8,33] := {121, 122} tii[8,34] := {173} tii[8,35] := {95, 96} tii[8,36] := {132} tii[8,37] := {156} tii[8,38] := {81, 82} tii[8,39] := {149, 150} tii[8,40] := {117, 118} tii[8,41] := {163} tii[8,42] := {157} tii[8,43] := {29, 30} tii[8,44] := {77, 78} tii[8,45] := {104, 105} tii[8,46] := {100, 101} tii[8,47] := {123} tii[8,48] := {89, 90} tii[8,49] := {40, 41} tii[8,50] := {130, 131} tii[8,51] := {145} tii[8,52] := {99} tii[8,53] := {68, 69} tii[8,54] := {162} tii[8,55] := {60, 61} tii[8,56] := {128, 129} tii[8,57] := {125, 126} tii[8,58] := {124} tii[8,59] := {91, 92} tii[8,60] := {146} tii[8,61] := {153, 154} tii[8,62] := {172} tii[8,63] := {134} tii[8,64] := {83, 84} tii[8,65] := {119, 120} tii[8,66] := {158} tii[8,67] := {2, 3} tii[8,68] := {6, 7} tii[8,69] := {4, 5} tii[8,70] := {27, 28} tii[8,71] := {12, 13} tii[8,72] := {50, 51} tii[8,73] := {20, 21} tii[8,74] := {37, 38} tii[8,75] := {79} tii[8,76] := {62, 63} tii[8,77] := {10, 11} tii[8,78] := {33, 34} tii[8,79] := {106} tii[8,80] := {58} tii[8,81] := {93, 94} tii[8,82] := {24, 25} tii[8,83] := {54, 55} tii[8,84] := {133} tii[8,85] := {39} tii[8,86] := {107} tii[8,87] := {16, 17} tii[8,88] := {109, 110} tii[8,89] := {103} tii[8,90] := {48, 49} tii[8,91] := {35, 36} tii[8,92] := {142, 143} tii[8,93] := {59} tii[8,94] := {74, 75} tii[8,95] := {169} tii[8,96] := {135} tii[8,97] := {8, 9} tii[8,98] := {56, 57} tii[8,99] := {22, 23} tii[8,100] := {76} tii[8,101] := {52, 53} tii[8,102] := {108} tii[8,103] := {0, 1} tii[8,104] := {14, 15} tii[8,105] := {26} cell#225 , |C| = 105 special orbit = [3, 3, 2, 2, 1, 1, 1, 1] special rep = [[1, 1], [2, 1, 1, 1]] , dim = 84 cell rep = phi[[1, 1, 1, 1, 1],[2]]+phi[[1, 1],[2, 1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 21*X^2+63*X TII subcells: tii[7,1] := {65, 101} tii[7,2] := {80, 94} tii[7,3] := {53} tii[7,4] := {72} tii[7,5] := {91, 102} tii[7,6] := {97} tii[7,7] := {64, 82} tii[7,8] := {39} tii[7,9] := {56} tii[7,10] := {27} tii[7,11] := {78, 95} tii[7,12] := {20} tii[7,13] := {84} tii[7,14] := {43} tii[7,15] := {59} tii[7,16] := {92, 103} tii[7,17] := {98} tii[7,18] := {88} tii[7,19] := {49, 69} tii[7,20] := {26} tii[7,21] := {42} tii[7,22] := {63, 83} tii[7,23] := {17} tii[7,24] := {12} tii[7,25] := {70} tii[7,26] := {30} tii[7,27] := {44} tii[7,28] := {11} tii[7,29] := {79, 96} tii[7,30] := {8} tii[7,31] := {21} tii[7,32] := {85} tii[7,33] := {5} tii[7,34] := {73} tii[7,35] := {32} tii[7,36] := {46} tii[7,37] := {93, 104} tii[7,38] := {99} tii[7,39] := {89} tii[7,40] := {76} tii[7,41] := {25, 68} tii[7,42] := {37, 87} tii[7,43] := {35, 81} tii[7,44] := {40} tii[7,45] := {51, 100} tii[7,46] := {57} tii[7,47] := {29} tii[7,48] := {75} tii[7,49] := {48, 67} tii[7,50] := {18} tii[7,51] := {41} tii[7,52] := {66, 86} tii[7,53] := {13} tii[7,54] := {31} tii[7,55] := {90} tii[7,56] := {45} tii[7,57] := {10} tii[7,58] := {61} tii[7,59] := {34, 52} tii[7,60] := {7} tii[7,61] := {28} tii[7,62] := {50, 71} tii[7,63] := {4} tii[7,64] := {14} tii[7,65] := {15} tii[7,66] := {2} tii[7,67] := {23} tii[7,68] := {74} tii[7,69] := {33} tii[7,70] := {77} tii[7,71] := {1} tii[7,72] := {47} tii[7,73] := {24, 38} tii[7,74] := {19} tii[7,75] := {36, 55} tii[7,76] := {9} tii[7,77] := {58} tii[7,78] := {3} tii[7,79] := {60} tii[7,80] := {62} tii[7,81] := {16, 54} tii[7,82] := {22} tii[7,83] := {6} tii[7,84] := {0} cell#226 , |C| = 105 special orbit = [4, 2, 2, 2, 1, 1, 1, 1] special rep = [[2, 1], [1, 1, 1, 1]] , dim = 70 cell rep = phi[[2, 1, 1, 1, 1],[1]]+phi[[2, 1],[1, 1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 35*X^2+35*X TII subcells: tii[12,1] := {43, 103} tii[12,2] := {38, 93} tii[12,3] := {61, 101} tii[12,4] := {20, 81} tii[12,5] := {76, 97} tii[12,6] := {90} tii[12,7] := {36, 71} tii[12,8] := {57} tii[12,9] := {75, 104} tii[12,10] := {11, 64} tii[12,11] := {84, 100} tii[12,12] := {96} tii[12,13] := {67, 94} tii[12,14] := {18, 52} tii[12,15] := {39} tii[12,16] := {86} tii[12,17] := {92} tii[12,18] := {29, 65} tii[12,19] := {50} tii[12,20] := {63} tii[12,21] := {62, 102} tii[12,22] := {5, 45} tii[12,23] := {77, 98} tii[12,24] := {91} tii[12,25] := {9, 33} tii[12,26] := {55, 88} tii[12,27] := {22} tii[12,28] := {78} tii[12,29] := {87} tii[12,30] := {37, 73} tii[12,31] := {17, 46} tii[12,32] := {58} tii[12,33] := {31} tii[12,34] := {44} tii[12,35] := {72} tii[12,36] := {60} tii[12,37] := {10, 35} tii[12,38] := {23} tii[12,39] := {34} tii[12,40] := {25} tii[12,41] := {3, 74} tii[12,42] := {27, 99} tii[12,43] := {7, 83} tii[12,44] := {15, 95} tii[12,45] := {8, 66} tii[12,46] := {56, 89} tii[12,47] := {21, 85} tii[12,48] := {79} tii[12,49] := {59} tii[12,50] := {4, 47} tii[12,51] := {48, 82} tii[12,52] := {12, 68} tii[12,53] := {69} tii[12,54] := {41} tii[12,55] := {80} tii[12,56] := {70} tii[12,57] := {1, 28} tii[12,58] := {19, 54} tii[12,59] := {40} tii[12,60] := {6, 49} tii[12,61] := {53} tii[12,62] := {24} tii[12,63] := {42} tii[12,64] := {51} tii[12,65] := {26} tii[12,66] := {0, 16} tii[12,67] := {2, 30} tii[12,68] := {13} tii[12,69] := {32} tii[12,70] := {14} cell#227 , |C| = 105 special orbit = [4, 2, 2, 2, 1, 1, 1, 1] special rep = [[2, 1], [1, 1, 1, 1]] , dim = 70 cell rep = phi[[2, 1, 1, 1, 1],[1]]+phi[[2, 1],[1, 1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 35*X^2+35*X TII subcells: tii[12,1] := {66, 99} tii[12,2] := {70, 71} tii[12,3] := {84, 103} tii[12,4] := {52, 53} tii[12,5] := {94, 96} tii[12,6] := {101} tii[12,7] := {62, 64} tii[12,8] := {78} tii[12,9] := {74, 100} tii[12,10] := {30, 31} tii[12,11] := {89, 90} tii[12,12] := {98} tii[12,13] := {72, 73} tii[12,14] := {42, 44} tii[12,15] := {60} tii[12,16] := {88} tii[12,17] := {76} tii[12,18] := {32, 33} tii[12,19] := {50} tii[12,20] := {37} tii[12,21] := {85, 104} tii[12,22] := {11, 12} tii[12,23] := {95, 97} tii[12,24] := {102} tii[12,25] := {19, 21} tii[12,26] := {81, 83} tii[12,27] := {40} tii[12,28] := {93} tii[12,29] := {87} tii[12,30] := {63, 65} tii[12,31] := {13, 14} tii[12,32] := {79} tii[12,33] := {26} tii[12,34] := {17} tii[12,35] := {68} tii[12,36] := {77} tii[12,37] := {20, 22} tii[12,38] := {41} tii[12,39] := {24} tii[12,40] := {39} tii[12,41] := {7, 27} tii[12,42] := {46, 91} tii[12,43] := {8, 51} tii[12,44] := {36, 75} tii[12,45] := {28, 29} tii[12,46] := {80, 82} tii[12,47] := {56, 57} tii[12,48] := {92} tii[12,49] := {86} tii[12,50] := {9, 10} tii[12,51] := {54, 55} tii[12,52] := {34, 35} tii[12,53] := {69} tii[12,54] := {67} tii[12,55] := {58} tii[12,56] := {38} tii[12,57] := {2, 3} tii[12,58] := {43, 45} tii[12,59] := {61} tii[12,60] := {15, 16} tii[12,61] := {48} tii[12,62] := {47} tii[12,63] := {59} tii[12,64] := {18} tii[12,65] := {49} tii[12,66] := {0, 1} tii[12,67] := {4, 5} tii[12,68] := {23} tii[12,69] := {6} tii[12,70] := {25} cell#228 , |C| = 105 special orbit = [3, 3, 2, 2, 1, 1, 1, 1] special rep = [[1, 1], [2, 1, 1, 1]] , dim = 84 cell rep = phi[[1, 1, 1, 1, 1],[2]]+phi[[1, 1],[2, 1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 21*X^2+63*X TII subcells: tii[7,1] := {65, 101} tii[7,2] := {80, 94} tii[7,3] := {53} tii[7,4] := {72} tii[7,5] := {91, 102} tii[7,6] := {97} tii[7,7] := {64, 82} tii[7,8] := {39} tii[7,9] := {56} tii[7,10] := {27} tii[7,11] := {78, 95} tii[7,12] := {20} tii[7,13] := {84} tii[7,14] := {43} tii[7,15] := {59} tii[7,16] := {92, 103} tii[7,17] := {98} tii[7,18] := {88} tii[7,19] := {49, 69} tii[7,20] := {26} tii[7,21] := {42} tii[7,22] := {63, 83} tii[7,23] := {17} tii[7,24] := {12} tii[7,25] := {70} tii[7,26] := {30} tii[7,27] := {44} tii[7,28] := {11} tii[7,29] := {79, 96} tii[7,30] := {8} tii[7,31] := {21} tii[7,32] := {85} tii[7,33] := {5} tii[7,34] := {73} tii[7,35] := {32} tii[7,36] := {46} tii[7,37] := {93, 104} tii[7,38] := {99} tii[7,39] := {89} tii[7,40] := {76} tii[7,41] := {25, 68} tii[7,42] := {37, 87} tii[7,43] := {35, 81} tii[7,44] := {40} tii[7,45] := {51, 100} tii[7,46] := {57} tii[7,47] := {29} tii[7,48] := {75} tii[7,49] := {48, 67} tii[7,50] := {18} tii[7,51] := {41} tii[7,52] := {66, 86} tii[7,53] := {13} tii[7,54] := {31} tii[7,55] := {90} tii[7,56] := {45} tii[7,57] := {10} tii[7,58] := {61} tii[7,59] := {34, 52} tii[7,60] := {7} tii[7,61] := {28} tii[7,62] := {50, 71} tii[7,63] := {4} tii[7,64] := {14} tii[7,65] := {15} tii[7,66] := {2} tii[7,67] := {23} tii[7,68] := {74} tii[7,69] := {33} tii[7,70] := {77} tii[7,71] := {1} tii[7,72] := {47} tii[7,73] := {24, 38} tii[7,74] := {19} tii[7,75] := {36, 55} tii[7,76] := {9} tii[7,77] := {58} tii[7,78] := {3} tii[7,79] := {60} tii[7,80] := {62} tii[7,81] := {16, 54} tii[7,82] := {22} tii[7,83] := {6} tii[7,84] := {0} cell#229 , |C| = 35 special orbit = [2, 2, 2, 2, 2, 2, 2] special rep = [[1, 1, 1, 1], [1, 1, 1]] , dim = 35 cell rep = phi[[1, 1, 1, 1],[1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 35*X TII subcells: tii[5,1] := {34} tii[5,2] := {11} tii[5,3] := {31} tii[5,4] := {15} tii[5,5] := {28} tii[5,6] := {18} tii[5,7] := {25} tii[5,8] := {19} tii[5,9] := {32} tii[5,10] := {23} tii[5,11] := {30} tii[5,12] := {27} tii[5,13] := {33} tii[5,14] := {2} tii[5,15] := {8} tii[5,16] := {3} tii[5,17] := {6} tii[5,18] := {24} tii[5,19] := {5} tii[5,20] := {14} tii[5,21] := {9} tii[5,22] := {20} tii[5,23] := {17} tii[5,24] := {22} tii[5,25] := {7} tii[5,26] := {29} tii[5,27] := {12} tii[5,28] := {21} tii[5,29] := {10} tii[5,30] := {16} tii[5,31] := {26} tii[5,32] := {0} tii[5,33] := {1} tii[5,34] := {4} tii[5,35] := {13} cell#230 , |C| = 35 special orbit = [2, 2, 2, 2, 2, 2, 2] special rep = [[1, 1, 1, 1], [1, 1, 1]] , dim = 35 cell rep = phi[[1, 1, 1, 1],[1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 35*X TII subcells: tii[5,1] := {34} tii[5,2] := {11} tii[5,3] := {31} tii[5,4] := {15} tii[5,5] := {28} tii[5,6] := {18} tii[5,7] := {25} tii[5,8] := {19} tii[5,9] := {32} tii[5,10] := {23} tii[5,11] := {30} tii[5,12] := {27} tii[5,13] := {33} tii[5,14] := {2} tii[5,15] := {8} tii[5,16] := {3} tii[5,17] := {6} tii[5,18] := {24} tii[5,19] := {5} tii[5,20] := {14} tii[5,21] := {9} tii[5,22] := {20} tii[5,23] := {17} tii[5,24] := {22} tii[5,25] := {7} tii[5,26] := {29} tii[5,27] := {12} tii[5,28] := {21} tii[5,29] := {10} tii[5,30] := {16} tii[5,31] := {26} tii[5,32] := {0} tii[5,33] := {1} tii[5,34] := {4} tii[5,35] := {13} cell#231 , |C| = 105 special orbit = [4, 2, 2, 2, 1, 1, 1, 1] special rep = [[2, 1], [1, 1, 1, 1]] , dim = 70 cell rep = phi[[2, 1, 1, 1, 1],[1]]+phi[[2, 1],[1, 1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 35*X^2+35*X TII subcells: tii[12,1] := {41, 99} tii[12,2] := {48, 104} tii[12,3] := {61, 89} tii[12,4] := {67, 102} tii[12,5] := {76, 77} tii[12,6] := {88} tii[12,7] := {83, 101} tii[12,8] := {94} tii[12,9] := {40, 73} tii[12,10] := {47, 96} tii[12,11] := {57, 58} tii[12,12] := {71} tii[12,13] := {38, 39} tii[12,14] := {66, 93} tii[12,15] := {81} tii[12,16] := {53} tii[12,17] := {44} tii[12,18] := {74, 95} tii[12,19] := {86} tii[12,20] := {70} tii[12,21] := {23, 54} tii[12,22] := {29, 85} tii[12,23] := {36, 37} tii[12,24] := {51} tii[12,25] := {45, 78} tii[12,26] := {19, 20} tii[12,27] := {62} tii[12,28] := {33} tii[12,29] := {25} tii[12,30] := {9, 10} tii[12,31] := {55, 84} tii[12,32] := {18} tii[12,33] := {68} tii[12,34] := {50} tii[12,35] := {11} tii[12,36] := {17} tii[12,37] := {46, 79} tii[12,38] := {63} tii[12,39] := {42} tii[12,40] := {27} tii[12,41] := {0, 80} tii[12,42] := {24, 91} tii[12,43] := {5, 92} tii[12,44] := {16, 98} tii[12,45] := {14, 100} tii[12,46] := {59, 60} tii[12,47] := {31, 103} tii[12,48] := {72} tii[12,49] := {65} tii[12,50] := {28, 90} tii[12,51] := {21, 22} tii[12,52] := {49, 97} tii[12,53] := {35} tii[12,54] := {82} tii[12,55] := {26} tii[12,56] := {34} tii[12,57] := {13, 75} tii[12,58] := {1, 2} tii[12,59] := {8} tii[12,60] := {30, 87} tii[12,61] := {3} tii[12,62] := {64} tii[12,63] := {7} tii[12,64] := {52} tii[12,65] := {4} tii[12,66] := {6, 56} tii[12,67] := {15, 69} tii[12,68] := {43} tii[12,69] := {32} tii[12,70] := {12} cell#232 , |C| = 56 special orbit = [2, 2, 2, 2, 2, 2, 1, 1] special rep = [[1, 1, 1], [1, 1, 1, 1]] , dim = 35 cell rep = phi[[1, 1, 1, 1, 1],[1, 1]]+phi[[1, 1, 1],[1, 1, 1, 1]] TII depth = 2 TII multiplicity polynomial = 21*X^2+14*X TII subcells: tii[4,1] := {20, 53} tii[4,2] := {29, 55} tii[4,3] := {38, 51} tii[4,4] := {45} tii[4,5] := {25, 54} tii[4,6] := {34, 47} tii[4,7] := {40} tii[4,8] := {24, 39} tii[4,9] := {31} tii[4,10] := {23} tii[4,11] := {2, 26} tii[4,12] := {11, 48} tii[4,13] := {5, 35} tii[4,14] := {6, 41} tii[4,15] := {8, 42} tii[4,16] := {28, 44} tii[4,17] := {12, 49} tii[4,18] := {36} tii[4,19] := {27} tii[4,20] := {16, 30} tii[4,21] := {15, 46} tii[4,22] := {22} tii[4,23] := {21, 52} tii[4,24] := {13} tii[4,25] := {37} tii[4,26] := {7} tii[4,27] := {10, 43} tii[4,28] := {17, 50} tii[4,29] := {32} tii[4,30] := {14} tii[4,31] := {0, 9} tii[4,32] := {1, 18} tii[4,33] := {3, 33} tii[4,34] := {19} tii[4,35] := {4} cell#233 , |C| = 105 special orbit = [4, 2, 2, 2, 1, 1, 1, 1] special rep = [[2, 1], [1, 1, 1, 1]] , dim = 70 cell rep = phi[[2, 1, 1, 1, 1],[1]]+phi[[2, 1],[1, 1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 35*X^2+35*X TII subcells: tii[12,1] := {41, 99} tii[12,2] := {48, 104} tii[12,3] := {61, 89} tii[12,4] := {67, 102} tii[12,5] := {76, 77} tii[12,6] := {88} tii[12,7] := {83, 101} tii[12,8] := {94} tii[12,9] := {40, 73} tii[12,10] := {47, 96} tii[12,11] := {57, 58} tii[12,12] := {71} tii[12,13] := {38, 39} tii[12,14] := {66, 93} tii[12,15] := {81} tii[12,16] := {53} tii[12,17] := {44} tii[12,18] := {74, 95} tii[12,19] := {86} tii[12,20] := {70} tii[12,21] := {23, 54} tii[12,22] := {29, 85} tii[12,23] := {36, 37} tii[12,24] := {51} tii[12,25] := {45, 78} tii[12,26] := {19, 20} tii[12,27] := {62} tii[12,28] := {33} tii[12,29] := {25} tii[12,30] := {9, 10} tii[12,31] := {55, 84} tii[12,32] := {18} tii[12,33] := {68} tii[12,34] := {50} tii[12,35] := {11} tii[12,36] := {17} tii[12,37] := {46, 79} tii[12,38] := {63} tii[12,39] := {42} tii[12,40] := {27} tii[12,41] := {0, 80} tii[12,42] := {24, 91} tii[12,43] := {5, 92} tii[12,44] := {16, 98} tii[12,45] := {14, 100} tii[12,46] := {59, 60} tii[12,47] := {31, 103} tii[12,48] := {72} tii[12,49] := {65} tii[12,50] := {28, 90} tii[12,51] := {21, 22} tii[12,52] := {49, 97} tii[12,53] := {35} tii[12,54] := {82} tii[12,55] := {26} tii[12,56] := {34} tii[12,57] := {13, 75} tii[12,58] := {1, 2} tii[12,59] := {8} tii[12,60] := {30, 87} tii[12,61] := {3} tii[12,62] := {64} tii[12,63] := {7} tii[12,64] := {52} tii[12,65] := {4} tii[12,66] := {6, 56} tii[12,67] := {15, 69} tii[12,68] := {43} tii[12,69] := {32} tii[12,70] := {12} cell#234 , |C| = 56 special orbit = [2, 2, 2, 2, 2, 2, 1, 1] special rep = [[1, 1, 1], [1, 1, 1, 1]] , dim = 35 cell rep = phi[[1, 1, 1, 1, 1],[1, 1]]+phi[[1, 1, 1],[1, 1, 1, 1]] TII depth = 2 TII multiplicity polynomial = 21*X^2+14*X TII subcells: tii[4,1] := {20, 53} tii[4,2] := {29, 55} tii[4,3] := {38, 51} tii[4,4] := {45} tii[4,5] := {25, 54} tii[4,6] := {34, 47} tii[4,7] := {40} tii[4,8] := {24, 39} tii[4,9] := {31} tii[4,10] := {23} tii[4,11] := {2, 26} tii[4,12] := {11, 48} tii[4,13] := {5, 35} tii[4,14] := {6, 41} tii[4,15] := {8, 42} tii[4,16] := {28, 44} tii[4,17] := {12, 49} tii[4,18] := {36} tii[4,19] := {27} tii[4,20] := {16, 30} tii[4,21] := {15, 46} tii[4,22] := {22} tii[4,23] := {21, 52} tii[4,24] := {13} tii[4,25] := {37} tii[4,26] := {7} tii[4,27] := {10, 43} tii[4,28] := {17, 50} tii[4,29] := {32} tii[4,30] := {14} tii[4,31] := {0, 9} tii[4,32] := {1, 18} tii[4,33] := {3, 33} tii[4,34] := {19} tii[4,35] := {4} cell#235 , |C| = 50 special orbit = [6, 2, 1, 1, 1, 1, 1, 1] special rep = [[3], [1, 1, 1, 1]] , dim = 35 cell rep = phi[[3, 1, 1, 1, 1],[]]+phi[[3],[1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 15*X^2+20*X TII subcells: tii[22,1] := {42, 49} tii[22,2] := {41, 48} tii[22,3] := {45, 46} tii[22,4] := {47} tii[22,5] := {34, 44} tii[22,6] := {39, 40} tii[22,7] := {43} tii[22,8] := {32, 33} tii[22,9] := {37} tii[22,10] := {35} tii[22,11] := {25, 38} tii[22,12] := {30, 31} tii[22,13] := {36} tii[22,14] := {23, 24} tii[22,15] := {28} tii[22,16] := {26} tii[22,17] := {13, 14} tii[22,18] := {20} tii[22,19] := {17} tii[22,20] := {19} tii[22,21] := {15, 29} tii[22,22] := {21, 22} tii[22,23] := {27} tii[22,24] := {11, 12} tii[22,25] := {18} tii[22,26] := {16} tii[22,27] := {6, 7} tii[22,28] := {10} tii[22,29] := {8} tii[22,30] := {9} tii[22,31] := {0, 1} tii[22,32] := {5} tii[22,33] := {2} tii[22,34] := {4} tii[22,35] := {3} cell#236 , |C| = 50 special orbit = [6, 2, 1, 1, 1, 1, 1, 1] special rep = [[3], [1, 1, 1, 1]] , dim = 35 cell rep = phi[[3, 1, 1, 1, 1],[]]+phi[[3],[1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 15*X^2+20*X TII subcells: tii[22,1] := {42, 49} tii[22,2] := {41, 48} tii[22,3] := {45, 46} tii[22,4] := {47} tii[22,5] := {34, 44} tii[22,6] := {39, 40} tii[22,7] := {43} tii[22,8] := {32, 33} tii[22,9] := {37} tii[22,10] := {35} tii[22,11] := {25, 38} tii[22,12] := {30, 31} tii[22,13] := {36} tii[22,14] := {23, 24} tii[22,15] := {28} tii[22,16] := {26} tii[22,17] := {13, 14} tii[22,18] := {20} tii[22,19] := {17} tii[22,20] := {19} tii[22,21] := {15, 29} tii[22,22] := {21, 22} tii[22,23] := {27} tii[22,24] := {11, 12} tii[22,25] := {18} tii[22,26] := {16} tii[22,27] := {6, 7} tii[22,28] := {10} tii[22,29] := {8} tii[22,30] := {9} tii[22,31] := {0, 1} tii[22,32] := {5} tii[22,33] := {2} tii[22,34] := {4} tii[22,35] := {3} cell#237 , |C| = 98 special orbit = [4, 4, 1, 1, 1, 1, 1, 1] special rep = [[2], [2, 1, 1, 1]] , dim = 84 cell rep = phi[[2, 2, 1, 1, 1],[]]+phi[[2],[2, 1, 1, 1]] TII depth = 4 TII multiplicity polynomial = 14*X^2+70*X TII subcells: tii[14,1] := {76, 77} tii[14,2] := {90} tii[14,3] := {96} tii[14,4] := {62, 63} tii[14,5] := {53, 54} tii[14,6] := {82} tii[14,7] := {61} tii[14,8] := {91} tii[14,9] := {78} tii[14,10] := {67} tii[14,11] := {87} tii[14,12] := {94} tii[14,13] := {49, 50} tii[14,14] := {36, 37} tii[14,15] := {71} tii[14,16] := {47} tii[14,17] := {85} tii[14,18] := {25, 26} tii[14,19] := {64} tii[14,20] := {55} tii[14,21] := {33} tii[14,22] := {79} tii[14,23] := {29} tii[14,24] := {88} tii[14,25] := {70} tii[14,26] := {59} tii[14,27] := {84} tii[14,28] := {46} tii[14,29] := {92} tii[14,30] := {97} tii[14,31] := {34, 35} tii[14,32] := {23, 24} tii[14,33] := {58} tii[14,34] := {31} tii[14,35] := {74} tii[14,36] := {12, 13} tii[14,37] := {51} tii[14,38] := {40} tii[14,39] := {20} tii[14,40] := {68} tii[14,41] := {16} tii[14,42] := {80} tii[14,43] := {6, 7} tii[14,44] := {57} tii[14,45] := {11} tii[14,46] := {44} tii[14,47] := {73} tii[14,48] := {30} tii[14,49] := {8} tii[14,50] := {86} tii[14,51] := {10} tii[14,52] := {93} tii[14,53] := {52} tii[14,54] := {41} tii[14,55] := {69} tii[14,56] := {28} tii[14,57] := {81} tii[14,58] := {18} tii[14,59] := {89} tii[14,60] := {95} tii[14,61] := {65, 66} tii[14,62] := {75} tii[14,63] := {38, 39} tii[14,64] := {83} tii[14,65] := {48} tii[14,66] := {43} tii[14,67] := {14, 15} tii[14,68] := {72} tii[14,69] := {22} tii[14,70] := {56} tii[14,71] := {17} tii[14,72] := {21} tii[14,73] := {0, 1} tii[14,74] := {60} tii[14,75] := {5} tii[14,76] := {2} tii[14,77] := {42} tii[14,78] := {32} tii[14,79] := {4} tii[14,80] := {3} tii[14,81] := {45} tii[14,82] := {27} tii[14,83] := {19} tii[14,84] := {9} cell#238 , |C| = 105 special orbit = [4, 2, 2, 2, 1, 1, 1, 1] special rep = [[2, 1], [1, 1, 1, 1]] , dim = 70 cell rep = phi[[2, 1, 1, 1, 1],[1]]+phi[[2, 1],[1, 1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 35*X^2+35*X TII subcells: tii[12,1] := {72, 104} tii[12,2] := {48, 94} tii[12,3] := {85, 101} tii[12,4] := {31, 80} tii[12,5] := {77, 97} tii[12,6] := {89} tii[12,7] := {46, 73} tii[12,8] := {59} tii[12,9] := {91, 103} tii[12,10] := {17, 66} tii[12,11] := {83, 99} tii[12,12] := {95} tii[12,13] := {70, 93} tii[12,14] := {29, 57} tii[12,15] := {41} tii[12,16] := {81} tii[12,17] := {69} tii[12,18] := {37, 65} tii[12,19] := {51} tii[12,20] := {35} tii[12,21] := {86, 102} tii[12,22] := {7, 50} tii[12,23] := {78, 98} tii[12,24] := {90} tii[12,25] := {14, 39} tii[12,26] := {63, 87} tii[12,27] := {24} tii[12,28] := {75} tii[12,29] := {61} tii[12,30] := {47, 74} tii[12,31] := {21, 49} tii[12,32] := {60} tii[12,33] := {33} tii[12,34] := {19} tii[12,35] := {44} tii[12,36] := {28} tii[12,37] := {15, 40} tii[12,38] := {25} tii[12,39] := {11} tii[12,40] := {4} tii[12,41] := {10, 92} tii[12,42] := {56, 100} tii[12,43] := {23, 84} tii[12,44] := {43, 96} tii[12,45] := {16, 71} tii[12,46] := {64, 88} tii[12,47] := {32, 82} tii[12,48] := {76} tii[12,49] := {62} tii[12,50] := {6, 55} tii[12,51] := {54, 79} tii[12,52] := {18, 68} tii[12,53] := {67} tii[12,54] := {45} tii[12,55] := {53} tii[12,56] := {36} tii[12,57] := {2, 38} tii[12,58] := {30, 58} tii[12,59] := {42} tii[12,60] := {8, 52} tii[12,61] := {26} tii[12,62] := {27} tii[12,63] := {13} tii[12,64] := {20} tii[12,65] := {5} tii[12,66] := {0, 22} tii[12,67] := {3, 34} tii[12,68] := {12} tii[12,69] := {9} tii[12,70] := {1} cell#239 , |C| = 105 special orbit = [4, 2, 2, 2, 1, 1, 1, 1] special rep = [[2, 1], [1, 1, 1, 1]] , dim = 70 cell rep = phi[[2, 1, 1, 1, 1],[1]]+phi[[2, 1],[1, 1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 35*X^2+35*X TII subcells: tii[12,1] := {72, 104} tii[12,2] := {48, 94} tii[12,3] := {85, 101} tii[12,4] := {31, 80} tii[12,5] := {77, 97} tii[12,6] := {89} tii[12,7] := {46, 73} tii[12,8] := {59} tii[12,9] := {91, 103} tii[12,10] := {17, 66} tii[12,11] := {83, 99} tii[12,12] := {95} tii[12,13] := {70, 93} tii[12,14] := {29, 57} tii[12,15] := {41} tii[12,16] := {81} tii[12,17] := {69} tii[12,18] := {37, 65} tii[12,19] := {51} tii[12,20] := {35} tii[12,21] := {86, 102} tii[12,22] := {7, 50} tii[12,23] := {78, 98} tii[12,24] := {90} tii[12,25] := {14, 39} tii[12,26] := {63, 87} tii[12,27] := {24} tii[12,28] := {75} tii[12,29] := {61} tii[12,30] := {47, 74} tii[12,31] := {21, 49} tii[12,32] := {60} tii[12,33] := {33} tii[12,34] := {19} tii[12,35] := {44} tii[12,36] := {28} tii[12,37] := {15, 40} tii[12,38] := {25} tii[12,39] := {11} tii[12,40] := {4} tii[12,41] := {10, 92} tii[12,42] := {56, 100} tii[12,43] := {23, 84} tii[12,44] := {43, 96} tii[12,45] := {16, 71} tii[12,46] := {64, 88} tii[12,47] := {32, 82} tii[12,48] := {76} tii[12,49] := {62} tii[12,50] := {6, 55} tii[12,51] := {54, 79} tii[12,52] := {18, 68} tii[12,53] := {67} tii[12,54] := {45} tii[12,55] := {53} tii[12,56] := {36} tii[12,57] := {2, 38} tii[12,58] := {30, 58} tii[12,59] := {42} tii[12,60] := {8, 52} tii[12,61] := {26} tii[12,62] := {27} tii[12,63] := {13} tii[12,64] := {20} tii[12,65] := {5} tii[12,66] := {0, 22} tii[12,67] := {3, 34} tii[12,68] := {12} tii[12,69] := {9} tii[12,70] := {1} cell#240 , |C| = 27 special orbit = [4, 2, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[2], [1, 1, 1, 1, 1]] , dim = 21 cell rep = phi[[2, 1, 1, 1, 1, 1],[]]+phi[[2],[1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 6*X^2+15*X TII subcells: tii[11,1] := {22, 26} tii[11,2] := {21, 25} tii[11,3] := {24} tii[11,4] := {18, 23} tii[11,5] := {20} tii[11,6] := {17} tii[11,7] := {14, 19} tii[11,8] := {16} tii[11,9] := {13} tii[11,10] := {9} tii[11,11] := {10, 15} tii[11,12] := {12} tii[11,13] := {8} tii[11,14] := {5} tii[11,15] := {3} tii[11,16] := {6, 11} tii[11,17] := {7} tii[11,18] := {4} tii[11,19] := {2} tii[11,20] := {1} tii[11,21] := {0} cell#241 , |C| = 27 special orbit = [4, 2, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[2], [1, 1, 1, 1, 1]] , dim = 21 cell rep = phi[[2, 1, 1, 1, 1, 1],[]]+phi[[2],[1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 6*X^2+15*X TII subcells: tii[11,1] := {22, 26} tii[11,2] := {21, 25} tii[11,3] := {24} tii[11,4] := {18, 23} tii[11,5] := {20} tii[11,6] := {17} tii[11,7] := {14, 19} tii[11,8] := {16} tii[11,9] := {13} tii[11,10] := {9} tii[11,11] := {10, 15} tii[11,12] := {12} tii[11,13] := {8} tii[11,14] := {5} tii[11,15] := {3} tii[11,16] := {6, 11} tii[11,17] := {7} tii[11,18] := {4} tii[11,19] := {2} tii[11,20] := {1} tii[11,21] := {0} cell#242 , |C| = 56 special orbit = [2, 2, 2, 2, 2, 2, 1, 1] special rep = [[1, 1, 1], [1, 1, 1, 1]] , dim = 35 cell rep = phi[[1, 1, 1, 1, 1],[1, 1]]+phi[[1, 1, 1],[1, 1, 1, 1]] TII depth = 2 TII multiplicity polynomial = 21*X^2+14*X TII subcells: tii[4,1] := {26, 48} tii[4,2] := {33, 52} tii[4,3] := {44, 55} tii[4,4] := {51} tii[4,5] := {27, 49} tii[4,6] := {37, 54} tii[4,7] := {46} tii[4,8] := {31, 50} tii[4,9] := {40} tii[4,10] := {30} tii[4,11] := {3, 8} tii[4,12] := {15, 38} tii[4,13] := {7, 14} tii[4,14] := {9, 29} tii[4,15] := {11, 24} tii[4,16] := {36, 53} tii[4,17] := {16, 41} tii[4,18] := {45} tii[4,19] := {34} tii[4,20] := {21, 39} tii[4,21] := {13, 32} tii[4,22] := {28} tii[4,23] := {22, 47} tii[4,24] := {18} tii[4,25] := {43} tii[4,26] := {10} tii[4,27] := {12, 25} tii[4,28] := {17, 42} tii[4,29] := {35} tii[4,30] := {20} tii[4,31] := {0, 2} tii[4,32] := {1, 4} tii[4,33] := {5, 19} tii[4,34] := {23} tii[4,35] := {6} cell#243 , |C| = 35 special orbit = [2, 2, 2, 2, 2, 2, 2] special rep = [[1, 1, 1, 1], [1, 1, 1]] , dim = 35 cell rep = phi[[1, 1, 1, 1],[1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 35*X TII subcells: tii[5,1] := {34} tii[5,2] := {11} tii[5,3] := {33} tii[5,4] := {16} tii[5,5] := {30} tii[5,6] := {19} tii[5,7] := {26} tii[5,8] := {18} tii[5,9] := {32} tii[5,10] := {22} tii[5,11] := {28} tii[5,12] := {27} tii[5,13] := {31} tii[5,14] := {2} tii[5,15] := {8} tii[5,16] := {3} tii[5,17] := {6} tii[5,18] := {25} tii[5,19] := {5} tii[5,20] := {15} tii[5,21] := {9} tii[5,22] := {20} tii[5,23] := {17} tii[5,24] := {23} tii[5,25] := {7} tii[5,26] := {29} tii[5,27] := {12} tii[5,28] := {21} tii[5,29] := {10} tii[5,30] := {14} tii[5,31] := {24} tii[5,32] := {0} tii[5,33] := {1} tii[5,34] := {4} tii[5,35] := {13} cell#244 , |C| = 56 special orbit = [2, 2, 2, 2, 2, 2, 1, 1] special rep = [[1, 1, 1], [1, 1, 1, 1]] , dim = 35 cell rep = phi[[1, 1, 1, 1, 1],[1, 1]]+phi[[1, 1, 1],[1, 1, 1, 1]] TII depth = 2 TII multiplicity polynomial = 21*X^2+14*X TII subcells: tii[4,1] := {13, 54} tii[4,2] := {20, 52} tii[4,3] := {26, 45} tii[4,4] := {36} tii[4,5] := {23, 55} tii[4,6] := {32, 50} tii[4,7] := {42} tii[4,8] := {38, 53} tii[4,9] := {46} tii[4,10] := {37} tii[4,11] := {2, 22} tii[4,12] := {8, 49} tii[4,13] := {3, 31} tii[4,14] := {6, 41} tii[4,15] := {5, 39} tii[4,16] := {19, 35} tii[4,17] := {9, 47} tii[4,18] := {24} tii[4,19] := {18} tii[4,20] := {33, 51} tii[4,21] := {7, 34} tii[4,22] := {43} tii[4,23] := {14, 44} tii[4,24] := {28} tii[4,25] := {25} tii[4,26] := {21} tii[4,27] := {11, 40} tii[4,28] := {17, 48} tii[4,29] := {30} tii[4,30] := {27} tii[4,31] := {0, 10} tii[4,32] := {1, 16} tii[4,33] := {4, 29} tii[4,34] := {12} tii[4,35] := {15} cell#245 , |C| = 28 special orbit = [2, 2, 2, 2, 1, 1, 1, 1, 1, 1] special rep = [[1, 1], [1, 1, 1, 1, 1]] , dim = 21 cell rep = phi[[1, 1, 1, 1, 1, 1],[1]]+phi[[1, 1],[1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 7*X^2+14*X TII subcells: tii[3,1] := {17, 27} tii[3,2] := {21, 25} tii[3,3] := {23} tii[3,4] := {16, 22} tii[3,5] := {19} tii[3,6] := {15} tii[3,7] := {11, 18} tii[3,8] := {14} tii[3,9] := {9} tii[3,10] := {5} tii[3,11] := {6, 13} tii[3,12] := {8} tii[3,13] := {4} tii[3,14] := {2} tii[3,15] := {1} tii[3,16] := {7, 24} tii[3,17] := {12, 26} tii[3,18] := {20} tii[3,19] := {10} tii[3,20] := {3} tii[3,21] := {0} cell#246 , |C| = 56 special orbit = [2, 2, 2, 2, 2, 2, 1, 1] special rep = [[1, 1, 1], [1, 1, 1, 1]] , dim = 35 cell rep = phi[[1, 1, 1, 1, 1],[1, 1]]+phi[[1, 1, 1],[1, 1, 1, 1]] TII depth = 2 TII multiplicity polynomial = 21*X^2+14*X TII subcells: tii[4,1] := {26, 48} tii[4,2] := {33, 52} tii[4,3] := {44, 55} tii[4,4] := {51} tii[4,5] := {27, 49} tii[4,6] := {37, 54} tii[4,7] := {46} tii[4,8] := {31, 50} tii[4,9] := {40} tii[4,10] := {30} tii[4,11] := {3, 8} tii[4,12] := {15, 38} tii[4,13] := {7, 14} tii[4,14] := {9, 29} tii[4,15] := {11, 24} tii[4,16] := {36, 53} tii[4,17] := {16, 41} tii[4,18] := {45} tii[4,19] := {34} tii[4,20] := {21, 39} tii[4,21] := {13, 32} tii[4,22] := {28} tii[4,23] := {22, 47} tii[4,24] := {18} tii[4,25] := {43} tii[4,26] := {10} tii[4,27] := {12, 25} tii[4,28] := {17, 42} tii[4,29] := {35} tii[4,30] := {20} tii[4,31] := {0, 2} tii[4,32] := {1, 4} tii[4,33] := {5, 19} tii[4,34] := {23} tii[4,35] := {6} cell#247 , |C| = 56 special orbit = [2, 2, 2, 2, 2, 2, 1, 1] special rep = [[1, 1, 1], [1, 1, 1, 1]] , dim = 35 cell rep = phi[[1, 1, 1, 1, 1],[1, 1]]+phi[[1, 1, 1],[1, 1, 1, 1]] TII depth = 2 TII multiplicity polynomial = 21*X^2+14*X TII subcells: tii[4,1] := {13, 54} tii[4,2] := {20, 52} tii[4,3] := {26, 45} tii[4,4] := {36} tii[4,5] := {23, 55} tii[4,6] := {32, 50} tii[4,7] := {42} tii[4,8] := {38, 53} tii[4,9] := {46} tii[4,10] := {37} tii[4,11] := {2, 22} tii[4,12] := {8, 49} tii[4,13] := {3, 31} tii[4,14] := {6, 41} tii[4,15] := {5, 39} tii[4,16] := {19, 35} tii[4,17] := {9, 47} tii[4,18] := {24} tii[4,19] := {18} tii[4,20] := {33, 51} tii[4,21] := {7, 34} tii[4,22] := {43} tii[4,23] := {14, 44} tii[4,24] := {28} tii[4,25] := {25} tii[4,26] := {21} tii[4,27] := {11, 40} tii[4,28] := {17, 48} tii[4,29] := {30} tii[4,30] := {27} tii[4,31] := {0, 10} tii[4,32] := {1, 16} tii[4,33] := {4, 29} tii[4,34] := {12} tii[4,35] := {15} cell#248 , |C| = 28 special orbit = [2, 2, 2, 2, 1, 1, 1, 1, 1, 1] special rep = [[1, 1], [1, 1, 1, 1, 1]] , dim = 21 cell rep = phi[[1, 1, 1, 1, 1, 1],[1]]+phi[[1, 1],[1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 7*X^2+14*X TII subcells: tii[3,1] := {17, 27} tii[3,2] := {21, 25} tii[3,3] := {23} tii[3,4] := {16, 22} tii[3,5] := {19} tii[3,6] := {15} tii[3,7] := {11, 18} tii[3,8] := {14} tii[3,9] := {9} tii[3,10] := {5} tii[3,11] := {6, 13} tii[3,12] := {8} tii[3,13] := {4} tii[3,14] := {2} tii[3,15] := {1} tii[3,16] := {7, 24} tii[3,17] := {12, 26} tii[3,18] := {20} tii[3,19] := {10} tii[3,20] := {3} tii[3,21] := {0} cell#249 , |C| = 105 special orbit = [3, 3, 2, 2, 1, 1, 1, 1] special rep = [[1, 1], [2, 1, 1, 1]] , dim = 84 cell rep = phi[[1, 1, 1, 1, 1],[2]]+phi[[1, 1],[2, 1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 21*X^2+63*X TII subcells: tii[7,1] := {23, 103} tii[7,2] := {33, 97} tii[7,3] := {48} tii[7,4] := {67} tii[7,5] := {46, 83} tii[7,6] := {69} tii[7,7] := {50, 102} tii[7,8] := {59} tii[7,9] := {79} tii[7,10] := {42} tii[7,11] := {63, 96} tii[7,12] := {30} tii[7,13] := {86} tii[7,14] := {61} tii[7,15] := {81} tii[7,16] := {78, 104} tii[7,17] := {94} tii[7,18] := {101} tii[7,19] := {41, 99} tii[7,20] := {49} tii[7,21] := {68} tii[7,22] := {57, 91} tii[7,23] := {31} tii[7,24] := {24} tii[7,25] := {75} tii[7,26] := {51} tii[7,27] := {72} tii[7,28] := {22} tii[7,29] := {66, 100} tii[7,30] := {14} tii[7,31] := {37} tii[7,32] := {89} tii[7,33] := {10} tii[7,34] := {98} tii[7,35] := {54} tii[7,36] := {73} tii[7,37] := {47, 85} tii[7,38] := {70} tii[7,39] := {84} tii[7,40] := {74} tii[7,41] := {3, 60} tii[7,42] := {9, 80} tii[7,43] := {7, 77} tii[7,44] := {32} tii[7,45] := {15, 93} tii[7,46] := {52} tii[7,47] := {25} tii[7,48] := {38} tii[7,49] := {12, 64} tii[7,50] := {29} tii[7,51] := {34} tii[7,52] := {26, 87} tii[7,53] := {19} tii[7,54] := {45} tii[7,55] := {53} tii[7,56] := {62} tii[7,57] := {11} tii[7,58] := {82} tii[7,59] := {21, 76} tii[7,60] := {13} tii[7,61] := {43} tii[7,62] := {36, 92} tii[7,63] := {8} tii[7,64] := {27} tii[7,65] := {20} tii[7,66] := {4} tii[7,67] := {39} tii[7,68] := {71} tii[7,69] := {55} tii[7,70] := {95} tii[7,71] := {2} tii[7,72] := {40} tii[7,73] := {18, 65} tii[7,74] := {35} tii[7,75] := {28, 88} tii[7,76] := {16} tii[7,77] := {58} tii[7,78] := {5} tii[7,79] := {90} tii[7,80] := {56} tii[7,81] := {1, 44} tii[7,82] := {17} tii[7,83] := {6} tii[7,84] := {0} cell#250 , |C| = 35 special orbit = [3, 3, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [2, 1, 1, 1, 1]] , dim = 35 cell rep = phi[[1],[2, 1, 1, 1, 1]] TII depth = 5 TII multiplicity polynomial = 35*X TII subcells: tii[6,1] := {25} tii[6,2] := {30} tii[6,3] := {20} tii[6,4] := {17} tii[6,5] := {26} tii[6,6] := {31} tii[6,7] := {16} tii[6,8] := {13} tii[6,9] := {22} tii[6,10] := {11} tii[6,11] := {27} tii[6,12] := {32} tii[6,13] := {12} tii[6,14] := {10} tii[6,15] := {18} tii[6,16] := {7} tii[6,17] := {23} tii[6,18] := {5} tii[6,19] := {28} tii[6,20] := {33} tii[6,21] := {9} tii[6,22] := {6} tii[6,23] := {14} tii[6,24] := {4} tii[6,25] := {19} tii[6,26] := {2} tii[6,27] := {24} tii[6,28] := {1} tii[6,29] := {29} tii[6,30] := {34} tii[6,31] := {21} tii[6,32] := {15} tii[6,33] := {8} tii[6,34] := {3} tii[6,35] := {0} cell#251 , |C| = 105 special orbit = [4, 2, 2, 2, 1, 1, 1, 1] special rep = [[2, 1], [1, 1, 1, 1]] , dim = 70 cell rep = phi[[2, 1, 1, 1, 1],[1]]+phi[[2, 1],[1, 1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 35*X^2+35*X TII subcells: tii[12,1] := {58, 59} tii[12,2] := {50, 51} tii[12,3] := {68, 70} tii[12,4] := {31, 32} tii[12,5] := {90, 93} tii[12,6] := {103} tii[12,7] := {52, 53} tii[12,8] := {74} tii[12,9] := {60, 61} tii[12,10] := {19, 20} tii[12,11] := {84, 86} tii[12,12] := {100} tii[12,13] := {66, 67} tii[12,14] := {33, 34} tii[12,15] := {47} tii[12,16] := {88} tii[12,17] := {62} tii[12,18] := {54, 55} tii[12,19] := {76} tii[12,20] := {63} tii[12,21] := {69, 71} tii[12,22] := {12, 13} tii[12,23] := {91, 94} tii[12,24] := {104} tii[12,25] := {21, 22} tii[12,26] := {80, 82} tii[12,27] := {30} tii[12,28] := {97} tii[12,29] := {73} tii[12,30] := {89, 92} tii[12,31] := {35, 36} tii[12,32] := {102} tii[12,33] := {49} tii[12,34] := {42} tii[12,35] := {95} tii[12,36] := {101} tii[12,37] := {56, 57} tii[12,38] := {78} tii[12,39] := {64} tii[12,40] := {77} tii[12,41] := {4, 5} tii[12,42] := {39, 40} tii[12,43] := {10, 11} tii[12,44] := {25, 26} tii[12,45] := {17, 18} tii[12,46] := {79, 81} tii[12,47] := {37, 38} tii[12,48] := {96} tii[12,49] := {72} tii[12,50] := {8, 9} tii[12,51] := {44, 45} tii[12,52] := {23, 24} tii[12,53] := {65} tii[12,54] := {46} tii[12,55] := {41} tii[12,56] := {27} tii[12,57] := {2, 3} tii[12,58] := {83, 85} tii[12,59] := {99} tii[12,60] := {14, 15} tii[12,61] := {87} tii[12,62] := {29} tii[12,63] := {98} tii[12,64] := {43} tii[12,65] := {75} tii[12,66] := {0, 1} tii[12,67] := {6, 7} tii[12,68] := {16} tii[12,69] := {28} tii[12,70] := {48} cell#252 , |C| = 27 special orbit = [4, 2, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[2], [1, 1, 1, 1, 1]] , dim = 21 cell rep = phi[[2, 1, 1, 1, 1, 1],[]]+phi[[2],[1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 6*X^2+15*X TII subcells: tii[11,1] := {17, 26} tii[11,2] := {20, 25} tii[11,3] := {24} tii[11,4] := {14, 23} tii[11,5] := {21} tii[11,6] := {22} tii[11,7] := {8, 19} tii[11,8] := {15} tii[11,9] := {18} tii[11,10] := {16} tii[11,11] := {1, 13} tii[11,12] := {9} tii[11,13] := {12} tii[11,14] := {10} tii[11,15] := {11} tii[11,16] := {0, 7} tii[11,17] := {2} tii[11,18] := {6} tii[11,19] := {3} tii[11,20] := {5} tii[11,21] := {4} cell#253 , |C| = 27 special orbit = [4, 2, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[2], [1, 1, 1, 1, 1]] , dim = 21 cell rep = phi[[2, 1, 1, 1, 1, 1],[]]+phi[[2],[1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 6*X^2+15*X TII subcells: tii[11,1] := {17, 26} tii[11,2] := {20, 25} tii[11,3] := {24} tii[11,4] := {14, 23} tii[11,5] := {21} tii[11,6] := {22} tii[11,7] := {8, 19} tii[11,8] := {15} tii[11,9] := {18} tii[11,10] := {16} tii[11,11] := {1, 13} tii[11,12] := {9} tii[11,13] := {12} tii[11,14] := {10} tii[11,15] := {11} tii[11,16] := {0, 7} tii[11,17] := {2} tii[11,18] := {6} tii[11,19] := {3} tii[11,20] := {5} tii[11,21] := {4} cell#254 , |C| = 56 special orbit = [2, 2, 2, 2, 2, 2, 1, 1] special rep = [[1, 1, 1], [1, 1, 1, 1]] , dim = 35 cell rep = phi[[1, 1, 1, 1, 1],[1, 1]]+phi[[1, 1, 1],[1, 1, 1, 1]] TII depth = 2 TII multiplicity polynomial = 21*X^2+14*X TII subcells: tii[4,1] := {34, 35} tii[4,2] := {41, 42} tii[4,3] := {50, 51} tii[4,4] := {55} tii[4,5] := {36, 37} tii[4,6] := {45, 46} tii[4,7] := {54} tii[4,8] := {38, 39} tii[4,9] := {49} tii[4,10] := {40} tii[4,11] := {4, 5} tii[4,12] := {20, 21} tii[4,13] := {6, 7} tii[4,14] := {15, 16} tii[4,15] := {11, 12} tii[4,16] := {43, 44} tii[4,17] := {24, 25} tii[4,18] := {53} tii[4,19] := {47} tii[4,20] := {22, 23} tii[4,21] := {18, 19} tii[4,22] := {33} tii[4,23] := {30, 31} tii[4,24] := {28} tii[4,25] := {52} tii[4,26] := {17} tii[4,27] := {13, 14} tii[4,28] := {26, 27} tii[4,29] := {48} tii[4,30] := {29} tii[4,31] := {0, 1} tii[4,32] := {2, 3} tii[4,33] := {8, 9} tii[4,34] := {32} tii[4,35] := {10} cell#255 , |C| = 28 special orbit = [2, 2, 2, 2, 1, 1, 1, 1, 1, 1] special rep = [[1, 1], [1, 1, 1, 1, 1]] , dim = 21 cell rep = phi[[1, 1, 1, 1, 1, 1],[1]]+phi[[1, 1],[1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 7*X^2+14*X TII subcells: tii[3,1] := {9, 23} tii[3,2] := {17, 27} tii[3,3] := {22} tii[3,4] := {12, 24} tii[3,5] := {18} tii[3,6] := {10} tii[3,7] := {16, 26} tii[3,8] := {21} tii[3,9] := {14} tii[3,10] := {7} tii[3,11] := {13, 25} tii[3,12] := {19} tii[3,13] := {11} tii[3,14] := {5} tii[3,15] := {1} tii[3,16] := {2, 8} tii[3,17] := {4, 20} tii[3,18] := {15} tii[3,19] := {6} tii[3,20] := {3} tii[3,21] := {0} cell#256 , |C| = 28 special orbit = [2, 2, 2, 2, 1, 1, 1, 1, 1, 1] special rep = [[1, 1], [1, 1, 1, 1, 1]] , dim = 21 cell rep = phi[[1, 1, 1, 1, 1, 1],[1]]+phi[[1, 1],[1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 7*X^2+14*X TII subcells: tii[3,1] := {2, 24} tii[3,2] := {3, 18} tii[3,3] := {10} tii[3,4] := {8, 26} tii[3,5] := {14} tii[3,6] := {23} tii[3,7] := {4, 21} tii[3,8] := {11} tii[3,9] := {20} tii[3,10] := {12} tii[3,11] := {9, 27} tii[3,12] := {15} tii[3,13] := {25} tii[3,14] := {17} tii[3,15] := {22} tii[3,16] := {0, 7} tii[3,17] := {1, 13} tii[3,18] := {5} tii[3,19] := {16} tii[3,20] := {6} tii[3,21] := {19} cell#257 , |C| = 28 special orbit = [2, 2, 2, 2, 1, 1, 1, 1, 1, 1] special rep = [[1, 1], [1, 1, 1, 1, 1]] , dim = 21 cell rep = phi[[1, 1, 1, 1, 1, 1],[1]]+phi[[1, 1],[1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 7*X^2+14*X TII subcells: tii[3,1] := {6, 7} tii[3,2] := {15, 17} tii[3,3] := {26} tii[3,4] := {8, 9} tii[3,5] := {22} tii[3,6] := {12} tii[3,7] := {16, 18} tii[3,8] := {27} tii[3,9] := {20} tii[3,10] := {25} tii[3,11] := {10, 11} tii[3,12] := {24} tii[3,13] := {13} tii[3,14] := {23} tii[3,15] := {14} tii[3,16] := {0, 1} tii[3,17] := {2, 3} tii[3,18] := {19} tii[3,19] := {4} tii[3,20] := {21} tii[3,21] := {5} cell#258 , |C| = 8 special orbit = [2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [1, 1, 1, 1, 1, 1]] , dim = 7 cell rep = phi[[1, 1, 1, 1, 1, 1, 1],[]]+phi[[1],[1, 1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = X^2+6*X TII subcells: tii[2,1] := {5, 7} tii[2,2] := {6} tii[2,3] := {4} tii[2,4] := {3} tii[2,5] := {2} tii[2,6] := {1} tii[2,7] := {0} cell#259 , |C| = 28 special orbit = [2, 2, 2, 2, 1, 1, 1, 1, 1, 1] special rep = [[1, 1], [1, 1, 1, 1, 1]] , dim = 21 cell rep = phi[[1, 1, 1, 1, 1, 1],[1]]+phi[[1, 1],[1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 7*X^2+14*X TII subcells: tii[3,1] := {9, 23} tii[3,2] := {17, 27} tii[3,3] := {22} tii[3,4] := {12, 24} tii[3,5] := {18} tii[3,6] := {10} tii[3,7] := {16, 26} tii[3,8] := {21} tii[3,9] := {14} tii[3,10] := {7} tii[3,11] := {13, 25} tii[3,12] := {19} tii[3,13] := {11} tii[3,14] := {5} tii[3,15] := {1} tii[3,16] := {2, 8} tii[3,17] := {4, 20} tii[3,18] := {15} tii[3,19] := {6} tii[3,20] := {3} tii[3,21] := {0} cell#260 , |C| = 8 special orbit = [2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [1, 1, 1, 1, 1, 1]] , dim = 7 cell rep = phi[[1, 1, 1, 1, 1, 1, 1],[]]+phi[[1],[1, 1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = X^2+6*X TII subcells: tii[2,1] := {5, 7} tii[2,2] := {6} tii[2,3] := {4} tii[2,4] := {3} tii[2,5] := {2} tii[2,6] := {1} tii[2,7] := {0} cell#261 , |C| = 8 special orbit = [2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [1, 1, 1, 1, 1, 1]] , dim = 7 cell rep = phi[[1, 1, 1, 1, 1, 1, 1],[]]+phi[[1],[1, 1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = X^2+6*X TII subcells: tii[2,1] := {0, 1} tii[2,2] := {7} tii[2,3] := {2} tii[2,4] := {6} tii[2,5] := {3} tii[2,6] := {5} tii[2,7] := {4} cell#262 , |C| = 1 special orbit = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [1, 1, 1, 1, 1, 1, 1]] , dim = 1 cell rep = phi[[],[1, 1, 1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = X TII subcells: tii[1,1] := {0}