TII subcells for the Sp(14,R) x SO(9,6) block of Sp14 # cell#0 , |C| = 1 special orbit = [14] special rep = [[7], []] , dim = 1 cell rep = phi[[7],[]] TII depth = 1 TII multiplicity polynomial = X TII subcells: tii[40,1] := {0} cell#1 , |C| = 1 special orbit = [14] special rep = [[7], []] , dim = 1 cell rep = phi[[7],[]] TII depth = 1 TII multiplicity polynomial = X TII subcells: tii[40,1] := {0} cell#2 , |C| = 13 special orbit = [12, 2] special rep = [[6], [1]] , dim = 7 cell rep = phi[[6, 1],[]]+phi[[6],[1]] TII depth = 1 TII multiplicity polynomial = 6*X^2+X TII subcells: tii[39,1] := {2, 12} tii[39,2] := {0, 11} tii[39,3] := {3, 10} tii[39,4] := {1, 9} tii[39,5] := {4, 8} tii[39,6] := {5, 7} tii[39,7] := {6} cell#3 , |C| = 13 special orbit = [12, 2] special rep = [[6], [1]] , dim = 7 cell rep = phi[[6, 1],[]]+phi[[6],[1]] TII depth = 1 TII multiplicity polynomial = 6*X^2+X TII subcells: tii[39,1] := {2, 12} tii[39,2] := {3, 11} tii[39,3] := {1, 10} tii[39,4] := {4, 9} tii[39,5] := {0, 8} tii[39,6] := {5, 6} tii[39,7] := {7} cell#4 , |C| = 35 special orbit = [10, 4] special rep = [[5], [2]] , dim = 21 cell rep = phi[[5, 2],[]]+phi[[5],[2]] TII depth = 1 TII multiplicity polynomial = 14*X^2+7*X TII subcells: tii[38,1] := {3, 33} tii[38,2] := {20, 32} tii[38,3] := {5, 26} tii[38,4] := {23, 24} tii[38,5] := {31} tii[38,6] := {34} tii[38,7] := {0, 30} tii[38,8] := {6, 27} tii[38,9] := {2, 19} tii[38,10] := {8, 10} tii[38,11] := {17} tii[38,12] := {11, 29} tii[38,13] := {4, 25} tii[38,14] := {12, 13} tii[38,15] := {21} tii[38,16] := {1, 18} tii[38,17] := {7, 9} tii[38,18] := {16} tii[38,19] := {14, 15} tii[38,20] := {22} tii[38,21] := {28} cell#5 , |C| = 13 special orbit = [12, 2] special rep = [[6], [1]] , dim = 7 cell rep = phi[[6, 1],[]]+phi[[6],[1]] TII depth = 1 TII multiplicity polynomial = 6*X^2+X TII subcells: tii[39,1] := {2, 12} tii[39,2] := {1, 11} tii[39,3] := {3, 10} tii[39,4] := {0, 9} tii[39,5] := {4, 8} tii[39,6] := {5, 7} tii[39,7] := {6} cell#6 , |C| = 35 special orbit = [10, 4] special rep = [[5], [2]] , dim = 21 cell rep = phi[[5, 2],[]]+phi[[5],[2]] TII depth = 1 TII multiplicity polynomial = 14*X^2+7*X TII subcells: tii[38,1] := {10, 34} tii[38,2] := {2, 31} tii[38,3] := {11, 27} tii[38,4] := {17, 30} tii[38,5] := {29} tii[38,6] := {33} tii[38,7] := {4, 32} tii[38,8] := {1, 28} tii[38,9] := {5, 22} tii[38,10] := {8, 19} tii[38,11] := {14} tii[38,12] := {0, 26} tii[38,13] := {3, 21} tii[38,14] := {7, 16} tii[38,15] := {12} tii[38,16] := {6, 23} tii[38,17] := {9, 20} tii[38,18] := {15} tii[38,19] := {13, 25} tii[38,20] := {18} tii[38,21] := {24} cell#7 , |C| = 35 special orbit = [10, 4] special rep = [[5], [2]] , dim = 21 cell rep = phi[[5, 2],[]]+phi[[5],[2]] TII depth = 1 TII multiplicity polynomial = 14*X^2+7*X TII subcells: tii[38,1] := {10, 34} tii[38,2] := {2, 31} tii[38,3] := {11, 27} tii[38,4] := {17, 30} tii[38,5] := {29} tii[38,6] := {33} tii[38,7] := {4, 32} tii[38,8] := {1, 28} tii[38,9] := {5, 22} tii[38,10] := {8, 19} tii[38,11] := {14} tii[38,12] := {0, 26} tii[38,13] := {3, 21} tii[38,14] := {7, 16} tii[38,15] := {12} tii[38,16] := {6, 23} tii[38,17] := {9, 20} tii[38,18] := {15} tii[38,19] := {13, 25} tii[38,20] := {18} tii[38,21] := {24} cell#8 , |C| = 35 special orbit = [10, 2, 2] special rep = [[5, 1], [1]] , dim = 35 cell rep = phi[[5, 1],[1]] TII depth = 5 TII multiplicity polynomial = 35*X TII subcells: tii[37,1] := {34} tii[37,2] := {31} tii[37,3] := {26} tii[37,4] := {20} tii[37,5] := {19} tii[37,6] := {0} tii[37,7] := {33} tii[37,8] := {5} tii[37,9] := {32} tii[37,10] := {10} tii[37,11] := {30} tii[37,12] := {14} tii[37,13] := {28} tii[37,14] := {18} tii[37,15] := {24} tii[37,16] := {1} tii[37,17] := {6} tii[37,18] := {29} tii[37,19] := {11} tii[37,20] := {27} tii[37,21] := {13} tii[37,22] := {25} tii[37,23] := {21} tii[37,24] := {2} tii[37,25] := {7} tii[37,26] := {23} tii[37,27] := {9} tii[37,28] := {22} tii[37,29] := {16} tii[37,30] := {3} tii[37,31] := {4} tii[37,32] := {17} tii[37,33] := {12} tii[37,34] := {8} tii[37,35] := {15} cell#9 , |C| = 49 special orbit = [8, 6] special rep = [[4], [3]] , dim = 35 cell rep = phi[[4, 3],[]]+phi[[4],[3]] TII depth = 2 TII multiplicity polynomial = 14*X^2+21*X TII subcells: tii[35,1] := {10, 36} tii[35,2] := {30, 42} tii[35,3] := {44} tii[35,4] := {47} tii[35,5] := {48} tii[35,6] := {2, 21} tii[35,7] := {8, 26} tii[35,8] := {24} tii[35,9] := {34} tii[35,10] := {6, 29} tii[35,11] := {3, 22} tii[35,12] := {15, 33} tii[35,13] := {5, 20} tii[35,14] := {31} tii[35,15] := {12} tii[35,16] := {40} tii[35,17] := {23, 39} tii[35,18] := {16, 35} tii[35,19] := {37} tii[35,20] := {27} tii[35,21] := {43} tii[35,22] := {41} tii[35,23] := {45} tii[35,24] := {38} tii[35,25] := {46} tii[35,26] := {0, 14} tii[35,27] := {1, 13} tii[35,28] := {7} tii[35,29] := {4, 19} tii[35,30] := {11} tii[35,31] := {17} tii[35,32] := {9, 28} tii[35,33] := {18} tii[35,34] := {25} tii[35,35] := {32} cell#10 , |C| = 35 special orbit = [10, 2, 2] special rep = [[5, 1], [1]] , dim = 35 cell rep = phi[[5, 1],[1]] TII depth = 5 TII multiplicity polynomial = 35*X TII subcells: tii[37,1] := {34} tii[37,2] := {32} tii[37,3] := {29} tii[37,4] := {21} tii[37,5] := {31} tii[37,6] := {16} tii[37,7] := {33} tii[37,8] := {4} tii[37,9] := {30} tii[37,10] := {11} tii[37,11] := {25} tii[37,12] := {3} tii[37,13] := {12} tii[37,14] := {13} tii[37,15] := {23} tii[37,16] := {2} tii[37,17] := {6} tii[37,18] := {28} tii[37,19] := {0} tii[37,20] := {20} tii[37,21] := {9} tii[37,22] := {7} tii[37,23] := {18} tii[37,24] := {17} tii[37,25] := {5} tii[37,26] := {26} tii[37,27] := {15} tii[37,28] := {14} tii[37,29] := {24} tii[37,30] := {1} tii[37,31] := {10} tii[37,32] := {8} tii[37,33] := {19} tii[37,34] := {22} tii[37,35] := {27} cell#11 , |C| = 35 special orbit = [10, 2, 2] special rep = [[5, 1], [1]] , dim = 35 cell rep = phi[[5, 1],[1]] TII depth = 5 TII multiplicity polynomial = 35*X TII subcells: tii[37,1] := {34} tii[37,2] := {31} tii[37,3] := {26} tii[37,4] := {15} tii[37,5] := {4} tii[37,6] := {20} tii[37,7] := {33} tii[37,8] := {21} tii[37,9] := {32} tii[37,10] := {19} tii[37,11] := {30} tii[37,12] := {22} tii[37,13] := {28} tii[37,14] := {18} tii[37,15] := {25} tii[37,16] := {13} tii[37,17] := {12} tii[37,18] := {29} tii[37,19] := {14} tii[37,20] := {27} tii[37,21] := {11} tii[37,22] := {24} tii[37,23] := {17} tii[37,24] := {7} tii[37,25] := {8} tii[37,26] := {23} tii[37,27] := {6} tii[37,28] := {16} tii[37,29] := {10} tii[37,30] := {3} tii[37,31] := {2} tii[37,32] := {9} tii[37,33] := {5} tii[37,34] := {0} tii[37,35] := {1} cell#12 , |C| = 147 special orbit = [8, 4, 2] special rep = [[4, 1], [2]] , dim = 84 cell rep = phi[[4, 2],[1]]+phi[[4, 1],[2]] TII depth = 4 TII multiplicity polynomial = 63*X^2+21*X TII subcells: tii[34,1] := {145, 146} tii[34,2] := {133, 135} tii[34,3] := {112, 141} tii[34,4] := {143} tii[34,5] := {41, 102} tii[34,6] := {5, 51} tii[34,7] := {136, 138} tii[34,8] := {38, 39} tii[34,9] := {113, 118} tii[34,10] := {68, 116} tii[34,11] := {88} tii[34,12] := {110} tii[34,13] := {70, 122} tii[34,14] := {142, 144} tii[34,15] := {42, 101} tii[34,16] := {2, 36} tii[34,17] := {23, 24} tii[34,18] := {137, 139} tii[34,19] := {73, 111} tii[34,20] := {103, 107} tii[34,21] := {58, 106} tii[34,22] := {129, 132} tii[34,23] := {90, 100} tii[34,24] := {67} tii[34,25] := {117, 119} tii[34,26] := {98} tii[34,27] := {11, 62} tii[34,28] := {123, 125} tii[34,29] := {33, 79} tii[34,30] := {53, 54} tii[34,31] := {57, 61} tii[34,32] := {105, 109} tii[34,33] := {69, 124} tii[34,34] := {91} tii[34,35] := {84, 86} tii[34,36] := {120} tii[34,37] := {80, 81} tii[34,38] := {92, 134} tii[34,39] := {49, 104} tii[34,40] := {114} tii[34,41] := {71, 126} tii[34,42] := {131} tii[34,43] := {128} tii[34,44] := {140} tii[34,45] := {18, 78} tii[34,46] := {10, 55} tii[34,47] := {29, 30} tii[34,48] := {47} tii[34,49] := {19, 77} tii[34,50] := {43, 89} tii[34,51] := {127, 130} tii[34,52] := {1, 26} tii[34,53] := {66, 76} tii[34,54] := {115, 121} tii[34,55] := {6, 7} tii[34,56] := {94, 97} tii[34,57] := {21} tii[34,58] := {20, 64} tii[34,59] := {40, 50} tii[34,60] := {93, 99} tii[34,61] := {16, 17} tii[34,62] := {72, 75} tii[34,63] := {37} tii[34,64] := {25, 65} tii[34,65] := {63} tii[34,66] := {45, 96} tii[34,67] := {0, 15} tii[34,68] := {3, 4} tii[34,69] := {13} tii[34,70] := {12, 52} tii[34,71] := {8, 9} tii[34,72] := {28, 35} tii[34,73] := {83, 87} tii[34,74] := {59, 60} tii[34,75] := {22} tii[34,76] := {14, 56} tii[34,77] := {44} tii[34,78] := {34, 85} tii[34,79] := {31, 32} tii[34,80] := {48} tii[34,81] := {27, 82} tii[34,82] := {74} tii[34,83] := {46, 108} tii[34,84] := {95} cell#13 , |C| = 49 special orbit = [8, 6] special rep = [[4], [3]] , dim = 35 cell rep = phi[[4, 3],[]]+phi[[4],[3]] TII depth = 2 TII multiplicity polynomial = 14*X^2+21*X TII subcells: tii[35,1] := {14, 33} tii[35,2] := {36, 37} tii[35,3] := {44} tii[35,4] := {47} tii[35,5] := {48} tii[35,6] := {2, 20} tii[35,7] := {17, 18} tii[35,8] := {32} tii[35,9] := {38} tii[35,10] := {5, 27} tii[35,11] := {1, 19} tii[35,12] := {22, 23} tii[35,13] := {6, 7} tii[35,14] := {34} tii[35,15] := {15} tii[35,16] := {41} tii[35,17] := {30, 31} tii[35,18] := {24, 25} tii[35,19] := {39} tii[35,20] := {29} tii[35,21] := {43} tii[35,22] := {42} tii[35,23] := {45} tii[35,24] := {40} tii[35,25] := {46} tii[35,26] := {0, 11} tii[35,27] := {3, 4} tii[35,28] := {10} tii[35,29] := {8, 9} tii[35,30] := {16} tii[35,31] := {26} tii[35,32] := {12, 13} tii[35,33] := {21} tii[35,34] := {28} tii[35,35] := {35} cell#14 , |C| = 35 special orbit = [10, 2, 2] special rep = [[5, 1], [1]] , dim = 35 cell rep = phi[[5, 1],[1]] TII depth = 5 TII multiplicity polynomial = 35*X TII subcells: tii[37,1] := {34} tii[37,2] := {31} tii[37,3] := {26} tii[37,4] := {22} tii[37,5] := {14} tii[37,6] := {12} tii[37,7] := {33} tii[37,8] := {8} tii[37,9] := {32} tii[37,10] := {13} tii[37,11] := {30} tii[37,12] := {16} tii[37,13] := {27} tii[37,14] := {19} tii[37,15] := {23} tii[37,16] := {3} tii[37,17] := {6} tii[37,18] := {29} tii[37,19] := {10} tii[37,20] := {28} tii[37,21] := {15} tii[37,22] := {24} tii[37,23] := {20} tii[37,24] := {1} tii[37,25] := {5} tii[37,26] := {25} tii[37,27] := {9} tii[37,28] := {21} tii[37,29] := {17} tii[37,30] := {0} tii[37,31] := {4} tii[37,32] := {18} tii[37,33] := {11} tii[37,34] := {2} tii[37,35] := {7} cell#15 , |C| = 147 special orbit = [8, 4, 2] special rep = [[4, 1], [2]] , dim = 84 cell rep = phi[[4, 2],[1]]+phi[[4, 1],[2]] TII depth = 4 TII multiplicity polynomial = 63*X^2+21*X TII subcells: tii[34,1] := {68, 146} tii[34,2] := {90, 140} tii[34,3] := {100, 139} tii[34,4] := {133} tii[34,5] := {13, 83} tii[34,6] := {29, 85} tii[34,7] := {47, 143} tii[34,8] := {57, 93} tii[34,9] := {52, 138} tii[34,10] := {51, 127} tii[34,11] := {87} tii[34,12] := {106} tii[34,13] := {6, 98} tii[34,14] := {53, 145} tii[34,15] := {1, 112} tii[34,16] := {18, 69} tii[34,17] := {39, 77} tii[34,18] := {38, 144} tii[34,19] := {3, 120} tii[34,20] := {61, 132} tii[34,21] := {59, 118} tii[34,22] := {34, 141} tii[34,23] := {8, 128} tii[34,24] := {73} tii[34,25] := {21, 135} tii[34,26] := {94} tii[34,27] := {30, 84} tii[34,28] := {78, 137} tii[34,29] := {20, 96} tii[34,30] := {56, 92} tii[34,31] := {27, 108} tii[34,32] := {66, 130} tii[34,33] := {74, 126} tii[34,34] := {86} tii[34,35] := {45, 121} tii[34,36] := {105} tii[34,37] := {72, 104} tii[34,38] := {89, 134} tii[34,39] := {58, 114} tii[34,40] := {101} tii[34,41] := {79, 125} tii[34,42] := {115} tii[34,43] := {113} tii[34,44] := {124} tii[34,45] := {5, 70} tii[34,46] := {9, 54} tii[34,47] := {16, 49} tii[34,48] := {32} tii[34,49] := {0, 99} tii[34,50] := {2, 110} tii[34,51] := {35, 142} tii[34,52] := {19, 71} tii[34,53] := {4, 119} tii[34,54] := {24, 136} tii[34,55] := {28, 67} tii[34,56] := {14, 129} tii[34,57] := {46} tii[34,58] := {7, 97} tii[34,59] := {12, 109} tii[34,60] := {37, 131} tii[34,61] := {42, 81} tii[34,62] := {23, 122} tii[34,63] := {64} tii[34,64] := {22, 103} tii[34,65] := {76} tii[34,66] := {36, 117} tii[34,67] := {10, 55} tii[34,68] := {17, 50} tii[34,69] := {33} tii[34,70] := {11, 82} tii[34,71] := {26, 65} tii[34,72] := {15, 95} tii[34,73] := {48, 123} tii[34,74] := {31, 111} tii[34,75] := {44} tii[34,76] := {25, 88} tii[34,77] := {60} tii[34,78] := {43, 107} tii[34,79] := {41, 80} tii[34,80] := {63} tii[34,81] := {40, 102} tii[34,82] := {75} tii[34,83] := {62, 116} tii[34,84] := {91} cell#16 , |C| = 147 special orbit = [8, 4, 2] special rep = [[4, 1], [2]] , dim = 84 cell rep = phi[[4, 2],[1]]+phi[[4, 1],[2]] TII depth = 4 TII multiplicity polynomial = 63*X^2+21*X TII subcells: tii[34,1] := {94, 146} tii[34,2] := {47, 140} tii[34,3] := {95, 124} tii[34,4] := {130} tii[34,5] := {40, 85} tii[34,6] := {58, 87} tii[34,7] := {60, 143} tii[34,8] := {89, 90} tii[34,9] := {23, 137} tii[34,10] := {62, 127} tii[34,11] := {110} tii[34,12] := {122} tii[34,13] := {64, 100} tii[34,14] := {79, 145} tii[34,15] := {41, 113} tii[34,16] := {34, 69} tii[34,17] := {73, 74} tii[34,18] := {61, 144} tii[34,19] := {18, 123} tii[34,20] := {14, 131} tii[34,21] := {57, 118} tii[34,22] := {38, 142} tii[34,23] := {39, 132} tii[34,24] := {97} tii[34,25] := {59, 139} tii[34,26] := {112} tii[34,27] := {12, 86} tii[34,28] := {25, 136} tii[34,29] := {2, 102} tii[34,30] := {49, 50} tii[34,31] := {9, 115} tii[34,32] := {8, 133} tii[34,33] := {63, 106} tii[34,34] := {80} tii[34,35] := {22, 128} tii[34,36] := {99} tii[34,37] := {71, 72} tii[34,38] := {81, 117} tii[34,39] := {48, 91} tii[34,40] := {96} tii[34,41] := {65, 107} tii[34,42] := {111} tii[34,43] := {109} tii[34,44] := {121} tii[34,45] := {19, 70} tii[34,46] := {10, 51} tii[34,47] := {27, 28} tii[34,48] := {44} tii[34,49] := {20, 101} tii[34,50] := {5, 114} tii[34,51] := {37, 141} tii[34,52] := {33, 75} tii[34,53] := {17, 125} tii[34,54] := {16, 138} tii[34,55] := {53, 54} tii[34,56] := {36, 135} tii[34,57] := {67} tii[34,58] := {1, 103} tii[34,59] := {7, 116} tii[34,60] := {6, 134} tii[34,61] := {77, 78} tii[34,62] := {21, 129} tii[34,63] := {84} tii[34,64] := {24, 105} tii[34,65] := {98} tii[34,66] := {42, 120} tii[34,67] := {11, 52} tii[34,68] := {29, 30} tii[34,69] := {45} tii[34,70] := {0, 88} tii[34,71] := {55, 56} tii[34,72] := {4, 104} tii[34,73] := {3, 126} tii[34,74] := {13, 119} tii[34,75] := {68} tii[34,76] := {15, 92} tii[34,77] := {83} tii[34,78] := {35, 108} tii[34,79] := {31, 32} tii[34,80] := {46} tii[34,81] := {26, 76} tii[34,82] := {66} tii[34,83] := {43, 93} tii[34,84] := {82} cell#17 , |C| = 13 special orbit = [12, 2] special rep = [[6], [1]] , dim = 7 cell rep = phi[[6, 1],[]]+phi[[6],[1]] TII depth = 1 TII multiplicity polynomial = 6*X^2+X TII subcells: tii[39,1] := {2, 12} tii[39,2] := {3, 11} tii[39,3] := {1, 10} tii[39,4] := {4, 9} tii[39,5] := {0, 8} tii[39,6] := {5, 6} tii[39,7] := {7} cell#18 , |C| = 35 special orbit = [10, 4] special rep = [[5], [2]] , dim = 21 cell rep = phi[[5, 2],[]]+phi[[5],[2]] TII depth = 1 TII multiplicity polynomial = 14*X^2+7*X TII subcells: tii[38,1] := {3, 33} tii[38,2] := {20, 32} tii[38,3] := {5, 26} tii[38,4] := {23, 24} tii[38,5] := {31} tii[38,6] := {34} tii[38,7] := {0, 30} tii[38,8] := {6, 27} tii[38,9] := {2, 19} tii[38,10] := {8, 10} tii[38,11] := {17} tii[38,12] := {11, 29} tii[38,13] := {4, 25} tii[38,14] := {12, 13} tii[38,15] := {21} tii[38,16] := {1, 18} tii[38,17] := {7, 9} tii[38,18] := {16} tii[38,19] := {14, 15} tii[38,20] := {22} tii[38,21] := {28} cell#19 , |C| = 35 special orbit = [10, 2, 2] special rep = [[5, 1], [1]] , dim = 35 cell rep = phi[[5, 1],[1]] TII depth = 5 TII multiplicity polynomial = 35*X TII subcells: tii[37,1] := {34} tii[37,2] := {31} tii[37,3] := {26} tii[37,4] := {20} tii[37,5] := {19} tii[37,6] := {0} tii[37,7] := {33} tii[37,8] := {5} tii[37,9] := {32} tii[37,10] := {10} tii[37,11] := {30} tii[37,12] := {14} tii[37,13] := {28} tii[37,14] := {18} tii[37,15] := {24} tii[37,16] := {1} tii[37,17] := {6} tii[37,18] := {29} tii[37,19] := {11} tii[37,20] := {27} tii[37,21] := {13} tii[37,22] := {25} tii[37,23] := {21} tii[37,24] := {2} tii[37,25] := {7} tii[37,26] := {23} tii[37,27] := {9} tii[37,28] := {22} tii[37,29] := {16} tii[37,30] := {3} tii[37,31] := {4} tii[37,32] := {17} tii[37,33] := {12} tii[37,34] := {8} tii[37,35] := {15} cell#20 , |C| = 49 special orbit = [8, 6] special rep = [[4], [3]] , dim = 35 cell rep = phi[[4, 3],[]]+phi[[4],[3]] TII depth = 2 TII multiplicity polynomial = 14*X^2+21*X TII subcells: tii[35,1] := {14, 33} tii[35,2] := {36, 37} tii[35,3] := {44} tii[35,4] := {47} tii[35,5] := {48} tii[35,6] := {2, 20} tii[35,7] := {17, 18} tii[35,8] := {32} tii[35,9] := {38} tii[35,10] := {5, 27} tii[35,11] := {1, 19} tii[35,12] := {22, 23} tii[35,13] := {6, 7} tii[35,14] := {34} tii[35,15] := {15} tii[35,16] := {41} tii[35,17] := {30, 31} tii[35,18] := {24, 25} tii[35,19] := {39} tii[35,20] := {29} tii[35,21] := {43} tii[35,22] := {42} tii[35,23] := {45} tii[35,24] := {40} tii[35,25] := {46} tii[35,26] := {0, 11} tii[35,27] := {3, 4} tii[35,28] := {10} tii[35,29] := {8, 9} tii[35,30] := {16} tii[35,31] := {26} tii[35,32] := {12, 13} tii[35,33] := {21} tii[35,34] := {28} tii[35,35] := {35} cell#21 , |C| = 35 special orbit = [10, 2, 2] special rep = [[5, 1], [1]] , dim = 35 cell rep = phi[[5, 1],[1]] TII depth = 5 TII multiplicity polynomial = 35*X TII subcells: tii[37,1] := {34} tii[37,2] := {31} tii[37,3] := {26} tii[37,4] := {22} tii[37,5] := {14} tii[37,6] := {12} tii[37,7] := {33} tii[37,8] := {8} tii[37,9] := {32} tii[37,10] := {13} tii[37,11] := {30} tii[37,12] := {16} tii[37,13] := {27} tii[37,14] := {19} tii[37,15] := {23} tii[37,16] := {3} tii[37,17] := {6} tii[37,18] := {29} tii[37,19] := {10} tii[37,20] := {28} tii[37,21] := {15} tii[37,22] := {24} tii[37,23] := {20} tii[37,24] := {1} tii[37,25] := {5} tii[37,26] := {25} tii[37,27] := {9} tii[37,28] := {21} tii[37,29] := {17} tii[37,30] := {0} tii[37,31] := {4} tii[37,32] := {18} tii[37,33] := {11} tii[37,34] := {2} tii[37,35] := {7} cell#22 , |C| = 147 special orbit = [8, 4, 2] special rep = [[4, 1], [2]] , dim = 84 cell rep = phi[[4, 2],[1]]+phi[[4, 1],[2]] TII depth = 4 TII multiplicity polynomial = 63*X^2+21*X TII subcells: tii[34,1] := {68, 146} tii[34,2] := {90, 140} tii[34,3] := {100, 139} tii[34,4] := {133} tii[34,5] := {13, 83} tii[34,6] := {29, 85} tii[34,7] := {47, 143} tii[34,8] := {57, 93} tii[34,9] := {52, 138} tii[34,10] := {51, 127} tii[34,11] := {87} tii[34,12] := {106} tii[34,13] := {6, 98} tii[34,14] := {53, 145} tii[34,15] := {1, 112} tii[34,16] := {18, 69} tii[34,17] := {39, 77} tii[34,18] := {38, 144} tii[34,19] := {3, 120} tii[34,20] := {61, 132} tii[34,21] := {59, 118} tii[34,22] := {34, 141} tii[34,23] := {8, 128} tii[34,24] := {73} tii[34,25] := {21, 135} tii[34,26] := {94} tii[34,27] := {30, 84} tii[34,28] := {78, 137} tii[34,29] := {20, 96} tii[34,30] := {56, 92} tii[34,31] := {27, 108} tii[34,32] := {66, 130} tii[34,33] := {74, 126} tii[34,34] := {86} tii[34,35] := {45, 121} tii[34,36] := {105} tii[34,37] := {72, 104} tii[34,38] := {89, 134} tii[34,39] := {58, 114} tii[34,40] := {101} tii[34,41] := {79, 125} tii[34,42] := {115} tii[34,43] := {113} tii[34,44] := {124} tii[34,45] := {5, 70} tii[34,46] := {9, 54} tii[34,47] := {16, 49} tii[34,48] := {32} tii[34,49] := {0, 99} tii[34,50] := {2, 110} tii[34,51] := {35, 142} tii[34,52] := {19, 71} tii[34,53] := {4, 119} tii[34,54] := {24, 136} tii[34,55] := {28, 67} tii[34,56] := {14, 129} tii[34,57] := {46} tii[34,58] := {7, 97} tii[34,59] := {12, 109} tii[34,60] := {37, 131} tii[34,61] := {42, 81} tii[34,62] := {23, 122} tii[34,63] := {64} tii[34,64] := {22, 103} tii[34,65] := {76} tii[34,66] := {36, 117} tii[34,67] := {10, 55} tii[34,68] := {17, 50} tii[34,69] := {33} tii[34,70] := {11, 82} tii[34,71] := {26, 65} tii[34,72] := {15, 95} tii[34,73] := {48, 123} tii[34,74] := {31, 111} tii[34,75] := {44} tii[34,76] := {25, 88} tii[34,77] := {60} tii[34,78] := {43, 107} tii[34,79] := {41, 80} tii[34,80] := {63} tii[34,81] := {40, 102} tii[34,82] := {75} tii[34,83] := {62, 116} tii[34,84] := {91} cell#23 , |C| = 35 special orbit = [10, 2, 2] special rep = [[5, 1], [1]] , dim = 35 cell rep = phi[[5, 1],[1]] TII depth = 5 TII multiplicity polynomial = 35*X TII subcells: tii[37,1] := {34} tii[37,2] := {33} tii[37,3] := {27} tii[37,4] := {30} tii[37,5] := {29} tii[37,6] := {2} tii[37,7] := {32} tii[37,8] := {4} tii[37,9] := {28} tii[37,10] := {1} tii[37,11] := {23} tii[37,12] := {6} tii[37,13] := {20} tii[37,14] := {9} tii[37,15] := {15} tii[37,16] := {10} tii[37,17] := {3} tii[37,18] := {31} tii[37,19] := {7} tii[37,20] := {26} tii[37,21] := {12} tii[37,22] := {21} tii[37,23] := {16} tii[37,24] := {0} tii[37,25] := {5} tii[37,26] := {22} tii[37,27] := {8} tii[37,28] := {19} tii[37,29] := {14} tii[37,30] := {11} tii[37,31] := {13} tii[37,32] := {25} tii[37,33] := {18} tii[37,34] := {17} tii[37,35] := {24} cell#24 , |C| = 147 special orbit = [8, 4, 2] special rep = [[4, 1], [2]] , dim = 84 cell rep = phi[[4, 2],[1]]+phi[[4, 1],[2]] TII depth = 4 TII multiplicity polynomial = 63*X^2+21*X TII subcells: tii[34,1] := {115, 146} tii[34,2] := {97, 145} tii[34,3] := {108, 143} tii[34,4] := {138} tii[34,5] := {1, 68} tii[34,6] := {9, 57} tii[34,7] := {87, 140} tii[34,8] := {27, 64} tii[34,9] := {54, 130} tii[34,10] := {53, 114} tii[34,11] := {61} tii[34,12] := {84} tii[34,13] := {5, 85} tii[34,14] := {102, 144} tii[34,15] := {13, 92} tii[34,16] := {19, 75} tii[34,17] := {42, 81} tii[34,18] := {88, 142} tii[34,19] := {24, 106} tii[34,20] := {65, 136} tii[34,21] := {62, 125} tii[34,22] := {72, 135} tii[34,23] := {37, 117} tii[34,24] := {77} tii[34,25] := {55, 127} tii[34,26] := {100} tii[34,27] := {31, 93} tii[34,28] := {82, 141} tii[34,29] := {20, 105} tii[34,30] := {59, 99} tii[34,31] := {30, 116} tii[34,32] := {70, 134} tii[34,33] := {79, 133} tii[34,34] := {94} tii[34,35] := {48, 126} tii[34,36] := {112} tii[34,37] := {76, 111} tii[34,38] := {96, 139} tii[34,39] := {60, 122} tii[34,40] := {109} tii[34,41] := {83, 132} tii[34,42] := {123} tii[34,43] := {121} tii[34,44] := {131} tii[34,45] := {0, 50} tii[34,46] := {2, 36} tii[34,47] := {4, 26} tii[34,48] := {15} tii[34,49] := {6, 74} tii[34,50] := {14, 90} tii[34,51] := {71, 137} tii[34,52] := {3, 41} tii[34,53] := {23, 103} tii[34,54] := {56, 128} tii[34,55] := {8, 35} tii[34,56] := {39, 118} tii[34,57] := {21} tii[34,58] := {7, 73} tii[34,59] := {12, 89} tii[34,60] := {40, 120} tii[34,61] := {16, 49} tii[34,62] := {25, 107} tii[34,63] := {32} tii[34,64] := {22, 78} tii[34,65] := {45} tii[34,66] := {38, 101} tii[34,67] := {10, 58} tii[34,68] := {18, 52} tii[34,69] := {34} tii[34,70] := {11, 91} tii[34,71] := {29, 69} tii[34,72] := {17, 104} tii[34,73] := {51, 129} tii[34,74] := {33, 119} tii[34,75] := {47} tii[34,76] := {28, 95} tii[34,77] := {63} tii[34,78] := {46, 113} tii[34,79] := {44, 86} tii[34,80] := {67} tii[34,81] := {43, 110} tii[34,82] := {80} tii[34,83] := {66, 124} tii[34,84] := {98} cell#25 , |C| = 147 special orbit = [8, 4, 2] special rep = [[4, 1], [2]] , dim = 84 cell rep = phi[[4, 2],[1]]+phi[[4, 1],[2]] TII depth = 4 TII multiplicity polynomial = 63*X^2+21*X TII subcells: tii[34,1] := {108, 146} tii[34,2] := {87, 140} tii[34,3] := {41, 121} tii[34,4] := {85} tii[34,5] := {59, 120} tii[34,6] := {86, 114} tii[34,7] := {80, 143} tii[34,8] := {61, 97} tii[34,9] := {42, 137} tii[34,10] := {12, 123} tii[34,11] := {91} tii[34,12] := {105} tii[34,13] := {37, 129} tii[34,14] := {96, 145} tii[34,15] := {29, 133} tii[34,16] := {69, 100} tii[34,17] := {39, 81} tii[34,18] := {82, 144} tii[34,19] := {40, 128} tii[34,20] := {52, 130} tii[34,21] := {19, 112} tii[34,22] := {66, 142} tii[34,23] := {31, 134} tii[34,24] := {73} tii[34,25] := {46, 139} tii[34,26] := {93} tii[34,27] := {50, 113} tii[34,28] := {71, 136} tii[34,29] := {32, 107} tii[34,30] := {23, 63} tii[34,31] := {22, 115} tii[34,32] := {55, 131} tii[34,33] := {11, 99} tii[34,34] := {54} tii[34,35] := {35, 126} tii[34,36] := {77} tii[34,37] := {9, 79} tii[34,38] := {25, 111} tii[34,39] := {5, 89} tii[34,40] := {33} tii[34,41] := {13, 104} tii[34,42] := {58} tii[34,43] := {53} tii[34,44] := {78} tii[34,45] := {47, 110} tii[34,46] := {62, 98} tii[34,47] := {49, 84} tii[34,48] := {68} tii[34,49] := {15, 124} tii[34,50] := {24, 119} tii[34,51] := {64, 141} tii[34,52] := {70, 101} tii[34,53] := {17, 125} tii[34,54] := {44, 138} tii[34,55] := {60, 92} tii[34,56] := {28, 135} tii[34,57] := {75} tii[34,58] := {10, 109} tii[34,59] := {6, 116} tii[34,60] := {26, 132} tii[34,61] := {48, 83} tii[34,62] := {14, 127} tii[34,63] := {67} tii[34,64] := {1, 103} tii[34,65] := {76} tii[34,66] := {4, 118} tii[34,67] := {51, 88} tii[34,68] := {38, 74} tii[34,69] := {56} tii[34,70] := {18, 95} tii[34,71] := {30, 65} tii[34,72] := {8, 102} tii[34,73] := {34, 122} tii[34,74] := {20, 117} tii[34,75] := {45} tii[34,76] := {2, 90} tii[34,77] := {57} tii[34,78] := {7, 106} tii[34,79] := {16, 43} tii[34,80] := {27} tii[34,81] := {0, 72} tii[34,82] := {36} tii[34,83] := {3, 94} tii[34,84] := {21} cell#26 , |C| = 140 special orbit = [6, 6, 2] special rep = [[3, 1], [3]] , dim = 105 cell rep = phi[[3, 3],[1]]+phi[[3, 1],[3]] TII depth = 3 TII multiplicity polynomial = 35*X^2+70*X TII subcells: tii[29,1] := {74, 137} tii[29,2] := {124} tii[29,3] := {139} tii[29,4] := {73, 112} tii[29,5] := {116} tii[29,6] := {27, 120} tii[29,7] := {72} tii[29,8] := {132} tii[29,9] := {138} tii[29,10] := {52, 94} tii[29,11] := {26, 63} tii[29,12] := {35, 128} tii[29,13] := {103} tii[29,14] := {11, 110} tii[29,15] := {84} tii[29,16] := {56} tii[29,17] := {125} tii[29,18] := {80} tii[29,19] := {134} tii[29,20] := {33, 111} tii[29,21] := {54, 133} tii[29,22] := {20, 100} tii[29,23] := {85} tii[29,24] := {38, 130} tii[29,25] := {14, 113} tii[29,26] := {48} tii[29,27] := {101} tii[29,28] := {117} tii[29,29] := {23, 123} tii[29,30] := {70} tii[29,31] := {129} tii[29,32] := {102} tii[29,33] := {115} tii[29,34] := {86} tii[29,35] := {126} tii[29,36] := {107} tii[29,37] := {135} tii[29,38] := {131} tii[29,39] := {136} tii[29,40] := {43, 83} tii[29,41] := {78} tii[29,42] := {98} tii[29,43] := {53, 95} tii[29,44] := {15, 44} tii[29,45] := {42, 79} tii[29,46] := {7, 93} tii[29,47] := {88} tii[29,48] := {37} tii[29,49] := {58} tii[29,50] := {108} tii[29,51] := {60} tii[29,52] := {6, 62} tii[29,53] := {104} tii[29,54] := {16, 109} tii[29,55] := {3, 76} tii[29,56] := {21} tii[29,57] := {121} tii[29,58] := {8, 97} tii[29,59] := {89} tii[29,60] := {41} tii[29,61] := {36} tii[29,62] := {127} tii[29,63] := {61} tii[29,64] := {34, 75} tii[29,65] := {25, 57} tii[29,66] := {67} tii[29,67] := {39} tii[29,68] := {91} tii[29,69] := {10, 82} tii[29,70] := {5, 96} tii[29,71] := {22, 122} tii[29,72] := {18, 45} tii[29,73] := {87} tii[29,74] := {31} tii[29,75] := {12, 114} tii[29,76] := {29} tii[29,77] := {106} tii[29,78] := {68} tii[29,79] := {51} tii[29,80] := {1, 77} tii[29,81] := {47} tii[29,82] := {40} tii[29,83] := {118} tii[29,84] := {4, 99} tii[29,85] := {71} tii[29,86] := {66} tii[29,87] := {90} tii[29,88] := {49} tii[29,89] := {65} tii[29,90] := {32} tii[29,91] := {105} tii[29,92] := {92} tii[29,93] := {119} tii[29,94] := {30, 64} tii[29,95] := {46} tii[29,96] := {59} tii[29,97] := {9, 28} tii[29,98] := {17} tii[29,99] := {0, 55} tii[29,100] := {69} tii[29,101] := {24} tii[29,102] := {2, 81} tii[29,103] := {13} tii[29,104] := {50} tii[29,105] := {19} cell#27 , |C| = 105 special orbit = [6, 4, 4] special rep = [[3, 2], [2]] , dim = 105 cell rep = phi[[3, 2],[2]] TII depth = 4 TII multiplicity polynomial = 105*X TII subcells: tii[27,1] := {102} tii[27,2] := {104} tii[27,3] := {24} tii[27,4] := {57} tii[27,5] := {86} tii[27,6] := {91} tii[27,7] := {18} tii[27,8] := {38} tii[27,9] := {41} tii[27,10] := {42} tii[27,11] := {70} tii[27,12] := {94} tii[27,13] := {79} tii[27,14] := {97} tii[27,15] := {59} tii[27,16] := {76} tii[27,17] := {51} tii[27,18] := {99} tii[27,19] := {64} tii[27,20] := {81} tii[27,21] := {65} tii[27,22] := {100} tii[27,23] := {95} tii[27,24] := {77} tii[27,25] := {83} tii[27,26] := {88} tii[27,27] := {93} tii[27,28] := {89} tii[27,29] := {103} tii[27,30] := {96} tii[27,31] := {101} tii[27,32] := {10} tii[27,33] := {31} tii[27,34] := {7} tii[27,35] := {13} tii[27,36] := {1} tii[27,37] := {25} tii[27,38] := {26} tii[27,39] := {5} tii[27,40] := {4} tii[27,41] := {67} tii[27,42] := {32} tii[27,43] := {44} tii[27,44] := {11} tii[27,45] := {63} tii[27,46] := {39} tii[27,47] := {40} tii[27,48] := {45} tii[27,49] := {23} tii[27,50] := {78} tii[27,51] := {54} tii[27,52] := {58} tii[27,53] := {33} tii[27,54] := {75} tii[27,55] := {68} tii[27,56] := {71} tii[27,57] := {84} tii[27,58] := {6} tii[27,59] := {28} tii[27,60] := {46} tii[27,61] := {14} tii[27,62] := {15} tii[27,63] := {21} tii[27,64] := {52} tii[27,65] := {53} tii[27,66] := {60} tii[27,67] := {66} tii[27,68] := {87} tii[27,69] := {37} tii[27,70] := {29} tii[27,71] := {30} tii[27,72] := {72} tii[27,73] := {80} tii[27,74] := {47} tii[27,75] := {36} tii[27,76] := {85} tii[27,77] := {55} tii[27,78] := {82} tii[27,79] := {49} tii[27,80] := {92} tii[27,81] := {69} tii[27,82] := {50} tii[27,83] := {73} tii[27,84] := {61} tii[27,85] := {90} tii[27,86] := {74} tii[27,87] := {98} tii[27,88] := {0} tii[27,89] := {2} tii[27,90] := {3} tii[27,91] := {8} tii[27,92] := {9} tii[27,93] := {19} tii[27,94] := {16} tii[27,95] := {17} tii[27,96] := {22} tii[27,97] := {12} tii[27,98] := {43} tii[27,99] := {34} tii[27,100] := {20} tii[27,101] := {56} tii[27,102] := {48} tii[27,103] := {27} tii[27,104] := {35} tii[27,105] := {62} cell#28 , |C| = 35 special orbit = [10, 2, 2] special rep = [[5, 1], [1]] , dim = 35 cell rep = phi[[5, 1],[1]] TII depth = 5 TII multiplicity polynomial = 35*X TII subcells: tii[37,1] := {34} tii[37,2] := {32} tii[37,3] := {29} tii[37,4] := {20} tii[37,5] := {31} tii[37,6] := {16} tii[37,7] := {33} tii[37,8] := {4} tii[37,9] := {30} tii[37,10] := {11} tii[37,11] := {25} tii[37,12] := {3} tii[37,13] := {12} tii[37,14] := {13} tii[37,15] := {23} tii[37,16] := {2} tii[37,17] := {6} tii[37,18] := {28} tii[37,19] := {1} tii[37,20] := {21} tii[37,21] := {10} tii[37,22] := {8} tii[37,23] := {19} tii[37,24] := {17} tii[37,25] := {5} tii[37,26] := {26} tii[37,27] := {15} tii[37,28] := {14} tii[37,29] := {24} tii[37,30] := {0} tii[37,31] := {9} tii[37,32] := {7} tii[37,33] := {18} tii[37,34] := {22} tii[37,35] := {27} cell#29 , |C| = 35 special orbit = [10, 2, 2] special rep = [[5, 1], [1]] , dim = 35 cell rep = phi[[5, 1],[1]] TII depth = 5 TII multiplicity polynomial = 35*X TII subcells: tii[37,1] := {34} tii[37,2] := {31} tii[37,3] := {26} tii[37,4] := {15} tii[37,5] := {4} tii[37,6] := {20} tii[37,7] := {33} tii[37,8] := {21} tii[37,9] := {32} tii[37,10] := {19} tii[37,11] := {30} tii[37,12] := {22} tii[37,13] := {28} tii[37,14] := {18} tii[37,15] := {25} tii[37,16] := {13} tii[37,17] := {12} tii[37,18] := {29} tii[37,19] := {14} tii[37,20] := {27} tii[37,21] := {11} tii[37,22] := {24} tii[37,23] := {17} tii[37,24] := {7} tii[37,25] := {8} tii[37,26] := {23} tii[37,27] := {6} tii[37,28] := {16} tii[37,29] := {10} tii[37,30] := {3} tii[37,31] := {2} tii[37,32] := {9} tii[37,33] := {5} tii[37,34] := {0} tii[37,35] := {1} cell#30 , |C| = 147 special orbit = [8, 4, 2] special rep = [[4, 1], [2]] , dim = 84 cell rep = phi[[4, 2],[1]]+phi[[4, 1],[2]] TII depth = 4 TII multiplicity polynomial = 63*X^2+21*X TII subcells: tii[34,1] := {145, 146} tii[34,2] := {133, 135} tii[34,3] := {112, 141} tii[34,4] := {143} tii[34,5] := {41, 102} tii[34,6] := {5, 51} tii[34,7] := {136, 138} tii[34,8] := {38, 39} tii[34,9] := {113, 118} tii[34,10] := {68, 116} tii[34,11] := {88} tii[34,12] := {110} tii[34,13] := {70, 122} tii[34,14] := {142, 144} tii[34,15] := {42, 101} tii[34,16] := {2, 36} tii[34,17] := {23, 24} tii[34,18] := {137, 139} tii[34,19] := {73, 111} tii[34,20] := {103, 107} tii[34,21] := {58, 106} tii[34,22] := {129, 132} tii[34,23] := {90, 100} tii[34,24] := {67} tii[34,25] := {117, 119} tii[34,26] := {98} tii[34,27] := {11, 62} tii[34,28] := {123, 125} tii[34,29] := {33, 79} tii[34,30] := {53, 54} tii[34,31] := {57, 61} tii[34,32] := {105, 109} tii[34,33] := {69, 124} tii[34,34] := {91} tii[34,35] := {84, 86} tii[34,36] := {120} tii[34,37] := {80, 81} tii[34,38] := {92, 134} tii[34,39] := {49, 104} tii[34,40] := {114} tii[34,41] := {71, 126} tii[34,42] := {131} tii[34,43] := {128} tii[34,44] := {140} tii[34,45] := {18, 78} tii[34,46] := {10, 55} tii[34,47] := {29, 30} tii[34,48] := {47} tii[34,49] := {19, 77} tii[34,50] := {43, 89} tii[34,51] := {127, 130} tii[34,52] := {1, 26} tii[34,53] := {66, 76} tii[34,54] := {115, 121} tii[34,55] := {6, 7} tii[34,56] := {94, 97} tii[34,57] := {21} tii[34,58] := {20, 64} tii[34,59] := {40, 50} tii[34,60] := {93, 99} tii[34,61] := {16, 17} tii[34,62] := {72, 75} tii[34,63] := {37} tii[34,64] := {25, 65} tii[34,65] := {63} tii[34,66] := {45, 96} tii[34,67] := {0, 15} tii[34,68] := {3, 4} tii[34,69] := {13} tii[34,70] := {12, 52} tii[34,71] := {8, 9} tii[34,72] := {28, 35} tii[34,73] := {83, 87} tii[34,74] := {59, 60} tii[34,75] := {22} tii[34,76] := {14, 56} tii[34,77] := {44} tii[34,78] := {34, 85} tii[34,79] := {31, 32} tii[34,80] := {48} tii[34,81] := {27, 82} tii[34,82] := {74} tii[34,83] := {46, 108} tii[34,84] := {95} cell#31 , |C| = 36 special orbit = [10, 2, 1, 1] special rep = [[5], [1, 1]] , dim = 21 cell rep = phi[[5, 1, 1],[]]+phi[[5],[1, 1]] TII depth = 1 TII multiplicity polynomial = 15*X^2+6*X TII subcells: tii[36,1] := {20, 35} tii[36,2] := {16, 34} tii[36,3] := {21, 33} tii[36,4] := {17, 31} tii[36,5] := {22, 29} tii[36,6] := {26} tii[36,7] := {10, 32} tii[36,8] := {13, 30} tii[36,9] := {11, 28} tii[36,10] := {14, 25} tii[36,11] := {23} tii[36,12] := {7, 27} tii[36,13] := {4, 24} tii[36,14] := {8, 19} tii[36,15] := {15} tii[36,16] := {1, 18} tii[36,17] := {2, 12} tii[36,18] := {9} tii[36,19] := {0, 6} tii[36,20] := {3} tii[36,21] := {5} cell#32 , |C| = 147 special orbit = [8, 4, 2] special rep = [[4, 1], [2]] , dim = 84 cell rep = phi[[4, 2],[1]]+phi[[4, 1],[2]] TII depth = 4 TII multiplicity polynomial = 63*X^2+21*X TII subcells: tii[34,1] := {94, 146} tii[34,2] := {47, 140} tii[34,3] := {95, 124} tii[34,4] := {130} tii[34,5] := {40, 85} tii[34,6] := {58, 87} tii[34,7] := {60, 143} tii[34,8] := {89, 90} tii[34,9] := {23, 137} tii[34,10] := {62, 127} tii[34,11] := {110} tii[34,12] := {122} tii[34,13] := {64, 100} tii[34,14] := {79, 145} tii[34,15] := {41, 113} tii[34,16] := {34, 69} tii[34,17] := {73, 74} tii[34,18] := {61, 144} tii[34,19] := {18, 123} tii[34,20] := {14, 131} tii[34,21] := {57, 118} tii[34,22] := {38, 142} tii[34,23] := {39, 132} tii[34,24] := {97} tii[34,25] := {59, 139} tii[34,26] := {112} tii[34,27] := {12, 86} tii[34,28] := {25, 136} tii[34,29] := {2, 102} tii[34,30] := {49, 50} tii[34,31] := {9, 115} tii[34,32] := {8, 133} tii[34,33] := {63, 106} tii[34,34] := {80} tii[34,35] := {22, 128} tii[34,36] := {99} tii[34,37] := {71, 72} tii[34,38] := {81, 117} tii[34,39] := {48, 91} tii[34,40] := {96} tii[34,41] := {65, 107} tii[34,42] := {111} tii[34,43] := {109} tii[34,44] := {121} tii[34,45] := {19, 70} tii[34,46] := {10, 51} tii[34,47] := {27, 28} tii[34,48] := {44} tii[34,49] := {20, 101} tii[34,50] := {5, 114} tii[34,51] := {37, 141} tii[34,52] := {33, 75} tii[34,53] := {17, 125} tii[34,54] := {16, 138} tii[34,55] := {53, 54} tii[34,56] := {36, 135} tii[34,57] := {67} tii[34,58] := {1, 103} tii[34,59] := {7, 116} tii[34,60] := {6, 134} tii[34,61] := {77, 78} tii[34,62] := {21, 129} tii[34,63] := {84} tii[34,64] := {24, 105} tii[34,65] := {98} tii[34,66] := {42, 120} tii[34,67] := {11, 52} tii[34,68] := {29, 30} tii[34,69] := {45} tii[34,70] := {0, 88} tii[34,71] := {55, 56} tii[34,72] := {4, 104} tii[34,73] := {3, 126} tii[34,74] := {13, 119} tii[34,75] := {68} tii[34,76] := {15, 92} tii[34,77] := {83} tii[34,78] := {35, 108} tii[34,79] := {31, 32} tii[34,80] := {46} tii[34,81] := {26, 76} tii[34,82] := {66} tii[34,83] := {43, 93} tii[34,84] := {82} cell#33 , |C| = 36 special orbit = [10, 2, 1, 1] special rep = [[5], [1, 1]] , dim = 21 cell rep = phi[[5, 1, 1],[]]+phi[[5],[1, 1]] TII depth = 1 TII multiplicity polynomial = 15*X^2+6*X TII subcells: tii[36,1] := {20, 35} tii[36,2] := {17, 34} tii[36,3] := {21, 33} tii[36,4] := {16, 31} tii[36,5] := {22, 29} tii[36,6] := {26} tii[36,7] := {11, 32} tii[36,8] := {13, 30} tii[36,9] := {10, 28} tii[36,10] := {14, 25} tii[36,11] := {23} tii[36,12] := {7, 27} tii[36,13] := {4, 24} tii[36,14] := {8, 19} tii[36,15] := {15} tii[36,16] := {1, 18} tii[36,17] := {2, 12} tii[36,18] := {9} tii[36,19] := {0, 6} tii[36,20] := {3} tii[36,21] := {5} cell#34 , |C| = 105 special orbit = [8, 4, 1, 1] special rep = [[4], [2, 1]] , dim = 70 cell rep = phi[[4, 2, 1],[]]+phi[[4],[2, 1]] TII depth = 2 TII multiplicity polynomial = 35*X^2+35*X TII subcells: tii[33,1] := {73, 104} tii[33,2] := {48, 99} tii[33,3] := {74, 95} tii[33,4] := {98} tii[33,5] := {103} tii[33,6] := {56, 101} tii[33,7] := {31, 90} tii[33,8] := {38, 94} tii[33,9] := {58, 84} tii[33,10] := {30, 85} tii[33,11] := {40, 71} tii[33,12] := {89} tii[33,13] := {64} tii[33,14] := {100} tii[33,15] := {15, 76} tii[33,16] := {39, 69} tii[33,17] := {7, 63} tii[33,18] := {16, 46} tii[33,19] := {75} tii[33,20] := {33} tii[33,21] := {93} tii[33,22] := {24, 52} tii[33,23] := {8, 36} tii[33,24] := {61} tii[33,25] := {27} tii[33,26] := {81} tii[33,27] := {68} tii[33,28] := {51} tii[33,29] := {86} tii[33,30] := {97} tii[33,31] := {57, 102} tii[33,32] := {47, 96} tii[33,33] := {59, 87} tii[33,34] := {79} tii[33,35] := {23, 83} tii[33,36] := {14, 70} tii[33,37] := {34, 92} tii[33,38] := {25, 54} tii[33,39] := {49, 82} tii[33,40] := {44} tii[33,41] := {67} tii[33,42] := {4, 53} tii[33,43] := {9, 37} tii[33,44] := {60, 88} tii[33,45] := {28} tii[33,46] := {80} tii[33,47] := {2, 20} tii[33,48] := {91} tii[33,49] := {10} tii[33,50] := {19} tii[33,51] := {18, 78} tii[33,52] := {32, 66} tii[33,53] := {50} tii[33,54] := {1, 43} tii[33,55] := {41, 72} tii[33,56] := {5, 29} tii[33,57] := {17} tii[33,58] := {65} tii[33,59] := {0, 13} tii[33,60] := {77} tii[33,61] := {6} tii[33,62] := {12} tii[33,63] := {26, 55} tii[33,64] := {45} tii[33,65] := {3, 22} tii[33,66] := {62} tii[33,67] := {11} tii[33,68] := {21} tii[33,69] := {42} tii[33,70] := {35} cell#35 , |C| = 140 special orbit = [6, 6, 2] special rep = [[3, 1], [3]] , dim = 105 cell rep = phi[[3, 3],[1]]+phi[[3, 1],[3]] TII depth = 3 TII multiplicity polynomial = 35*X^2+70*X TII subcells: tii[29,1] := {103, 128} tii[29,2] := {133} tii[29,3] := {139} tii[29,4] := {45, 46} tii[29,5] := {90} tii[29,6] := {54, 100} tii[29,7] := {107} tii[29,8] := {116} tii[29,9] := {127} tii[29,10] := {65, 66} tii[29,11] := {30, 31} tii[29,12] := {73, 112} tii[29,13] := {104} tii[29,14] := {38, 88} tii[29,15] := {117} tii[29,16] := {57} tii[29,17] := {123} tii[29,18] := {83} tii[29,19] := {132} tii[29,20] := {84, 85} tii[29,21] := {91, 121} tii[29,22] := {67, 68} tii[29,23] := {114} tii[29,24] := {78, 113} tii[29,25] := {44, 86} tii[29,26] := {94} tii[29,27] := {124} tii[29,28] := {129} tii[29,29] := {59, 102} tii[29,30] := {111} tii[29,31] := {135} tii[29,32] := {122} tii[29,33] := {130} tii[29,34] := {115} tii[29,35] := {134} tii[29,36] := {126} tii[29,37] := {137} tii[29,38] := {136} tii[29,39] := {138} tii[29,40] := {11, 12} tii[29,41] := {36} tii[29,42] := {64} tii[29,43] := {28, 29} tii[29,44] := {9, 10} tii[29,45] := {14, 15} tii[29,46] := {18, 70} tii[29,47] := {56} tii[29,48] := {35} tii[29,49] := {23} tii[29,50] := {82} tii[29,51] := {63} tii[29,52] := {26, 27} tii[29,53] := {75} tii[29,54] := {37, 87} tii[29,55] := {8, 51} tii[29,56] := {55} tii[29,57] := {97} tii[29,58] := {19, 71} tii[29,59] := {60} tii[29,60] := {81} tii[29,61] := {74} tii[29,62] := {108} tii[29,63] := {96} tii[29,64] := {49, 50} tii[29,65] := {33, 34} tii[29,66] := {77} tii[29,67] := {43} tii[29,68] := {99} tii[29,69] := {47, 48} tii[29,70] := {25, 69} tii[29,71] := {58, 101} tii[29,72] := {16, 17} tii[29,73] := {93} tii[29,74] := {76} tii[29,75] := {39, 89} tii[29,76] := {24} tii[29,77] := {110} tii[29,78] := {79} tii[29,79] := {98} tii[29,80] := {13, 52} tii[29,81] := {92} tii[29,82] := {42} tii[29,83] := {118} tii[29,84] := {22, 72} tii[29,85] := {109} tii[29,86] := {106} tii[29,87] := {120} tii[29,88] := {95} tii[29,89] := {105} tii[29,90] := {80} tii[29,91] := {125} tii[29,92] := {119} tii[29,93] := {131} tii[29,94] := {1, 2} tii[29,95] := {6} tii[29,96] := {21} tii[29,97] := {3, 4} tii[29,98] := {7} tii[29,99] := {0, 32} tii[29,100] := {41} tii[29,101] := {20} tii[29,102] := {5, 53} tii[29,103] := {40} tii[29,104] := {62} tii[29,105] := {61} cell#36 , |C| = 147 special orbit = [8, 4, 2] special rep = [[4, 1], [2]] , dim = 84 cell rep = phi[[4, 2],[1]]+phi[[4, 1],[2]] TII depth = 4 TII multiplicity polynomial = 63*X^2+21*X TII subcells: tii[34,1] := {108, 146} tii[34,2] := {87, 140} tii[34,3] := {41, 121} tii[34,4] := {85} tii[34,5] := {59, 120} tii[34,6] := {86, 114} tii[34,7] := {80, 143} tii[34,8] := {61, 97} tii[34,9] := {42, 137} tii[34,10] := {12, 123} tii[34,11] := {91} tii[34,12] := {105} tii[34,13] := {37, 129} tii[34,14] := {96, 145} tii[34,15] := {29, 133} tii[34,16] := {69, 100} tii[34,17] := {39, 81} tii[34,18] := {82, 144} tii[34,19] := {40, 128} tii[34,20] := {52, 130} tii[34,21] := {19, 112} tii[34,22] := {66, 142} tii[34,23] := {31, 134} tii[34,24] := {73} tii[34,25] := {46, 139} tii[34,26] := {93} tii[34,27] := {50, 113} tii[34,28] := {71, 136} tii[34,29] := {32, 107} tii[34,30] := {23, 63} tii[34,31] := {22, 115} tii[34,32] := {55, 131} tii[34,33] := {11, 99} tii[34,34] := {54} tii[34,35] := {35, 126} tii[34,36] := {77} tii[34,37] := {9, 79} tii[34,38] := {25, 111} tii[34,39] := {5, 89} tii[34,40] := {33} tii[34,41] := {13, 104} tii[34,42] := {58} tii[34,43] := {53} tii[34,44] := {78} tii[34,45] := {47, 110} tii[34,46] := {62, 98} tii[34,47] := {49, 84} tii[34,48] := {68} tii[34,49] := {15, 124} tii[34,50] := {24, 119} tii[34,51] := {64, 141} tii[34,52] := {70, 101} tii[34,53] := {17, 125} tii[34,54] := {44, 138} tii[34,55] := {60, 92} tii[34,56] := {28, 135} tii[34,57] := {75} tii[34,58] := {10, 109} tii[34,59] := {6, 116} tii[34,60] := {26, 132} tii[34,61] := {48, 83} tii[34,62] := {14, 127} tii[34,63] := {67} tii[34,64] := {1, 103} tii[34,65] := {76} tii[34,66] := {4, 118} tii[34,67] := {51, 88} tii[34,68] := {38, 74} tii[34,69] := {56} tii[34,70] := {18, 95} tii[34,71] := {30, 65} tii[34,72] := {8, 102} tii[34,73] := {34, 122} tii[34,74] := {20, 117} tii[34,75] := {45} tii[34,76] := {2, 90} tii[34,77] := {57} tii[34,78] := {7, 106} tii[34,79] := {16, 43} tii[34,80] := {27} tii[34,81] := {0, 72} tii[34,82] := {36} tii[34,83] := {3, 94} tii[34,84] := {21} cell#37 , |C| = 154 special orbit = [8, 2, 2, 2] special rep = [[4, 1], [1, 1]] , dim = 84 cell rep = phi[[4, 1, 1],[1]]+phi[[4, 1],[1, 1]] TII depth = 4 TII multiplicity polynomial = 70*X^2+14*X TII subcells: tii[32,1] := {122, 152} tii[32,2] := {98, 146} tii[32,3] := {90, 131} tii[32,4] := {65, 104} tii[32,5] := {134, 153} tii[32,6] := {78, 140} tii[32,7] := {128, 151} tii[32,8] := {70, 117} tii[32,9] := {135, 149} tii[32,10] := {40, 86} tii[32,11] := {129, 145} tii[32,12] := {139} tii[32,13] := {96, 143} tii[32,14] := {46, 101} tii[32,15] := {108, 136} tii[32,16] := {18, 66} tii[32,17] := {97, 125} tii[32,18] := {113} tii[32,19] := {69, 110} tii[32,20] := {5, 41} tii[32,21] := {56, 92} tii[32,22] := {74} tii[32,23] := {16, 48} tii[32,24] := {27} tii[32,25] := {53, 54} tii[32,26] := {107, 150} tii[32,27] := {30, 77} tii[32,28] := {91, 147} tii[32,29] := {45, 100} tii[32,30] := {71, 142} tii[32,31] := {29, 118} tii[32,32] := {49, 133} tii[32,33] := {24, 55} tii[32,34] := {115, 148} tii[32,35] := {123, 144} tii[32,36] := {33, 80} tii[32,37] := {81, 141} tii[32,38] := {116, 138} tii[32,39] := {22, 102} tii[32,40] := {64, 132} tii[32,41] := {127} tii[32,42] := {42, 121} tii[32,43] := {58, 59} tii[32,44] := {109, 137} tii[32,45] := {31, 84} tii[32,46] := {99, 126} tii[32,47] := {72, 120} tii[32,48] := {114} tii[32,49] := {50, 106} tii[32,50] := {23, 63} tii[32,51] := {82, 112} tii[32,52] := {95} tii[32,53] := {43, 88} tii[32,54] := {76} tii[32,55] := {9, 32} tii[32,56] := {60, 130} tii[32,57] := {13, 57} tii[32,58] := {39, 119} tii[32,59] := {7, 83} tii[32,60] := {19, 105} tii[32,61] := {34, 35} tii[32,62] := {89, 124} tii[32,63] := {12, 62} tii[32,64] := {47, 103} tii[32,65] := {79, 111} tii[32,66] := {26, 87} tii[32,67] := {94} tii[32,68] := {8, 38} tii[32,69] := {61, 93} tii[32,70] := {75} tii[32,71] := {20, 68} tii[32,72] := {52} tii[32,73] := {14, 15} tii[32,74] := {25, 85} tii[32,75] := {3, 37} tii[32,76] := {10, 67} tii[32,77] := {2, 17} tii[32,78] := {36, 73} tii[32,79] := {6, 44} tii[32,80] := {51} tii[32,81] := {28} tii[32,82] := {0, 4} tii[32,83] := {1, 21} tii[32,84] := {11} cell#38 , |C| = 140 special orbit = [6, 6, 2] special rep = [[3, 1], [3]] , dim = 105 cell rep = phi[[3, 3],[1]]+phi[[3, 1],[3]] TII depth = 3 TII multiplicity polynomial = 35*X^2+70*X TII subcells: tii[29,1] := {74, 137} tii[29,2] := {124} tii[29,3] := {139} tii[29,4] := {73, 112} tii[29,5] := {116} tii[29,6] := {27, 120} tii[29,7] := {72} tii[29,8] := {132} tii[29,9] := {138} tii[29,10] := {52, 94} tii[29,11] := {26, 63} tii[29,12] := {35, 128} tii[29,13] := {103} tii[29,14] := {11, 110} tii[29,15] := {84} tii[29,16] := {56} tii[29,17] := {125} tii[29,18] := {80} tii[29,19] := {134} tii[29,20] := {33, 111} tii[29,21] := {54, 133} tii[29,22] := {20, 100} tii[29,23] := {85} tii[29,24] := {38, 130} tii[29,25] := {14, 113} tii[29,26] := {48} tii[29,27] := {101} tii[29,28] := {117} tii[29,29] := {23, 123} tii[29,30] := {70} tii[29,31] := {129} tii[29,32] := {102} tii[29,33] := {115} tii[29,34] := {86} tii[29,35] := {126} tii[29,36] := {107} tii[29,37] := {135} tii[29,38] := {131} tii[29,39] := {136} tii[29,40] := {43, 83} tii[29,41] := {78} tii[29,42] := {98} tii[29,43] := {53, 95} tii[29,44] := {15, 44} tii[29,45] := {42, 79} tii[29,46] := {7, 93} tii[29,47] := {88} tii[29,48] := {37} tii[29,49] := {58} tii[29,50] := {108} tii[29,51] := {60} tii[29,52] := {6, 62} tii[29,53] := {104} tii[29,54] := {16, 109} tii[29,55] := {3, 76} tii[29,56] := {21} tii[29,57] := {121} tii[29,58] := {8, 97} tii[29,59] := {89} tii[29,60] := {41} tii[29,61] := {36} tii[29,62] := {127} tii[29,63] := {61} tii[29,64] := {34, 75} tii[29,65] := {25, 57} tii[29,66] := {67} tii[29,67] := {39} tii[29,68] := {91} tii[29,69] := {10, 82} tii[29,70] := {5, 96} tii[29,71] := {22, 122} tii[29,72] := {18, 45} tii[29,73] := {87} tii[29,74] := {31} tii[29,75] := {12, 114} tii[29,76] := {29} tii[29,77] := {106} tii[29,78] := {68} tii[29,79] := {51} tii[29,80] := {1, 77} tii[29,81] := {47} tii[29,82] := {40} tii[29,83] := {118} tii[29,84] := {4, 99} tii[29,85] := {71} tii[29,86] := {66} tii[29,87] := {90} tii[29,88] := {49} tii[29,89] := {65} tii[29,90] := {32} tii[29,91] := {105} tii[29,92] := {92} tii[29,93] := {119} tii[29,94] := {30, 64} tii[29,95] := {46} tii[29,96] := {59} tii[29,97] := {9, 28} tii[29,98] := {17} tii[29,99] := {0, 55} tii[29,100] := {69} tii[29,101] := {24} tii[29,102] := {2, 81} tii[29,103] := {13} tii[29,104] := {50} tii[29,105] := {19} cell#39 , |C| = 154 special orbit = [8, 2, 2, 2] special rep = [[4, 1], [1, 1]] , dim = 84 cell rep = phi[[4, 1, 1],[1]]+phi[[4, 1],[1, 1]] TII depth = 4 TII multiplicity polynomial = 70*X^2+14*X TII subcells: tii[32,1] := {91, 153} tii[32,2] := {62, 148} tii[32,3] := {57, 137} tii[32,4] := {54, 120} tii[32,5] := {108, 152} tii[32,6] := {46, 143} tii[32,7] := {97, 150} tii[32,8] := {41, 127} tii[32,9] := {109, 147} tii[32,10] := {39, 103} tii[32,11] := {123, 142} tii[32,12] := {134} tii[32,13] := {61, 139} tii[32,14] := {28, 114} tii[32,15] := {72, 132} tii[32,16] := {27, 86} tii[32,17] := {88, 125} tii[32,18] := {110} tii[32,19] := {40, 105} tii[32,20] := {38, 67} tii[32,21] := {52, 95} tii[32,22] := {74} tii[32,23] := {51, 87} tii[32,24] := {76} tii[32,25] := {1, 116} tii[32,26] := {71, 151} tii[32,27] := {6, 107} tii[32,28] := {56, 149} tii[32,29] := {12, 117} tii[32,30] := {43, 146} tii[32,31] := {19, 128} tii[32,32] := {31, 138} tii[32,33] := {3, 90} tii[32,34] := {79, 145} tii[32,35] := {92, 141} tii[32,36] := {9, 100} tii[32,37] := {47, 144} tii[32,38] := {106, 135} tii[32,39] := {15, 115} tii[32,40] := {35, 140} tii[32,41] := {124} tii[32,42] := {24, 129} tii[32,43] := {13, 83} tii[32,44] := {73, 133} tii[32,45] := {20, 99} tii[32,46] := {89, 126} tii[32,47] := {44, 131} tii[32,48] := {111} tii[32,49] := {32, 119} tii[32,50] := {26, 81} tii[32,51] := {69, 113} tii[32,52] := {94} tii[32,53] := {42, 102} tii[32,54] := {77} tii[32,55] := {0, 70} tii[32,56] := {34, 136} tii[32,57] := {4, 82} tii[32,58] := {25, 130} tii[32,59] := {8, 98} tii[32,60] := {16, 118} tii[32,61] := {7, 65} tii[32,62] := {55, 122} tii[32,63] := {11, 80} tii[32,64] := {33, 121} tii[32,65] := {68, 112} tii[32,66] := {22, 101} tii[32,67] := {93} tii[32,68] := {18, 64} tii[32,69] := {53, 96} tii[32,70] := {75} tii[32,71] := {30, 85} tii[32,72] := {59} tii[32,73] := {2, 49} tii[32,74] := {23, 104} tii[32,75] := {5, 63} tii[32,76] := {14, 84} tii[32,77] := {10, 48} tii[32,78] := {37, 78} tii[32,79] := {21, 66} tii[32,80] := {58} tii[32,81] := {45} tii[32,82] := {17, 36} tii[32,83] := {29, 50} tii[32,84] := {60} cell#40 , |C| = 105 special orbit = [8, 4, 1, 1] special rep = [[4], [2, 1]] , dim = 70 cell rep = phi[[4, 2, 1],[]]+phi[[4],[2, 1]] TII depth = 2 TII multiplicity polynomial = 35*X^2+35*X TII subcells: tii[33,1] := {73, 104} tii[33,2] := {48, 99} tii[33,3] := {74, 95} tii[33,4] := {98} tii[33,5] := {103} tii[33,6] := {56, 101} tii[33,7] := {31, 90} tii[33,8] := {38, 94} tii[33,9] := {58, 84} tii[33,10] := {30, 85} tii[33,11] := {40, 71} tii[33,12] := {89} tii[33,13] := {64} tii[33,14] := {100} tii[33,15] := {15, 76} tii[33,16] := {39, 69} tii[33,17] := {7, 63} tii[33,18] := {16, 46} tii[33,19] := {75} tii[33,20] := {33} tii[33,21] := {93} tii[33,22] := {24, 52} tii[33,23] := {8, 36} tii[33,24] := {61} tii[33,25] := {27} tii[33,26] := {81} tii[33,27] := {68} tii[33,28] := {51} tii[33,29] := {86} tii[33,30] := {97} tii[33,31] := {57, 102} tii[33,32] := {47, 96} tii[33,33] := {59, 87} tii[33,34] := {79} tii[33,35] := {23, 83} tii[33,36] := {14, 70} tii[33,37] := {34, 92} tii[33,38] := {25, 54} tii[33,39] := {49, 82} tii[33,40] := {44} tii[33,41] := {67} tii[33,42] := {4, 53} tii[33,43] := {9, 37} tii[33,44] := {60, 88} tii[33,45] := {28} tii[33,46] := {80} tii[33,47] := {2, 20} tii[33,48] := {91} tii[33,49] := {10} tii[33,50] := {19} tii[33,51] := {18, 78} tii[33,52] := {32, 66} tii[33,53] := {50} tii[33,54] := {1, 43} tii[33,55] := {41, 72} tii[33,56] := {5, 29} tii[33,57] := {17} tii[33,58] := {65} tii[33,59] := {0, 13} tii[33,60] := {77} tii[33,61] := {6} tii[33,62] := {12} tii[33,63] := {26, 55} tii[33,64] := {45} tii[33,65] := {3, 22} tii[33,66] := {62} tii[33,67] := {11} tii[33,68] := {21} tii[33,69] := {42} tii[33,70] := {35} cell#41 , |C| = 140 special orbit = [6, 6, 2] special rep = [[3, 1], [3]] , dim = 105 cell rep = phi[[3, 3],[1]]+phi[[3, 1],[3]] TII depth = 3 TII multiplicity polynomial = 35*X^2+70*X TII subcells: tii[29,1] := {103, 128} tii[29,2] := {133} tii[29,3] := {139} tii[29,4] := {45, 46} tii[29,5] := {90} tii[29,6] := {54, 100} tii[29,7] := {107} tii[29,8] := {116} tii[29,9] := {127} tii[29,10] := {65, 66} tii[29,11] := {30, 31} tii[29,12] := {73, 112} tii[29,13] := {104} tii[29,14] := {38, 88} tii[29,15] := {117} tii[29,16] := {57} tii[29,17] := {123} tii[29,18] := {83} tii[29,19] := {132} tii[29,20] := {84, 85} tii[29,21] := {91, 121} tii[29,22] := {67, 68} tii[29,23] := {114} tii[29,24] := {78, 113} tii[29,25] := {44, 86} tii[29,26] := {94} tii[29,27] := {124} tii[29,28] := {129} tii[29,29] := {59, 102} tii[29,30] := {111} tii[29,31] := {135} tii[29,32] := {122} tii[29,33] := {130} tii[29,34] := {115} tii[29,35] := {134} tii[29,36] := {126} tii[29,37] := {137} tii[29,38] := {136} tii[29,39] := {138} tii[29,40] := {11, 12} tii[29,41] := {36} tii[29,42] := {64} tii[29,43] := {28, 29} tii[29,44] := {9, 10} tii[29,45] := {14, 15} tii[29,46] := {18, 70} tii[29,47] := {56} tii[29,48] := {35} tii[29,49] := {23} tii[29,50] := {82} tii[29,51] := {63} tii[29,52] := {26, 27} tii[29,53] := {75} tii[29,54] := {37, 87} tii[29,55] := {8, 51} tii[29,56] := {55} tii[29,57] := {97} tii[29,58] := {19, 71} tii[29,59] := {60} tii[29,60] := {81} tii[29,61] := {74} tii[29,62] := {108} tii[29,63] := {96} tii[29,64] := {49, 50} tii[29,65] := {33, 34} tii[29,66] := {77} tii[29,67] := {43} tii[29,68] := {99} tii[29,69] := {47, 48} tii[29,70] := {25, 69} tii[29,71] := {58, 101} tii[29,72] := {16, 17} tii[29,73] := {93} tii[29,74] := {76} tii[29,75] := {39, 89} tii[29,76] := {24} tii[29,77] := {110} tii[29,78] := {79} tii[29,79] := {98} tii[29,80] := {13, 52} tii[29,81] := {92} tii[29,82] := {42} tii[29,83] := {118} tii[29,84] := {22, 72} tii[29,85] := {109} tii[29,86] := {106} tii[29,87] := {120} tii[29,88] := {95} tii[29,89] := {105} tii[29,90] := {80} tii[29,91] := {125} tii[29,92] := {119} tii[29,93] := {131} tii[29,94] := {1, 2} tii[29,95] := {6} tii[29,96] := {21} tii[29,97] := {3, 4} tii[29,98] := {7} tii[29,99] := {0, 32} tii[29,100] := {41} tii[29,101] := {20} tii[29,102] := {5, 53} tii[29,103] := {40} tii[29,104] := {62} tii[29,105] := {61} cell#42 , |C| = 126 special orbit = [6, 6, 1, 1] special rep = [[3], [3, 1]] , dim = 105 cell rep = phi[[3, 3, 1],[]]+phi[[3],[3, 1]] TII depth = 4 TII multiplicity polynomial = 21*X^2+84*X TII subcells: tii[28,1] := {79, 100} tii[28,2] := {110} tii[28,3] := {121} tii[28,4] := {124} tii[28,5] := {61, 88} tii[28,6] := {28, 57} tii[28,7] := {103} tii[28,8] := {64} tii[28,9] := {116} tii[28,10] := {86} tii[28,11] := {122} tii[28,12] := {43, 73} tii[28,13] := {92} tii[28,14] := {27, 56} tii[28,15] := {17, 41} tii[28,16] := {63} tii[28,17] := {111} tii[28,18] := {34} tii[28,19] := {85} tii[28,20] := {118} tii[28,21] := {99} tii[28,22] := {87} tii[28,23] := {114} tii[28,24] := {101} tii[28,25] := {72} tii[28,26] := {120} tii[28,27] := {119} tii[28,28] := {115} tii[28,29] := {123} tii[28,30] := {125} tii[28,31] := {45, 75} tii[28,32] := {82} tii[28,33] := {98} tii[28,34] := {62, 89} tii[28,35] := {15, 37} tii[28,36] := {46, 77} tii[28,37] := {94} tii[28,38] := {47} tii[28,39] := {68} tii[28,40] := {107} tii[28,41] := {69} tii[28,42] := {6, 23} tii[28,43] := {104} tii[28,44] := {1, 12} tii[28,45] := {31} tii[28,46] := {9} tii[28,47] := {113} tii[28,48] := {95} tii[28,49] := {53} tii[28,50] := {36} tii[28,51] := {117} tii[28,52] := {22} tii[28,53] := {58} tii[28,54] := {78} tii[28,55] := {44, 74} tii[28,56] := {29, 59} tii[28,57] := {81} tii[28,58] := {51} tii[28,59] := {97} tii[28,60] := {16, 39} tii[28,61] := {8, 26} tii[28,62] := {18, 42} tii[28,63] := {93} tii[28,64] := {48} tii[28,65] := {21} tii[28,66] := {35} tii[28,67] := {106} tii[28,68] := {83} tii[28,69] := {70} tii[28,70] := {2, 14} tii[28,71] := {54} tii[28,72] := {50} tii[28,73] := {112} tii[28,74] := {38} tii[28,75] := {10} tii[28,76] := {76} tii[28,77] := {13} tii[28,78] := {91} tii[28,79] := {80} tii[28,80] := {96} tii[28,81] := {65} tii[28,82] := {71} tii[28,83] := {49} tii[28,84] := {105} tii[28,85] := {90} tii[28,86] := {55} tii[28,87] := {102} tii[28,88] := {40} tii[28,89] := {108} tii[28,90] := {109} tii[28,91] := {30, 60} tii[28,92] := {52} tii[28,93] := {67} tii[28,94] := {7, 24} tii[28,95] := {20} tii[28,96] := {0, 5} tii[28,97] := {84} tii[28,98] := {32} tii[28,99] := {3} tii[28,100] := {4} tii[28,101] := {19} tii[28,102] := {11} tii[28,103] := {66} tii[28,104] := {33} tii[28,105] := {25} cell#43 , |C| = 105 special orbit = [6, 4, 4] special rep = [[3, 2], [2]] , dim = 105 cell rep = phi[[3, 2],[2]] TII depth = 4 TII multiplicity polynomial = 105*X TII subcells: tii[27,1] := {104} tii[27,2] := {93} tii[27,3] := {56} tii[27,4] := {45} tii[27,5] := {98} tii[27,6] := {83} tii[27,7] := {43} tii[27,8] := {68} tii[27,9] := {55} tii[27,10] := {70} tii[27,11] := {31} tii[27,12] := {101} tii[27,13] := {96} tii[27,14] := {74} tii[27,15] := {73} tii[27,16] := {86} tii[27,17] := {78} tii[27,18] := {103} tii[27,19] := {27} tii[27,20] := {44} tii[27,21] := {87} tii[27,22] := {82} tii[27,23] := {102} tii[27,24] := {94} tii[27,25] := {48} tii[27,26] := {100} tii[27,27] := {66} tii[27,28] := {57} tii[27,29] := {89} tii[27,30] := {71} tii[27,31] := {84} tii[27,32] := {32} tii[27,33] := {8} tii[27,34] := {29} tii[27,35] := {46} tii[27,36] := {17} tii[27,37] := {42} tii[27,38] := {58} tii[27,39] := {34} tii[27,40] := {13} tii[27,41] := {90} tii[27,42] := {20} tii[27,43] := {62} tii[27,44] := {21} tii[27,45] := {77} tii[27,46] := {28} tii[27,47] := {69} tii[27,48] := {36} tii[27,49] := {15} tii[27,50] := {95} tii[27,51] := {80} tii[27,52] := {49} tii[27,53] := {23} tii[27,54] := {67} tii[27,55] := {91} tii[27,56] := {61} tii[27,57] := {76} tii[27,58] := {30} tii[27,59] := {59} tii[27,60] := {9} tii[27,61] := {25} tii[27,62] := {50} tii[27,63] := {37} tii[27,64] := {16} tii[27,65] := {79} tii[27,66] := {18} tii[27,67] := {88} tii[27,68] := {99} tii[27,69] := {4} tii[27,70] := {41} tii[27,71] := {63} tii[27,72] := {33} tii[27,73] := {97} tii[27,74] := {10} tii[27,75] := {52} tii[27,76] := {54} tii[27,77] := {81} tii[27,78] := {47} tii[27,79] := {64} tii[27,80] := {65} tii[27,81] := {92} tii[27,82] := {14} tii[27,83] := {35} tii[27,84] := {22} tii[27,85] := {60} tii[27,86] := {39} tii[27,87] := {75} tii[27,88] := {7} tii[27,89] := {5} tii[27,90] := {19} tii[27,91] := {11} tii[27,92] := {0} tii[27,93] := {2} tii[27,94] := {26} tii[27,95] := {51} tii[27,96] := {38} tii[27,97] := {6} tii[27,98] := {72} tii[27,99] := {53} tii[27,100] := {12} tii[27,101] := {85} tii[27,102] := {40} tii[27,103] := {1} tii[27,104] := {3} tii[27,105] := {24} cell#44 , |C| = 105 special orbit = [6, 4, 4] special rep = [[3, 2], [2]] , dim = 105 cell rep = phi[[3, 2],[2]] TII depth = 4 TII multiplicity polynomial = 105*X TII subcells: tii[27,1] := {104} tii[27,2] := {103} tii[27,3] := {41} tii[27,4] := {49} tii[27,5] := {93} tii[27,6] := {85} tii[27,7] := {11} tii[27,8] := {54} tii[27,9] := {26} tii[27,10] := {57} tii[27,11] := {60} tii[27,12] := {98} tii[27,13] := {90} tii[27,14] := {92} tii[27,15] := {51} tii[27,16] := {70} tii[27,17] := {66} tii[27,18] := {102} tii[27,19] := {48} tii[27,20] := {72} tii[27,21] := {76} tii[27,22] := {97} tii[27,23] := {100} tii[27,24] := {84} tii[27,25] := {75} tii[27,26] := {95} tii[27,27] := {88} tii[27,28] := {82} tii[27,29] := {101} tii[27,30] := {91} tii[27,31] := {99} tii[27,32] := {20} tii[27,33] := {19} tii[27,34] := {5} tii[27,35] := {30} tii[27,36] := {2} tii[27,37] := {15} tii[27,38] := {44} tii[27,39] := {24} tii[27,40] := {4} tii[27,41] := {81} tii[27,42] := {28} tii[27,43] := {38} tii[27,44] := {13} tii[27,45] := {59} tii[27,46] := {25} tii[27,47] := {55} tii[27,48] := {39} tii[27,49] := {16} tii[27,50] := {89} tii[27,51] := {62} tii[27,52] := {50} tii[27,53] := {31} tii[27,54] := {69} tii[27,55] := {78} tii[27,56] := {61} tii[27,57] := {77} tii[27,58] := {6} tii[27,59] := {45} tii[27,60] := {40} tii[27,61] := {10} tii[27,62] := {35} tii[27,63] := {23} tii[27,64] := {36} tii[27,65] := {67} tii[27,66] := {53} tii[27,67] := {74} tii[27,68] := {96} tii[27,69] := {27} tii[27,70] := {18} tii[27,71] := {47} tii[27,72] := {63} tii[27,73] := {87} tii[27,74] := {46} tii[27,75] := {33} tii[27,76] := {79} tii[27,77] := {64} tii[27,78] := {73} tii[27,79] := {43} tii[27,80] := {86} tii[27,81] := {80} tii[27,82] := {37} tii[27,83] := {65} tii[27,84] := {58} tii[27,85] := {83} tii[27,86] := {68} tii[27,87] := {94} tii[27,88] := {0} tii[27,89] := {1} tii[27,90] := {14} tii[27,91] := {7} tii[27,92] := {3} tii[27,93] := {12} tii[27,94] := {9} tii[27,95] := {34} tii[27,96] := {22} tii[27,97] := {8} tii[27,98] := {52} tii[27,99] := {29} tii[27,100] := {21} tii[27,101] := {71} tii[27,102] := {42} tii[27,103] := {17} tii[27,104] := {32} tii[27,105] := {56} cell#45 , |C| = 553 special orbit = [6, 4, 2, 2] special rep = [[3, 1], [2, 1]] , dim = 210 cell rep = phi[[3, 2, 1],[1]]+phi[[3, 1, 1],[2]]+phi[[3, 2],[1, 1]]+phi[[3, 1],[2, 1]] TII depth = 3 TII multiplicity polynomial = 91*X^4+70*X^2+49*X TII subcells: tii[26,1] := {104, 388, 483, 551} tii[26,2] := {240, 379, 447, 536} tii[26,3] := {413, 533} tii[26,4] := {208, 387} tii[26,5] := {62, 337, 512, 548} tii[26,6] := {295, 391} tii[26,7] := {12, 256, 465, 535} tii[26,8] := {180, 326, 401, 521} tii[26,9] := {50, 272, 456, 509} tii[26,10] := {365, 514} tii[26,11] := {407} tii[26,12] := {459} tii[26,13] := {102, 281, 531, 552} tii[26,14] := {178, 283} tii[26,15] := {239, 352, 378, 502} tii[26,16] := {60, 225, 518, 549} tii[26,17] := {135, 253, 362, 443} tii[26,18] := {412, 489} tii[26,19] := {80, 170, 532, 546} tii[26,20] := {304} tii[26,21] := {145, 542} tii[26,22] := {375} tii[26,23] := {294, 382, 425, 523} tii[26,24] := {455, 499} tii[26,25] := {234, 336, 449, 506} tii[26,26] := {383} tii[26,27] := {280, 491} tii[26,28] := {438} tii[26,29] := {485, 520} tii[26,30] := {501} tii[26,31] := {51, 124, 268, 434} tii[26,32] := {126, 127, 350, 437} tii[26,33] := {31, 313, 402, 544} tii[26,34] := {88, 309, 330, 529} tii[26,35] := {220, 453} tii[26,36] := {288, 493} tii[26,37] := {41, 176, 209, 469} tii[26,38] := {153, 338} tii[26,39] := {67, 343, 448, 550} tii[26,40] := {237, 342} tii[26,41] := {19, 150, 235, 500} tii[26,42] := {9, 199, 426, 522} tii[26,43] := {108, 109, 296, 392} tii[26,44] := {101, 287} tii[26,45] := {40, 214, 411, 480} tii[26,46] := {36, 289, 410, 547} tii[26,47] := {37, 182, 300, 519} tii[26,48] := {137, 273, 364, 510} tii[26,49] := {359} tii[26,50] := {130, 228} tii[26,51] := {191, 408} tii[26,52] := {56, 261, 370, 538} tii[26,53] := {421} tii[26,54] := {202} tii[26,55] := {266, 460} tii[26,56] := {156, 157, 351, 436} tii[26,57] := {179, 285} tii[26,58] := {22, 143, 464, 537} tii[26,59] := {193, 329, 409, 528} tii[26,60] := {105, 212, 299, 467} tii[26,61] := {132, 232} tii[26,62] := {73, 162, 363, 445} tii[26,63] := {35, 99, 486, 526} tii[26,64] := {305} tii[26,65] := {251, 452} tii[26,66] := {204} tii[26,67] := {139, 275, 369, 504} tii[26,68] := {74, 516} tii[26,69] := {324, 492} tii[26,70] := {376} tii[26,71] := {303, 487} tii[26,72] := {110, 195, 405, 482} tii[26,73] := {334} tii[26,74] := {142, 462} tii[26,75] := {284} tii[26,76] := {373, 515} tii[26,77] := {396} tii[26,78] := {444} tii[26,79] := {20, 152, 233, 433} tii[26,80] := {151, 344} tii[26,81] := {33, 286, 484, 543} tii[26,82] := {65, 66, 236, 341} tii[26,83] := {7, 100, 293, 470} tii[26,84] := {183, 290} tii[26,85] := {89, 215, 308, 479} tii[26,86] := {17, 227, 454, 540} tii[26,87] := {18, 129, 353, 497} tii[26,88] := {134, 358} tii[26,89] := {262} tii[26,90] := {28, 201, 416, 524} tii[26,91] := {205, 420} tii[26,92] := {29, 168, 496, 545} tii[26,93] := {1, 75, 269, 435} tii[26,94] := {106, 107, 297, 389} tii[26,95] := {125, 223} tii[26,96] := {136, 271, 360, 507} tii[26,97] := {45, 119, 513, 539} tii[26,98] := {63, 159, 244, 429} tii[26,99] := {5, 111, 327, 466} tii[26,100] := {242, 348} tii[26,101] := {4, 206, 427, 527} tii[26,102] := {87, 194, 307, 400} tii[26,103] := {81, 172} tii[26,104] := {252} tii[26,105] := {190, 406} tii[26,106] := {94, 534} tii[26,107] := {11, 165, 381, 503} tii[26,108] := {91, 216, 314, 473} tii[26,109] := {321} tii[26,110] := {146} tii[26,111] := {265, 458} tii[26,112] := {325} tii[26,113] := {24, 78, 488, 530} tii[26,114] := {13, 160, 355, 431} tii[26,115] := {249, 450} tii[26,116] := {277} tii[26,117] := {128, 221, 356, 446} tii[26,118] := {367} tii[26,119] := {55, 517} tii[26,120] := {222} tii[26,121] := {319, 490} tii[26,122] := {167, 422} tii[26,123] := {345} tii[26,124] := {26, 217, 418, 475} tii[26,125] := {77, 495} tii[26,126] := {399} tii[26,127] := {154, 155, 238, 340} tii[26,128] := {131, 230} tii[26,129] := {192, 306, 328, 478} tii[26,130] := {103, 186, 211, 384} tii[26,131] := {250, 357} tii[26,132] := {203} tii[26,133] := {138, 257, 274, 439} tii[26,134] := {323, 419} tii[26,135] := {181, 279, 404, 481} tii[26,136] := {61, 133, 247, 333} tii[26,137] := {302, 403} tii[26,138] := {332} tii[26,139] := {254} tii[26,140] := {224, 461} tii[26,141] := {372, 457} tii[26,142] := {90, 200, 316, 395} tii[26,143] := {282} tii[26,144] := {394} tii[26,145] := {169, 423} tii[26,146] := {442} tii[26,147] := {354, 428} tii[26,148] := {339} tii[26,149] := {417, 472} tii[26,150] := {477} tii[26,151] := {25, 79, 207, 393} tii[26,152] := {48, 49, 241, 347} tii[26,153] := {76, 320} tii[26,154] := {6, 116, 177, 471} tii[26,155] := {64, 226} tii[26,156] := {16, 158, 245, 498} tii[26,157] := {82, 173} tii[26,158] := {15, 267, 361, 541} tii[26,159] := {85, 86, 298, 398} tii[26,160] := {27, 219, 315, 525} tii[26,161] := {147} tii[26,162] := {117, 374} tii[26,163] := {32, 189, 213, 468} tii[26,164] := {46, 121} tii[26,165] := {166, 415} tii[26,166] := {95} tii[26,167] := {53, 260, 276, 505} tii[26,168] := {120} tii[26,169] := {0, 44, 210, 390} tii[26,170] := {185, 292} tii[26,171] := {71, 72, 243, 349} tii[26,172] := {3, 69, 270, 430} tii[26,173] := {2, 149, 380, 508} tii[26,174] := {264} tii[26,175] := {97, 322} tii[26,176] := {8, 115, 331, 474} tii[26,177] := {68, 161, 246, 432} tii[26,178] := {10, 112, 301, 386} tii[26,179] := {84, 175} tii[26,180] := {14, 59, 451, 511} tii[26,181] := {312} tii[26,182] := {141, 368} tii[26,183] := {43, 494} tii[26,184] := {148} tii[26,185] := {21, 163, 371, 441} tii[26,186] := {93, 218, 318, 476} tii[26,187] := {58, 463} tii[26,188] := {174} tii[26,189] := {23, 70, 248, 335} tii[26,190] := {255} tii[26,191] := {197, 414} tii[26,192] := {42, 114, 317, 397} tii[26,193] := {231} tii[26,194] := {98, 424} tii[26,195] := {38, 39, 184, 291} tii[26,196] := {57, 263} tii[26,197] := {34, 113, 187, 385} tii[26,198] := {47, 123} tii[26,199] := {92, 311} tii[26,200] := {54, 164, 259, 440} tii[26,201] := {96} tii[26,202] := {122} tii[26,203] := {30, 83, 188, 278} tii[26,204] := {198} tii[26,205] := {140, 366} tii[26,206] := {52, 144, 258, 346} tii[26,207] := {171} tii[26,208] := {118, 377} tii[26,209] := {196, 310} tii[26,210] := {229} cell#46 , |C| = 36 special orbit = [10, 2, 1, 1] special rep = [[5], [1, 1]] , dim = 21 cell rep = phi[[5, 1, 1],[]]+phi[[5],[1, 1]] TII depth = 1 TII multiplicity polynomial = 15*X^2+6*X TII subcells: tii[36,1] := {20, 35} tii[36,2] := {21, 34} tii[36,3] := {19, 32} tii[36,4] := {26, 27} tii[36,5] := {29, 30} tii[36,6] := {33} tii[36,7] := {12, 31} tii[36,8] := {10, 25} tii[36,9] := {17, 18} tii[36,10] := {23, 24} tii[36,11] := {28} tii[36,12] := {2, 16} tii[36,13] := {8, 9} tii[36,14] := {14, 15} tii[36,15] := {22} tii[36,16] := {0, 1} tii[36,17] := {6, 7} tii[36,18] := {13} tii[36,19] := {4, 5} tii[36,20] := {11} tii[36,21] := {3} cell#47 , |C| = 147 special orbit = [8, 4, 2] special rep = [[4, 1], [2]] , dim = 84 cell rep = phi[[4, 2],[1]]+phi[[4, 1],[2]] TII depth = 4 TII multiplicity polynomial = 63*X^2+21*X TII subcells: tii[34,1] := {83, 146} tii[34,2] := {77, 142} tii[34,3] := {69, 130} tii[34,4] := {105} tii[34,5] := {26, 96} tii[34,6] := {47, 104} tii[34,7] := {57, 144} tii[34,8] := {71, 100} tii[34,9] := {40, 139} tii[34,10] := {18, 128} tii[34,11] := {97} tii[34,12] := {112} tii[34,13] := {14, 108} tii[34,14] := {70, 145} tii[34,15] := {6, 118} tii[34,16] := {34, 92} tii[34,17] := {58, 88} tii[34,18] := {67, 143} tii[34,19] := {12, 125} tii[34,20] := {53, 135} tii[34,21] := {30, 122} tii[34,22] := {52, 140} tii[34,23] := {20, 131} tii[34,24] := {85} tii[34,25] := {37, 136} tii[34,26] := {102} tii[34,27] := {21, 95} tii[34,28] := {66, 138} tii[34,29] := {11, 106} tii[34,30] := {44, 74} tii[34,31] := {19, 116} tii[34,32] := {51, 133} tii[34,33] := {43, 115} tii[34,34] := {72} tii[34,35] := {36, 126} tii[34,36] := {90} tii[34,37] := {41, 89} tii[34,38] := {56, 123} tii[34,39] := {28, 99} tii[34,40] := {68} tii[34,41] := {42, 114} tii[34,42] := {82} tii[34,43] := {81} tii[34,44] := {94} tii[34,45] := {15, 84} tii[34,46] := {23, 80} tii[34,47] := {33, 65} tii[34,48] := {50} tii[34,49] := {1, 107} tii[34,50] := {4, 117} tii[34,51] := {54, 141} tii[34,52] := {35, 93} tii[34,53] := {9, 124} tii[34,54] := {38, 137} tii[34,55] := {46, 78} tii[34,56] := {24, 132} tii[34,57] := {62} tii[34,58] := {0, 111} tii[34,59] := {3, 119} tii[34,60] := {27, 134} tii[34,61] := {59, 91} tii[34,62] := {13, 127} tii[34,63] := {75} tii[34,64] := {2, 109} tii[34,65] := {87} tii[34,66] := {8, 120} tii[34,67] := {22, 79} tii[34,68] := {32, 64} tii[34,69] := {49} tii[34,70] := {5, 101} tii[34,71] := {45, 76} tii[34,72] := {10, 110} tii[34,73] := {39, 129} tii[34,74] := {25, 121} tii[34,75] := {61} tii[34,76] := {7, 98} tii[34,77] := {73} tii[34,78] := {17, 113} tii[34,79] := {31, 63} tii[34,80] := {48} tii[34,81] := {16, 86} tii[34,82] := {60} tii[34,83] := {29, 103} tii[34,84] := {55} cell#48 , |C| = 154 special orbit = [8, 2, 2, 2] special rep = [[4, 1], [1, 1]] , dim = 84 cell rep = phi[[4, 1, 1],[1]]+phi[[4, 1],[1, 1]] TII depth = 4 TII multiplicity polynomial = 70*X^2+14*X TII subcells: tii[32,1] := {76, 146} tii[32,2] := {40, 128} tii[32,3] := {43, 149} tii[32,4] := {42, 153} tii[32,5] := {98, 134} tii[32,6] := {32, 104} tii[32,7] := {75, 115} tii[32,8] := {37, 139} tii[32,9] := {95, 96} tii[32,10] := {36, 151} tii[32,11] := {113, 114} tii[32,12] := {131} tii[32,13] := {46, 81} tii[32,14] := {51, 121} tii[32,15] := {62, 63} tii[32,16] := {48, 145} tii[32,17] := {79, 80} tii[32,18] := {99} tii[32,19] := {70, 110} tii[32,20] := {67, 143} tii[32,21] := {89, 90} tii[32,22] := {109} tii[32,23] := {88, 127} tii[32,24] := {108} tii[32,25] := {11, 118} tii[32,26] := {56, 135} tii[32,27] := {5, 97} tii[32,28] := {41, 116} tii[32,29] := {8, 117} tii[32,30] := {34, 132} tii[32,31] := {15, 133} tii[32,32] := {23, 144} tii[32,33] := {1, 85} tii[32,34] := {55, 94} tii[32,35] := {73, 74} tii[32,36] := {3, 107} tii[32,37] := {30, 106} tii[32,38] := {92, 93} tii[32,39] := {7, 126} tii[32,40] := {24, 125} tii[32,41] := {112} tii[32,42] := {16, 138} tii[32,43] := {9, 129} tii[32,44] := {53, 54} tii[32,45] := {14, 142} tii[32,46] := {71, 72} tii[32,47] := {33, 141} tii[32,48] := {91} tii[32,49] := {22, 148} tii[32,50] := {21, 150} tii[32,51] := {58, 59} tii[32,52] := {77} tii[32,53] := {31, 152} tii[32,54] := {57} tii[32,55] := {0, 64} tii[32,56] := {25, 83} tii[32,57] := {2, 84} tii[32,58] := {20, 102} tii[32,59] := {4, 103} tii[32,60] := {13, 120} tii[32,61] := {6, 105} tii[32,62] := {44, 45} tii[32,63] := {10, 124} tii[32,64] := {29, 123} tii[32,65] := {60, 61} tii[32,66] := {19, 137} tii[32,67] := {78} tii[32,68] := {17, 140} tii[32,69] := {49, 50} tii[32,70] := {66} tii[32,71] := {27, 147} tii[32,72] := {47} tii[32,73] := {12, 82} tii[32,74] := {39, 100} tii[32,75] := {18, 101} tii[32,76] := {28, 119} tii[32,77] := {26, 122} tii[32,78] := {68, 69} tii[32,79] := {38, 136} tii[32,80] := {87} tii[32,81] := {65} tii[32,82] := {35, 111} tii[32,83] := {52, 130} tii[32,84] := {86} cell#49 , |C| = 154 special orbit = [8, 2, 2, 2] special rep = [[4, 1], [1, 1]] , dim = 84 cell rep = phi[[4, 1, 1],[1]]+phi[[4, 1],[1, 1]] TII depth = 4 TII multiplicity polynomial = 70*X^2+14*X TII subcells: tii[32,1] := {122, 152} tii[32,2] := {99, 146} tii[32,3] := {90, 131} tii[32,4] := {64, 104} tii[32,5] := {134, 153} tii[32,6] := {79, 140} tii[32,7] := {129, 151} tii[32,8] := {70, 117} tii[32,9] := {135, 149} tii[32,10] := {39, 86} tii[32,11] := {128, 145} tii[32,12] := {139} tii[32,13] := {97, 143} tii[32,14] := {46, 101} tii[32,15] := {108, 136} tii[32,16] := {18, 66} tii[32,17] := {96, 125} tii[32,18] := {113} tii[32,19] := {69, 110} tii[32,20] := {5, 41} tii[32,21] := {56, 92} tii[32,22] := {74} tii[32,23] := {16, 48} tii[32,24] := {27} tii[32,25] := {53, 54} tii[32,26] := {107, 150} tii[32,27] := {30, 77} tii[32,28] := {91, 147} tii[32,29] := {45, 100} tii[32,30] := {71, 142} tii[32,31] := {29, 118} tii[32,32] := {49, 133} tii[32,33] := {24, 55} tii[32,34] := {116, 148} tii[32,35] := {123, 144} tii[32,36] := {33, 80} tii[32,37] := {82, 141} tii[32,38] := {115, 138} tii[32,39] := {23, 102} tii[32,40] := {65, 132} tii[32,41] := {127} tii[32,42] := {43, 121} tii[32,43] := {58, 59} tii[32,44] := {109, 137} tii[32,45] := {31, 84} tii[32,46] := {98, 126} tii[32,47] := {72, 120} tii[32,48] := {114} tii[32,49] := {50, 106} tii[32,50] := {22, 63} tii[32,51] := {81, 112} tii[32,52] := {95} tii[32,53] := {42, 88} tii[32,54] := {76} tii[32,55] := {9, 32} tii[32,56] := {61, 130} tii[32,57] := {13, 57} tii[32,58] := {40, 119} tii[32,59] := {8, 83} tii[32,60] := {20, 105} tii[32,61] := {34, 35} tii[32,62] := {89, 124} tii[32,63] := {12, 62} tii[32,64] := {47, 103} tii[32,65] := {78, 111} tii[32,66] := {26, 87} tii[32,67] := {94} tii[32,68] := {7, 38} tii[32,69] := {60, 93} tii[32,70] := {75} tii[32,71] := {19, 68} tii[32,72] := {52} tii[32,73] := {14, 15} tii[32,74] := {25, 85} tii[32,75] := {3, 37} tii[32,76] := {10, 67} tii[32,77] := {2, 17} tii[32,78] := {36, 73} tii[32,79] := {6, 44} tii[32,80] := {51} tii[32,81] := {28} tii[32,82] := {0, 4} tii[32,83] := {1, 21} tii[32,84] := {11} cell#50 , |C| = 154 special orbit = [8, 2, 2, 2] special rep = [[4, 1], [1, 1]] , dim = 84 cell rep = phi[[4, 1, 1],[1]]+phi[[4, 1],[1, 1]] TII depth = 4 TII multiplicity polynomial = 70*X^2+14*X TII subcells: tii[32,1] := {91, 153} tii[32,2] := {62, 148} tii[32,3] := {57, 137} tii[32,4] := {54, 120} tii[32,5] := {108, 152} tii[32,6] := {46, 143} tii[32,7] := {97, 150} tii[32,8] := {41, 127} tii[32,9] := {109, 147} tii[32,10] := {39, 103} tii[32,11] := {123, 142} tii[32,12] := {134} tii[32,13] := {61, 139} tii[32,14] := {28, 114} tii[32,15] := {72, 132} tii[32,16] := {27, 86} tii[32,17] := {88, 125} tii[32,18] := {110} tii[32,19] := {40, 105} tii[32,20] := {38, 67} tii[32,21] := {52, 95} tii[32,22] := {74} tii[32,23] := {51, 87} tii[32,24] := {76} tii[32,25] := {1, 116} tii[32,26] := {71, 151} tii[32,27] := {6, 107} tii[32,28] := {56, 149} tii[32,29] := {12, 117} tii[32,30] := {43, 146} tii[32,31] := {19, 128} tii[32,32] := {31, 138} tii[32,33] := {3, 90} tii[32,34] := {79, 145} tii[32,35] := {92, 141} tii[32,36] := {9, 100} tii[32,37] := {47, 144} tii[32,38] := {106, 135} tii[32,39] := {15, 115} tii[32,40] := {35, 140} tii[32,41] := {124} tii[32,42] := {24, 129} tii[32,43] := {13, 83} tii[32,44] := {73, 133} tii[32,45] := {20, 99} tii[32,46] := {89, 126} tii[32,47] := {44, 131} tii[32,48] := {111} tii[32,49] := {32, 119} tii[32,50] := {26, 81} tii[32,51] := {69, 113} tii[32,52] := {94} tii[32,53] := {42, 102} tii[32,54] := {77} tii[32,55] := {0, 70} tii[32,56] := {34, 136} tii[32,57] := {4, 82} tii[32,58] := {25, 130} tii[32,59] := {8, 98} tii[32,60] := {16, 118} tii[32,61] := {7, 65} tii[32,62] := {55, 122} tii[32,63] := {11, 80} tii[32,64] := {33, 121} tii[32,65] := {68, 112} tii[32,66] := {22, 101} tii[32,67] := {93} tii[32,68] := {18, 64} tii[32,69] := {53, 96} tii[32,70] := {75} tii[32,71] := {30, 85} tii[32,72] := {59} tii[32,73] := {2, 49} tii[32,74] := {23, 104} tii[32,75] := {5, 63} tii[32,76] := {14, 84} tii[32,77] := {10, 48} tii[32,78] := {37, 78} tii[32,79] := {21, 66} tii[32,80] := {58} tii[32,81] := {45} tii[32,82] := {17, 36} tii[32,83] := {29, 50} tii[32,84] := {60} cell#51 , |C| = 105 special orbit = [6, 4, 4] special rep = [[3, 2], [2]] , dim = 105 cell rep = phi[[3, 2],[2]] TII depth = 4 TII multiplicity polynomial = 105*X TII subcells: tii[27,1] := {104} tii[27,2] := {93} tii[27,3] := {56} tii[27,4] := {45} tii[27,5] := {98} tii[27,6] := {83} tii[27,7] := {43} tii[27,8] := {68} tii[27,9] := {55} tii[27,10] := {70} tii[27,11] := {31} tii[27,12] := {101} tii[27,13] := {96} tii[27,14] := {74} tii[27,15] := {73} tii[27,16] := {86} tii[27,17] := {78} tii[27,18] := {103} tii[27,19] := {27} tii[27,20] := {44} tii[27,21] := {87} tii[27,22] := {82} tii[27,23] := {102} tii[27,24] := {94} tii[27,25] := {48} tii[27,26] := {100} tii[27,27] := {66} tii[27,28] := {57} tii[27,29] := {89} tii[27,30] := {71} tii[27,31] := {84} tii[27,32] := {32} tii[27,33] := {8} tii[27,34] := {29} tii[27,35] := {46} tii[27,36] := {17} tii[27,37] := {42} tii[27,38] := {58} tii[27,39] := {34} tii[27,40] := {13} tii[27,41] := {90} tii[27,42] := {20} tii[27,43] := {62} tii[27,44] := {21} tii[27,45] := {77} tii[27,46] := {28} tii[27,47] := {69} tii[27,48] := {36} tii[27,49] := {15} tii[27,50] := {95} tii[27,51] := {80} tii[27,52] := {49} tii[27,53] := {23} tii[27,54] := {67} tii[27,55] := {91} tii[27,56] := {61} tii[27,57] := {76} tii[27,58] := {30} tii[27,59] := {59} tii[27,60] := {9} tii[27,61] := {25} tii[27,62] := {50} tii[27,63] := {37} tii[27,64] := {16} tii[27,65] := {79} tii[27,66] := {18} tii[27,67] := {88} tii[27,68] := {99} tii[27,69] := {4} tii[27,70] := {41} tii[27,71] := {63} tii[27,72] := {33} tii[27,73] := {97} tii[27,74] := {10} tii[27,75] := {52} tii[27,76] := {54} tii[27,77] := {81} tii[27,78] := {47} tii[27,79] := {64} tii[27,80] := {65} tii[27,81] := {92} tii[27,82] := {14} tii[27,83] := {35} tii[27,84] := {22} tii[27,85] := {60} tii[27,86] := {39} tii[27,87] := {75} tii[27,88] := {7} tii[27,89] := {5} tii[27,90] := {19} tii[27,91] := {11} tii[27,92] := {0} tii[27,93] := {2} tii[27,94] := {26} tii[27,95] := {51} tii[27,96] := {38} tii[27,97] := {6} tii[27,98] := {72} tii[27,99] := {53} tii[27,100] := {12} tii[27,101] := {85} tii[27,102] := {40} tii[27,103] := {1} tii[27,104] := {3} tii[27,105] := {24} cell#52 , |C| = 105 special orbit = [6, 4, 4] special rep = [[3, 2], [2]] , dim = 105 cell rep = phi[[3, 2],[2]] TII depth = 4 TII multiplicity polynomial = 105*X TII subcells: tii[27,1] := {104} tii[27,2] := {103} tii[27,3] := {41} tii[27,4] := {49} tii[27,5] := {93} tii[27,6] := {85} tii[27,7] := {11} tii[27,8] := {54} tii[27,9] := {26} tii[27,10] := {57} tii[27,11] := {60} tii[27,12] := {98} tii[27,13] := {90} tii[27,14] := {92} tii[27,15] := {51} tii[27,16] := {70} tii[27,17] := {66} tii[27,18] := {102} tii[27,19] := {48} tii[27,20] := {72} tii[27,21] := {76} tii[27,22] := {97} tii[27,23] := {100} tii[27,24] := {84} tii[27,25] := {75} tii[27,26] := {95} tii[27,27] := {88} tii[27,28] := {82} tii[27,29] := {101} tii[27,30] := {91} tii[27,31] := {99} tii[27,32] := {20} tii[27,33] := {19} tii[27,34] := {5} tii[27,35] := {30} tii[27,36] := {2} tii[27,37] := {15} tii[27,38] := {44} tii[27,39] := {24} tii[27,40] := {4} tii[27,41] := {81} tii[27,42] := {28} tii[27,43] := {38} tii[27,44] := {13} tii[27,45] := {59} tii[27,46] := {25} tii[27,47] := {55} tii[27,48] := {39} tii[27,49] := {16} tii[27,50] := {89} tii[27,51] := {62} tii[27,52] := {50} tii[27,53] := {31} tii[27,54] := {69} tii[27,55] := {78} tii[27,56] := {61} tii[27,57] := {77} tii[27,58] := {6} tii[27,59] := {45} tii[27,60] := {40} tii[27,61] := {10} tii[27,62] := {35} tii[27,63] := {23} tii[27,64] := {36} tii[27,65] := {67} tii[27,66] := {53} tii[27,67] := {74} tii[27,68] := {96} tii[27,69] := {27} tii[27,70] := {18} tii[27,71] := {47} tii[27,72] := {63} tii[27,73] := {87} tii[27,74] := {46} tii[27,75] := {33} tii[27,76] := {79} tii[27,77] := {64} tii[27,78] := {73} tii[27,79] := {43} tii[27,80] := {86} tii[27,81] := {80} tii[27,82] := {37} tii[27,83] := {65} tii[27,84] := {58} tii[27,85] := {83} tii[27,86] := {68} tii[27,87] := {94} tii[27,88] := {0} tii[27,89] := {1} tii[27,90] := {14} tii[27,91] := {7} tii[27,92] := {3} tii[27,93] := {12} tii[27,94] := {9} tii[27,95] := {34} tii[27,96] := {22} tii[27,97] := {8} tii[27,98] := {52} tii[27,99] := {29} tii[27,100] := {21} tii[27,101] := {71} tii[27,102] := {42} tii[27,103] := {17} tii[27,104] := {32} tii[27,105] := {56} cell#53 , |C| = 553 special orbit = [6, 4, 2, 2] special rep = [[3, 1], [2, 1]] , dim = 210 cell rep = phi[[3, 2, 1],[1]]+phi[[3, 1, 1],[2]]+phi[[3, 2],[1, 1]]+phi[[3, 1],[2, 1]] TII depth = 3 TII multiplicity polynomial = 91*X^4+70*X^2+49*X TII subcells: tii[26,1] := {104, 388, 483, 551} tii[26,2] := {240, 379, 447, 536} tii[26,3] := {413, 533} tii[26,4] := {208, 387} tii[26,5] := {62, 337, 512, 548} tii[26,6] := {295, 391} tii[26,7] := {12, 256, 465, 535} tii[26,8] := {180, 326, 401, 521} tii[26,9] := {50, 272, 456, 509} tii[26,10] := {365, 514} tii[26,11] := {407} tii[26,12] := {459} tii[26,13] := {102, 281, 531, 552} tii[26,14] := {178, 283} tii[26,15] := {239, 352, 378, 502} tii[26,16] := {60, 225, 518, 549} tii[26,17] := {135, 253, 362, 443} tii[26,18] := {412, 489} tii[26,19] := {80, 170, 532, 546} tii[26,20] := {304} tii[26,21] := {145, 542} tii[26,22] := {375} tii[26,23] := {294, 382, 425, 523} tii[26,24] := {455, 499} tii[26,25] := {234, 336, 449, 506} tii[26,26] := {383} tii[26,27] := {280, 491} tii[26,28] := {438} tii[26,29] := {485, 520} tii[26,30] := {501} tii[26,31] := {51, 124, 268, 434} tii[26,32] := {126, 127, 350, 437} tii[26,33] := {31, 313, 402, 544} tii[26,34] := {88, 309, 330, 529} tii[26,35] := {220, 453} tii[26,36] := {288, 493} tii[26,37] := {41, 176, 209, 469} tii[26,38] := {153, 338} tii[26,39] := {67, 343, 448, 550} tii[26,40] := {237, 342} tii[26,41] := {19, 150, 235, 500} tii[26,42] := {9, 199, 426, 522} tii[26,43] := {108, 109, 296, 392} tii[26,44] := {101, 287} tii[26,45] := {40, 214, 411, 480} tii[26,46] := {36, 289, 410, 547} tii[26,47] := {37, 182, 300, 519} tii[26,48] := {137, 273, 364, 510} tii[26,49] := {359} tii[26,50] := {130, 228} tii[26,51] := {191, 408} tii[26,52] := {56, 261, 370, 538} tii[26,53] := {421} tii[26,54] := {202} tii[26,55] := {266, 460} tii[26,56] := {156, 157, 351, 436} tii[26,57] := {179, 285} tii[26,58] := {22, 143, 464, 537} tii[26,59] := {193, 329, 409, 528} tii[26,60] := {105, 212, 299, 467} tii[26,61] := {132, 232} tii[26,62] := {73, 162, 363, 445} tii[26,63] := {35, 99, 486, 526} tii[26,64] := {305} tii[26,65] := {251, 452} tii[26,66] := {204} tii[26,67] := {139, 275, 369, 504} tii[26,68] := {74, 516} tii[26,69] := {324, 492} tii[26,70] := {376} tii[26,71] := {303, 487} tii[26,72] := {110, 195, 405, 482} tii[26,73] := {334} tii[26,74] := {142, 462} tii[26,75] := {284} tii[26,76] := {373, 515} tii[26,77] := {396} tii[26,78] := {444} tii[26,79] := {20, 152, 233, 433} tii[26,80] := {151, 344} tii[26,81] := {33, 286, 484, 543} tii[26,82] := {65, 66, 236, 341} tii[26,83] := {7, 100, 293, 470} tii[26,84] := {183, 290} tii[26,85] := {89, 215, 308, 479} tii[26,86] := {17, 227, 454, 540} tii[26,87] := {18, 129, 353, 497} tii[26,88] := {134, 358} tii[26,89] := {262} tii[26,90] := {28, 201, 416, 524} tii[26,91] := {205, 420} tii[26,92] := {29, 168, 496, 545} tii[26,93] := {1, 75, 269, 435} tii[26,94] := {106, 107, 297, 389} tii[26,95] := {125, 223} tii[26,96] := {136, 271, 360, 507} tii[26,97] := {45, 119, 513, 539} tii[26,98] := {63, 159, 244, 429} tii[26,99] := {5, 111, 327, 466} tii[26,100] := {242, 348} tii[26,101] := {4, 206, 427, 527} tii[26,102] := {87, 194, 307, 400} tii[26,103] := {81, 172} tii[26,104] := {252} tii[26,105] := {190, 406} tii[26,106] := {94, 534} tii[26,107] := {11, 165, 381, 503} tii[26,108] := {91, 216, 314, 473} tii[26,109] := {321} tii[26,110] := {146} tii[26,111] := {265, 458} tii[26,112] := {325} tii[26,113] := {24, 78, 488, 530} tii[26,114] := {13, 160, 355, 431} tii[26,115] := {249, 450} tii[26,116] := {277} tii[26,117] := {128, 221, 356, 446} tii[26,118] := {367} tii[26,119] := {55, 517} tii[26,120] := {222} tii[26,121] := {319, 490} tii[26,122] := {167, 422} tii[26,123] := {345} tii[26,124] := {26, 217, 418, 475} tii[26,125] := {77, 495} tii[26,126] := {399} tii[26,127] := {154, 155, 238, 340} tii[26,128] := {131, 230} tii[26,129] := {192, 306, 328, 478} tii[26,130] := {103, 186, 211, 384} tii[26,131] := {250, 357} tii[26,132] := {203} tii[26,133] := {138, 257, 274, 439} tii[26,134] := {323, 419} tii[26,135] := {181, 279, 404, 481} tii[26,136] := {61, 133, 247, 333} tii[26,137] := {302, 403} tii[26,138] := {332} tii[26,139] := {254} tii[26,140] := {224, 461} tii[26,141] := {372, 457} tii[26,142] := {90, 200, 316, 395} tii[26,143] := {282} tii[26,144] := {394} tii[26,145] := {169, 423} tii[26,146] := {442} tii[26,147] := {354, 428} tii[26,148] := {339} tii[26,149] := {417, 472} tii[26,150] := {477} tii[26,151] := {25, 79, 207, 393} tii[26,152] := {48, 49, 241, 347} tii[26,153] := {76, 320} tii[26,154] := {6, 116, 177, 471} tii[26,155] := {64, 226} tii[26,156] := {16, 158, 245, 498} tii[26,157] := {82, 173} tii[26,158] := {15, 267, 361, 541} tii[26,159] := {85, 86, 298, 398} tii[26,160] := {27, 219, 315, 525} tii[26,161] := {147} tii[26,162] := {117, 374} tii[26,163] := {32, 189, 213, 468} tii[26,164] := {46, 121} tii[26,165] := {166, 415} tii[26,166] := {95} tii[26,167] := {53, 260, 276, 505} tii[26,168] := {120} tii[26,169] := {0, 44, 210, 390} tii[26,170] := {185, 292} tii[26,171] := {71, 72, 243, 349} tii[26,172] := {3, 69, 270, 430} tii[26,173] := {2, 149, 380, 508} tii[26,174] := {264} tii[26,175] := {97, 322} tii[26,176] := {8, 115, 331, 474} tii[26,177] := {68, 161, 246, 432} tii[26,178] := {10, 112, 301, 386} tii[26,179] := {84, 175} tii[26,180] := {14, 59, 451, 511} tii[26,181] := {312} tii[26,182] := {141, 368} tii[26,183] := {43, 494} tii[26,184] := {148} tii[26,185] := {21, 163, 371, 441} tii[26,186] := {93, 218, 318, 476} tii[26,187] := {58, 463} tii[26,188] := {174} tii[26,189] := {23, 70, 248, 335} tii[26,190] := {255} tii[26,191] := {197, 414} tii[26,192] := {42, 114, 317, 397} tii[26,193] := {231} tii[26,194] := {98, 424} tii[26,195] := {38, 39, 184, 291} tii[26,196] := {57, 263} tii[26,197] := {34, 113, 187, 385} tii[26,198] := {47, 123} tii[26,199] := {92, 311} tii[26,200] := {54, 164, 259, 440} tii[26,201] := {96} tii[26,202] := {122} tii[26,203] := {30, 83, 188, 278} tii[26,204] := {198} tii[26,205] := {140, 366} tii[26,206] := {52, 144, 258, 346} tii[26,207] := {171} tii[26,208] := {118, 377} tii[26,209] := {196, 310} tii[26,210] := {229} cell#54 , |C| = 154 special orbit = [8, 2, 2, 2] special rep = [[4, 1], [1, 1]] , dim = 84 cell rep = phi[[4, 1, 1],[1]]+phi[[4, 1],[1, 1]] TII depth = 4 TII multiplicity polynomial = 70*X^2+14*X TII subcells: tii[32,1] := {58, 153} tii[32,2] := {46, 152} tii[32,3] := {23, 145} tii[32,4] := {52, 147} tii[32,5] := {77, 150} tii[32,6] := {68, 148} tii[32,7] := {86, 144} tii[32,8] := {29, 134} tii[32,9] := {76, 135} tii[32,10] := {60, 139} tii[32,11] := {90, 124} tii[32,12] := {115} tii[32,13] := {87, 141} tii[32,14] := {22, 120} tii[32,15] := {66, 131} tii[32,16] := {51, 127} tii[32,17] := {80, 117} tii[32,18] := {103} tii[32,19] := {39, 101} tii[32,20] := {72, 112} tii[32,21] := {49, 83} tii[32,22] := {73} tii[32,23] := {88, 119} tii[32,24] := {100} tii[32,25] := {3, 97} tii[32,26] := {42, 151} tii[32,27] := {6, 107} tii[32,28] := {25, 146} tii[32,29] := {2, 96} tii[32,30] := {10, 138} tii[32,31] := {12, 110} tii[32,32] := {21, 130} tii[32,33] := {18, 125} tii[32,34] := {67, 133} tii[32,35] := {57, 121} tii[32,36] := {5, 106} tii[32,37] := {31, 149} tii[32,38] := {70, 105} tii[32,39] := {16, 118} tii[32,40] := {15, 143} tii[32,41] := {94} tii[32,42] := {28, 136} tii[32,43] := {1, 95} tii[32,44] := {40, 102} tii[32,45] := {11, 109} tii[32,46] := {50, 84} tii[32,47] := {8, 137} tii[32,48] := {74} tii[32,49] := {20, 129} tii[32,50] := {26, 126} tii[32,51] := {33, 65} tii[32,52] := {55} tii[32,53] := {38, 140} tii[32,54] := {64} tii[32,55] := {36, 108} tii[32,56] := {48, 142} tii[32,57] := {17, 85} tii[32,58] := {34, 132} tii[32,59] := {35, 99} tii[32,60] := {45, 122} tii[32,61] := {4, 75} tii[32,62] := {47, 116} tii[32,63] := {14, 89} tii[32,64] := {13, 123} tii[32,65] := {59, 98} tii[32,66] := {27, 114} tii[32,67] := {81} tii[32,68] := {30, 111} tii[32,69] := {43, 79} tii[32,70] := {61} tii[32,71] := {44, 128} tii[32,72] := {78} tii[32,73] := {0, 56} tii[32,74] := {7, 104} tii[32,75] := {9, 69} tii[32,76] := {19, 93} tii[32,77] := {24, 91} tii[32,78] := {32, 63} tii[32,79] := {37, 113} tii[32,80] := {54} tii[32,81] := {62} tii[32,82] := {41, 71} tii[32,83] := {53, 92} tii[32,84] := {82} cell#55 , |C| = 35 special orbit = [10, 2, 2] special rep = [[5, 1], [1]] , dim = 35 cell rep = phi[[5, 1],[1]] TII depth = 5 TII multiplicity polynomial = 35*X TII subcells: tii[37,1] := {34} tii[37,2] := {33} tii[37,3] := {27} tii[37,4] := {30} tii[37,5] := {29} tii[37,6] := {2} tii[37,7] := {32} tii[37,8] := {4} tii[37,9] := {28} tii[37,10] := {1} tii[37,11] := {23} tii[37,12] := {6} tii[37,13] := {20} tii[37,14] := {9} tii[37,15] := {15} tii[37,16] := {10} tii[37,17] := {3} tii[37,18] := {31} tii[37,19] := {7} tii[37,20] := {26} tii[37,21] := {12} tii[37,22] := {21} tii[37,23] := {16} tii[37,24] := {0} tii[37,25] := {5} tii[37,26] := {22} tii[37,27] := {8} tii[37,28] := {19} tii[37,29] := {14} tii[37,30] := {11} tii[37,31] := {13} tii[37,32] := {25} tii[37,33] := {18} tii[37,34] := {17} tii[37,35] := {24} cell#56 , |C| = 147 special orbit = [8, 4, 2] special rep = [[4, 1], [2]] , dim = 84 cell rep = phi[[4, 2],[1]]+phi[[4, 1],[2]] TII depth = 4 TII multiplicity polynomial = 63*X^2+21*X TII subcells: tii[34,1] := {115, 146} tii[34,2] := {97, 145} tii[34,3] := {108, 143} tii[34,4] := {138} tii[34,5] := {1, 68} tii[34,6] := {9, 57} tii[34,7] := {87, 140} tii[34,8] := {27, 64} tii[34,9] := {54, 130} tii[34,10] := {53, 114} tii[34,11] := {61} tii[34,12] := {84} tii[34,13] := {5, 85} tii[34,14] := {102, 144} tii[34,15] := {13, 92} tii[34,16] := {19, 75} tii[34,17] := {42, 81} tii[34,18] := {88, 142} tii[34,19] := {24, 106} tii[34,20] := {65, 136} tii[34,21] := {62, 125} tii[34,22] := {72, 135} tii[34,23] := {37, 117} tii[34,24] := {77} tii[34,25] := {55, 127} tii[34,26] := {100} tii[34,27] := {31, 93} tii[34,28] := {82, 141} tii[34,29] := {20, 105} tii[34,30] := {59, 99} tii[34,31] := {30, 116} tii[34,32] := {70, 134} tii[34,33] := {79, 133} tii[34,34] := {94} tii[34,35] := {48, 126} tii[34,36] := {112} tii[34,37] := {76, 111} tii[34,38] := {96, 139} tii[34,39] := {60, 122} tii[34,40] := {109} tii[34,41] := {83, 132} tii[34,42] := {123} tii[34,43] := {121} tii[34,44] := {131} tii[34,45] := {0, 50} tii[34,46] := {2, 36} tii[34,47] := {4, 26} tii[34,48] := {15} tii[34,49] := {6, 74} tii[34,50] := {14, 90} tii[34,51] := {71, 137} tii[34,52] := {3, 41} tii[34,53] := {23, 103} tii[34,54] := {56, 128} tii[34,55] := {8, 35} tii[34,56] := {39, 118} tii[34,57] := {21} tii[34,58] := {7, 73} tii[34,59] := {12, 89} tii[34,60] := {40, 120} tii[34,61] := {16, 49} tii[34,62] := {25, 107} tii[34,63] := {32} tii[34,64] := {22, 78} tii[34,65] := {45} tii[34,66] := {38, 101} tii[34,67] := {10, 58} tii[34,68] := {18, 52} tii[34,69] := {34} tii[34,70] := {11, 91} tii[34,71] := {29, 69} tii[34,72] := {17, 104} tii[34,73] := {51, 129} tii[34,74] := {33, 119} tii[34,75] := {47} tii[34,76] := {28, 95} tii[34,77] := {63} tii[34,78] := {46, 113} tii[34,79] := {44, 86} tii[34,80] := {67} tii[34,81] := {43, 110} tii[34,82] := {80} tii[34,83] := {66, 124} tii[34,84] := {98} cell#57 , |C| = 105 special orbit = [6, 4, 4] special rep = [[3, 2], [2]] , dim = 105 cell rep = phi[[3, 2],[2]] TII depth = 4 TII multiplicity polynomial = 105*X TII subcells: tii[27,1] := {102} tii[27,2] := {104} tii[27,3] := {24} tii[27,4] := {57} tii[27,5] := {86} tii[27,6] := {91} tii[27,7] := {18} tii[27,8] := {38} tii[27,9] := {41} tii[27,10] := {42} tii[27,11] := {70} tii[27,12] := {94} tii[27,13] := {79} tii[27,14] := {97} tii[27,15] := {59} tii[27,16] := {76} tii[27,17] := {51} tii[27,18] := {99} tii[27,19] := {64} tii[27,20] := {81} tii[27,21] := {65} tii[27,22] := {100} tii[27,23] := {95} tii[27,24] := {77} tii[27,25] := {83} tii[27,26] := {88} tii[27,27] := {93} tii[27,28] := {89} tii[27,29] := {103} tii[27,30] := {96} tii[27,31] := {101} tii[27,32] := {10} tii[27,33] := {31} tii[27,34] := {7} tii[27,35] := {13} tii[27,36] := {1} tii[27,37] := {25} tii[27,38] := {26} tii[27,39] := {5} tii[27,40] := {4} tii[27,41] := {67} tii[27,42] := {32} tii[27,43] := {44} tii[27,44] := {11} tii[27,45] := {63} tii[27,46] := {39} tii[27,47] := {40} tii[27,48] := {45} tii[27,49] := {23} tii[27,50] := {78} tii[27,51] := {54} tii[27,52] := {58} tii[27,53] := {33} tii[27,54] := {75} tii[27,55] := {68} tii[27,56] := {71} tii[27,57] := {84} tii[27,58] := {6} tii[27,59] := {28} tii[27,60] := {46} tii[27,61] := {14} tii[27,62] := {15} tii[27,63] := {21} tii[27,64] := {52} tii[27,65] := {53} tii[27,66] := {60} tii[27,67] := {66} tii[27,68] := {87} tii[27,69] := {37} tii[27,70] := {29} tii[27,71] := {30} tii[27,72] := {72} tii[27,73] := {80} tii[27,74] := {47} tii[27,75] := {36} tii[27,76] := {85} tii[27,77] := {55} tii[27,78] := {82} tii[27,79] := {49} tii[27,80] := {92} tii[27,81] := {69} tii[27,82] := {50} tii[27,83] := {73} tii[27,84] := {61} tii[27,85] := {90} tii[27,86] := {74} tii[27,87] := {98} tii[27,88] := {0} tii[27,89] := {2} tii[27,90] := {3} tii[27,91] := {8} tii[27,92] := {9} tii[27,93] := {19} tii[27,94] := {16} tii[27,95] := {17} tii[27,96] := {22} tii[27,97] := {12} tii[27,98] := {43} tii[27,99] := {34} tii[27,100] := {20} tii[27,101] := {56} tii[27,102] := {48} tii[27,103] := {27} tii[27,104] := {35} tii[27,105] := {62} cell#58 , |C| = 105 special orbit = [6, 4, 4] special rep = [[3, 2], [2]] , dim = 105 cell rep = phi[[3, 2],[2]] TII depth = 4 TII multiplicity polynomial = 105*X TII subcells: tii[27,1] := {104} tii[27,2] := {95} tii[27,3] := {81} tii[27,4] := {38} tii[27,5] := {98} tii[27,6] := {75} tii[27,7] := {68} tii[27,8] := {91} tii[27,9] := {36} tii[27,10] := {70} tii[27,11] := {32} tii[27,12] := {101} tii[27,13] := {93} tii[27,14] := {67} tii[27,15] := {64} tii[27,16] := {78} tii[27,17] := {97} tii[27,18] := {103} tii[27,19] := {18} tii[27,20] := {47} tii[27,21] := {90} tii[27,22] := {80} tii[27,23] := {102} tii[27,24] := {94} tii[27,25] := {40} tii[27,26] := {100} tii[27,27] := {60} tii[27,28] := {62} tii[27,29] := {89} tii[27,30] := {72} tii[27,31] := {84} tii[27,32] := {55} tii[27,33] := {26} tii[27,34] := {52} tii[27,35] := {71} tii[27,36] := {37} tii[27,37] := {22} tii[27,38] := {54} tii[27,39] := {58} tii[27,40] := {31} tii[27,41] := {85} tii[27,42] := {12} tii[27,43] := {49} tii[27,44] := {44} tii[27,45] := {65} tii[27,46] := {11} tii[27,47] := {69} tii[27,48] := {25} tii[27,49] := {5} tii[27,50] := {92} tii[27,51] := {76} tii[27,52] := {34} tii[27,53] := {13} tii[27,54] := {51} tii[27,55] := {87} tii[27,56] := {48} tii[27,57] := {66} tii[27,58] := {53} tii[27,59] := {83} tii[27,60] := {8} tii[27,61] := {46} tii[27,62] := {73} tii[27,63] := {59} tii[27,64] := {6} tii[27,65] := {82} tii[27,66] := {19} tii[27,67] := {86} tii[27,68] := {99} tii[27,69] := {3} tii[27,70] := {30} tii[27,71] := {57} tii[27,72] := {24} tii[27,73] := {96} tii[27,74] := {9} tii[27,75] := {43} tii[27,76] := {45} tii[27,77] := {77} tii[27,78] := {39} tii[27,79] := {50} tii[27,80] := {61} tii[27,81] := {88} tii[27,82] := {10} tii[27,83] := {33} tii[27,84] := {20} tii[27,85] := {56} tii[27,86] := {29} tii[27,87] := {74} tii[27,88] := {23} tii[27,89] := {17} tii[27,90] := {42} tii[27,91] := {28} tii[27,92] := {7} tii[27,93] := {15} tii[27,94] := {16} tii[27,95] := {41} tii[27,96] := {27} tii[27,97] := {1} tii[27,98] := {63} tii[27,99] := {35} tii[27,100] := {4} tii[27,101] := {79} tii[27,102] := {21} tii[27,103] := {0} tii[27,104] := {2} tii[27,105] := {14} cell#59 , |C| = 105 special orbit = [8, 4, 1, 1] special rep = [[4], [2, 1]] , dim = 70 cell rep = phi[[4, 2, 1],[]]+phi[[4],[2, 1]] TII depth = 2 TII multiplicity polynomial = 35*X^2+35*X TII subcells: tii[33,1] := {40, 82} tii[33,2] := {78, 79} tii[33,3] := {95, 96} tii[33,4] := {102} tii[33,5] := {104} tii[33,6] := {21, 67} tii[33,7] := {56, 57} tii[33,8] := {15, 48} tii[33,9] := {86, 87} tii[33,10] := {30, 31} tii[33,11] := {46, 47} tii[33,12] := {99} tii[33,13] := {62} tii[33,14] := {103} tii[33,15] := {36, 37} tii[33,16] := {71, 72} tii[33,17] := {19, 20} tii[33,18] := {34, 35} tii[33,19] := {92} tii[33,20] := {51} tii[33,21] := {101} tii[33,22] := {63, 64} tii[33,23] := {44, 45} tii[33,24] := {88} tii[33,25] := {61} tii[33,26] := {97} tii[33,27] := {73} tii[33,28] := {58} tii[33,29] := {91} tii[33,30] := {98} tii[33,31] := {32, 68} tii[33,32] := {49, 50} tii[33,33] := {65, 66} tii[33,34] := {81} tii[33,35] := {2, 29} tii[33,36] := {13, 14} tii[33,37] := {59, 60} tii[33,38] := {27, 28} tii[33,39] := {76, 77} tii[33,40] := {43} tii[33,41] := {85} tii[33,42] := {0, 1} tii[33,43] := {11, 12} tii[33,44] := {89, 90} tii[33,45] := {24} tii[33,46] := {94} tii[33,47] := {4, 5} tii[33,48] := {100} tii[33,49] := {16} tii[33,50] := {3} tii[33,51] := {38, 39} tii[33,52] := {54, 55} tii[33,53] := {70} tii[33,54] := {6, 7} tii[33,55] := {74, 75} tii[33,56] := {17, 18} tii[33,57] := {33} tii[33,58] := {84} tii[33,59] := {9, 10} tii[33,60] := {93} tii[33,61] := {23} tii[33,62] := {8} tii[33,63] := {52, 53} tii[33,64] := {69} tii[33,65] := {25, 26} tii[33,66] := {83} tii[33,67] := {42} tii[33,68] := {22} tii[33,69] := {80} tii[33,70] := {41} cell#60 , |C| = 154 special orbit = [8, 2, 2, 2] special rep = [[4, 1], [1, 1]] , dim = 84 cell rep = phi[[4, 1, 1],[1]]+phi[[4, 1],[1, 1]] TII depth = 4 TII multiplicity polynomial = 70*X^2+14*X TII subcells: tii[32,1] := {96, 153} tii[32,2] := {86, 148} tii[32,3] := {57, 123} tii[32,4] := {53, 146} tii[32,5] := {116, 152} tii[32,6] := {62, 139} tii[32,7] := {129, 150} tii[32,8] := {40, 100} tii[32,9] := {115, 145} tii[32,10] := {36, 135} tii[32,11] := {133, 134} tii[32,12] := {143} tii[32,13] := {84, 131} tii[32,14] := {26, 78} tii[32,15] := {74, 111} tii[32,16] := {25, 117} tii[32,17] := {91, 92} tii[32,18] := {109} tii[32,19] := {39, 68} tii[32,20] := {35, 106} tii[32,21] := {51, 52} tii[32,22] := {65} tii[32,23] := {50, 82} tii[32,24] := {64} tii[32,25] := {0, 128} tii[32,26] := {76, 151} tii[32,27] := {4, 136} tii[32,28] := {58, 149} tii[32,29] := {11, 127} tii[32,30] := {43, 141} tii[32,31] := {18, 142} tii[32,32] := {30, 147} tii[32,33] := {6, 118} tii[32,34] := {108, 144} tii[32,35] := {95, 132} tii[32,36] := {14, 107} tii[32,37] := {63, 140} tii[32,38] := {113, 114} tii[32,39] := {22, 126} tii[32,40] := {46, 125} tii[32,41] := {130} tii[32,42] := {32, 138} tii[32,43] := {10, 85} tii[32,44] := {75, 112} tii[32,45] := {17, 105} tii[32,46] := {93, 94} tii[32,47] := {42, 104} tii[32,48] := {110} tii[32,49] := {29, 121} tii[32,50] := {24, 124} tii[32,51] := {72, 73} tii[32,52] := {89} tii[32,53] := {41, 137} tii[32,54] := {66} tii[32,55] := {2, 97} tii[32,56] := {45, 122} tii[32,57] := {7, 83} tii[32,58] := {33, 102} tii[32,59] := {13, 103} tii[32,60] := {23, 120} tii[32,61] := {5, 61} tii[32,62] := {56, 90} tii[32,63] := {9, 81} tii[32,64] := {31, 80} tii[32,65] := {70, 71} tii[32,66] := {20, 99} tii[32,67] := {88} tii[32,68] := {16, 101} tii[32,69] := {54, 55} tii[32,70] := {67} tii[32,71] := {28, 119} tii[32,72] := {48} tii[32,73] := {1, 44} tii[32,74] := {21, 59} tii[32,75] := {3, 60} tii[32,76] := {12, 77} tii[32,77] := {8, 79} tii[32,78] := {37, 38} tii[32,79] := {19, 98} tii[32,80] := {49} tii[32,81] := {34} tii[32,82] := {15, 69} tii[32,83] := {27, 87} tii[32,84] := {47} cell#61 , |C| = 154 special orbit = [8, 2, 2, 2] special rep = [[4, 1], [1, 1]] , dim = 84 cell rep = phi[[4, 1, 1],[1]]+phi[[4, 1],[1, 1]] TII depth = 4 TII multiplicity polynomial = 70*X^2+14*X TII subcells: tii[32,1] := {102, 142} tii[32,2] := {114, 115} tii[32,3] := {110, 111} tii[32,4] := {104, 105} tii[32,5] := {122, 148} tii[32,6] := {91, 92} tii[32,7] := {136, 137} tii[32,8] := {85, 86} tii[32,9] := {146, 147} tii[32,10] := {81, 82} tii[32,11] := {151, 152} tii[32,12] := {153} tii[32,13] := {99, 100} tii[32,14] := {62, 63} tii[32,15] := {117, 118} tii[32,16] := {60, 61} tii[32,17] := {132, 133} tii[32,18] := {143} tii[32,19] := {87, 88} tii[32,20] := {56, 57} tii[32,21] := {108, 109} tii[32,22] := {124} tii[32,23] := {77, 78} tii[32,24] := {98} tii[32,25] := {0, 9} tii[32,26] := {80, 131} tii[32,27] := {1, 21} tii[32,28] := {76, 116} tii[32,29] := {8, 32} tii[32,30] := {55, 95} tii[32,31] := {16, 44} tii[32,32] := {37, 68} tii[32,33] := {10, 11} tii[32,34] := {119, 120} tii[32,35] := {134, 135} tii[32,36] := {19, 20} tii[32,37] := {96, 97} tii[32,38] := {144, 145} tii[32,39] := {28, 29} tii[32,40] := {71, 72} tii[32,41] := {150} tii[32,42] := {49, 50} tii[32,43] := {30, 31} tii[32,44] := {129, 130} tii[32,45] := {42, 43} tii[32,46] := {140, 141} tii[32,47] := {93, 94} tii[32,48] := {149} tii[32,49] := {66, 67} tii[32,50] := {58, 59} tii[32,51] := {125, 126} tii[32,52] := {138} tii[32,53] := {89, 90} tii[32,54] := {121} tii[32,55] := {2, 3} tii[32,56] := {74, 75} tii[32,57] := {6, 7} tii[32,58] := {53, 54} tii[32,59] := {14, 15} tii[32,60] := {35, 36} tii[32,61] := {17, 18} tii[32,62] := {112, 113} tii[32,63] := {26, 27} tii[32,64] := {69, 70} tii[32,65] := {127, 128} tii[32,66] := {47, 48} tii[32,67] := {139} tii[32,68] := {40, 41} tii[32,69] := {106, 107} tii[32,70] := {123} tii[32,71] := {64, 65} tii[32,72] := {101} tii[32,73] := {4, 5} tii[32,74] := {51, 52} tii[32,75] := {12, 13} tii[32,76] := {33, 34} tii[32,77] := {24, 25} tii[32,78] := {83, 84} tii[32,79] := {45, 46} tii[32,80] := {103} tii[32,81] := {79} tii[32,82] := {22, 23} tii[32,83] := {38, 39} tii[32,84] := {73} cell#62 , |C| = 553 special orbit = [6, 4, 2, 2] special rep = [[3, 1], [2, 1]] , dim = 210 cell rep = phi[[3, 2, 1],[1]]+phi[[3, 1, 1],[2]]+phi[[3, 2],[1, 1]]+phi[[3, 1],[2, 1]] TII depth = 3 TII multiplicity polynomial = 91*X^4+70*X^2+49*X TII subcells: tii[26,1] := {107, 393, 417, 544} tii[26,2] := {138, 378, 511, 551} tii[26,3] := {321, 552} tii[26,4] := {174, 175} tii[26,5] := {154, 337, 463, 523} tii[26,6] := {277, 278} tii[26,7] := {74, 219, 454, 455} tii[26,8] := {191, 429, 476, 538} tii[26,9] := {65, 330, 450, 451} tii[26,10] := {375, 548} tii[26,11] := {384} tii[26,12] := {441} tii[26,13] := {206, 312, 501, 545} tii[26,14] := {315, 316} tii[26,15] := {252, 445, 474, 531} tii[26,16] := {153, 255, 524, 525} tii[26,17] := {150, 354, 470, 471} tii[26,18] := {424, 540} tii[26,19] := {201, 202, 541, 542} tii[26,20] := {404} tii[26,21] := {247, 550} tii[26,22] := {462} tii[26,23] := {314, 399, 510, 547} tii[26,24] := {469, 520} tii[26,25] := {251, 353, 532, 533} tii[26,26] := {403} tii[26,27] := {299, 546} tii[26,28] := {461} tii[26,29] := {506, 543} tii[26,30] := {527} tii[26,31] := {6, 55, 238, 239} tii[26,32] := {19, 72, 341, 342} tii[26,33] := {44, 281, 311, 494} tii[26,34] := {41, 212, 386, 488} tii[26,35] := {62, 435} tii[26,36] := {115, 482} tii[26,37] := {14, 87, 297, 298} tii[26,38] := {123, 124} tii[26,39] := {73, 343, 369, 526} tii[26,40] := {217, 218} tii[26,41] := {7, 126, 235, 356} tii[26,42] := {43, 163, 409, 410} tii[26,43] := {35, 111, 397, 398} tii[26,44] := {85, 86} tii[26,45] := {40, 270, 406, 407} tii[26,46] := {51, 289, 310, 502} tii[26,47] := {12, 165, 290, 402} tii[26,48] := {64, 269, 437, 519} tii[26,49] := {329} tii[26,50] := {121, 122} tii[26,51] := {96, 478} tii[26,52] := {29, 246, 334, 460} tii[26,53] := {391} tii[26,54] := {162} tii[26,55] := {159, 515} tii[26,56] := {58, 155, 443, 444} tii[26,57] := {192, 193} tii[26,58] := {70, 140, 456, 457} tii[26,59] := {98, 327, 479, 539} tii[26,60] := {36, 198, 394, 485} tii[26,61] := {146, 147} tii[26,62] := {63, 234, 376, 377} tii[26,63] := {99, 100, 491, 492} tii[26,64] := {288} tii[26,65] := {142, 513} tii[26,66] := {187} tii[26,67] := {75, 266, 438, 528} tii[26,68] := {132, 517} tii[26,69] := {209, 536} tii[26,70] := {364} tii[26,71] := {197, 534} tii[26,72] := {94, 172, 427, 428} tii[26,73] := {224} tii[26,74] := {129, 468} tii[26,75] := {180} tii[26,76] := {265, 549} tii[26,77] := {308} tii[26,78] := {368} tii[26,79] := {25, 130, 236, 237} tii[26,80] := {127, 128} tii[26,81] := {112, 279, 422, 493} tii[26,82] := {59, 157, 339, 340} tii[26,83] := {15, 173, 179, 300} tii[26,84] := {170, 171} tii[26,85] := {102, 328, 385, 487} tii[26,86] := {80, 225, 367, 464} tii[26,87] := {24, 223, 226, 347} tii[26,88] := {143, 434} tii[26,89] := {216} tii[26,90] := {49, 273, 307, 413} tii[26,91] := {210, 481} tii[26,92] := {108, 195, 495, 496} tii[26,93] := {8, 125, 240, 241} tii[26,94] := {93, 207, 395, 396} tii[26,95] := {253, 254} tii[26,96] := {145, 383, 436, 518} tii[26,97] := {148, 149, 521, 522} tii[26,98] := {60, 260, 338, 446} tii[26,99] := {13, 169, 285, 286} tii[26,100] := {227, 228} tii[26,101] := {52, 168, 418, 419} tii[26,102] := {101, 296, 425, 426} tii[26,103] := {204, 205} tii[26,104] := {350} tii[26,105] := {199, 477} tii[26,106] := {188, 537} tii[26,107] := {30, 215, 361, 362} tii[26,108] := {113, 325, 387, 497} tii[26,109] := {274} tii[26,110] := {249} tii[26,111] := {267, 514} tii[26,112] := {416} tii[26,113] := {105, 106, 489, 490} tii[26,114] := {22, 220, 345, 346} tii[26,115] := {257, 512} tii[26,116] := {287} tii[26,117] := {139, 233, 472, 473} tii[26,118] := {331} tii[26,119] := {136, 516} tii[26,120] := {242} tii[26,121] := {322, 535} tii[26,122] := {183, 505} tii[26,123] := {363} tii[26,124] := {47, 272, 411, 412} tii[26,125] := {90, 483} tii[26,126] := {420} tii[26,127] := {137, 264, 370, 371} tii[26,128] := {262, 263} tii[26,129] := {203, 405, 433, 507} tii[26,130] := {95, 313, 320, 423} tii[26,131] := {261, 449} tii[26,132] := {309} tii[26,133] := {158, 355, 382, 475} tii[26,134] := {326, 500} tii[26,135] := {194, 295, 508, 509} tii[26,136] := {61, 256, 373, 374} tii[26,137] := {317, 486} tii[26,138] := {349} tii[26,139] := {358} tii[26,140] := {244, 530} tii[26,141] := {379, 529} tii[26,142] := {114, 304, 431, 432} tii[26,143] := {302} tii[26,144] := {415} tii[26,145] := {189, 504} tii[26,146] := {466} tii[26,147] := {372, 448} tii[26,148] := {357} tii[26,149] := {430, 499} tii[26,150] := {503} tii[26,151] := {0, 34, 181, 182} tii[26,152] := {5, 33, 231, 232} tii[26,153] := {18, 276} tii[26,154] := {2, 84, 176, 301} tii[26,155] := {53, 54} tii[26,156] := {4, 118, 230, 348} tii[26,157] := {81, 82} tii[26,158] := {32, 229, 250, 465} tii[26,159] := {11, 50, 293, 294} tii[26,160] := {17, 185, 275, 414} tii[26,161] := {117} tii[26,162] := {28, 336} tii[26,163] := {10, 97, 282, 401} tii[26,164] := {68, 69} tii[26,165] := {42, 389} tii[26,166] := {92} tii[26,167] := {27, 160, 333, 459} tii[26,168] := {57} tii[26,169] := {1, 83, 177, 178} tii[26,170] := {166, 167} tii[26,171] := {23, 79, 351, 352} tii[26,172] := {3, 120, 221, 222} tii[26,173] := {31, 119, 365, 366} tii[26,174] := {214} tii[26,175] := {48, 392} tii[26,176] := {16, 161, 305, 306} tii[26,177] := {21, 144, 344, 447} tii[26,178] := {9, 164, 283, 284} tii[26,179] := {103, 104} tii[26,180] := {66, 67, 452, 453} tii[26,181] := {271} tii[26,182] := {71, 440} tii[26,183] := {91, 484} tii[26,184] := {135} tii[26,185] := {26, 213, 359, 360} tii[26,186] := {46, 211, 390, 498} tii[26,187] := {56, 442} tii[26,188] := {89} tii[26,189] := {20, 141, 258, 259} tii[26,190] := {243} tii[26,191] := {109, 480} tii[26,192] := {45, 184, 323, 324} tii[26,193] := {131} tii[26,194] := {88, 421} tii[26,195] := {39, 116, 291, 292} tii[26,196] := {78, 335} tii[26,197] := {38, 200, 280, 400} tii[26,198] := {151, 152} tii[26,199] := {110, 388} tii[26,200] := {77, 268, 332, 458} tii[26,201] := {190} tii[26,202] := {134} tii[26,203] := {37, 196, 318, 319} tii[26,204] := {303} tii[26,205] := {156, 439} tii[26,206] := {76, 245, 380, 381} tii[26,207] := {186} tii[26,208] := {133, 467} tii[26,209] := {208, 408} tii[26,210] := {248} cell#63 , |C| = 126 special orbit = [6, 2, 2, 2, 2] special rep = [[3, 1, 1], [1, 1]] , dim = 126 cell rep = phi[[3, 1, 1],[1, 1]] TII depth = 4 TII multiplicity polynomial = 126*X TII subcells: tii[24,1] := {125} tii[24,2] := {118} tii[24,3] := {122} tii[24,4] := {101} tii[24,5] := {107} tii[24,6] := {121} tii[24,7] := {66} tii[24,8] := {25} tii[24,9] := {59} tii[24,10] := {123} tii[24,11] := {88} tii[24,12] := {109} tii[24,13] := {11} tii[24,14] := {119} tii[24,15] := {65} tii[24,16] := {113} tii[24,17] := {38} tii[24,18] := {112} tii[24,19] := {78} tii[24,20] := {104} tii[24,21] := {93} tii[24,22] := {23} tii[24,23] := {98} tii[24,24] := {58} tii[24,25] := {73} tii[24,26] := {36} tii[24,27] := {60} tii[24,28] := {108} tii[24,29] := {76} tii[24,30] := {92} tii[24,31] := {105} tii[24,32] := {8} tii[24,33] := {124} tii[24,34] := {87} tii[24,35] := {30} tii[24,36] := {120} tii[24,37] := {96} tii[24,38] := {117} tii[24,39] := {64} tii[24,40] := {81} tii[24,41] := {18} tii[24,42] := {50} tii[24,43] := {27} tii[24,44] := {63} tii[24,45] := {77} tii[24,46] := {111} tii[24,47] := {90} tii[24,48] := {52} tii[24,49] := {103} tii[24,50] := {97} tii[24,51] := {99} tii[24,52] := {67} tii[24,53] := {80} tii[24,54] := {116} tii[24,55] := {34} tii[24,56] := {69} tii[24,57] := {86} tii[24,58] := {48} tii[24,59] := {71} tii[24,60] := {68} tii[24,61] := {114} tii[24,62] := {89} tii[24,63] := {100} tii[24,64] := {91} tii[24,65] := {106} tii[24,66] := {115} tii[24,67] := {31} tii[24,68] := {47} tii[24,69] := {16} tii[24,70] := {28} tii[24,71] := {29} tii[24,72] := {42} tii[24,73] := {6} tii[24,74] := {110} tii[24,75] := {46} tii[24,76] := {15} tii[24,77] := {14} tii[24,78] := {95} tii[24,79] := {56} tii[24,80] := {22} tii[24,81] := {84} tii[24,82] := {26} tii[24,83] := {75} tii[24,84] := {37} tii[24,85] := {40} tii[24,86] := {61} tii[24,87] := {74} tii[24,88] := {45} tii[24,89] := {1} tii[24,90] := {94} tii[24,91] := {4} tii[24,92] := {55} tii[24,93] := {5} tii[24,94] := {83} tii[24,95] := {10} tii[24,96] := {79} tii[24,97] := {12} tii[24,98] := {54} tii[24,99] := {20} tii[24,100] := {102} tii[24,101] := {21} tii[24,102] := {41} tii[24,103] := {53} tii[24,104] := {57} tii[24,105] := {24} tii[24,106] := {82} tii[24,107] := {39} tii[24,108] := {72} tii[24,109] := {0} tii[24,110] := {2} tii[24,111] := {3} tii[24,112] := {7} tii[24,113] := {9} tii[24,114] := {13} tii[24,115] := {44} tii[24,116] := {17} tii[24,117] := {33} tii[24,118] := {43} tii[24,119] := {49} tii[24,120] := {19} tii[24,121] := {70} tii[24,122] := {32} tii[24,123] := {62} tii[24,124] := {35} tii[24,125] := {51} tii[24,126] := {85} cell#64 , |C| = 553 special orbit = [6, 4, 2, 2] special rep = [[3, 1], [2, 1]] , dim = 210 cell rep = phi[[3, 2, 1],[1]]+phi[[3, 1, 1],[2]]+phi[[3, 2],[1, 1]]+phi[[3, 1],[2, 1]] TII depth = 3 TII multiplicity polynomial = 91*X^4+70*X^2+49*X TII subcells: tii[26,1] := {239, 250, 525, 552} tii[26,2] := {147, 307, 488, 551} tii[26,3] := {345, 548} tii[26,4] := {114, 348} tii[26,5] := {305, 313, 500, 549} tii[26,6] := {204, 325} tii[26,7] := {272, 293, 423, 526} tii[26,8] := {206, 367, 445, 543} tii[26,9] := {186, 283, 312, 484} tii[26,10] := {406, 538} tii[26,11] := {339} tii[26,12] := {416} tii[26,13] := {366, 373, 517, 545} tii[26,14] := {203, 324} tii[26,15] := {271, 394, 422, 529} tii[26,16] := {392, 410, 489, 537} tii[26,17] := {156, 284, 404, 483} tii[26,18] := {454, 520} tii[26,19] := {365, 449, 452, 524} tii[26,20] := {338} tii[26,21] := {407, 496} tii[26,22] := {415} tii[26,23] := {330, 427, 466, 544} tii[26,24] := {493, 527} tii[26,25] := {266, 380, 490, 532} tii[26,26] := {428} tii[26,27] := {321, 522} tii[26,28] := {477} tii[26,29] := {518, 542} tii[26,30] := {528} tii[26,31] := {1, 25, 174, 409} tii[26,32] := {12, 13, 269, 385} tii[26,33] := {123, 133, 468, 541} tii[26,34] := {42, 130, 372, 513} tii[26,35] := {55, 401} tii[26,36] := {110, 460} tii[26,37] := {6, 51, 237, 455} tii[26,38] := {67, 287} tii[26,39] := {181, 190, 501, 550} tii[26,40] := {145, 259} tii[26,41] := {20, 70, 306, 475} tii[26,42] := {205, 226, 368, 502} tii[26,43] := {34, 35, 332, 436} tii[26,44] := {48, 225} tii[26,45] := {128, 218, 248, 441} tii[26,46] := {129, 138, 469, 547} tii[26,47] := {39, 50, 369, 504} tii[26,48] := {56, 188, 405, 535} tii[26,49] := {279} tii[26,50] := {75, 172} tii[26,51] := {99, 451} tii[26,52] := {82, 85, 426, 531} tii[26,53] := {360} tii[26,54] := {136} tii[26,55] := {170, 497} tii[26,56] := {71, 72, 393, 476} tii[26,57] := {93, 197} tii[26,58] := {267, 288, 395, 487} tii[26,59] := {100, 247, 453, 546} tii[26,60] := {31, 125, 334, 503} tii[26,61] := {52, 141} tii[26,62] := {79, 189, 282, 391} tii[26,63] := {238, 337, 342, 464} tii[26,64] := {215} tii[26,65] := {154, 492} tii[26,66] := {108} tii[26,67] := {57, 191, 413, 530} tii[26,68] := {286, 417} tii[26,69] := {232, 523} tii[26,70] := {301} tii[26,71] := {213, 519} tii[26,72] := {122, 220, 336, 444} tii[26,73] := {256} tii[26,74] := {163, 419} tii[26,75] := {196} tii[26,76] := {297, 539} tii[26,77] := {326} tii[26,78] := {390} tii[26,79] := {19, 90, 175, 408} tii[26,80] := {87, 292} tii[26,81] := {243, 251, 467, 540} tii[26,82] := {73, 74, 268, 384} tii[26,83] := {45, 117, 240, 433} tii[26,84] := {124, 235} tii[26,85] := {102, 249, 344, 512} tii[26,86] := {187, 195, 424, 534} tii[26,87] := {78, 89, 308, 472} tii[26,88] := {155, 400} tii[26,89] := {194} tii[26,90] := {132, 137, 374, 507} tii[26,91] := {233, 459} tii[26,92] := {331, 349, 446, 516} tii[26,93] := {59, 178, 179, 383} tii[26,94] := {120, 121, 333, 434} tii[26,95] := {146, 261} tii[26,96] := {158, 311, 402, 533} tii[26,97] := {304, 399, 403, 499} tii[26,98] := {69, 184, 274, 471} tii[26,99] := {98, 115, 245, 430} tii[26,100] := {149, 263} tii[26,101] := {216, 236, 371, 514} tii[26,102] := {101, 219, 343, 443} tii[26,103] := {95, 202} tii[26,104] := {280} tii[26,105] := {214, 450} tii[26,106] := {347, 461} tii[26,107] := {159, 169, 315, 479} tii[26,108] := {105, 253, 354, 506} tii[26,109] := {230} tii[26,110] := {168} tii[26,111] := {300, 495} tii[26,112] := {361} tii[26,113] := {242, 340, 346, 465} tii[26,114] := {88, 153, 185, 379} tii[26,115] := {277, 491} tii[26,116] := {318} tii[26,117] := {148, 258, 397, 486} tii[26,118] := {290} tii[26,119] := {291, 418} tii[26,120] := {260} tii[26,121] := {357, 521} tii[26,122] := {198, 462} tii[26,123] := {387} tii[26,124] := {131, 229, 254, 440} tii[26,125] := {234, 363} tii[26,126] := {442} tii[26,127] := {176, 177, 270, 382} tii[26,128] := {150, 265} tii[26,129] := {217, 341, 370, 511} tii[26,130] := {116, 210, 244, 429} tii[26,131] := {278, 398} tii[26,132] := {231} tii[26,133] := {160, 294, 314, 478} tii[26,134] := {359, 458} tii[26,135] := {207, 320, 448, 515} tii[26,136] := {66, 151, 276, 378} tii[26,137] := {335, 447} tii[26,138] := {377} tii[26,139] := {289} tii[26,140] := {262, 498} tii[26,141] := {414, 494} tii[26,142] := {103, 228, 355, 439} tii[26,143] := {323} tii[26,144] := {438} tii[26,145] := {199, 463} tii[26,146] := {482} tii[26,147] := {396, 470} tii[26,148] := {381} tii[26,149] := {457, 505} tii[26,150] := {510} tii[26,151] := {0, 10, 139, 353} tii[26,152] := {2, 3, 182, 302} tii[26,153] := {8, 255} tii[26,154] := {7, 33, 241, 435} tii[26,155] := {22, 164} tii[26,156] := {16, 24, 309, 473} tii[26,157] := {37, 113} tii[26,158] := {80, 86, 425, 536} tii[26,159] := {4, 5, 208, 328} tii[26,160] := {44, 46, 375, 508} tii[26,161] := {84} tii[26,162] := {11, 298} tii[26,163] := {9, 38, 246, 432} tii[26,164] := {15, 65} tii[26,165] := {28, 352} tii[26,166] := {47} tii[26,167] := {21, 83, 316, 481} tii[26,168] := {64} tii[26,169] := {27, 118, 119, 322} tii[26,170] := {94, 200} tii[26,171] := {17, 18, 273, 389} tii[26,172] := {54, 68, 183, 376} tii[26,173] := {157, 173, 310, 485} tii[26,174] := {167} tii[26,175] := {30, 358} tii[26,176] := {104, 109, 252, 437} tii[26,177] := {14, 77, 275, 474} tii[26,178] := {49, 97, 126, 317} tii[26,179] := {26, 92} tii[26,180] := {180, 281, 285, 421} tii[26,181] := {222} tii[26,182] := {60, 412} tii[26,183] := {224, 362} tii[26,184] := {62} tii[26,185] := {81, 165, 192, 386} tii[26,186] := {29, 135, 356, 509} tii[26,187] := {171, 303} tii[26,188] := {91} tii[26,189] := {23, 76, 152, 257} tii[26,190] := {162} tii[26,191] := {106, 456} tii[26,192] := {43, 134, 227, 327} tii[26,193] := {140} tii[26,194] := {112, 364} tii[26,195] := {40, 41, 209, 329} tii[26,196] := {63, 299} tii[26,197] := {36, 127, 211, 431} tii[26,198] := {53, 144} tii[26,199] := {107, 351} tii[26,200] := {61, 193, 296, 480} tii[26,201] := {111} tii[26,202] := {143} tii[26,203] := {32, 96, 212, 319} tii[26,204] := {223} tii[26,205] := {161, 411} tii[26,206] := {58, 166, 295, 388} tii[26,207] := {201} tii[26,208] := {142, 420} tii[26,209] := {221, 350} tii[26,210] := {264} cell#65 , |C| = 36 special orbit = [10, 2, 1, 1] special rep = [[5], [1, 1]] , dim = 21 cell rep = phi[[5, 1, 1],[]]+phi[[5],[1, 1]] TII depth = 1 TII multiplicity polynomial = 15*X^2+6*X TII subcells: tii[36,1] := {20, 35} tii[36,2] := {21, 34} tii[36,3] := {19, 32} tii[36,4] := {26, 27} tii[36,5] := {29, 30} tii[36,6] := {33} tii[36,7] := {12, 31} tii[36,8] := {10, 25} tii[36,9] := {17, 18} tii[36,10] := {23, 24} tii[36,11] := {28} tii[36,12] := {2, 16} tii[36,13] := {8, 9} tii[36,14] := {14, 15} tii[36,15] := {22} tii[36,16] := {0, 1} tii[36,17] := {6, 7} tii[36,18] := {13} tii[36,19] := {4, 5} tii[36,20] := {11} tii[36,21] := {3} cell#66 , |C| = 154 special orbit = [8, 2, 2, 2] special rep = [[4, 1], [1, 1]] , dim = 84 cell rep = phi[[4, 1, 1],[1]]+phi[[4, 1],[1, 1]] TII depth = 4 TII multiplicity polynomial = 70*X^2+14*X TII subcells: tii[32,1] := {76, 146} tii[32,2] := {40, 128} tii[32,3] := {43, 149} tii[32,4] := {42, 153} tii[32,5] := {98, 134} tii[32,6] := {32, 104} tii[32,7] := {75, 115} tii[32,8] := {37, 139} tii[32,9] := {95, 96} tii[32,10] := {36, 151} tii[32,11] := {113, 114} tii[32,12] := {131} tii[32,13] := {46, 81} tii[32,14] := {51, 121} tii[32,15] := {62, 63} tii[32,16] := {48, 145} tii[32,17] := {79, 80} tii[32,18] := {99} tii[32,19] := {70, 110} tii[32,20] := {67, 143} tii[32,21] := {89, 90} tii[32,22] := {109} tii[32,23] := {88, 127} tii[32,24] := {108} tii[32,25] := {11, 118} tii[32,26] := {56, 135} tii[32,27] := {5, 97} tii[32,28] := {41, 116} tii[32,29] := {8, 117} tii[32,30] := {34, 132} tii[32,31] := {15, 133} tii[32,32] := {23, 144} tii[32,33] := {1, 85} tii[32,34] := {55, 94} tii[32,35] := {73, 74} tii[32,36] := {3, 107} tii[32,37] := {30, 106} tii[32,38] := {92, 93} tii[32,39] := {7, 126} tii[32,40] := {24, 125} tii[32,41] := {112} tii[32,42] := {16, 138} tii[32,43] := {9, 129} tii[32,44] := {53, 54} tii[32,45] := {14, 142} tii[32,46] := {71, 72} tii[32,47] := {33, 141} tii[32,48] := {91} tii[32,49] := {22, 148} tii[32,50] := {21, 150} tii[32,51] := {58, 59} tii[32,52] := {77} tii[32,53] := {31, 152} tii[32,54] := {57} tii[32,55] := {0, 64} tii[32,56] := {25, 83} tii[32,57] := {2, 84} tii[32,58] := {20, 102} tii[32,59] := {4, 103} tii[32,60] := {13, 120} tii[32,61] := {6, 105} tii[32,62] := {44, 45} tii[32,63] := {10, 124} tii[32,64] := {29, 123} tii[32,65] := {60, 61} tii[32,66] := {19, 137} tii[32,67] := {78} tii[32,68] := {17, 140} tii[32,69] := {49, 50} tii[32,70] := {66} tii[32,71] := {27, 147} tii[32,72] := {47} tii[32,73] := {12, 82} tii[32,74] := {39, 100} tii[32,75] := {18, 101} tii[32,76] := {28, 119} tii[32,77] := {26, 122} tii[32,78] := {68, 69} tii[32,79] := {38, 136} tii[32,80] := {87} tii[32,81] := {65} tii[32,82] := {35, 111} tii[32,83] := {52, 130} tii[32,84] := {86} cell#67 , |C| = 154 special orbit = [8, 2, 2, 2] special rep = [[4, 1], [1, 1]] , dim = 84 cell rep = phi[[4, 1, 1],[1]]+phi[[4, 1],[1, 1]] TII depth = 4 TII multiplicity polynomial = 70*X^2+14*X TII subcells: tii[32,1] := {58, 153} tii[32,2] := {46, 152} tii[32,3] := {23, 145} tii[32,4] := {52, 147} tii[32,5] := {77, 150} tii[32,6] := {68, 148} tii[32,7] := {86, 144} tii[32,8] := {29, 134} tii[32,9] := {76, 135} tii[32,10] := {60, 139} tii[32,11] := {90, 124} tii[32,12] := {115} tii[32,13] := {87, 141} tii[32,14] := {22, 120} tii[32,15] := {66, 131} tii[32,16] := {51, 127} tii[32,17] := {80, 117} tii[32,18] := {103} tii[32,19] := {39, 101} tii[32,20] := {72, 112} tii[32,21] := {49, 83} tii[32,22] := {73} tii[32,23] := {88, 119} tii[32,24] := {100} tii[32,25] := {3, 97} tii[32,26] := {42, 151} tii[32,27] := {6, 107} tii[32,28] := {25, 146} tii[32,29] := {2, 96} tii[32,30] := {10, 138} tii[32,31] := {12, 110} tii[32,32] := {21, 130} tii[32,33] := {18, 125} tii[32,34] := {67, 133} tii[32,35] := {57, 121} tii[32,36] := {5, 106} tii[32,37] := {31, 149} tii[32,38] := {70, 105} tii[32,39] := {16, 118} tii[32,40] := {15, 143} tii[32,41] := {94} tii[32,42] := {28, 136} tii[32,43] := {1, 95} tii[32,44] := {40, 102} tii[32,45] := {11, 109} tii[32,46] := {50, 84} tii[32,47] := {8, 137} tii[32,48] := {74} tii[32,49] := {20, 129} tii[32,50] := {26, 126} tii[32,51] := {33, 65} tii[32,52] := {55} tii[32,53] := {38, 140} tii[32,54] := {64} tii[32,55] := {36, 108} tii[32,56] := {48, 142} tii[32,57] := {17, 85} tii[32,58] := {34, 132} tii[32,59] := {35, 99} tii[32,60] := {45, 122} tii[32,61] := {4, 75} tii[32,62] := {47, 116} tii[32,63] := {14, 89} tii[32,64] := {13, 123} tii[32,65] := {59, 98} tii[32,66] := {27, 114} tii[32,67] := {81} tii[32,68] := {30, 111} tii[32,69] := {43, 79} tii[32,70] := {61} tii[32,71] := {44, 128} tii[32,72] := {78} tii[32,73] := {0, 56} tii[32,74] := {7, 104} tii[32,75] := {9, 69} tii[32,76] := {19, 93} tii[32,77] := {24, 91} tii[32,78] := {32, 63} tii[32,79] := {37, 113} tii[32,80] := {54} tii[32,81] := {62} tii[32,82] := {41, 71} tii[32,83] := {53, 92} tii[32,84] := {82} cell#68 , |C| = 105 special orbit = [6, 4, 4] special rep = [[3, 2], [2]] , dim = 105 cell rep = phi[[3, 2],[2]] TII depth = 4 TII multiplicity polynomial = 105*X TII subcells: tii[27,1] := {104} tii[27,2] := {95} tii[27,3] := {81} tii[27,4] := {38} tii[27,5] := {98} tii[27,6] := {75} tii[27,7] := {68} tii[27,8] := {91} tii[27,9] := {36} tii[27,10] := {70} tii[27,11] := {32} tii[27,12] := {101} tii[27,13] := {93} tii[27,14] := {67} tii[27,15] := {64} tii[27,16] := {78} tii[27,17] := {97} tii[27,18] := {103} tii[27,19] := {18} tii[27,20] := {47} tii[27,21] := {90} tii[27,22] := {80} tii[27,23] := {102} tii[27,24] := {94} tii[27,25] := {40} tii[27,26] := {100} tii[27,27] := {60} tii[27,28] := {62} tii[27,29] := {89} tii[27,30] := {72} tii[27,31] := {84} tii[27,32] := {55} tii[27,33] := {26} tii[27,34] := {52} tii[27,35] := {71} tii[27,36] := {37} tii[27,37] := {22} tii[27,38] := {54} tii[27,39] := {58} tii[27,40] := {31} tii[27,41] := {85} tii[27,42] := {12} tii[27,43] := {49} tii[27,44] := {44} tii[27,45] := {65} tii[27,46] := {11} tii[27,47] := {69} tii[27,48] := {25} tii[27,49] := {5} tii[27,50] := {92} tii[27,51] := {76} tii[27,52] := {34} tii[27,53] := {13} tii[27,54] := {51} tii[27,55] := {87} tii[27,56] := {48} tii[27,57] := {66} tii[27,58] := {53} tii[27,59] := {83} tii[27,60] := {8} tii[27,61] := {46} tii[27,62] := {73} tii[27,63] := {59} tii[27,64] := {6} tii[27,65] := {82} tii[27,66] := {19} tii[27,67] := {86} tii[27,68] := {99} tii[27,69] := {3} tii[27,70] := {30} tii[27,71] := {57} tii[27,72] := {24} tii[27,73] := {96} tii[27,74] := {9} tii[27,75] := {43} tii[27,76] := {45} tii[27,77] := {77} tii[27,78] := {39} tii[27,79] := {50} tii[27,80] := {61} tii[27,81] := {88} tii[27,82] := {10} tii[27,83] := {33} tii[27,84] := {20} tii[27,85] := {56} tii[27,86] := {29} tii[27,87] := {74} tii[27,88] := {23} tii[27,89] := {17} tii[27,90] := {42} tii[27,91] := {28} tii[27,92] := {7} tii[27,93] := {15} tii[27,94] := {16} tii[27,95] := {41} tii[27,96] := {27} tii[27,97] := {1} tii[27,98] := {63} tii[27,99] := {35} tii[27,100] := {4} tii[27,101] := {79} tii[27,102] := {21} tii[27,103] := {0} tii[27,104] := {2} tii[27,105] := {14} cell#69 , |C| = 105 special orbit = [8, 4, 1, 1] special rep = [[4], [2, 1]] , dim = 70 cell rep = phi[[4, 2, 1],[]]+phi[[4],[2, 1]] TII depth = 2 TII multiplicity polynomial = 35*X^2+35*X TII subcells: tii[33,1] := {40, 82} tii[33,2] := {78, 79} tii[33,3] := {95, 96} tii[33,4] := {102} tii[33,5] := {104} tii[33,6] := {21, 67} tii[33,7] := {56, 57} tii[33,8] := {15, 48} tii[33,9] := {86, 87} tii[33,10] := {30, 31} tii[33,11] := {46, 47} tii[33,12] := {99} tii[33,13] := {62} tii[33,14] := {103} tii[33,15] := {36, 37} tii[33,16] := {71, 72} tii[33,17] := {19, 20} tii[33,18] := {34, 35} tii[33,19] := {92} tii[33,20] := {51} tii[33,21] := {101} tii[33,22] := {63, 64} tii[33,23] := {44, 45} tii[33,24] := {88} tii[33,25] := {61} tii[33,26] := {97} tii[33,27] := {73} tii[33,28] := {58} tii[33,29] := {91} tii[33,30] := {98} tii[33,31] := {32, 68} tii[33,32] := {49, 50} tii[33,33] := {65, 66} tii[33,34] := {81} tii[33,35] := {2, 29} tii[33,36] := {13, 14} tii[33,37] := {59, 60} tii[33,38] := {27, 28} tii[33,39] := {76, 77} tii[33,40] := {43} tii[33,41] := {85} tii[33,42] := {0, 1} tii[33,43] := {11, 12} tii[33,44] := {89, 90} tii[33,45] := {24} tii[33,46] := {94} tii[33,47] := {4, 5} tii[33,48] := {100} tii[33,49] := {16} tii[33,50] := {3} tii[33,51] := {38, 39} tii[33,52] := {54, 55} tii[33,53] := {70} tii[33,54] := {6, 7} tii[33,55] := {74, 75} tii[33,56] := {17, 18} tii[33,57] := {33} tii[33,58] := {84} tii[33,59] := {9, 10} tii[33,60] := {93} tii[33,61] := {23} tii[33,62] := {8} tii[33,63] := {52, 53} tii[33,64] := {69} tii[33,65] := {25, 26} tii[33,66] := {83} tii[33,67] := {42} tii[33,68] := {22} tii[33,69] := {80} tii[33,70] := {41} cell#70 , |C| = 154 special orbit = [8, 2, 2, 2] special rep = [[4, 1], [1, 1]] , dim = 84 cell rep = phi[[4, 1, 1],[1]]+phi[[4, 1],[1, 1]] TII depth = 4 TII multiplicity polynomial = 70*X^2+14*X TII subcells: tii[32,1] := {96, 153} tii[32,2] := {86, 148} tii[32,3] := {57, 123} tii[32,4] := {53, 146} tii[32,5] := {116, 152} tii[32,6] := {62, 139} tii[32,7] := {129, 150} tii[32,8] := {40, 100} tii[32,9] := {115, 145} tii[32,10] := {36, 135} tii[32,11] := {133, 134} tii[32,12] := {143} tii[32,13] := {84, 131} tii[32,14] := {26, 78} tii[32,15] := {74, 111} tii[32,16] := {25, 117} tii[32,17] := {91, 92} tii[32,18] := {109} tii[32,19] := {39, 68} tii[32,20] := {35, 106} tii[32,21] := {51, 52} tii[32,22] := {65} tii[32,23] := {50, 82} tii[32,24] := {64} tii[32,25] := {0, 128} tii[32,26] := {76, 151} tii[32,27] := {4, 136} tii[32,28] := {58, 149} tii[32,29] := {11, 127} tii[32,30] := {43, 141} tii[32,31] := {18, 142} tii[32,32] := {30, 147} tii[32,33] := {6, 118} tii[32,34] := {108, 144} tii[32,35] := {95, 132} tii[32,36] := {14, 107} tii[32,37] := {63, 140} tii[32,38] := {113, 114} tii[32,39] := {22, 126} tii[32,40] := {46, 125} tii[32,41] := {130} tii[32,42] := {32, 138} tii[32,43] := {10, 85} tii[32,44] := {75, 112} tii[32,45] := {17, 105} tii[32,46] := {93, 94} tii[32,47] := {42, 104} tii[32,48] := {110} tii[32,49] := {29, 121} tii[32,50] := {24, 124} tii[32,51] := {72, 73} tii[32,52] := {89} tii[32,53] := {41, 137} tii[32,54] := {66} tii[32,55] := {2, 97} tii[32,56] := {45, 122} tii[32,57] := {7, 83} tii[32,58] := {33, 102} tii[32,59] := {13, 103} tii[32,60] := {23, 120} tii[32,61] := {5, 61} tii[32,62] := {56, 90} tii[32,63] := {9, 81} tii[32,64] := {31, 80} tii[32,65] := {70, 71} tii[32,66] := {20, 99} tii[32,67] := {88} tii[32,68] := {16, 101} tii[32,69] := {54, 55} tii[32,70] := {67} tii[32,71] := {28, 119} tii[32,72] := {48} tii[32,73] := {1, 44} tii[32,74] := {21, 59} tii[32,75] := {3, 60} tii[32,76] := {12, 77} tii[32,77] := {8, 79} tii[32,78] := {37, 38} tii[32,79] := {19, 98} tii[32,80] := {49} tii[32,81] := {34} tii[32,82] := {15, 69} tii[32,83] := {27, 87} tii[32,84] := {47} cell#71 , |C| = 154 special orbit = [8, 2, 2, 2] special rep = [[4, 1], [1, 1]] , dim = 84 cell rep = phi[[4, 1, 1],[1]]+phi[[4, 1],[1, 1]] TII depth = 4 TII multiplicity polynomial = 70*X^2+14*X TII subcells: tii[32,1] := {102, 142} tii[32,2] := {114, 115} tii[32,3] := {110, 111} tii[32,4] := {104, 105} tii[32,5] := {122, 148} tii[32,6] := {91, 92} tii[32,7] := {136, 137} tii[32,8] := {85, 86} tii[32,9] := {146, 147} tii[32,10] := {81, 82} tii[32,11] := {151, 152} tii[32,12] := {153} tii[32,13] := {99, 100} tii[32,14] := {62, 63} tii[32,15] := {117, 118} tii[32,16] := {60, 61} tii[32,17] := {132, 133} tii[32,18] := {143} tii[32,19] := {87, 88} tii[32,20] := {56, 57} tii[32,21] := {108, 109} tii[32,22] := {124} tii[32,23] := {77, 78} tii[32,24] := {98} tii[32,25] := {0, 9} tii[32,26] := {80, 131} tii[32,27] := {1, 21} tii[32,28] := {76, 116} tii[32,29] := {8, 32} tii[32,30] := {55, 95} tii[32,31] := {16, 44} tii[32,32] := {37, 68} tii[32,33] := {10, 11} tii[32,34] := {119, 120} tii[32,35] := {134, 135} tii[32,36] := {19, 20} tii[32,37] := {96, 97} tii[32,38] := {144, 145} tii[32,39] := {28, 29} tii[32,40] := {71, 72} tii[32,41] := {150} tii[32,42] := {49, 50} tii[32,43] := {30, 31} tii[32,44] := {129, 130} tii[32,45] := {42, 43} tii[32,46] := {140, 141} tii[32,47] := {93, 94} tii[32,48] := {149} tii[32,49] := {66, 67} tii[32,50] := {58, 59} tii[32,51] := {125, 126} tii[32,52] := {138} tii[32,53] := {89, 90} tii[32,54] := {121} tii[32,55] := {2, 3} tii[32,56] := {74, 75} tii[32,57] := {6, 7} tii[32,58] := {53, 54} tii[32,59] := {14, 15} tii[32,60] := {35, 36} tii[32,61] := {17, 18} tii[32,62] := {112, 113} tii[32,63] := {26, 27} tii[32,64] := {69, 70} tii[32,65] := {127, 128} tii[32,66] := {47, 48} tii[32,67] := {139} tii[32,68] := {40, 41} tii[32,69] := {106, 107} tii[32,70] := {123} tii[32,71] := {64, 65} tii[32,72] := {101} tii[32,73] := {4, 5} tii[32,74] := {51, 52} tii[32,75] := {12, 13} tii[32,76] := {33, 34} tii[32,77] := {24, 25} tii[32,78] := {83, 84} tii[32,79] := {45, 46} tii[32,80] := {103} tii[32,81] := {79} tii[32,82] := {22, 23} tii[32,83] := {38, 39} tii[32,84] := {73} cell#72 , |C| = 553 special orbit = [6, 4, 2, 2] special rep = [[3, 1], [2, 1]] , dim = 210 cell rep = phi[[3, 2, 1],[1]]+phi[[3, 1, 1],[2]]+phi[[3, 2],[1, 1]]+phi[[3, 1],[2, 1]] TII depth = 3 TII multiplicity polynomial = 91*X^4+70*X^2+49*X TII subcells: tii[26,1] := {107, 393, 417, 544} tii[26,2] := {138, 378, 511, 551} tii[26,3] := {321, 552} tii[26,4] := {174, 175} tii[26,5] := {154, 337, 463, 523} tii[26,6] := {277, 278} tii[26,7] := {74, 219, 454, 455} tii[26,8] := {191, 429, 476, 538} tii[26,9] := {65, 330, 450, 451} tii[26,10] := {375, 548} tii[26,11] := {384} tii[26,12] := {441} tii[26,13] := {206, 312, 501, 545} tii[26,14] := {315, 316} tii[26,15] := {252, 445, 474, 531} tii[26,16] := {153, 255, 524, 525} tii[26,17] := {150, 354, 470, 471} tii[26,18] := {424, 540} tii[26,19] := {201, 202, 541, 542} tii[26,20] := {404} tii[26,21] := {247, 550} tii[26,22] := {462} tii[26,23] := {314, 399, 510, 547} tii[26,24] := {469, 520} tii[26,25] := {251, 353, 532, 533} tii[26,26] := {403} tii[26,27] := {299, 546} tii[26,28] := {461} tii[26,29] := {506, 543} tii[26,30] := {527} tii[26,31] := {6, 55, 238, 239} tii[26,32] := {19, 72, 341, 342} tii[26,33] := {44, 281, 311, 494} tii[26,34] := {41, 212, 386, 488} tii[26,35] := {62, 435} tii[26,36] := {115, 482} tii[26,37] := {14, 87, 297, 298} tii[26,38] := {123, 124} tii[26,39] := {73, 343, 369, 526} tii[26,40] := {217, 218} tii[26,41] := {7, 126, 235, 356} tii[26,42] := {43, 163, 409, 410} tii[26,43] := {35, 111, 397, 398} tii[26,44] := {85, 86} tii[26,45] := {40, 270, 406, 407} tii[26,46] := {51, 289, 310, 502} tii[26,47] := {12, 165, 290, 402} tii[26,48] := {64, 269, 437, 519} tii[26,49] := {329} tii[26,50] := {121, 122} tii[26,51] := {96, 478} tii[26,52] := {29, 246, 334, 460} tii[26,53] := {391} tii[26,54] := {162} tii[26,55] := {159, 515} tii[26,56] := {58, 155, 443, 444} tii[26,57] := {192, 193} tii[26,58] := {70, 140, 456, 457} tii[26,59] := {98, 327, 479, 539} tii[26,60] := {36, 198, 394, 485} tii[26,61] := {146, 147} tii[26,62] := {63, 234, 376, 377} tii[26,63] := {99, 100, 491, 492} tii[26,64] := {288} tii[26,65] := {142, 513} tii[26,66] := {187} tii[26,67] := {75, 266, 438, 528} tii[26,68] := {132, 517} tii[26,69] := {209, 536} tii[26,70] := {364} tii[26,71] := {197, 534} tii[26,72] := {94, 172, 427, 428} tii[26,73] := {224} tii[26,74] := {129, 468} tii[26,75] := {180} tii[26,76] := {265, 549} tii[26,77] := {308} tii[26,78] := {368} tii[26,79] := {25, 130, 236, 237} tii[26,80] := {127, 128} tii[26,81] := {112, 279, 422, 493} tii[26,82] := {59, 157, 339, 340} tii[26,83] := {15, 173, 179, 300} tii[26,84] := {170, 171} tii[26,85] := {102, 328, 385, 487} tii[26,86] := {80, 225, 367, 464} tii[26,87] := {24, 223, 226, 347} tii[26,88] := {143, 434} tii[26,89] := {216} tii[26,90] := {49, 273, 307, 413} tii[26,91] := {210, 481} tii[26,92] := {108, 195, 495, 496} tii[26,93] := {8, 125, 240, 241} tii[26,94] := {93, 207, 395, 396} tii[26,95] := {253, 254} tii[26,96] := {145, 383, 436, 518} tii[26,97] := {148, 149, 521, 522} tii[26,98] := {60, 260, 338, 446} tii[26,99] := {13, 169, 285, 286} tii[26,100] := {227, 228} tii[26,101] := {52, 168, 418, 419} tii[26,102] := {101, 296, 425, 426} tii[26,103] := {204, 205} tii[26,104] := {350} tii[26,105] := {199, 477} tii[26,106] := {188, 537} tii[26,107] := {30, 215, 361, 362} tii[26,108] := {113, 325, 387, 497} tii[26,109] := {274} tii[26,110] := {249} tii[26,111] := {267, 514} tii[26,112] := {416} tii[26,113] := {105, 106, 489, 490} tii[26,114] := {22, 220, 345, 346} tii[26,115] := {257, 512} tii[26,116] := {287} tii[26,117] := {139, 233, 472, 473} tii[26,118] := {331} tii[26,119] := {136, 516} tii[26,120] := {242} tii[26,121] := {322, 535} tii[26,122] := {183, 505} tii[26,123] := {363} tii[26,124] := {47, 272, 411, 412} tii[26,125] := {90, 483} tii[26,126] := {420} tii[26,127] := {137, 264, 370, 371} tii[26,128] := {262, 263} tii[26,129] := {203, 405, 433, 507} tii[26,130] := {95, 313, 320, 423} tii[26,131] := {261, 449} tii[26,132] := {309} tii[26,133] := {158, 355, 382, 475} tii[26,134] := {326, 500} tii[26,135] := {194, 295, 508, 509} tii[26,136] := {61, 256, 373, 374} tii[26,137] := {317, 486} tii[26,138] := {349} tii[26,139] := {358} tii[26,140] := {244, 530} tii[26,141] := {379, 529} tii[26,142] := {114, 304, 431, 432} tii[26,143] := {302} tii[26,144] := {415} tii[26,145] := {189, 504} tii[26,146] := {466} tii[26,147] := {372, 448} tii[26,148] := {357} tii[26,149] := {430, 499} tii[26,150] := {503} tii[26,151] := {0, 34, 181, 182} tii[26,152] := {5, 33, 231, 232} tii[26,153] := {18, 276} tii[26,154] := {2, 84, 176, 301} tii[26,155] := {53, 54} tii[26,156] := {4, 118, 230, 348} tii[26,157] := {81, 82} tii[26,158] := {32, 229, 250, 465} tii[26,159] := {11, 50, 293, 294} tii[26,160] := {17, 185, 275, 414} tii[26,161] := {117} tii[26,162] := {28, 336} tii[26,163] := {10, 97, 282, 401} tii[26,164] := {68, 69} tii[26,165] := {42, 389} tii[26,166] := {92} tii[26,167] := {27, 160, 333, 459} tii[26,168] := {57} tii[26,169] := {1, 83, 177, 178} tii[26,170] := {166, 167} tii[26,171] := {23, 79, 351, 352} tii[26,172] := {3, 120, 221, 222} tii[26,173] := {31, 119, 365, 366} tii[26,174] := {214} tii[26,175] := {48, 392} tii[26,176] := {16, 161, 305, 306} tii[26,177] := {21, 144, 344, 447} tii[26,178] := {9, 164, 283, 284} tii[26,179] := {103, 104} tii[26,180] := {66, 67, 452, 453} tii[26,181] := {271} tii[26,182] := {71, 440} tii[26,183] := {91, 484} tii[26,184] := {135} tii[26,185] := {26, 213, 359, 360} tii[26,186] := {46, 211, 390, 498} tii[26,187] := {56, 442} tii[26,188] := {89} tii[26,189] := {20, 141, 258, 259} tii[26,190] := {243} tii[26,191] := {109, 480} tii[26,192] := {45, 184, 323, 324} tii[26,193] := {131} tii[26,194] := {88, 421} tii[26,195] := {39, 116, 291, 292} tii[26,196] := {78, 335} tii[26,197] := {38, 200, 280, 400} tii[26,198] := {151, 152} tii[26,199] := {110, 388} tii[26,200] := {77, 268, 332, 458} tii[26,201] := {190} tii[26,202] := {134} tii[26,203] := {37, 196, 318, 319} tii[26,204] := {303} tii[26,205] := {156, 439} tii[26,206] := {76, 245, 380, 381} tii[26,207] := {186} tii[26,208] := {133, 467} tii[26,209] := {208, 408} tii[26,210] := {248} cell#73 , |C| = 126 special orbit = [6, 2, 2, 2, 2] special rep = [[3, 1, 1], [1, 1]] , dim = 126 cell rep = phi[[3, 1, 1],[1, 1]] TII depth = 4 TII multiplicity polynomial = 126*X TII subcells: tii[24,1] := {125} tii[24,2] := {118} tii[24,3] := {122} tii[24,4] := {101} tii[24,5] := {107} tii[24,6] := {121} tii[24,7] := {66} tii[24,8] := {25} tii[24,9] := {59} tii[24,10] := {123} tii[24,11] := {88} tii[24,12] := {109} tii[24,13] := {11} tii[24,14] := {119} tii[24,15] := {65} tii[24,16] := {113} tii[24,17] := {38} tii[24,18] := {112} tii[24,19] := {78} tii[24,20] := {104} tii[24,21] := {93} tii[24,22] := {23} tii[24,23] := {98} tii[24,24] := {58} tii[24,25] := {73} tii[24,26] := {36} tii[24,27] := {60} tii[24,28] := {108} tii[24,29] := {76} tii[24,30] := {92} tii[24,31] := {105} tii[24,32] := {8} tii[24,33] := {124} tii[24,34] := {87} tii[24,35] := {30} tii[24,36] := {120} tii[24,37] := {96} tii[24,38] := {117} tii[24,39] := {64} tii[24,40] := {81} tii[24,41] := {18} tii[24,42] := {50} tii[24,43] := {27} tii[24,44] := {63} tii[24,45] := {77} tii[24,46] := {111} tii[24,47] := {90} tii[24,48] := {52} tii[24,49] := {103} tii[24,50] := {97} tii[24,51] := {99} tii[24,52] := {67} tii[24,53] := {80} tii[24,54] := {116} tii[24,55] := {34} tii[24,56] := {69} tii[24,57] := {86} tii[24,58] := {48} tii[24,59] := {71} tii[24,60] := {68} tii[24,61] := {114} tii[24,62] := {89} tii[24,63] := {100} tii[24,64] := {91} tii[24,65] := {106} tii[24,66] := {115} tii[24,67] := {31} tii[24,68] := {47} tii[24,69] := {16} tii[24,70] := {28} tii[24,71] := {29} tii[24,72] := {42} tii[24,73] := {6} tii[24,74] := {110} tii[24,75] := {46} tii[24,76] := {15} tii[24,77] := {14} tii[24,78] := {95} tii[24,79] := {56} tii[24,80] := {22} tii[24,81] := {84} tii[24,82] := {26} tii[24,83] := {75} tii[24,84] := {37} tii[24,85] := {40} tii[24,86] := {61} tii[24,87] := {74} tii[24,88] := {45} tii[24,89] := {1} tii[24,90] := {94} tii[24,91] := {4} tii[24,92] := {55} tii[24,93] := {5} tii[24,94] := {83} tii[24,95] := {10} tii[24,96] := {79} tii[24,97] := {12} tii[24,98] := {54} tii[24,99] := {20} tii[24,100] := {102} tii[24,101] := {21} tii[24,102] := {41} tii[24,103] := {53} tii[24,104] := {57} tii[24,105] := {24} tii[24,106] := {82} tii[24,107] := {39} tii[24,108] := {72} tii[24,109] := {0} tii[24,110] := {2} tii[24,111] := {3} tii[24,112] := {7} tii[24,113] := {9} tii[24,114] := {13} tii[24,115] := {44} tii[24,116] := {17} tii[24,117] := {33} tii[24,118] := {43} tii[24,119] := {49} tii[24,120] := {19} tii[24,121] := {70} tii[24,122] := {32} tii[24,123] := {62} tii[24,124] := {35} tii[24,125] := {51} tii[24,126] := {85} cell#74 , |C| = 126 special orbit = [6, 2, 2, 2, 2] special rep = [[3, 1, 1], [1, 1]] , dim = 126 cell rep = phi[[3, 1, 1],[1, 1]] TII depth = 4 TII multiplicity polynomial = 126*X TII subcells: tii[24,1] := {76} tii[24,2] := {107} tii[24,3] := {123} tii[24,4] := {115} tii[24,5] := {125} tii[24,6] := {124} tii[24,7] := {18} tii[24,8] := {22} tii[24,9] := {21} tii[24,10] := {56} tii[24,11] := {28} tii[24,12] := {91} tii[24,13] := {34} tii[24,14] := {40} tii[24,15] := {41} tii[24,16] := {117} tii[24,17] := {31} tii[24,18] := {54} tii[24,19] := {55} tii[24,20] := {71} tii[24,21] := {83} tii[24,22] := {50} tii[24,23] := {110} tii[24,24] := {46} tii[24,25] := {64} tii[24,26] := {65} tii[24,27] := {79} tii[24,28] := {95} tii[24,29] := {63} tii[24,30] := {78} tii[24,31] := {42} tii[24,32] := {51} tii[24,33] := {58} tii[24,34] := {59} tii[24,35] := {47} tii[24,36] := {74} tii[24,37] := {75} tii[24,38] := {90} tii[24,39] := {77} tii[24,40] := {101} tii[24,41] := {69} tii[24,42] := {66} tii[24,43] := {86} tii[24,44] := {85} tii[24,45] := {94} tii[24,46] := {93} tii[24,47] := {120} tii[24,48] := {98} tii[24,49] := {106} tii[24,50] := {108} tii[24,51] := {109} tii[24,52] := {82} tii[24,53] := {96} tii[24,54] := {118} tii[24,55] := {88} tii[24,56] := {87} tii[24,57] := {103} tii[24,58] := {104} tii[24,59] := {113} tii[24,60] := {116} tii[24,61] := {119} tii[24,62] := {100} tii[24,63] := {111} tii[24,64] := {122} tii[24,65] := {114} tii[24,66] := {121} tii[24,67] := {0} tii[24,68] := {12} tii[24,69] := {1} tii[24,70] := {11} tii[24,71] := {2} tii[24,72] := {6} tii[24,73] := {3} tii[24,74] := {26} tii[24,75] := {27} tii[24,76] := {4} tii[24,77] := {17} tii[24,78] := {38} tii[24,79] := {39} tii[24,80] := {10} tii[24,81] := {53} tii[24,82] := {7} tii[24,83] := {32} tii[24,84] := {33} tii[24,85] := {15} tii[24,86] := {44} tii[24,87] := {29} tii[24,88] := {57} tii[24,89] := {5} tii[24,90] := {72} tii[24,91] := {25} tii[24,92] := {73} tii[24,93] := {8} tii[24,94] := {89} tii[24,95] := {16} tii[24,96] := {92} tii[24,97] := {13} tii[24,98] := {48} tii[24,99] := {49} tii[24,100] := {105} tii[24,101] := {23} tii[24,102] := {62} tii[24,103] := {43} tii[24,104] := {84} tii[24,105] := {19} tii[24,106] := {97} tii[24,107] := {35} tii[24,108] := {60} tii[24,109] := {9} tii[24,110] := {37} tii[24,111] := {14} tii[24,112] := {24} tii[24,113] := {20} tii[24,114] := {68} tii[24,115] := {67} tii[24,116] := {36} tii[24,117] := {81} tii[24,118] := {61} tii[24,119] := {102} tii[24,120] := {30} tii[24,121] := {112} tii[24,122] := {52} tii[24,123] := {80} tii[24,124] := {45} tii[24,125] := {70} tii[24,126] := {99} cell#75 , |C| = 553 special orbit = [6, 4, 2, 2] special rep = [[3, 1], [2, 1]] , dim = 210 cell rep = phi[[3, 2, 1],[1]]+phi[[3, 1, 1],[2]]+phi[[3, 2],[1, 1]]+phi[[3, 1],[2, 1]] TII depth = 3 TII multiplicity polynomial = 91*X^4+70*X^2+49*X TII subcells: tii[26,1] := {239, 250, 525, 552} tii[26,2] := {147, 307, 488, 551} tii[26,3] := {345, 548} tii[26,4] := {114, 348} tii[26,5] := {305, 313, 500, 549} tii[26,6] := {204, 325} tii[26,7] := {272, 293, 423, 526} tii[26,8] := {206, 367, 445, 543} tii[26,9] := {186, 283, 312, 484} tii[26,10] := {406, 538} tii[26,11] := {339} tii[26,12] := {416} tii[26,13] := {366, 373, 517, 545} tii[26,14] := {203, 324} tii[26,15] := {271, 394, 422, 529} tii[26,16] := {392, 410, 489, 537} tii[26,17] := {156, 284, 404, 483} tii[26,18] := {454, 520} tii[26,19] := {365, 449, 452, 524} tii[26,20] := {338} tii[26,21] := {407, 496} tii[26,22] := {415} tii[26,23] := {330, 427, 466, 544} tii[26,24] := {493, 527} tii[26,25] := {266, 380, 490, 532} tii[26,26] := {428} tii[26,27] := {321, 522} tii[26,28] := {477} tii[26,29] := {518, 542} tii[26,30] := {528} tii[26,31] := {1, 25, 174, 409} tii[26,32] := {12, 13, 269, 385} tii[26,33] := {123, 133, 468, 541} tii[26,34] := {42, 130, 372, 513} tii[26,35] := {55, 401} tii[26,36] := {110, 460} tii[26,37] := {6, 51, 237, 455} tii[26,38] := {67, 287} tii[26,39] := {181, 190, 501, 550} tii[26,40] := {145, 259} tii[26,41] := {20, 70, 306, 475} tii[26,42] := {205, 226, 368, 502} tii[26,43] := {34, 35, 332, 436} tii[26,44] := {48, 225} tii[26,45] := {128, 218, 248, 441} tii[26,46] := {129, 138, 469, 547} tii[26,47] := {39, 50, 369, 504} tii[26,48] := {56, 188, 405, 535} tii[26,49] := {279} tii[26,50] := {75, 172} tii[26,51] := {99, 451} tii[26,52] := {82, 85, 426, 531} tii[26,53] := {360} tii[26,54] := {136} tii[26,55] := {170, 497} tii[26,56] := {71, 72, 393, 476} tii[26,57] := {93, 197} tii[26,58] := {267, 288, 395, 487} tii[26,59] := {100, 247, 453, 546} tii[26,60] := {31, 125, 334, 503} tii[26,61] := {52, 141} tii[26,62] := {79, 189, 282, 391} tii[26,63] := {238, 337, 342, 464} tii[26,64] := {215} tii[26,65] := {154, 492} tii[26,66] := {108} tii[26,67] := {57, 191, 413, 530} tii[26,68] := {286, 417} tii[26,69] := {232, 523} tii[26,70] := {301} tii[26,71] := {213, 519} tii[26,72] := {122, 220, 336, 444} tii[26,73] := {256} tii[26,74] := {163, 419} tii[26,75] := {196} tii[26,76] := {297, 539} tii[26,77] := {326} tii[26,78] := {390} tii[26,79] := {19, 90, 175, 408} tii[26,80] := {87, 292} tii[26,81] := {243, 251, 467, 540} tii[26,82] := {73, 74, 268, 384} tii[26,83] := {45, 117, 240, 433} tii[26,84] := {124, 235} tii[26,85] := {102, 249, 344, 512} tii[26,86] := {187, 195, 424, 534} tii[26,87] := {78, 89, 308, 472} tii[26,88] := {155, 400} tii[26,89] := {194} tii[26,90] := {132, 137, 374, 507} tii[26,91] := {233, 459} tii[26,92] := {331, 349, 446, 516} tii[26,93] := {59, 178, 179, 383} tii[26,94] := {120, 121, 333, 434} tii[26,95] := {146, 261} tii[26,96] := {158, 311, 402, 533} tii[26,97] := {304, 399, 403, 499} tii[26,98] := {69, 184, 274, 471} tii[26,99] := {98, 115, 245, 430} tii[26,100] := {149, 263} tii[26,101] := {216, 236, 371, 514} tii[26,102] := {101, 219, 343, 443} tii[26,103] := {95, 202} tii[26,104] := {280} tii[26,105] := {214, 450} tii[26,106] := {347, 461} tii[26,107] := {159, 169, 315, 479} tii[26,108] := {105, 253, 354, 506} tii[26,109] := {230} tii[26,110] := {168} tii[26,111] := {300, 495} tii[26,112] := {361} tii[26,113] := {242, 340, 346, 465} tii[26,114] := {88, 153, 185, 379} tii[26,115] := {277, 491} tii[26,116] := {318} tii[26,117] := {148, 258, 397, 486} tii[26,118] := {290} tii[26,119] := {291, 418} tii[26,120] := {260} tii[26,121] := {357, 521} tii[26,122] := {198, 462} tii[26,123] := {387} tii[26,124] := {131, 229, 254, 440} tii[26,125] := {234, 363} tii[26,126] := {442} tii[26,127] := {176, 177, 270, 382} tii[26,128] := {150, 265} tii[26,129] := {217, 341, 370, 511} tii[26,130] := {116, 210, 244, 429} tii[26,131] := {278, 398} tii[26,132] := {231} tii[26,133] := {160, 294, 314, 478} tii[26,134] := {359, 458} tii[26,135] := {207, 320, 448, 515} tii[26,136] := {66, 151, 276, 378} tii[26,137] := {335, 447} tii[26,138] := {377} tii[26,139] := {289} tii[26,140] := {262, 498} tii[26,141] := {414, 494} tii[26,142] := {103, 228, 355, 439} tii[26,143] := {323} tii[26,144] := {438} tii[26,145] := {199, 463} tii[26,146] := {482} tii[26,147] := {396, 470} tii[26,148] := {381} tii[26,149] := {457, 505} tii[26,150] := {510} tii[26,151] := {0, 10, 139, 353} tii[26,152] := {2, 3, 182, 302} tii[26,153] := {8, 255} tii[26,154] := {7, 33, 241, 435} tii[26,155] := {22, 164} tii[26,156] := {16, 24, 309, 473} tii[26,157] := {37, 113} tii[26,158] := {80, 86, 425, 536} tii[26,159] := {4, 5, 208, 328} tii[26,160] := {44, 46, 375, 508} tii[26,161] := {84} tii[26,162] := {11, 298} tii[26,163] := {9, 38, 246, 432} tii[26,164] := {15, 65} tii[26,165] := {28, 352} tii[26,166] := {47} tii[26,167] := {21, 83, 316, 481} tii[26,168] := {64} tii[26,169] := {27, 118, 119, 322} tii[26,170] := {94, 200} tii[26,171] := {17, 18, 273, 389} tii[26,172] := {54, 68, 183, 376} tii[26,173] := {157, 173, 310, 485} tii[26,174] := {167} tii[26,175] := {30, 358} tii[26,176] := {104, 109, 252, 437} tii[26,177] := {14, 77, 275, 474} tii[26,178] := {49, 97, 126, 317} tii[26,179] := {26, 92} tii[26,180] := {180, 281, 285, 421} tii[26,181] := {222} tii[26,182] := {60, 412} tii[26,183] := {224, 362} tii[26,184] := {62} tii[26,185] := {81, 165, 192, 386} tii[26,186] := {29, 135, 356, 509} tii[26,187] := {171, 303} tii[26,188] := {91} tii[26,189] := {23, 76, 152, 257} tii[26,190] := {162} tii[26,191] := {106, 456} tii[26,192] := {43, 134, 227, 327} tii[26,193] := {140} tii[26,194] := {112, 364} tii[26,195] := {40, 41, 209, 329} tii[26,196] := {63, 299} tii[26,197] := {36, 127, 211, 431} tii[26,198] := {53, 144} tii[26,199] := {107, 351} tii[26,200] := {61, 193, 296, 480} tii[26,201] := {111} tii[26,202] := {143} tii[26,203] := {32, 96, 212, 319} tii[26,204] := {223} tii[26,205] := {161, 411} tii[26,206] := {58, 166, 295, 388} tii[26,207] := {201} tii[26,208] := {142, 420} tii[26,209] := {221, 350} tii[26,210] := {264} cell#76 , |C| = 105 special orbit = [6, 4, 4] special rep = [[3, 2], [2]] , dim = 105 cell rep = phi[[3, 2],[2]] TII depth = 4 TII multiplicity polynomial = 105*X TII subcells: tii[27,1] := {104} tii[27,2] := {93} tii[27,3] := {63} tii[27,4] := {46} tii[27,5] := {98} tii[27,6] := {84} tii[27,7] := {29} tii[27,8] := {76} tii[27,9] := {48} tii[27,10] := {71} tii[27,11] := {32} tii[27,12] := {101} tii[27,13] := {96} tii[27,14] := {74} tii[27,15] := {75} tii[27,16] := {86} tii[27,17] := {85} tii[27,18] := {103} tii[27,19] := {22} tii[27,20] := {45} tii[27,21] := {88} tii[27,22] := {83} tii[27,23] := {102} tii[27,24] := {94} tii[27,25] := {49} tii[27,26] := {99} tii[27,27] := {66} tii[27,28] := {58} tii[27,29] := {92} tii[27,30] := {68} tii[27,31] := {81} tii[27,32] := {40} tii[27,33] := {15} tii[27,34] := {16} tii[27,35] := {52} tii[27,36] := {8} tii[27,37] := {35} tii[27,38] := {59} tii[27,39] := {42} tii[27,40] := {17} tii[27,41] := {91} tii[27,42] := {21} tii[27,43] := {62} tii[27,44] := {31} tii[27,45] := {77} tii[27,46] := {23} tii[27,47] := {70} tii[27,48] := {34} tii[27,49] := {12} tii[27,50] := {97} tii[27,51] := {78} tii[27,52] := {50} tii[27,53] := {27} tii[27,54] := {67} tii[27,55] := {89} tii[27,56] := {57} tii[27,57] := {73} tii[27,58] := {19} tii[27,59] := {65} tii[27,60] := {9} tii[27,61] := {30} tii[27,62] := {55} tii[27,63] := {43} tii[27,64] := {10} tii[27,65] := {80} tii[27,66] := {20} tii[27,67] := {87} tii[27,68] := {100} tii[27,69] := {3} tii[27,70] := {36} tii[27,71] := {61} tii[27,72] := {37} tii[27,73] := {95} tii[27,74] := {13} tii[27,75] := {53} tii[27,76] := {54} tii[27,77] := {79} tii[27,78] := {44} tii[27,79] := {64} tii[27,80] := {60} tii[27,81] := {90} tii[27,82] := {11} tii[27,83] := {33} tii[27,84] := {26} tii[27,85] := {56} tii[27,86] := {38} tii[27,87] := {72} tii[27,88] := {2} tii[27,89] := {6} tii[27,90] := {28} tii[27,91] := {18} tii[27,92] := {1} tii[27,93] := {7} tii[27,94] := {24} tii[27,95] := {47} tii[27,96] := {41} tii[27,97] := {4} tii[27,98] := {69} tii[27,99] := {51} tii[27,100] := {14} tii[27,101] := {82} tii[27,102] := {39} tii[27,103] := {0} tii[27,104] := {5} tii[27,105] := {25} cell#77 , |C| = 245 special orbit = [4, 4, 4, 2] special rep = [[2, 2], [2, 1]] , dim = 140 cell rep = phi[[2, 2, 1],[2]]+phi[[2, 2],[2, 1]] TII depth = 4 TII multiplicity polynomial = 105*X^2+35*X TII subcells: tii[18,1] := {176, 241} tii[18,2] := {92, 173} tii[18,3] := {202, 235} tii[18,4] := {189, 190} tii[18,5] := {152, 207} tii[18,6] := {221, 242} tii[18,7] := {225, 226} tii[18,8] := {199} tii[18,9] := {222} tii[18,10] := {233, 244} tii[18,11] := {239, 240} tii[18,12] := {243} tii[18,13] := {29, 123} tii[18,14] := {90, 211} tii[18,15] := {12, 113} tii[18,16] := {61, 144} tii[18,17] := {52, 154} tii[18,18] := {163, 164} tii[18,19] := {31, 85} tii[18,20] := {120, 227} tii[18,21] := {38, 161} tii[18,22] := {73, 198} tii[18,23] := {78, 182} tii[18,24] := {91, 155} tii[18,25] := {150, 237} tii[18,26] := {191, 192} tii[18,27] := {93, 209} tii[18,28] := {77, 132} tii[18,29] := {146} tii[18,30] := {103} tii[18,31] := {138, 229} tii[18,32] := {177} tii[18,33] := {200, 201} tii[18,34] := {218} tii[18,35] := {25, 79} tii[18,36] := {82, 122} tii[18,37] := {55, 115} tii[18,38] := {151, 210} tii[18,39] := {65, 129} tii[18,40] := {109, 171} tii[18,41] := {49, 50} tii[18,42] := {112, 153} tii[18,43] := {121, 183} tii[18,44] := {66, 145} tii[18,45] := {24, 83} tii[18,46] := {179, 224} tii[18,47] := {174} tii[18,48] := {124, 184} tii[18,49] := {212, 213} tii[18,50] := {97, 98} tii[18,51] := {111, 162} tii[18,52] := {40, 116} tii[18,53] := {203} tii[18,54] := {170, 214} tii[18,55] := {139, 140} tii[18,56] := {134} tii[18,57] := {127, 128} tii[18,58] := {147} tii[18,59] := {219, 220} tii[18,60] := {119} tii[18,61] := {168, 169} tii[18,62] := {230} tii[18,63] := {178} tii[18,64] := {205} tii[18,65] := {143, 181} tii[18,66] := {142, 188} tii[18,67] := {204, 236} tii[18,68] := {156, 208} tii[18,69] := {165} tii[18,70] := {197, 228} tii[18,71] := {231, 232} tii[18,72] := {185, 186} tii[18,73] := {175} tii[18,74] := {238} tii[18,75] := {215, 216} tii[18,76] := {234} tii[18,77] := {5, 84} tii[18,78] := {4, 80} tii[18,79] := {15, 99} tii[18,80] := {3, 47} tii[18,81] := {14, 57} tii[18,82] := {20, 130} tii[18,83] := {7, 68} tii[18,84] := {45, 172} tii[18,85] := {37, 160} tii[18,86] := {28, 67} tii[18,87] := {74, 196} tii[18,88] := {44} tii[18,89] := {26, 27} tii[18,90] := {39, 114} tii[18,91] := {9, 76} tii[18,92] := {32, 131} tii[18,93] := {11, 53} tii[18,94] := {63, 64} tii[18,95] := {21, 86} tii[18,96] := {17, 102} tii[18,97] := {107, 108} tii[18,98] := {62, 187} tii[18,99] := {51, 101} tii[18,100] := {117} tii[18,101] := {94, 95} tii[18,102] := {8, 30} tii[18,103] := {22, 135} tii[18,104] := {72} tii[18,105] := {136, 137} tii[18,106] := {110, 217} tii[18,107] := {149} tii[18,108] := {88} tii[18,109] := {16, 59} tii[18,110] := {180} tii[18,111] := {46} tii[18,112] := {125, 126} tii[18,113] := {166, 167} tii[18,114] := {118} tii[18,115] := {206} tii[18,116] := {19, 48} tii[18,117] := {56, 100} tii[18,118] := {34, 69} tii[18,119] := {18, 54} tii[18,120] := {96, 159} tii[18,121] := {81, 133} tii[18,122] := {41, 104} tii[18,123] := {33, 87} tii[18,124] := {106} tii[18,125] := {141, 195} tii[18,126] := {75} tii[18,127] := {157, 158} tii[18,128] := {148} tii[18,129] := {70, 71} tii[18,130] := {193, 194} tii[18,131] := {89} tii[18,132] := {223} tii[18,133] := {0, 36} tii[18,134] := {1, 58} tii[18,135] := {2, 13} tii[18,136] := {10, 105} tii[18,137] := {6, 35} tii[18,138] := {23} tii[18,139] := {42, 43} tii[18,140] := {60} cell#78 , |C| = 126 special orbit = [6, 2, 2, 2, 2] special rep = [[3, 1, 1], [1, 1]] , dim = 126 cell rep = phi[[3, 1, 1],[1, 1]] TII depth = 4 TII multiplicity polynomial = 126*X TII subcells: tii[24,1] := {125} tii[24,2] := {124} tii[24,3] := {118} tii[24,4] := {112} tii[24,5] := {92} tii[24,6] := {58} tii[24,7] := {66} tii[24,8] := {55} tii[24,9] := {33} tii[24,10] := {122} tii[24,11] := {83} tii[24,12] := {120} tii[24,13] := {74} tii[24,14] := {117} tii[24,15] := {89} tii[24,16] := {108} tii[24,17] := {37} tii[24,18] := {109} tii[24,19] := {82} tii[24,20] := {96} tii[24,21] := {113} tii[24,22] := {91} tii[24,23] := {93} tii[24,24] := {32} tii[24,25] := {102} tii[24,26] := {71} tii[24,27] := {87} tii[24,28] := {76} tii[24,29] := {48} tii[24,30] := {61} tii[24,31] := {99} tii[24,32] := {54} tii[24,33] := {123} tii[24,34] := {105} tii[24,35] := {21} tii[24,36] := {119} tii[24,37] := {98} tii[24,38] := {111} tii[24,39] := {116} tii[24,40] := {100} tii[24,41] := {72} tii[24,42] := {17} tii[24,43] := {53} tii[24,44] := {84} tii[24,45] := {104} tii[24,46] := {121} tii[24,47] := {75} tii[24,48] := {68} tii[24,49] := {115} tii[24,50] := {97} tii[24,51] := {59} tii[24,52] := {31} tii[24,53] := {43} tii[24,54] := {110} tii[24,55] := {90} tii[24,56] := {4} tii[24,57] := {101} tii[24,58] := {70} tii[24,59] := {86} tii[24,60] := {63} tii[24,61] := {40} tii[24,62] := {16} tii[24,63] := {25} tii[24,64] := {78} tii[24,65] := {28} tii[24,66] := {42} tii[24,67] := {9} tii[24,68] := {50} tii[24,69] := {15} tii[24,70] := {34} tii[24,71] := {8} tii[24,72] := {20} tii[24,73] := {30} tii[24,74] := {107} tii[24,75] := {73} tii[24,76] := {13} tii[24,77] := {38} tii[24,78] := {94} tii[24,79] := {65} tii[24,80] := {23} tii[24,81] := {80} tii[24,82] := {7} tii[24,83] := {77} tii[24,84] := {49} tii[24,85] := {19} tii[24,86] := {62} tii[24,87] := {45} tii[24,88] := {106} tii[24,89] := {47} tii[24,90] := {114} tii[24,91] := {57} tii[24,92] := {88} tii[24,93] := {27} tii[24,94] := {103} tii[24,95] := {41} tii[24,96] := {81} tii[24,97] := {12} tii[24,98] := {85} tii[24,99] := {56} tii[24,100] := {95} tii[24,101] := {22} tii[24,102] := {69} tii[24,103] := {52} tii[24,104] := {64} tii[24,105] := {6} tii[24,106] := {79} tii[24,107] := {18} tii[24,108] := {44} tii[24,109] := {29} tii[24,110] := {39} tii[24,111] := {14} tii[24,112] := {24} tii[24,113] := {3} tii[24,114] := {36} tii[24,115] := {67} tii[24,116] := {10} tii[24,117] := {51} tii[24,118] := {35} tii[24,119] := {46} tii[24,120] := {2} tii[24,121] := {60} tii[24,122] := {5} tii[24,123] := {26} tii[24,124] := {0} tii[24,125] := {1} tii[24,126] := {11} cell#79 , |C| = 315 special orbit = [4, 4, 2, 2, 2] special rep = [[2, 1, 1], [2, 1]] , dim = 210 cell rep = phi[[2, 2, 1],[1, 1]]+phi[[2, 1, 1],[2, 1]] TII depth = 4 TII multiplicity polynomial = 105*X^2+105*X TII subcells: tii[16,1] := {291, 307} tii[16,2] := {302} tii[16,3] := {273, 309} tii[16,4] := {210, 314} tii[16,5] := {252} tii[16,6] := {293} tii[16,7] := {91, 139} tii[16,8] := {118} tii[16,9] := {70, 150} tii[16,10] := {268, 295} tii[16,11] := {129, 181} tii[16,12] := {116, 203} tii[16,13] := {282} tii[16,14] := {202, 246} tii[16,15] := {159} tii[16,16] := {136} tii[16,17] := {185} tii[16,18] := {278, 287} tii[16,19] := {170, 220} tii[16,20] := {130, 305} tii[16,21] := {253} tii[16,22] := {201} tii[16,23] := {250, 265} tii[16,24] := {197, 251} tii[16,25] := {135} tii[16,26] := {243, 274} tii[16,27] := {184} tii[16,28] := {283} tii[16,29] := {235} tii[16,30] := {258} tii[16,31] := {90, 221} tii[16,32] := {105, 195} tii[16,33] := {117} tii[16,34] := {78, 240} tii[16,35] := {239, 277} tii[16,36] := {177} tii[16,37] := {227} tii[16,38] := {149, 234} tii[16,39] := {260, 298} tii[16,40] := {128, 257} tii[16,41] := {270, 297} tii[16,42] := {171, 312} tii[16,43] := {49, 271} tii[16,44] := {198, 248} tii[16,45] := {158} tii[16,46] := {229, 280} tii[16,47] := {151, 281} tii[16,48] := {94} tii[16,49] := {217} tii[16,50] := {216} tii[16,51] := {241, 289} tii[16,52] := {208, 296} tii[16,53] := {140} tii[16,54] := {263} tii[16,55] := {76, 292} tii[16,56] := {249} tii[16,57] := {147, 311} tii[16,58] := {256} tii[16,59] := {196} tii[16,60] := {125, 304} tii[16,61] := {288} tii[16,62] := {222} tii[16,63] := {148, 285} tii[16,64] := {200} tii[16,65] := {244, 300} tii[16,66] := {172, 301} tii[16,67] := {134} tii[16,68] := {183} tii[16,69] := {225, 308} tii[16,70] := {132, 310} tii[16,71] := {173} tii[16,72] := {284} tii[16,73] := {236} tii[16,74] := {223} tii[16,75] := {259} tii[16,76] := {186, 313} tii[16,77] := {247} tii[16,78] := {272} tii[16,79] := {1, 17} tii[16,80] := {36, 69} tii[16,81] := {10} tii[16,82] := {32} tii[16,83] := {6, 34} tii[16,84] := {42, 107} tii[16,85] := {61, 103} tii[16,86] := {19, 43} tii[16,87] := {160, 212} tii[16,88] := {79, 161} tii[16,89] := {27} tii[16,90] := {95} tii[16,91] := {33, 77} tii[16,92] := {38, 84} tii[16,93] := {55} tii[16,94] := {141} tii[16,95] := {51} tii[16,96] := {46} tii[16,97] := {178, 193} tii[16,98] := {65} tii[16,99] := {114, 179} tii[16,100] := {83} tii[16,101] := {168, 211} tii[16,102] := {101} tii[16,103] := {40} tii[16,104] := {146} tii[16,105] := {106, 194} tii[16,106] := {15, 59} tii[16,107] := {58, 115} tii[16,108] := {237, 275} tii[16,109] := {92, 144} tii[16,110] := {28, 238} tii[16,111] := {152, 213} tii[16,112] := {35, 71} tii[16,113] := {176} tii[16,114] := {48} tii[16,115] := {80} tii[16,116] := {204, 262} tii[16,117] := {62, 124} tii[16,118] := {226} tii[16,119] := {85} tii[16,120] := {218, 233} tii[16,121] := {156, 219} tii[16,122] := {44, 112} tii[16,123] := {214} tii[16,124] := {75} tii[16,125] := {96} tii[16,126] := {47, 269} tii[16,127] := {104, 303} tii[16,128] := {111, 175} tii[16,129] := {97} tii[16,130] := {209, 245} tii[16,131] := {261} tii[16,132] := {123} tii[16,133] := {81, 165} tii[16,134] := {86, 286} tii[16,135] := {68} tii[16,136] := {142} tii[16,137] := {164, 228} tii[16,138] := {169, 232} tii[16,139] := {190} tii[16,140] := {63, 279} tii[16,141] := {174} tii[16,142] := {110} tii[16,143] := {99} tii[16,144] := {224} tii[16,145] := {163} tii[16,146] := {102, 294} tii[16,147] := {231} tii[16,148] := {5, 89} tii[16,149] := {60, 188} tii[16,150] := {88, 157} tii[16,151] := {18, 108} tii[16,152] := {26} tii[16,153] := {37, 166} tii[16,154] := {119} tii[16,155] := {54} tii[16,156] := {45} tii[16,157] := {154, 215} tii[16,158] := {23, 155} tii[16,159] := {113, 255} tii[16,160] := {192, 254} tii[16,161] := {64} tii[16,162] := {137} tii[16,163] := {82} tii[16,164] := {167, 276} tii[16,165] := {206, 264} tii[16,166] := {52, 207} tii[16,167] := {100} tii[16,168] := {39} tii[16,169] := {145} tii[16,170] := {126, 267} tii[16,171] := {93, 299} tii[16,172] := {9, 199} tii[16,173] := {131} tii[16,174] := {72} tii[16,175] := {66} tii[16,176] := {180} tii[16,177] := {143, 306} tii[16,178] := {31, 242} tii[16,179] := {182} tii[16,180] := {120} tii[16,181] := {87, 290} tii[16,182] := {189} tii[16,183] := {109} tii[16,184] := {162} tii[16,185] := {98} tii[16,186] := {230} tii[16,187] := {0, 8} tii[16,188] := {2} tii[16,189] := {7, 25} tii[16,190] := {16, 50} tii[16,191] := {4} tii[16,192] := {20, 56} tii[16,193] := {30} tii[16,194] := {14} tii[16,195] := {24, 74} tii[16,196] := {73, 133} tii[16,197] := {12} tii[16,198] := {67} tii[16,199] := {53, 122} tii[16,200] := {121, 187} tii[16,201] := {127, 191} tii[16,202] := {21} tii[16,203] := {3, 153} tii[16,204] := {138} tii[16,205] := {29} tii[16,206] := {13, 205} tii[16,207] := {41} tii[16,208] := {57, 266} tii[16,209] := {11} tii[16,210] := {22} cell#80 , |C| = 189 special orbit = [4, 2, 2, 2, 2, 2] special rep = [[2, 1, 1], [1, 1, 1]] , dim = 105 cell rep = phi[[2, 1, 1, 1],[1, 1]]+phi[[2, 1, 1],[1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 84*X^2+21*X TII subcells: tii[13,1] := {51, 171} tii[13,2] := {59, 187} tii[13,3] := {84, 188} tii[13,4] := {71, 151} tii[13,5] := {78, 179} tii[13,6] := {90, 128} tii[13,7] := {109, 183} tii[13,8] := {97, 165} tii[13,9] := {108, 110} tii[13,10] := {126} tii[13,11] := {119, 158} tii[13,12] := {138} tii[13,13] := {132, 186} tii[13,14] := {152, 178} tii[13,15] := {166} tii[13,16] := {4, 91} tii[13,17] := {11, 98} tii[13,18] := {36, 154} tii[13,19] := {8, 115} tii[13,20] := {44, 180} tii[13,21] := {20, 121} tii[13,22] := {26, 134} tii[13,23] := {10, 135} tii[13,24] := {22, 150} tii[13,25] := {48, 174} tii[13,26] := {27, 142} tii[13,27] := {35, 160} tii[13,28] := {69, 105} tii[13,29] := {14, 137} tii[13,30] := {83, 85} tii[13,31] := {30, 143} tii[13,32] := {38, 156} tii[13,33] := {18, 157} tii[13,34] := {77, 145} tii[13,35] := {102} tii[13,36] := {33, 169} tii[13,37] := {29, 172} tii[13,38] := {66, 184} tii[13,39] := {95, 136} tii[13,40] := {39, 163} tii[13,41] := {65, 67} tii[13,42] := {116} tii[13,43] := {50, 176} tii[13,44] := {82} tii[13,45] := {45, 182} tii[13,46] := {73} tii[13,47] := {55, 177} tii[13,48] := {106, 144} tii[13,49] := {68, 185} tii[13,50] := {123} tii[13,51] := {101} tii[13,52] := {23, 114} tii[13,53] := {53, 131} tii[13,54] := {43, 120} tii[13,55] := {28, 133} tii[13,56] := {46, 149} tii[13,57] := {42, 153} tii[13,58] := {86, 88} tii[13,59] := {87, 173} tii[13,60] := {56, 141} tii[13,61] := {104} tii[13,62] := {61, 167} tii[13,63] := {70, 159} tii[13,64] := {93} tii[13,65] := {74, 162} tii[13,66] := {129, 164} tii[13,67] := {57, 130} tii[13,68] := {89, 175} tii[13,69] := {146} tii[13,70] := {79, 147} tii[13,71] := {117} tii[13,72] := {125} tii[13,73] := {94, 170} tii[13,74] := {113, 181} tii[13,75] := {148} tii[13,76] := {0, 34} tii[13,77] := {1, 72} tii[13,78] := {2, 40} tii[13,79] := {3, 62} tii[13,80] := {5, 58} tii[13,81] := {17, 111} tii[13,82] := {6, 112} tii[13,83] := {7, 80} tii[13,84] := {13, 127} tii[13,85] := {16, 118} tii[13,86] := {19, 155} tii[13,87] := {9, 76} tii[13,88] := {47, 49} tii[13,89] := {64} tii[13,90] := {32, 168} tii[13,91] := {12, 100} tii[13,92] := {25, 140} tii[13,93] := {54} tii[13,94] := {63} tii[13,95] := {15, 96} tii[13,96] := {41, 107} tii[13,97] := {21, 122} tii[13,98] := {60, 124} tii[13,99] := {37, 161} tii[13,100] := {92} tii[13,101] := {81} tii[13,102] := {24, 75} tii[13,103] := {31, 99} tii[13,104] := {52, 139} tii[13,105] := {103} cell#81 , |C| = 126 special orbit = [6, 2, 2, 2, 2] special rep = [[3, 1, 1], [1, 1]] , dim = 126 cell rep = phi[[3, 1, 1],[1, 1]] TII depth = 4 TII multiplicity polynomial = 126*X TII subcells: tii[24,1] := {76} tii[24,2] := {107} tii[24,3] := {123} tii[24,4] := {115} tii[24,5] := {125} tii[24,6] := {124} tii[24,7] := {18} tii[24,8] := {22} tii[24,9] := {21} tii[24,10] := {56} tii[24,11] := {28} tii[24,12] := {91} tii[24,13] := {34} tii[24,14] := {40} tii[24,15] := {41} tii[24,16] := {117} tii[24,17] := {31} tii[24,18] := {54} tii[24,19] := {55} tii[24,20] := {71} tii[24,21] := {83} tii[24,22] := {50} tii[24,23] := {110} tii[24,24] := {46} tii[24,25] := {64} tii[24,26] := {65} tii[24,27] := {79} tii[24,28] := {95} tii[24,29] := {63} tii[24,30] := {78} tii[24,31] := {42} tii[24,32] := {51} tii[24,33] := {58} tii[24,34] := {59} tii[24,35] := {47} tii[24,36] := {74} tii[24,37] := {75} tii[24,38] := {90} tii[24,39] := {77} tii[24,40] := {101} tii[24,41] := {69} tii[24,42] := {66} tii[24,43] := {86} tii[24,44] := {85} tii[24,45] := {94} tii[24,46] := {93} tii[24,47] := {120} tii[24,48] := {98} tii[24,49] := {106} tii[24,50] := {108} tii[24,51] := {109} tii[24,52] := {82} tii[24,53] := {96} tii[24,54] := {118} tii[24,55] := {88} tii[24,56] := {87} tii[24,57] := {103} tii[24,58] := {104} tii[24,59] := {113} tii[24,60] := {116} tii[24,61] := {119} tii[24,62] := {100} tii[24,63] := {111} tii[24,64] := {122} tii[24,65] := {114} tii[24,66] := {121} tii[24,67] := {0} tii[24,68] := {12} tii[24,69] := {1} tii[24,70] := {11} tii[24,71] := {2} tii[24,72] := {6} tii[24,73] := {3} tii[24,74] := {26} tii[24,75] := {27} tii[24,76] := {4} tii[24,77] := {17} tii[24,78] := {38} tii[24,79] := {39} tii[24,80] := {10} tii[24,81] := {53} tii[24,82] := {7} tii[24,83] := {32} tii[24,84] := {33} tii[24,85] := {15} tii[24,86] := {44} tii[24,87] := {29} tii[24,88] := {57} tii[24,89] := {5} tii[24,90] := {72} tii[24,91] := {25} tii[24,92] := {73} tii[24,93] := {8} tii[24,94] := {89} tii[24,95] := {16} tii[24,96] := {92} tii[24,97] := {13} tii[24,98] := {48} tii[24,99] := {49} tii[24,100] := {105} tii[24,101] := {23} tii[24,102] := {62} tii[24,103] := {43} tii[24,104] := {84} tii[24,105] := {19} tii[24,106] := {97} tii[24,107] := {35} tii[24,108] := {60} tii[24,109] := {9} tii[24,110] := {37} tii[24,111] := {14} tii[24,112] := {24} tii[24,113] := {20} tii[24,114] := {68} tii[24,115] := {67} tii[24,116] := {36} tii[24,117] := {81} tii[24,118] := {61} tii[24,119] := {102} tii[24,120] := {30} tii[24,121] := {112} tii[24,122] := {52} tii[24,123] := {80} tii[24,124] := {45} tii[24,125] := {70} tii[24,126] := {99} cell#82 , |C| = 105 special orbit = [6, 4, 4] special rep = [[3, 2], [2]] , dim = 105 cell rep = phi[[3, 2],[2]] TII depth = 4 TII multiplicity polynomial = 105*X TII subcells: tii[27,1] := {104} tii[27,2] := {93} tii[27,3] := {63} tii[27,4] := {46} tii[27,5] := {98} tii[27,6] := {84} tii[27,7] := {29} tii[27,8] := {76} tii[27,9] := {48} tii[27,10] := {71} tii[27,11] := {32} tii[27,12] := {101} tii[27,13] := {96} tii[27,14] := {74} tii[27,15] := {75} tii[27,16] := {86} tii[27,17] := {85} tii[27,18] := {103} tii[27,19] := {22} tii[27,20] := {45} tii[27,21] := {88} tii[27,22] := {83} tii[27,23] := {102} tii[27,24] := {94} tii[27,25] := {49} tii[27,26] := {99} tii[27,27] := {66} tii[27,28] := {58} tii[27,29] := {92} tii[27,30] := {68} tii[27,31] := {81} tii[27,32] := {40} tii[27,33] := {15} tii[27,34] := {16} tii[27,35] := {52} tii[27,36] := {8} tii[27,37] := {35} tii[27,38] := {59} tii[27,39] := {42} tii[27,40] := {17} tii[27,41] := {91} tii[27,42] := {21} tii[27,43] := {62} tii[27,44] := {31} tii[27,45] := {77} tii[27,46] := {23} tii[27,47] := {70} tii[27,48] := {34} tii[27,49] := {12} tii[27,50] := {97} tii[27,51] := {78} tii[27,52] := {50} tii[27,53] := {27} tii[27,54] := {67} tii[27,55] := {89} tii[27,56] := {57} tii[27,57] := {73} tii[27,58] := {19} tii[27,59] := {65} tii[27,60] := {9} tii[27,61] := {30} tii[27,62] := {55} tii[27,63] := {43} tii[27,64] := {10} tii[27,65] := {80} tii[27,66] := {20} tii[27,67] := {87} tii[27,68] := {100} tii[27,69] := {3} tii[27,70] := {36} tii[27,71] := {61} tii[27,72] := {37} tii[27,73] := {95} tii[27,74] := {13} tii[27,75] := {53} tii[27,76] := {54} tii[27,77] := {79} tii[27,78] := {44} tii[27,79] := {64} tii[27,80] := {60} tii[27,81] := {90} tii[27,82] := {11} tii[27,83] := {33} tii[27,84] := {26} tii[27,85] := {56} tii[27,86] := {38} tii[27,87] := {72} tii[27,88] := {2} tii[27,89] := {6} tii[27,90] := {28} tii[27,91] := {18} tii[27,92] := {1} tii[27,93] := {7} tii[27,94] := {24} tii[27,95] := {47} tii[27,96] := {41} tii[27,97] := {4} tii[27,98] := {69} tii[27,99] := {51} tii[27,100] := {14} tii[27,101] := {82} tii[27,102] := {39} tii[27,103] := {0} tii[27,104] := {5} tii[27,105] := {25} cell#83 , |C| = 245 special orbit = [4, 4, 4, 2] special rep = [[2, 2], [2, 1]] , dim = 140 cell rep = phi[[2, 2, 1],[2]]+phi[[2, 2],[2, 1]] TII depth = 4 TII multiplicity polynomial = 105*X^2+35*X TII subcells: tii[18,1] := {176, 241} tii[18,2] := {92, 173} tii[18,3] := {202, 235} tii[18,4] := {189, 190} tii[18,5] := {152, 207} tii[18,6] := {221, 242} tii[18,7] := {225, 226} tii[18,8] := {199} tii[18,9] := {222} tii[18,10] := {233, 244} tii[18,11] := {239, 240} tii[18,12] := {243} tii[18,13] := {29, 123} tii[18,14] := {90, 211} tii[18,15] := {12, 113} tii[18,16] := {61, 144} tii[18,17] := {52, 154} tii[18,18] := {163, 164} tii[18,19] := {31, 85} tii[18,20] := {120, 227} tii[18,21] := {38, 161} tii[18,22] := {73, 198} tii[18,23] := {78, 182} tii[18,24] := {91, 155} tii[18,25] := {150, 237} tii[18,26] := {191, 192} tii[18,27] := {93, 209} tii[18,28] := {77, 132} tii[18,29] := {146} tii[18,30] := {103} tii[18,31] := {138, 229} tii[18,32] := {177} tii[18,33] := {200, 201} tii[18,34] := {218} tii[18,35] := {25, 79} tii[18,36] := {82, 122} tii[18,37] := {55, 115} tii[18,38] := {151, 210} tii[18,39] := {65, 129} tii[18,40] := {109, 171} tii[18,41] := {49, 50} tii[18,42] := {112, 153} tii[18,43] := {121, 183} tii[18,44] := {66, 145} tii[18,45] := {24, 83} tii[18,46] := {179, 224} tii[18,47] := {174} tii[18,48] := {124, 184} tii[18,49] := {212, 213} tii[18,50] := {97, 98} tii[18,51] := {111, 162} tii[18,52] := {40, 116} tii[18,53] := {203} tii[18,54] := {170, 214} tii[18,55] := {139, 140} tii[18,56] := {134} tii[18,57] := {127, 128} tii[18,58] := {147} tii[18,59] := {219, 220} tii[18,60] := {119} tii[18,61] := {168, 169} tii[18,62] := {230} tii[18,63] := {178} tii[18,64] := {205} tii[18,65] := {143, 181} tii[18,66] := {142, 188} tii[18,67] := {204, 236} tii[18,68] := {156, 208} tii[18,69] := {165} tii[18,70] := {197, 228} tii[18,71] := {231, 232} tii[18,72] := {185, 186} tii[18,73] := {175} tii[18,74] := {238} tii[18,75] := {215, 216} tii[18,76] := {234} tii[18,77] := {5, 84} tii[18,78] := {4, 80} tii[18,79] := {15, 99} tii[18,80] := {3, 47} tii[18,81] := {14, 57} tii[18,82] := {20, 130} tii[18,83] := {7, 68} tii[18,84] := {45, 172} tii[18,85] := {37, 160} tii[18,86] := {28, 67} tii[18,87] := {74, 196} tii[18,88] := {44} tii[18,89] := {26, 27} tii[18,90] := {39, 114} tii[18,91] := {9, 76} tii[18,92] := {32, 131} tii[18,93] := {11, 53} tii[18,94] := {63, 64} tii[18,95] := {21, 86} tii[18,96] := {17, 102} tii[18,97] := {107, 108} tii[18,98] := {62, 187} tii[18,99] := {51, 101} tii[18,100] := {117} tii[18,101] := {94, 95} tii[18,102] := {8, 30} tii[18,103] := {22, 135} tii[18,104] := {72} tii[18,105] := {136, 137} tii[18,106] := {110, 217} tii[18,107] := {149} tii[18,108] := {88} tii[18,109] := {16, 59} tii[18,110] := {180} tii[18,111] := {46} tii[18,112] := {125, 126} tii[18,113] := {166, 167} tii[18,114] := {118} tii[18,115] := {206} tii[18,116] := {19, 48} tii[18,117] := {56, 100} tii[18,118] := {34, 69} tii[18,119] := {18, 54} tii[18,120] := {96, 159} tii[18,121] := {81, 133} tii[18,122] := {41, 104} tii[18,123] := {33, 87} tii[18,124] := {106} tii[18,125] := {141, 195} tii[18,126] := {75} tii[18,127] := {157, 158} tii[18,128] := {148} tii[18,129] := {70, 71} tii[18,130] := {193, 194} tii[18,131] := {89} tii[18,132] := {223} tii[18,133] := {0, 36} tii[18,134] := {1, 58} tii[18,135] := {2, 13} tii[18,136] := {10, 105} tii[18,137] := {6, 35} tii[18,138] := {23} tii[18,139] := {42, 43} tii[18,140] := {60} cell#84 , |C| = 126 special orbit = [6, 2, 2, 2, 2] special rep = [[3, 1, 1], [1, 1]] , dim = 126 cell rep = phi[[3, 1, 1],[1, 1]] TII depth = 4 TII multiplicity polynomial = 126*X TII subcells: tii[24,1] := {125} tii[24,2] := {124} tii[24,3] := {118} tii[24,4] := {112} tii[24,5] := {92} tii[24,6] := {58} tii[24,7] := {66} tii[24,8] := {55} tii[24,9] := {33} tii[24,10] := {122} tii[24,11] := {83} tii[24,12] := {120} tii[24,13] := {74} tii[24,14] := {117} tii[24,15] := {89} tii[24,16] := {108} tii[24,17] := {37} tii[24,18] := {109} tii[24,19] := {82} tii[24,20] := {96} tii[24,21] := {113} tii[24,22] := {91} tii[24,23] := {93} tii[24,24] := {32} tii[24,25] := {102} tii[24,26] := {71} tii[24,27] := {87} tii[24,28] := {76} tii[24,29] := {48} tii[24,30] := {61} tii[24,31] := {99} tii[24,32] := {54} tii[24,33] := {123} tii[24,34] := {105} tii[24,35] := {21} tii[24,36] := {119} tii[24,37] := {98} tii[24,38] := {111} tii[24,39] := {116} tii[24,40] := {100} tii[24,41] := {72} tii[24,42] := {17} tii[24,43] := {53} tii[24,44] := {84} tii[24,45] := {104} tii[24,46] := {121} tii[24,47] := {75} tii[24,48] := {68} tii[24,49] := {115} tii[24,50] := {97} tii[24,51] := {59} tii[24,52] := {31} tii[24,53] := {43} tii[24,54] := {110} tii[24,55] := {90} tii[24,56] := {4} tii[24,57] := {101} tii[24,58] := {70} tii[24,59] := {86} tii[24,60] := {63} tii[24,61] := {40} tii[24,62] := {16} tii[24,63] := {25} tii[24,64] := {78} tii[24,65] := {28} tii[24,66] := {42} tii[24,67] := {9} tii[24,68] := {50} tii[24,69] := {15} tii[24,70] := {34} tii[24,71] := {8} tii[24,72] := {20} tii[24,73] := {30} tii[24,74] := {107} tii[24,75] := {73} tii[24,76] := {13} tii[24,77] := {38} tii[24,78] := {94} tii[24,79] := {65} tii[24,80] := {23} tii[24,81] := {80} tii[24,82] := {7} tii[24,83] := {77} tii[24,84] := {49} tii[24,85] := {19} tii[24,86] := {62} tii[24,87] := {45} tii[24,88] := {106} tii[24,89] := {47} tii[24,90] := {114} tii[24,91] := {57} tii[24,92] := {88} tii[24,93] := {27} tii[24,94] := {103} tii[24,95] := {41} tii[24,96] := {81} tii[24,97] := {12} tii[24,98] := {85} tii[24,99] := {56} tii[24,100] := {95} tii[24,101] := {22} tii[24,102] := {69} tii[24,103] := {52} tii[24,104] := {64} tii[24,105] := {6} tii[24,106] := {79} tii[24,107] := {18} tii[24,108] := {44} tii[24,109] := {29} tii[24,110] := {39} tii[24,111] := {14} tii[24,112] := {24} tii[24,113] := {3} tii[24,114] := {36} tii[24,115] := {67} tii[24,116] := {10} tii[24,117] := {51} tii[24,118] := {35} tii[24,119] := {46} tii[24,120] := {2} tii[24,121] := {60} tii[24,122] := {5} tii[24,123] := {26} tii[24,124] := {0} tii[24,125] := {1} tii[24,126] := {11} cell#85 , |C| = 315 special orbit = [4, 4, 2, 2, 2] special rep = [[2, 1, 1], [2, 1]] , dim = 210 cell rep = phi[[2, 2, 1],[1, 1]]+phi[[2, 1, 1],[2, 1]] TII depth = 4 TII multiplicity polynomial = 105*X^2+105*X TII subcells: tii[16,1] := {291, 307} tii[16,2] := {302} tii[16,3] := {273, 309} tii[16,4] := {210, 314} tii[16,5] := {252} tii[16,6] := {293} tii[16,7] := {91, 139} tii[16,8] := {118} tii[16,9] := {70, 150} tii[16,10] := {268, 295} tii[16,11] := {129, 181} tii[16,12] := {116, 203} tii[16,13] := {282} tii[16,14] := {202, 246} tii[16,15] := {159} tii[16,16] := {136} tii[16,17] := {185} tii[16,18] := {278, 287} tii[16,19] := {170, 220} tii[16,20] := {130, 305} tii[16,21] := {253} tii[16,22] := {201} tii[16,23] := {250, 265} tii[16,24] := {197, 251} tii[16,25] := {135} tii[16,26] := {243, 274} tii[16,27] := {184} tii[16,28] := {283} tii[16,29] := {235} tii[16,30] := {258} tii[16,31] := {90, 221} tii[16,32] := {105, 195} tii[16,33] := {117} tii[16,34] := {78, 240} tii[16,35] := {239, 277} tii[16,36] := {177} tii[16,37] := {227} tii[16,38] := {149, 234} tii[16,39] := {260, 298} tii[16,40] := {128, 257} tii[16,41] := {270, 297} tii[16,42] := {171, 312} tii[16,43] := {49, 271} tii[16,44] := {198, 248} tii[16,45] := {158} tii[16,46] := {229, 280} tii[16,47] := {151, 281} tii[16,48] := {94} tii[16,49] := {217} tii[16,50] := {216} tii[16,51] := {241, 289} tii[16,52] := {208, 296} tii[16,53] := {140} tii[16,54] := {263} tii[16,55] := {76, 292} tii[16,56] := {249} tii[16,57] := {147, 311} tii[16,58] := {256} tii[16,59] := {196} tii[16,60] := {125, 304} tii[16,61] := {288} tii[16,62] := {222} tii[16,63] := {148, 285} tii[16,64] := {200} tii[16,65] := {244, 300} tii[16,66] := {172, 301} tii[16,67] := {134} tii[16,68] := {183} tii[16,69] := {225, 308} tii[16,70] := {132, 310} tii[16,71] := {173} tii[16,72] := {284} tii[16,73] := {236} tii[16,74] := {223} tii[16,75] := {259} tii[16,76] := {186, 313} tii[16,77] := {247} tii[16,78] := {272} tii[16,79] := {1, 17} tii[16,80] := {36, 69} tii[16,81] := {10} tii[16,82] := {32} tii[16,83] := {6, 34} tii[16,84] := {42, 107} tii[16,85] := {61, 103} tii[16,86] := {19, 43} tii[16,87] := {160, 212} tii[16,88] := {79, 161} tii[16,89] := {27} tii[16,90] := {95} tii[16,91] := {33, 77} tii[16,92] := {38, 84} tii[16,93] := {55} tii[16,94] := {141} tii[16,95] := {51} tii[16,96] := {46} tii[16,97] := {178, 193} tii[16,98] := {65} tii[16,99] := {114, 179} tii[16,100] := {83} tii[16,101] := {168, 211} tii[16,102] := {101} tii[16,103] := {40} tii[16,104] := {146} tii[16,105] := {106, 194} tii[16,106] := {15, 59} tii[16,107] := {58, 115} tii[16,108] := {237, 275} tii[16,109] := {92, 144} tii[16,110] := {28, 238} tii[16,111] := {152, 213} tii[16,112] := {35, 71} tii[16,113] := {176} tii[16,114] := {48} tii[16,115] := {80} tii[16,116] := {204, 262} tii[16,117] := {62, 124} tii[16,118] := {226} tii[16,119] := {85} tii[16,120] := {218, 233} tii[16,121] := {156, 219} tii[16,122] := {44, 112} tii[16,123] := {214} tii[16,124] := {75} tii[16,125] := {96} tii[16,126] := {47, 269} tii[16,127] := {104, 303} tii[16,128] := {111, 175} tii[16,129] := {97} tii[16,130] := {209, 245} tii[16,131] := {261} tii[16,132] := {123} tii[16,133] := {81, 165} tii[16,134] := {86, 286} tii[16,135] := {68} tii[16,136] := {142} tii[16,137] := {164, 228} tii[16,138] := {169, 232} tii[16,139] := {190} tii[16,140] := {63, 279} tii[16,141] := {174} tii[16,142] := {110} tii[16,143] := {99} tii[16,144] := {224} tii[16,145] := {163} tii[16,146] := {102, 294} tii[16,147] := {231} tii[16,148] := {5, 89} tii[16,149] := {60, 188} tii[16,150] := {88, 157} tii[16,151] := {18, 108} tii[16,152] := {26} tii[16,153] := {37, 166} tii[16,154] := {119} tii[16,155] := {54} tii[16,156] := {45} tii[16,157] := {154, 215} tii[16,158] := {23, 155} tii[16,159] := {113, 255} tii[16,160] := {192, 254} tii[16,161] := {64} tii[16,162] := {137} tii[16,163] := {82} tii[16,164] := {167, 276} tii[16,165] := {206, 264} tii[16,166] := {52, 207} tii[16,167] := {100} tii[16,168] := {39} tii[16,169] := {145} tii[16,170] := {126, 267} tii[16,171] := {93, 299} tii[16,172] := {9, 199} tii[16,173] := {131} tii[16,174] := {72} tii[16,175] := {66} tii[16,176] := {180} tii[16,177] := {143, 306} tii[16,178] := {31, 242} tii[16,179] := {182} tii[16,180] := {120} tii[16,181] := {87, 290} tii[16,182] := {189} tii[16,183] := {109} tii[16,184] := {162} tii[16,185] := {98} tii[16,186] := {230} tii[16,187] := {0, 8} tii[16,188] := {2} tii[16,189] := {7, 25} tii[16,190] := {16, 50} tii[16,191] := {4} tii[16,192] := {20, 56} tii[16,193] := {30} tii[16,194] := {14} tii[16,195] := {24, 74} tii[16,196] := {73, 133} tii[16,197] := {12} tii[16,198] := {67} tii[16,199] := {53, 122} tii[16,200] := {121, 187} tii[16,201] := {127, 191} tii[16,202] := {21} tii[16,203] := {3, 153} tii[16,204] := {138} tii[16,205] := {29} tii[16,206] := {13, 205} tii[16,207] := {41} tii[16,208] := {57, 266} tii[16,209] := {11} tii[16,210] := {22} cell#86 , |C| = 189 special orbit = [4, 2, 2, 2, 2, 2] special rep = [[2, 1, 1], [1, 1, 1]] , dim = 105 cell rep = phi[[2, 1, 1, 1],[1, 1]]+phi[[2, 1, 1],[1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 84*X^2+21*X TII subcells: tii[13,1] := {51, 171} tii[13,2] := {59, 187} tii[13,3] := {84, 188} tii[13,4] := {71, 151} tii[13,5] := {78, 179} tii[13,6] := {90, 128} tii[13,7] := {109, 183} tii[13,8] := {97, 165} tii[13,9] := {108, 110} tii[13,10] := {126} tii[13,11] := {119, 158} tii[13,12] := {138} tii[13,13] := {132, 186} tii[13,14] := {152, 178} tii[13,15] := {166} tii[13,16] := {4, 91} tii[13,17] := {11, 98} tii[13,18] := {36, 154} tii[13,19] := {8, 115} tii[13,20] := {44, 180} tii[13,21] := {20, 121} tii[13,22] := {26, 134} tii[13,23] := {10, 135} tii[13,24] := {22, 150} tii[13,25] := {48, 174} tii[13,26] := {27, 142} tii[13,27] := {35, 160} tii[13,28] := {69, 105} tii[13,29] := {14, 137} tii[13,30] := {83, 85} tii[13,31] := {30, 143} tii[13,32] := {38, 156} tii[13,33] := {18, 157} tii[13,34] := {77, 145} tii[13,35] := {102} tii[13,36] := {33, 169} tii[13,37] := {29, 172} tii[13,38] := {66, 184} tii[13,39] := {95, 136} tii[13,40] := {39, 163} tii[13,41] := {65, 67} tii[13,42] := {116} tii[13,43] := {50, 176} tii[13,44] := {82} tii[13,45] := {45, 182} tii[13,46] := {73} tii[13,47] := {55, 177} tii[13,48] := {106, 144} tii[13,49] := {68, 185} tii[13,50] := {123} tii[13,51] := {101} tii[13,52] := {23, 114} tii[13,53] := {53, 131} tii[13,54] := {43, 120} tii[13,55] := {28, 133} tii[13,56] := {46, 149} tii[13,57] := {42, 153} tii[13,58] := {86, 88} tii[13,59] := {87, 173} tii[13,60] := {56, 141} tii[13,61] := {104} tii[13,62] := {61, 167} tii[13,63] := {70, 159} tii[13,64] := {93} tii[13,65] := {74, 162} tii[13,66] := {129, 164} tii[13,67] := {57, 130} tii[13,68] := {89, 175} tii[13,69] := {146} tii[13,70] := {79, 147} tii[13,71] := {117} tii[13,72] := {125} tii[13,73] := {94, 170} tii[13,74] := {113, 181} tii[13,75] := {148} tii[13,76] := {0, 34} tii[13,77] := {1, 72} tii[13,78] := {2, 40} tii[13,79] := {3, 62} tii[13,80] := {5, 58} tii[13,81] := {17, 111} tii[13,82] := {6, 112} tii[13,83] := {7, 80} tii[13,84] := {13, 127} tii[13,85] := {16, 118} tii[13,86] := {19, 155} tii[13,87] := {9, 76} tii[13,88] := {47, 49} tii[13,89] := {64} tii[13,90] := {32, 168} tii[13,91] := {12, 100} tii[13,92] := {25, 140} tii[13,93] := {54} tii[13,94] := {63} tii[13,95] := {15, 96} tii[13,96] := {41, 107} tii[13,97] := {21, 122} tii[13,98] := {60, 124} tii[13,99] := {37, 161} tii[13,100] := {92} tii[13,101] := {81} tii[13,102] := {24, 75} tii[13,103] := {31, 99} tii[13,104] := {52, 139} tii[13,105] := {103} cell#87 , |C| = 553 special orbit = [6, 4, 2, 2] special rep = [[3, 1], [2, 1]] , dim = 210 cell rep = phi[[3, 2, 1],[1]]+phi[[3, 1, 1],[2]]+phi[[3, 2],[1, 1]]+phi[[3, 1],[2, 1]] TII depth = 3 TII multiplicity polynomial = 91*X^4+70*X^2+49*X TII subcells: tii[26,1] := {210, 343, 438, 552} tii[26,2] := {252, 253, 529, 530} tii[26,3] := {297, 551} tii[26,4] := {333, 458} tii[26,5] := {152, 377, 404, 550} tii[26,6] := {441, 442} tii[26,7] := {88, 255, 386, 536} tii[26,8] := {191, 192, 503, 504} tii[26,9] := {84, 290, 362, 491} tii[26,10] := {237, 547} tii[26,11] := {506} tii[26,12] := {533} tii[26,13] := {208, 346, 456, 545} tii[26,14] := {312, 313} tii[26,15] := {250, 251, 487, 488} tii[26,16] := {178, 283, 484, 535} tii[26,17] := {172, 173, 393, 394} tii[26,18] := {296, 542} tii[26,19] := {227, 228, 455, 519} tii[26,20] := {417} tii[26,21] := {276, 492} tii[26,22] := {479} tii[26,23] := {310, 311, 445, 446} tii[26,24] := {361, 527} tii[26,25] := {279, 280, 391, 392} tii[26,26] := {416} tii[26,27] := {334, 335} tii[26,28] := {478} tii[26,29] := {415, 501} tii[26,30] := {481} tii[26,31] := {6, 28, 363, 483} tii[26,32] := {29, 30, 465, 466} tii[26,33] := {130, 223, 321, 543} tii[26,34] := {125, 126, 423, 509} tii[26,35] := {71, 524} tii[26,36] := {112, 540} tii[26,37] := {10, 48, 299, 515} tii[26,38] := {269, 406} tii[26,39] := {153, 285, 385, 549} tii[26,40] := {381, 382} tii[26,41] := {26, 78, 268, 528} tii[26,42] := {55, 194, 319, 518} tii[26,43] := {41, 42, 413, 414} tii[26,44] := {233, 348} tii[26,45] := {54, 231, 298, 450} tii[26,46] := {113, 232, 323, 544} tii[26,47] := {45, 120, 322, 514} tii[26,48] := {147, 148, 472, 473} tii[26,49] := {469} tii[26,50] := {288, 289} tii[26,51] := {95, 497} tii[26,52] := {74, 181, 371, 532} tii[26,53] := {512} tii[26,54] := {340} tii[26,55] := {139, 526} tii[26,56] := {65, 66, 463, 464} tii[26,57] := {314, 315} tii[26,58] := {87, 167, 378, 486} tii[26,59] := {202, 203, 507, 508} tii[26,60] := {102, 103, 436, 437} tii[26,61] := {262, 263} tii[26,62] := {83, 174, 267, 396} tii[26,63] := {121, 122, 342, 447} tii[26,64] := {418} tii[26,65] := {137, 523} tii[26,66] := {308} tii[26,67] := {157, 158, 474, 475} tii[26,68] := {159, 397} tii[26,69] := {186, 539} tii[26,70] := {480} tii[26,71] := {183, 538} tii[26,72] := {118, 206, 222, 329} tii[26,73] := {358} tii[26,74] := {154, 272} tii[26,75] := {302} tii[26,76] := {242, 548} tii[26,77] := {432} tii[26,78] := {374} tii[26,79] := {2, 77, 238, 495} tii[26,80] := {292, 408} tii[26,81] := {107, 318, 350, 546} tii[26,82] := {21, 22, 354, 355} tii[26,83] := {11, 117, 207, 516} tii[26,84] := {351, 352} tii[26,85] := {104, 105, 421, 422} tii[26,86] := {75, 257, 291, 537} tii[26,87] := {23, 169, 256, 494} tii[26,88] := {60, 459} tii[26,89] := {402} tii[26,90] := {47, 235, 305, 521} tii[26,91] := {98, 500} tii[26,92] := {129, 226, 439, 517} tii[26,93] := {7, 141, 151, 485} tii[26,94] := {39, 40, 411, 412} tii[26,95] := {248, 249} tii[26,96] := {145, 146, 470, 471} tii[26,97] := {170, 171, 403, 489} tii[26,98] := {67, 68, 375, 376} tii[26,99] := {15, 195, 196, 457} tii[26,100] := {389, 390} tii[26,101] := {59, 197, 326, 520} tii[26,102] := {123, 124, 330, 331} tii[26,103] := {198, 199} tii[26,104] := {356} tii[26,105] := {94, 496} tii[26,106] := {215, 452} tii[26,107] := {35, 243, 275, 493} tii[26,108] := {108, 109, 424, 425} tii[26,109] := {434} tii[26,110] := {244} tii[26,111] := {138, 525} tii[26,112] := {430} tii[26,113] := {127, 128, 349, 451} tii[26,114] := {32, 168, 254, 407} tii[26,115] := {135, 522} tii[26,116] := {293} tii[26,117] := {164, 165, 265, 266} tii[26,118] := {476} tii[26,119] := {163, 401} tii[26,120] := {239} tii[26,121] := {184, 541} tii[26,122] := {211, 212} tii[26,123] := {370} tii[26,124] := {57, 234, 303, 454} tii[26,125] := {115, 341} tii[26,126] := {309} tii[26,127] := {63, 64, 379, 380} tii[26,128] := {258, 259} tii[26,129] := {200, 201, 448, 449} tii[26,130] := {100, 101, 344, 345} tii[26,131] := {136, 468} tii[26,132] := {306} tii[26,133] := {155, 156, 398, 399} tii[26,134] := {185, 511} tii[26,135] := {220, 221, 327, 328} tii[26,136] := {79, 80, 281, 282} tii[26,137] := {182, 505} tii[26,138] := {357} tii[26,139] := {365} tii[26,140] := {270, 271} tii[26,141] := {241, 534} tii[26,142] := {131, 132, 336, 337} tii[26,143] := {301} tii[26,144] := {431} tii[26,145] := {216, 217} tii[26,146] := {373} tii[26,147] := {236, 467} tii[26,148] := {364} tii[26,149] := {304, 513} tii[26,150] := {435} tii[26,151] := {0, 13, 332, 444} tii[26,152] := {4, 5, 387, 388} tii[26,153] := {12, 433} tii[26,154] := {18, 49, 209, 502} tii[26,155] := {179, 287} tii[26,156] := {33, 82, 260, 482} tii[26,157] := {229, 230} tii[26,158] := {93, 175, 261, 531} tii[26,159] := {16, 17, 419, 420} tii[26,160] := {58, 134, 307, 510} tii[26,161] := {277} tii[26,162] := {27, 462} tii[26,163] := {52, 53, 320, 443} tii[26,164] := {176, 177} tii[26,165] := {46, 499} tii[26,166] := {219} tii[26,167] := {91, 92, 369, 477} tii[26,168] := {162} tii[26,169] := {1, 99, 106, 440} tii[26,170] := {324, 325} tii[26,171] := {24, 25, 359, 360} tii[26,172] := {3, 142, 143, 405} tii[26,173] := {36, 144, 264, 490} tii[26,174] := {372} tii[26,175] := {38, 410} tii[26,176] := {19, 187, 214, 453} tii[26,177] := {69, 70, 383, 384} tii[26,178] := {14, 119, 193, 347} tii[26,179] := {204, 205} tii[26,180] := {85, 86, 284, 395} tii[26,181] := {427} tii[26,182] := {62, 461} tii[26,183] := {116, 338} tii[26,184] := {247} tii[26,185] := {34, 180, 240, 400} tii[26,186] := {110, 111, 428, 429} tii[26,187] := {76, 278} tii[26,188] := {189} tii[26,189] := {31, 81, 166, 286} tii[26,190] := {366} tii[26,191] := {97, 498} tii[26,192] := {56, 133, 213, 339} tii[26,193] := {246} tii[26,194] := {114, 218} tii[26,195] := {8, 9, 294, 295} tii[26,196] := {20, 353} tii[26,197] := {43, 44, 316, 317} tii[26,198] := {149, 150} tii[26,199] := {37, 409} tii[26,200] := {72, 73, 367, 368} tii[26,201] := {190} tii[26,202] := {140} tii[26,203] := {50, 51, 224, 225} tii[26,204] := {300} tii[26,205] := {61, 460} tii[26,206] := {89, 90, 273, 274} tii[26,207] := {188} tii[26,208] := {160, 161} tii[26,209] := {96, 426} tii[26,210] := {245} cell#88 , |C| = 553 special orbit = [6, 4, 2, 2] special rep = [[3, 1], [2, 1]] , dim = 210 cell rep = phi[[3, 2, 1],[1]]+phi[[3, 1, 1],[2]]+phi[[3, 2],[1, 1]]+phi[[3, 1],[2, 1]] TII depth = 3 TII multiplicity polynomial = 91*X^4+70*X^2+49*X TII subcells: tii[26,1] := {210, 343, 438, 552} tii[26,2] := {252, 253, 529, 530} tii[26,3] := {297, 551} tii[26,4] := {333, 458} tii[26,5] := {152, 377, 404, 550} tii[26,6] := {441, 442} tii[26,7] := {88, 255, 386, 536} tii[26,8] := {191, 192, 503, 504} tii[26,9] := {84, 290, 362, 491} tii[26,10] := {237, 547} tii[26,11] := {506} tii[26,12] := {533} tii[26,13] := {208, 346, 456, 545} tii[26,14] := {312, 313} tii[26,15] := {250, 251, 487, 488} tii[26,16] := {178, 283, 484, 535} tii[26,17] := {172, 173, 393, 394} tii[26,18] := {296, 542} tii[26,19] := {227, 228, 455, 519} tii[26,20] := {417} tii[26,21] := {276, 492} tii[26,22] := {479} tii[26,23] := {310, 311, 445, 446} tii[26,24] := {361, 527} tii[26,25] := {279, 280, 391, 392} tii[26,26] := {416} tii[26,27] := {334, 335} tii[26,28] := {478} tii[26,29] := {415, 501} tii[26,30] := {481} tii[26,31] := {6, 28, 363, 483} tii[26,32] := {29, 30, 465, 466} tii[26,33] := {130, 223, 321, 543} tii[26,34] := {125, 126, 423, 509} tii[26,35] := {71, 524} tii[26,36] := {112, 540} tii[26,37] := {10, 48, 299, 515} tii[26,38] := {269, 406} tii[26,39] := {153, 285, 385, 549} tii[26,40] := {381, 382} tii[26,41] := {26, 78, 268, 528} tii[26,42] := {55, 194, 319, 518} tii[26,43] := {41, 42, 413, 414} tii[26,44] := {233, 348} tii[26,45] := {54, 231, 298, 450} tii[26,46] := {113, 232, 323, 544} tii[26,47] := {45, 120, 322, 514} tii[26,48] := {147, 148, 472, 473} tii[26,49] := {469} tii[26,50] := {288, 289} tii[26,51] := {95, 497} tii[26,52] := {74, 181, 371, 532} tii[26,53] := {512} tii[26,54] := {340} tii[26,55] := {139, 526} tii[26,56] := {65, 66, 463, 464} tii[26,57] := {314, 315} tii[26,58] := {87, 167, 378, 486} tii[26,59] := {202, 203, 507, 508} tii[26,60] := {102, 103, 436, 437} tii[26,61] := {262, 263} tii[26,62] := {83, 174, 267, 396} tii[26,63] := {121, 122, 342, 447} tii[26,64] := {418} tii[26,65] := {137, 523} tii[26,66] := {308} tii[26,67] := {157, 158, 474, 475} tii[26,68] := {159, 397} tii[26,69] := {186, 539} tii[26,70] := {480} tii[26,71] := {183, 538} tii[26,72] := {118, 206, 222, 329} tii[26,73] := {358} tii[26,74] := {154, 272} tii[26,75] := {302} tii[26,76] := {242, 548} tii[26,77] := {432} tii[26,78] := {374} tii[26,79] := {2, 77, 238, 495} tii[26,80] := {292, 408} tii[26,81] := {107, 318, 350, 546} tii[26,82] := {21, 22, 354, 355} tii[26,83] := {11, 117, 207, 516} tii[26,84] := {351, 352} tii[26,85] := {104, 105, 421, 422} tii[26,86] := {75, 257, 291, 537} tii[26,87] := {23, 169, 256, 494} tii[26,88] := {60, 459} tii[26,89] := {402} tii[26,90] := {47, 235, 305, 521} tii[26,91] := {98, 500} tii[26,92] := {129, 226, 439, 517} tii[26,93] := {7, 141, 151, 485} tii[26,94] := {39, 40, 411, 412} tii[26,95] := {248, 249} tii[26,96] := {145, 146, 470, 471} tii[26,97] := {170, 171, 403, 489} tii[26,98] := {67, 68, 375, 376} tii[26,99] := {15, 195, 196, 457} tii[26,100] := {389, 390} tii[26,101] := {59, 197, 326, 520} tii[26,102] := {123, 124, 330, 331} tii[26,103] := {198, 199} tii[26,104] := {356} tii[26,105] := {94, 496} tii[26,106] := {215, 452} tii[26,107] := {35, 243, 275, 493} tii[26,108] := {108, 109, 424, 425} tii[26,109] := {434} tii[26,110] := {244} tii[26,111] := {138, 525} tii[26,112] := {430} tii[26,113] := {127, 128, 349, 451} tii[26,114] := {32, 168, 254, 407} tii[26,115] := {135, 522} tii[26,116] := {293} tii[26,117] := {164, 165, 265, 266} tii[26,118] := {476} tii[26,119] := {163, 401} tii[26,120] := {239} tii[26,121] := {184, 541} tii[26,122] := {211, 212} tii[26,123] := {370} tii[26,124] := {57, 234, 303, 454} tii[26,125] := {115, 341} tii[26,126] := {309} tii[26,127] := {63, 64, 379, 380} tii[26,128] := {258, 259} tii[26,129] := {200, 201, 448, 449} tii[26,130] := {100, 101, 344, 345} tii[26,131] := {136, 468} tii[26,132] := {306} tii[26,133] := {155, 156, 398, 399} tii[26,134] := {185, 511} tii[26,135] := {220, 221, 327, 328} tii[26,136] := {79, 80, 281, 282} tii[26,137] := {182, 505} tii[26,138] := {357} tii[26,139] := {365} tii[26,140] := {270, 271} tii[26,141] := {241, 534} tii[26,142] := {131, 132, 336, 337} tii[26,143] := {301} tii[26,144] := {431} tii[26,145] := {216, 217} tii[26,146] := {373} tii[26,147] := {236, 467} tii[26,148] := {364} tii[26,149] := {304, 513} tii[26,150] := {435} tii[26,151] := {0, 13, 332, 444} tii[26,152] := {4, 5, 387, 388} tii[26,153] := {12, 433} tii[26,154] := {18, 49, 209, 502} tii[26,155] := {179, 287} tii[26,156] := {33, 82, 260, 482} tii[26,157] := {229, 230} tii[26,158] := {93, 175, 261, 531} tii[26,159] := {16, 17, 419, 420} tii[26,160] := {58, 134, 307, 510} tii[26,161] := {277} tii[26,162] := {27, 462} tii[26,163] := {52, 53, 320, 443} tii[26,164] := {176, 177} tii[26,165] := {46, 499} tii[26,166] := {219} tii[26,167] := {91, 92, 369, 477} tii[26,168] := {162} tii[26,169] := {1, 99, 106, 440} tii[26,170] := {324, 325} tii[26,171] := {24, 25, 359, 360} tii[26,172] := {3, 142, 143, 405} tii[26,173] := {36, 144, 264, 490} tii[26,174] := {372} tii[26,175] := {38, 410} tii[26,176] := {19, 187, 214, 453} tii[26,177] := {69, 70, 383, 384} tii[26,178] := {14, 119, 193, 347} tii[26,179] := {204, 205} tii[26,180] := {85, 86, 284, 395} tii[26,181] := {427} tii[26,182] := {62, 461} tii[26,183] := {116, 338} tii[26,184] := {247} tii[26,185] := {34, 180, 240, 400} tii[26,186] := {110, 111, 428, 429} tii[26,187] := {76, 278} tii[26,188] := {189} tii[26,189] := {31, 81, 166, 286} tii[26,190] := {366} tii[26,191] := {97, 498} tii[26,192] := {56, 133, 213, 339} tii[26,193] := {246} tii[26,194] := {114, 218} tii[26,195] := {8, 9, 294, 295} tii[26,196] := {20, 353} tii[26,197] := {43, 44, 316, 317} tii[26,198] := {149, 150} tii[26,199] := {37, 409} tii[26,200] := {72, 73, 367, 368} tii[26,201] := {190} tii[26,202] := {140} tii[26,203] := {50, 51, 224, 225} tii[26,204] := {300} tii[26,205] := {61, 460} tii[26,206] := {89, 90, 273, 274} tii[26,207] := {188} tii[26,208] := {160, 161} tii[26,209] := {96, 426} tii[26,210] := {245} cell#89 , |C| = 553 special orbit = [6, 4, 2, 2] special rep = [[3, 1], [2, 1]] , dim = 210 cell rep = phi[[3, 2, 1],[1]]+phi[[3, 1, 1],[2]]+phi[[3, 2],[1, 1]]+phi[[3, 1],[2, 1]] TII depth = 3 TII multiplicity polynomial = 91*X^4+70*X^2+49*X TII subcells: tii[26,1] := {360, 477, 515, 547} tii[26,2] := {194, 357, 427, 506} tii[26,3] := {400, 401} tii[26,4] := {461, 519} tii[26,5] := {299, 436, 532, 551} tii[26,6] := {384, 479} tii[26,7] := {172, 327, 503, 540} tii[26,8] := {130, 297, 372, 480} tii[26,9] := {81, 213, 511, 512} tii[26,10] := {341, 342} tii[26,11] := {464} tii[26,12] := {504} tii[26,13] := {359, 462, 542, 552} tii[26,14] := {257, 388} tii[26,15] := {74, 232, 426, 507} tii[26,16] := {300, 417, 538, 550} tii[26,17] := {25, 108, 447, 448} tii[26,18] := {278, 279} tii[26,19] := {252, 366, 545, 546} tii[26,20] := {364} tii[26,21] := {309, 549} tii[26,22] := {429} tii[26,23] := {129, 264, 470, 520} tii[26,24] := {343, 344} tii[26,25] := {98, 211, 498, 499} tii[26,26] := {240} tii[26,27] := {149, 517} tii[26,28] := {313} tii[26,29] := {368, 369} tii[26,30] := {414} tii[26,31] := {185, 186, 321, 322} tii[26,32] := {71, 196, 231, 326} tii[26,33] := {238, 389, 458, 527} tii[26,34] := {140, 277, 358, 487} tii[26,35] := {173, 336} tii[26,36] := {249, 412} tii[26,37] := {253, 254, 382, 383} tii[26,38] := {415, 496} tii[26,39] := {302, 439, 492, 539} tii[26,40] := {323, 440} tii[26,41] := {190, 191, 320, 437} tii[26,42] := {111, 263, 471, 528} tii[26,43] := {52, 163, 165, 260} tii[26,44] := {361, 463} tii[26,45] := {38, 144, 485, 486} tii[26,46] := {242, 398, 459, 529} tii[26,47] := {121, 267, 363, 481} tii[26,48] := {106, 234, 318, 449} tii[26,49] := {420} tii[26,50] := {319, 421} tii[26,51] := {139, 273} tii[26,52] := {178, 346, 428, 513} tii[26,53] := {473} tii[26,54] := {370} tii[26,55] := {225, 354} tii[26,56] := {100, 101, 230, 325} tii[26,57] := {259, 390} tii[26,58] := {171, 303, 502, 535} tii[26,59] := {142, 298, 377, 484} tii[26,60] := {50, 166, 266, 393} tii[26,61] := {229, 338} tii[26,62] := {14, 83, 450, 451} tii[26,63] := {122, 243, 521, 522} tii[26,64] := {365} tii[26,65] := {206, 207} tii[26,66] := {282} tii[26,67] := {87, 235, 353, 453} tii[26,68] := {179, 533} tii[26,69] := {292, 293} tii[26,70] := {430} tii[26,71] := {271, 272} tii[26,72] := {36, 113, 468, 469} tii[26,73] := {306} tii[26,74] := {66, 495} tii[26,75] := {247} tii[26,76] := {350, 351} tii[26,77] := {375} tii[26,78] := {432} tii[26,79] := {187, 188, 434, 435} tii[26,80] := {416, 497} tii[26,81] := {237, 387, 516, 548} tii[26,82] := {20, 99, 103, 193} tii[26,83] := {125, 126, 381, 478} tii[26,84] := {380, 465} tii[26,85] := {58, 168, 251, 399} tii[26,86] := {175, 339, 493, 541} tii[26,87] := {69, 198, 419, 508} tii[26,88] := {80, 205} tii[26,89] := {424} tii[26,90] := {114, 284, 472, 531} tii[26,91] := {158, 291} tii[26,92] := {236, 362, 525, 544} tii[26,93] := {72, 73, 356, 438} tii[26,94] := {53, 54, 162, 258} tii[26,95] := {192, 328} tii[26,96] := {82, 233, 316, 446} tii[26,97] := {189, 307, 536, 537} tii[26,98] := {19, 104, 197, 330} tii[26,99] := {33, 132, 391, 482} tii[26,100] := {355, 445} tii[26,101] := {112, 276, 474, 530} tii[26,102] := {8, 60, 402, 403} tii[26,103] := {161, 275} tii[26,104] := {305} tii[26,105] := {137, 138} tii[26,106] := {245, 543} tii[26,107] := {65, 219, 457, 514} tii[26,108] := {41, 169, 290, 405} tii[26,109] := {404} tii[26,110] := {216} tii[26,111] := {223, 224} tii[26,112] := {374} tii[26,113] := {131, 244, 523, 524} tii[26,114] := {18, 77, 443, 444} tii[26,115] := {202, 203} tii[26,116] := {241} tii[26,117] := {23, 84, 422, 423} tii[26,118] := {425} tii[26,119] := {182, 534} tii[26,120] := {181} tii[26,121] := {288, 289} tii[26,122] := {45, 460} tii[26,123] := {314} tii[26,124] := {40, 155, 490, 491} tii[26,125] := {119, 526} tii[26,126] := {378} tii[26,127] := {21, 22, 228, 324} tii[26,128] := {227, 337} tii[26,129] := {39, 167, 376, 483} tii[26,130] := {6, 56, 265, 392} tii[26,131] := {78, 79} tii[26,132] := {281} tii[26,133] := {16, 109, 352, 452} tii[26,134] := {156, 157} tii[26,135] := {55, 145, 466, 467} tii[26,136] := {3, 24, 331, 332} tii[26,137] := {134, 135} tii[26,138] := {174} tii[26,139] := {311} tii[26,140] := {92, 494} tii[26,141] := {221, 222} tii[26,142] := {9, 63, 406, 407} tii[26,143] := {117} tii[26,144] := {250} tii[26,145] := {47, 475} tii[26,146] := {317} tii[26,147] := {200, 201} tii[26,148] := {180} tii[26,149] := {286, 287} tii[26,150] := {379} tii[26,151] := {123, 124, 261, 262} tii[26,152] := {95, 96, 208, 209} tii[26,153] := {146, 147} tii[26,154] := {127, 128, 256, 386} tii[26,155] := {301, 418} tii[26,156] := {70, 199, 304, 442} tii[26,157] := {255, 367} tii[26,158] := {176, 340, 413, 510} tii[26,159] := {49, 141, 160, 274} tii[26,160] := {115, 285, 373, 489} tii[26,161] := {310} tii[26,162] := {86, 215} tii[26,163] := {48, 133, 239, 396} tii[26,164] := {195, 308} tii[26,165] := {116, 283} tii[26,166] := {248} tii[26,167] := {85, 220, 315, 456} tii[26,168] := {183} tii[26,169] := {34, 35, 296, 385} tii[26,170] := {295, 397} tii[26,171] := {30, 97, 107, 210} tii[26,172] := {12, 76, 329, 441} tii[26,173] := {64, 212, 431, 509} tii[26,174] := {345} tii[26,175] := {62, 148} tii[26,176] := {31, 154, 411, 488} tii[26,177] := {29, 105, 204, 335} tii[26,178] := {5, 37, 394, 395} tii[26,179] := {164, 280} tii[26,180] := {75, 177, 500, 501} tii[26,181] := {371} tii[26,182] := {89, 217} tii[26,183] := {118, 518} tii[26,184] := {218} tii[26,185] := {15, 93, 454, 455} tii[26,186] := {61, 170, 294, 410} tii[26,187] := {67, 505} tii[26,188] := {159} tii[26,189] := {1, 13, 333, 334} tii[26,190] := {312} tii[26,191] := {151, 152} tii[26,192] := {4, 46, 408, 409} tii[26,193] := {184} tii[26,194] := {32, 476} tii[26,195] := {11, 51, 59, 143} tii[26,196] := {27, 88} tii[26,197] := {10, 57, 136, 270} tii[26,198] := {102, 214} tii[26,199] := {42, 150} tii[26,200] := {26, 110, 226, 349} tii[26,201] := {153} tii[26,202] := {94} tii[26,203] := {0, 7, 268, 269} tii[26,204] := {246} tii[26,205] := {90, 91} tii[26,206] := {2, 28, 347, 348} tii[26,207] := {120} tii[26,208] := {17, 433} tii[26,209] := {43, 44} tii[26,210] := {68} cell#90 , |C| = 553 special orbit = [6, 4, 2, 2] special rep = [[3, 1], [2, 1]] , dim = 210 cell rep = phi[[3, 2, 1],[1]]+phi[[3, 1, 1],[2]]+phi[[3, 2],[1, 1]]+phi[[3, 1],[2, 1]] TII depth = 3 TII multiplicity polynomial = 91*X^4+70*X^2+49*X TII subcells: tii[26,1] := {360, 477, 515, 547} tii[26,2] := {194, 357, 427, 506} tii[26,3] := {400, 401} tii[26,4] := {461, 519} tii[26,5] := {299, 436, 532, 551} tii[26,6] := {384, 479} tii[26,7] := {172, 327, 503, 540} tii[26,8] := {130, 297, 372, 480} tii[26,9] := {81, 213, 511, 512} tii[26,10] := {341, 342} tii[26,11] := {464} tii[26,12] := {504} tii[26,13] := {359, 462, 542, 552} tii[26,14] := {257, 388} tii[26,15] := {74, 232, 426, 507} tii[26,16] := {300, 417, 538, 550} tii[26,17] := {25, 108, 447, 448} tii[26,18] := {278, 279} tii[26,19] := {252, 366, 545, 546} tii[26,20] := {364} tii[26,21] := {309, 549} tii[26,22] := {429} tii[26,23] := {129, 264, 470, 520} tii[26,24] := {343, 344} tii[26,25] := {98, 211, 498, 499} tii[26,26] := {240} tii[26,27] := {149, 517} tii[26,28] := {313} tii[26,29] := {368, 369} tii[26,30] := {414} tii[26,31] := {185, 186, 321, 322} tii[26,32] := {71, 195, 231, 326} tii[26,33] := {238, 389, 458, 527} tii[26,34] := {141, 277, 358, 487} tii[26,35] := {173, 336} tii[26,36] := {249, 412} tii[26,37] := {253, 254, 382, 383} tii[26,38] := {415, 496} tii[26,39] := {302, 439, 492, 539} tii[26,40] := {323, 440} tii[26,41] := {190, 191, 319, 437} tii[26,42] := {111, 263, 471, 528} tii[26,43] := {52, 163, 164, 260} tii[26,44] := {361, 463} tii[26,45] := {38, 144, 485, 486} tii[26,46] := {242, 398, 459, 529} tii[26,47] := {121, 267, 363, 481} tii[26,48] := {107, 234, 318, 449} tii[26,49] := {420} tii[26,50] := {320, 421} tii[26,51] := {139, 273} tii[26,52] := {178, 346, 428, 513} tii[26,53] := {473} tii[26,54] := {370} tii[26,55] := {225, 354} tii[26,56] := {100, 101, 229, 325} tii[26,57] := {259, 390} tii[26,58] := {171, 303, 502, 535} tii[26,59] := {142, 298, 377, 484} tii[26,60] := {50, 166, 266, 393} tii[26,61] := {230, 338} tii[26,62] := {14, 83, 450, 451} tii[26,63] := {122, 243, 521, 522} tii[26,64] := {365} tii[26,65] := {206, 207} tii[26,66] := {282} tii[26,67] := {87, 235, 353, 453} tii[26,68] := {179, 533} tii[26,69] := {292, 293} tii[26,70] := {430} tii[26,71] := {271, 272} tii[26,72] := {36, 113, 468, 469} tii[26,73] := {306} tii[26,74] := {66, 495} tii[26,75] := {247} tii[26,76] := {350, 351} tii[26,77] := {375} tii[26,78] := {432} tii[26,79] := {187, 188, 434, 435} tii[26,80] := {416, 497} tii[26,81] := {237, 387, 516, 548} tii[26,82] := {20, 99, 102, 193} tii[26,83] := {125, 126, 380, 478} tii[26,84] := {381, 465} tii[26,85] := {59, 168, 251, 399} tii[26,86] := {175, 339, 493, 541} tii[26,87] := {69, 198, 419, 508} tii[26,88] := {80, 205} tii[26,89] := {424} tii[26,90] := {114, 284, 472, 531} tii[26,91] := {158, 291} tii[26,92] := {236, 362, 525, 544} tii[26,93] := {72, 73, 355, 438} tii[26,94] := {53, 54, 161, 258} tii[26,95] := {192, 328} tii[26,96] := {82, 233, 316, 446} tii[26,97] := {189, 307, 536, 537} tii[26,98] := {19, 104, 197, 330} tii[26,99] := {33, 132, 391, 482} tii[26,100] := {356, 445} tii[26,101] := {112, 276, 474, 530} tii[26,102] := {8, 60, 402, 403} tii[26,103] := {162, 275} tii[26,104] := {305} tii[26,105] := {137, 138} tii[26,106] := {245, 543} tii[26,107] := {65, 219, 457, 514} tii[26,108] := {41, 169, 290, 405} tii[26,109] := {404} tii[26,110] := {216} tii[26,111] := {223, 224} tii[26,112] := {374} tii[26,113] := {131, 244, 523, 524} tii[26,114] := {18, 77, 443, 444} tii[26,115] := {202, 203} tii[26,116] := {241} tii[26,117] := {23, 84, 422, 423} tii[26,118] := {425} tii[26,119] := {182, 534} tii[26,120] := {181} tii[26,121] := {288, 289} tii[26,122] := {45, 460} tii[26,123] := {314} tii[26,124] := {40, 155, 490, 491} tii[26,125] := {119, 526} tii[26,126] := {378} tii[26,127] := {21, 22, 227, 324} tii[26,128] := {228, 337} tii[26,129] := {39, 167, 376, 483} tii[26,130] := {6, 56, 265, 392} tii[26,131] := {78, 79} tii[26,132] := {281} tii[26,133] := {16, 109, 352, 452} tii[26,134] := {156, 157} tii[26,135] := {55, 145, 466, 467} tii[26,136] := {3, 24, 331, 332} tii[26,137] := {134, 135} tii[26,138] := {174} tii[26,139] := {311} tii[26,140] := {92, 494} tii[26,141] := {221, 222} tii[26,142] := {9, 63, 406, 407} tii[26,143] := {117} tii[26,144] := {250} tii[26,145] := {47, 475} tii[26,146] := {317} tii[26,147] := {200, 201} tii[26,148] := {180} tii[26,149] := {286, 287} tii[26,150] := {379} tii[26,151] := {123, 124, 261, 262} tii[26,152] := {95, 96, 208, 209} tii[26,153] := {146, 147} tii[26,154] := {127, 128, 255, 386} tii[26,155] := {301, 418} tii[26,156] := {70, 199, 304, 442} tii[26,157] := {256, 367} tii[26,158] := {176, 340, 413, 510} tii[26,159] := {48, 140, 160, 274} tii[26,160] := {115, 285, 373, 489} tii[26,161] := {310} tii[26,162] := {85, 215} tii[26,163] := {49, 133, 239, 396} tii[26,164] := {196, 308} tii[26,165] := {116, 283} tii[26,166] := {248} tii[26,167] := {86, 220, 315, 456} tii[26,168] := {183} tii[26,169] := {34, 35, 295, 385} tii[26,170] := {296, 397} tii[26,171] := {29, 97, 106, 210} tii[26,172] := {12, 76, 329, 441} tii[26,173] := {64, 212, 431, 509} tii[26,174] := {345} tii[26,175] := {61, 148} tii[26,176] := {31, 154, 411, 488} tii[26,177] := {30, 105, 204, 335} tii[26,178] := {5, 37, 394, 395} tii[26,179] := {165, 280} tii[26,180] := {75, 177, 500, 501} tii[26,181] := {371} tii[26,182] := {89, 217} tii[26,183] := {118, 518} tii[26,184] := {218} tii[26,185] := {15, 93, 454, 455} tii[26,186] := {62, 170, 294, 410} tii[26,187] := {67, 505} tii[26,188] := {159} tii[26,189] := {1, 13, 333, 334} tii[26,190] := {312} tii[26,191] := {151, 152} tii[26,192] := {4, 46, 408, 409} tii[26,193] := {184} tii[26,194] := {32, 476} tii[26,195] := {10, 51, 58, 143} tii[26,196] := {26, 88} tii[26,197] := {11, 57, 136, 270} tii[26,198] := {103, 214} tii[26,199] := {42, 150} tii[26,200] := {27, 110, 226, 349} tii[26,201] := {153} tii[26,202] := {94} tii[26,203] := {0, 7, 268, 269} tii[26,204] := {246} tii[26,205] := {90, 91} tii[26,206] := {2, 28, 347, 348} tii[26,207] := {120} tii[26,208] := {17, 433} tii[26,209] := {43, 44} tii[26,210] := {68} cell#91 , |C| = 126 special orbit = [6, 2, 2, 2, 2] special rep = [[3, 1, 1], [1, 1]] , dim = 126 cell rep = phi[[3, 1, 1],[1, 1]] TII depth = 4 TII multiplicity polynomial = 126*X TII subcells: tii[24,1] := {123} tii[24,2] := {125} tii[24,3] := {124} tii[24,4] := {111} tii[24,5] := {108} tii[24,6] := {110} tii[24,7] := {32} tii[24,8] := {27} tii[24,9] := {26} tii[24,10] := {117} tii[24,11] := {44} tii[24,12] := {120} tii[24,13] := {39} tii[24,14] := {106} tii[24,15] := {51} tii[24,16] := {119} tii[24,17] := {36} tii[24,18] := {105} tii[24,19] := {64} tii[24,20] := {87} tii[24,21] := {112} tii[24,22] := {53} tii[24,23] := {109} tii[24,24] := {50} tii[24,25] := {104} tii[24,26] := {63} tii[24,27] := {86} tii[24,28] := {95} tii[24,29] := {61} tii[24,30] := {84} tii[24,31] := {58} tii[24,32] := {28} tii[24,33] := {118} tii[24,34] := {65} tii[24,35] := {25} tii[24,36] := {116} tii[24,37] := {79} tii[24,38] := {102} tii[24,39] := {81} tii[24,40] := {97} tii[24,41] := {38} tii[24,42] := {35} tii[24,43] := {46} tii[24,44] := {88} tii[24,45] := {93} tii[24,46] := {122} tii[24,47] := {94} tii[24,48] := {68} tii[24,49] := {114} tii[24,50] := {107} tii[24,51] := {80} tii[24,52] := {45} tii[24,53] := {67} tii[24,54] := {121} tii[24,55] := {52} tii[24,56] := {49} tii[24,57] := {103} tii[24,58] := {62} tii[24,59] := {85} tii[24,60] := {76} tii[24,61] := {96} tii[24,62] := {60} tii[24,63] := {83} tii[24,64] := {99} tii[24,65] := {75} tii[24,66] := {98} tii[24,67] := {0} tii[24,68] := {22} tii[24,69] := {1} tii[24,70] := {14} tii[24,71] := {4} tii[24,72] := {8} tii[24,73] := {2} tii[24,74] := {91} tii[24,75] := {37} tii[24,76] := {5} tii[24,77] := {20} tii[24,78] := {89} tii[24,79] := {47} tii[24,80] := {12} tii[24,81] := {69} tii[24,82] := {10} tii[24,83] := {74} tii[24,84] := {34} tii[24,85] := {18} tii[24,86] := {55} tii[24,87] := {43} tii[24,88] := {66} tii[24,89] := {7} tii[24,90] := {115} tii[24,91] := {31} tii[24,92] := {78} tii[24,93] := {11} tii[24,94] := {101} tii[24,95] := {19} tii[24,96] := {92} tii[24,97] := {16} tii[24,98] := {90} tii[24,99] := {48} tii[24,100] := {113} tii[24,101] := {30} tii[24,102] := {70} tii[24,103] := {57} tii[24,104] := {77} tii[24,105] := {24} tii[24,106] := {100} tii[24,107] := {41} tii[24,108] := {72} tii[24,109] := {3} tii[24,110] := {21} tii[24,111] := {6} tii[24,112] := {13} tii[24,113] := {9} tii[24,114] := {33} tii[24,115] := {73} tii[24,116] := {17} tii[24,117] := {54} tii[24,118] := {42} tii[24,119] := {59} tii[24,120] := {15} tii[24,121] := {82} tii[24,122] := {29} tii[24,123] := {56} tii[24,124] := {23} tii[24,125] := {40} tii[24,126] := {71} cell#92 , |C| = 126 special orbit = [6, 2, 2, 2, 2] special rep = [[3, 1, 1], [1, 1]] , dim = 126 cell rep = phi[[3, 1, 1],[1, 1]] TII depth = 4 TII multiplicity polynomial = 126*X TII subcells: tii[24,1] := {123} tii[24,2] := {125} tii[24,3] := {124} tii[24,4] := {111} tii[24,5] := {108} tii[24,6] := {110} tii[24,7] := {32} tii[24,8] := {27} tii[24,9] := {26} tii[24,10] := {117} tii[24,11] := {44} tii[24,12] := {120} tii[24,13] := {39} tii[24,14] := {106} tii[24,15] := {51} tii[24,16] := {119} tii[24,17] := {36} tii[24,18] := {105} tii[24,19] := {64} tii[24,20] := {87} tii[24,21] := {112} tii[24,22] := {53} tii[24,23] := {109} tii[24,24] := {50} tii[24,25] := {104} tii[24,26] := {63} tii[24,27] := {86} tii[24,28] := {95} tii[24,29] := {61} tii[24,30] := {84} tii[24,31] := {58} tii[24,32] := {28} tii[24,33] := {118} tii[24,34] := {65} tii[24,35] := {25} tii[24,36] := {116} tii[24,37] := {79} tii[24,38] := {102} tii[24,39] := {81} tii[24,40] := {97} tii[24,41] := {38} tii[24,42] := {35} tii[24,43] := {46} tii[24,44] := {88} tii[24,45] := {93} tii[24,46] := {122} tii[24,47] := {94} tii[24,48] := {68} tii[24,49] := {114} tii[24,50] := {107} tii[24,51] := {80} tii[24,52] := {45} tii[24,53] := {67} tii[24,54] := {121} tii[24,55] := {52} tii[24,56] := {49} tii[24,57] := {103} tii[24,58] := {62} tii[24,59] := {85} tii[24,60] := {76} tii[24,61] := {96} tii[24,62] := {60} tii[24,63] := {83} tii[24,64] := {99} tii[24,65] := {75} tii[24,66] := {98} tii[24,67] := {0} tii[24,68] := {22} tii[24,69] := {1} tii[24,70] := {14} tii[24,71] := {4} tii[24,72] := {8} tii[24,73] := {2} tii[24,74] := {91} tii[24,75] := {37} tii[24,76] := {5} tii[24,77] := {20} tii[24,78] := {89} tii[24,79] := {47} tii[24,80] := {12} tii[24,81] := {69} tii[24,82] := {10} tii[24,83] := {74} tii[24,84] := {34} tii[24,85] := {18} tii[24,86] := {55} tii[24,87] := {43} tii[24,88] := {66} tii[24,89] := {7} tii[24,90] := {115} tii[24,91] := {31} tii[24,92] := {78} tii[24,93] := {11} tii[24,94] := {101} tii[24,95] := {19} tii[24,96] := {92} tii[24,97] := {16} tii[24,98] := {90} tii[24,99] := {48} tii[24,100] := {113} tii[24,101] := {30} tii[24,102] := {70} tii[24,103] := {57} tii[24,104] := {77} tii[24,105] := {24} tii[24,106] := {100} tii[24,107] := {41} tii[24,108] := {72} tii[24,109] := {3} tii[24,110] := {21} tii[24,111] := {6} tii[24,112] := {13} tii[24,113] := {9} tii[24,114] := {33} tii[24,115] := {73} tii[24,116] := {17} tii[24,117] := {54} tii[24,118] := {42} tii[24,119] := {59} tii[24,120] := {15} tii[24,121] := {82} tii[24,122] := {29} tii[24,123] := {56} tii[24,124] := {23} tii[24,125] := {40} tii[24,126] := {71} cell#93 , |C| = 553 special orbit = [6, 4, 2, 2] special rep = [[3, 1], [2, 1]] , dim = 210 cell rep = phi[[3, 2, 1],[1]]+phi[[3, 1, 1],[2]]+phi[[3, 2],[1, 1]]+phi[[3, 1],[2, 1]] TII depth = 3 TII multiplicity polynomial = 91*X^4+70*X^2+49*X TII subcells: tii[26,1] := {168, 357, 427, 552} tii[26,2] := {208, 326, 395, 542} tii[26,3] := {269, 504} tii[26,4] := {270, 446} tii[26,5] := {121, 385, 405, 551} tii[26,6] := {362, 454} tii[26,7] := {58, 288, 399, 544} tii[26,8] := {155, 347, 373, 532} tii[26,9] := {54, 201, 393, 527} tii[26,10] := {321, 480} tii[26,11] := {450} tii[26,12] := {485} tii[26,13] := {167, 356, 444, 548} tii[26,14] := {261, 371} tii[26,15] := {207, 297, 417, 525} tii[26,16] := {122, 310, 470, 545} tii[26,17] := {119, 200, 414, 489} tii[26,18] := {369, 448} tii[26,19] := {160, 284, 496, 535} tii[26,20] := {363} tii[26,21] := {225, 519} tii[26,22] := {418} tii[26,23] := {260, 348, 453, 539} tii[26,24] := {413, 481} tii[26,25] := {209, 304, 483, 528} tii[26,26] := {364} tii[26,27] := {277, 510} tii[26,28] := {419} tii[26,29] := {449, 509} tii[26,30] := {488} tii[26,31] := {4, 45, 295, 465} tii[26,32] := {14, 57, 387, 471} tii[26,33] := {90, 258, 339, 547} tii[26,34] := {84, 182, 255, 534} tii[26,35] := {51, 466} tii[26,36] := {94, 500} tii[26,37] := {9, 73, 243, 495} tii[26,38] := {217, 404} tii[26,39] := {127, 311, 386, 550} tii[26,40] := {313, 416} tii[26,41] := {21, 105, 193, 515} tii[26,42] := {36, 236, 349, 537} tii[26,43] := {28, 88, 340, 436} tii[26,44] := {169, 360} tii[26,45] := {34, 152, 344, 512} tii[26,46] := {97, 254, 359, 546} tii[26,47] := {33, 142, 242, 529} tii[26,48] := {120, 232, 306, 522} tii[26,49] := {409} tii[26,50] := {215, 337} tii[26,51] := {79, 429} tii[26,52] := {63, 198, 302, 540} tii[26,53] := {455} tii[26,54] := {281} tii[26,55] := {130, 473} tii[26,56] := {46, 123, 290, 464} tii[26,57] := {262, 372} tii[26,58] := {55, 205, 398, 526} tii[26,59] := {166, 283, 354, 531} tii[26,60] := {76, 159, 240, 492} tii[26,61] := {213, 334} tii[26,62] := {53, 109, 320, 490} tii[26,63] := {78, 183, 433, 507} tii[26,64] := {365} tii[26,65] := {112, 389} tii[26,66] := {278} tii[26,67] := {129, 223, 300, 516} tii[26,68] := {131, 477} tii[26,69] := {172, 440} tii[26,70] := {420} tii[26,71] := {156, 430} tii[26,72] := {77, 154, 367, 462} tii[26,73] := {319} tii[26,74] := {134, 422} tii[26,75] := {273} tii[26,76] := {221, 474} tii[26,77] := {379} tii[26,78] := {336} tii[26,79] := {20, 108, 192, 479} tii[26,80] := {218, 408} tii[26,81] := {89, 338, 361, 549} tii[26,82] := {47, 126, 289, 396} tii[26,83] := {10, 144, 147, 499} tii[26,84] := {267, 383} tii[26,85] := {83, 253, 285, 505} tii[26,86] := {65, 307, 308, 543} tii[26,87] := {18, 188, 191, 518} tii[26,88] := {114, 388} tii[26,89] := {331} tii[26,90] := {40, 248, 251, 533} tii[26,91] := {173, 439} tii[26,92] := {86, 259, 438, 538} tii[26,93] := {5, 104, 194, 472} tii[26,94] := {74, 170, 237, 426} tii[26,95] := {206, 325} tii[26,96] := {118, 303, 335, 517} tii[26,97] := {113, 233, 469, 524} tii[26,98] := {48, 186, 214, 463} tii[26,99] := {8, 140, 241, 498} tii[26,100] := {316, 423} tii[26,101] := {43, 256, 358, 536} tii[26,102] := {82, 153, 368, 461} tii[26,103] := {158, 282} tii[26,104] := {317} tii[26,105] := {161, 342} tii[26,106] := {174, 503} tii[26,107] := {24, 196, 301, 521} tii[26,108] := {91, 246, 279, 494} tii[26,109] := {376} tii[26,110] := {222} tii[26,111] := {224, 401} tii[26,112] := {377} tii[26,113] := {81, 184, 434, 508} tii[26,114] := {16, 102, 291, 484} tii[26,115] := {211, 390} tii[26,116] := {268} tii[26,117] := {111, 204, 412, 491} tii[26,118] := {415} tii[26,119] := {133, 478} tii[26,120] := {220} tii[26,121] := {275, 441} tii[26,122] := {178, 458} tii[26,123] := {332} tii[26,124] := {38, 150, 350, 511} tii[26,125] := {98, 447} tii[26,126] := {384} tii[26,127] := {110, 185, 219, 397} tii[26,128] := {212, 333} tii[26,129] := {165, 252, 381, 506} tii[26,130] := {75, 139, 266, 432} tii[26,131] := {216, 294} tii[26,132] := {276} tii[26,133] := {128, 195, 330, 476} tii[26,134] := {280, 353} tii[26,135] := {157, 257, 452, 513} tii[26,136] := {49, 101, 315, 410} tii[26,137] := {264, 343} tii[26,138] := {318} tii[26,139] := {322} tii[26,140] := {228, 487} tii[26,141] := {328, 402} tii[26,142] := {92, 149, 375, 456} tii[26,143] := {272} tii[26,144] := {378} tii[26,145] := {180, 459} tii[26,146] := {425} tii[26,147] := {314, 391} tii[26,148] := {323} tii[26,149] := {374, 442} tii[26,150] := {460} tii[26,151] := {0, 27, 244, 428} tii[26,152] := {3, 26, 293, 407} tii[26,153] := {13, 352} tii[26,154] := {11, 71, 146, 493} tii[26,155] := {124, 312} tii[26,156] := {19, 103, 189, 514} tii[26,157] := {162, 286} tii[26,158] := {66, 202, 309, 541} tii[26,159] := {7, 42, 341, 445} tii[26,160] := {41, 151, 249, 530} tii[26,161] := {226} tii[26,162] := {23, 400} tii[26,163] := {31, 80, 143, 497} tii[26,164] := {117, 235} tii[26,165] := {35, 435} tii[26,166] := {177} tii[26,167] := {61, 132, 199, 520} tii[26,168] := {136} tii[26,169] := {1, 70, 145, 437} tii[26,170] := {265, 380} tii[26,171] := {17, 64, 292, 403} tii[26,172] := {2, 100, 187, 468} tii[26,173] := {25, 203, 305, 523} tii[26,174] := {329} tii[26,175] := {39, 351} tii[26,176] := {12, 148, 247, 502} tii[26,177] := {50, 115, 190, 467} tii[26,178] := {6, 68, 238, 451} tii[26,179] := {164, 287} tii[26,180] := {52, 138, 392, 482} tii[26,181] := {370} tii[26,182] := {56, 394} tii[26,183] := {95, 443} tii[26,184] := {229} tii[26,185] := {22, 106, 298, 486} tii[26,186] := {93, 175, 250, 501} tii[26,187] := {67, 406} tii[26,188] := {181} tii[26,189] := {15, 44, 210, 411} tii[26,190] := {324} tii[26,191] := {85, 346} tii[26,192] := {37, 72, 274, 457} tii[26,193] := {231} tii[26,194] := {99, 382} tii[26,195] := {32, 96, 239, 355} tii[26,196] := {62, 299} tii[26,197] := {30, 141, 163, 431} tii[26,198] := {116, 234} tii[26,199] := {87, 345} tii[26,200] := {60, 197, 227, 475} tii[26,201] := {176} tii[26,202] := {135} tii[26,203] := {29, 69, 263, 366} tii[26,204] := {271} tii[26,205] := {125, 296} tii[26,206] := {59, 107, 327, 421} tii[26,207] := {179} tii[26,208] := {137, 424} tii[26,209] := {171, 245} tii[26,210] := {230} cell#94 , |C| = 126 special orbit = [6, 2, 2, 2, 2] special rep = [[3, 1, 1], [1, 1]] , dim = 126 cell rep = phi[[3, 1, 1],[1, 1]] TII depth = 4 TII multiplicity polynomial = 126*X TII subcells: tii[24,1] := {124} tii[24,2] := {117} tii[24,3] := {125} tii[24,4] := {83} tii[24,5] := {112} tii[24,6] := {111} tii[24,7] := {76} tii[24,8] := {38} tii[24,9] := {37} tii[24,10] := {120} tii[24,11] := {98} tii[24,12] := {103} tii[24,13] := {34} tii[24,14] := {108} tii[24,15] := {75} tii[24,16] := {122} tii[24,17] := {30} tii[24,18] := {92} tii[24,19] := {93} tii[24,20] := {107} tii[24,21] := {85} tii[24,22] := {51} tii[24,23] := {113} tii[24,24] := {47} tii[24,25] := {68} tii[24,26] := {69} tii[24,27] := {81} tii[24,28] := {95} tii[24,29] := {63} tii[24,30] := {78} tii[24,31] := {114} tii[24,32] := {21} tii[24,33] := {121} tii[24,34] := {97} tii[24,35] := {20} tii[24,36] := {109} tii[24,37] := {110} tii[24,38] := {119} tii[24,39] := {89} tii[24,40] := {64} tii[24,41] := {33} tii[24,42] := {29} tii[24,43] := {45} tii[24,44] := {44} tii[24,45] := {106} tii[24,46] := {105} tii[24,47] := {96} tii[24,48] := {58} tii[24,49] := {116} tii[24,50] := {118} tii[24,51] := {74} tii[24,52] := {43} tii[24,53] := {57} tii[24,54] := {123} tii[24,55] := {50} tii[24,56] := {46} tii[24,57] := {66} tii[24,58] := {67} tii[24,59] := {80} tii[24,60] := {84} tii[24,61] := {94} tii[24,62] := {62} tii[24,63] := {77} tii[24,64] := {100} tii[24,65] := {82} tii[24,66] := {99} tii[24,67] := {3} tii[24,68] := {56} tii[24,69] := {9} tii[24,70] := {39} tii[24,71] := {16} tii[24,72] := {26} tii[24,73] := {4} tii[24,74] := {91} tii[24,75] := {55} tii[24,76] := {8} tii[24,77] := {27} tii[24,78] := {72} tii[24,79] := {73} tii[24,80] := {17} tii[24,81] := {90} tii[24,82] := {15} tii[24,83] := {53} tii[24,84] := {54} tii[24,85] := {25} tii[24,86] := {71} tii[24,87] := {52} tii[24,88] := {70} tii[24,89] := {2} tii[24,90] := {87} tii[24,91] := {24} tii[24,92] := {88} tii[24,93] := {6} tii[24,94] := {102} tii[24,95] := {13} tii[24,96] := {104} tii[24,97] := {11} tii[24,98] := {48} tii[24,99] := {49} tii[24,100] := {115} tii[24,101] := {23} tii[24,102] := {61} tii[24,103] := {41} tii[24,104] := {86} tii[24,105] := {19} tii[24,106] := {101} tii[24,107] := {36} tii[24,108] := {60} tii[24,109] := {0} tii[24,110] := {14} tii[24,111] := {1} tii[24,112] := {7} tii[24,113] := {5} tii[24,114] := {32} tii[24,115] := {31} tii[24,116] := {12} tii[24,117] := {42} tii[24,118] := {28} tii[24,119] := {65} tii[24,120] := {10} tii[24,121] := {79} tii[24,122] := {22} tii[24,123] := {40} tii[24,124] := {18} tii[24,125] := {35} tii[24,126] := {59} cell#95 , |C| = 126 special orbit = [6, 2, 2, 2, 2] special rep = [[3, 1, 1], [1, 1]] , dim = 126 cell rep = phi[[3, 1, 1],[1, 1]] TII depth = 4 TII multiplicity polynomial = 126*X TII subcells: tii[24,1] := {124} tii[24,2] := {117} tii[24,3] := {125} tii[24,4] := {83} tii[24,5] := {112} tii[24,6] := {111} tii[24,7] := {76} tii[24,8] := {38} tii[24,9] := {37} tii[24,10] := {120} tii[24,11] := {98} tii[24,12] := {103} tii[24,13] := {34} tii[24,14] := {108} tii[24,15] := {75} tii[24,16] := {122} tii[24,17] := {30} tii[24,18] := {92} tii[24,19] := {93} tii[24,20] := {107} tii[24,21] := {85} tii[24,22] := {51} tii[24,23] := {113} tii[24,24] := {47} tii[24,25] := {68} tii[24,26] := {69} tii[24,27] := {81} tii[24,28] := {95} tii[24,29] := {63} tii[24,30] := {78} tii[24,31] := {114} tii[24,32] := {21} tii[24,33] := {121} tii[24,34] := {97} tii[24,35] := {20} tii[24,36] := {109} tii[24,37] := {110} tii[24,38] := {119} tii[24,39] := {89} tii[24,40] := {64} tii[24,41] := {33} tii[24,42] := {29} tii[24,43] := {45} tii[24,44] := {44} tii[24,45] := {106} tii[24,46] := {105} tii[24,47] := {96} tii[24,48] := {58} tii[24,49] := {116} tii[24,50] := {118} tii[24,51] := {74} tii[24,52] := {43} tii[24,53] := {57} tii[24,54] := {123} tii[24,55] := {50} tii[24,56] := {46} tii[24,57] := {66} tii[24,58] := {67} tii[24,59] := {80} tii[24,60] := {84} tii[24,61] := {94} tii[24,62] := {62} tii[24,63] := {77} tii[24,64] := {100} tii[24,65] := {82} tii[24,66] := {99} tii[24,67] := {3} tii[24,68] := {56} tii[24,69] := {9} tii[24,70] := {39} tii[24,71] := {16} tii[24,72] := {26} tii[24,73] := {4} tii[24,74] := {91} tii[24,75] := {55} tii[24,76] := {8} tii[24,77] := {27} tii[24,78] := {72} tii[24,79] := {73} tii[24,80] := {17} tii[24,81] := {90} tii[24,82] := {15} tii[24,83] := {53} tii[24,84] := {54} tii[24,85] := {25} tii[24,86] := {71} tii[24,87] := {52} tii[24,88] := {70} tii[24,89] := {2} tii[24,90] := {87} tii[24,91] := {24} tii[24,92] := {88} tii[24,93] := {6} tii[24,94] := {102} tii[24,95] := {13} tii[24,96] := {104} tii[24,97] := {11} tii[24,98] := {48} tii[24,99] := {49} tii[24,100] := {115} tii[24,101] := {23} tii[24,102] := {61} tii[24,103] := {41} tii[24,104] := {86} tii[24,105] := {19} tii[24,106] := {101} tii[24,107] := {36} tii[24,108] := {60} tii[24,109] := {0} tii[24,110] := {14} tii[24,111] := {1} tii[24,112] := {7} tii[24,113] := {5} tii[24,114] := {32} tii[24,115] := {31} tii[24,116] := {12} tii[24,117] := {42} tii[24,118] := {28} tii[24,119] := {65} tii[24,120] := {10} tii[24,121] := {79} tii[24,122] := {22} tii[24,123] := {40} tii[24,124] := {18} tii[24,125] := {35} tii[24,126] := {59} cell#96 , |C| = 70 special orbit = [5, 5, 4] special rep = [[2, 2], [3]] , dim = 70 cell rep = phi[[2, 2],[3]] TII depth = 3 TII multiplicity polynomial = 70*X TII subcells: tii[21,1] := {69} tii[21,2] := {38} tii[21,3] := {61} tii[21,4] := {24} tii[21,5] := {47} tii[21,6] := {65} tii[21,7] := {41} tii[21,8] := {51} tii[21,9] := {40} tii[21,10] := {54} tii[21,11] := {67} tii[21,12] := {56} tii[21,13] := {62} tii[21,14] := {59} tii[21,15] := {68} tii[21,16] := {63} tii[21,17] := {66} tii[21,18] := {14} tii[21,19] := {15} tii[21,20] := {34} tii[21,21] := {4} tii[21,22] := {22} tii[21,23] := {45} tii[21,24] := {12} tii[21,25] := {23} tii[21,26] := {30} tii[21,27] := {16} tii[21,28] := {42} tii[21,29] := {28} tii[21,30] := {52} tii[21,31] := {46} tii[21,32] := {55} tii[21,33] := {10} tii[21,34] := {31} tii[21,35] := {20} tii[21,36] := {32} tii[21,37] := {18} tii[21,38] := {39} tii[21,39] := {25} tii[21,40] := {49} tii[21,41] := {11} tii[21,42] := {37} tii[21,43] := {27} tii[21,44] := {57} tii[21,45] := {53} tii[21,46] := {35} tii[21,47] := {60} tii[21,48] := {33} tii[21,49] := {48} tii[21,50] := {44} tii[21,51] := {58} tii[21,52] := {50} tii[21,53] := {64} tii[21,54] := {1} tii[21,55] := {7} tii[21,56] := {3} tii[21,57] := {13} tii[21,58] := {9} tii[21,59] := {5} tii[21,60] := {19} tii[21,61] := {8} tii[21,62] := {26} tii[21,63] := {2} tii[21,64] := {21} tii[21,65] := {36} tii[21,66] := {17} tii[21,67] := {6} tii[21,68] := {29} tii[21,69] := {43} tii[21,70] := {0} cell#97 , |C| = 70 special orbit = [5, 5, 4] special rep = [[2, 2], [3]] , dim = 70 cell rep = phi[[2, 2],[3]] TII depth = 3 TII multiplicity polynomial = 70*X TII subcells: tii[21,1] := {69} tii[21,2] := {38} tii[21,3] := {61} tii[21,4] := {24} tii[21,5] := {47} tii[21,6] := {65} tii[21,7] := {41} tii[21,8] := {51} tii[21,9] := {40} tii[21,10] := {54} tii[21,11] := {67} tii[21,12] := {56} tii[21,13] := {62} tii[21,14] := {59} tii[21,15] := {68} tii[21,16] := {63} tii[21,17] := {66} tii[21,18] := {14} tii[21,19] := {15} tii[21,20] := {34} tii[21,21] := {4} tii[21,22] := {22} tii[21,23] := {45} tii[21,24] := {12} tii[21,25] := {23} tii[21,26] := {30} tii[21,27] := {16} tii[21,28] := {42} tii[21,29] := {28} tii[21,30] := {52} tii[21,31] := {46} tii[21,32] := {55} tii[21,33] := {10} tii[21,34] := {31} tii[21,35] := {20} tii[21,36] := {32} tii[21,37] := {18} tii[21,38] := {39} tii[21,39] := {25} tii[21,40] := {49} tii[21,41] := {11} tii[21,42] := {37} tii[21,43] := {27} tii[21,44] := {57} tii[21,45] := {53} tii[21,46] := {35} tii[21,47] := {60} tii[21,48] := {33} tii[21,49] := {48} tii[21,50] := {44} tii[21,51] := {58} tii[21,52] := {50} tii[21,53] := {64} tii[21,54] := {1} tii[21,55] := {7} tii[21,56] := {3} tii[21,57] := {13} tii[21,58] := {9} tii[21,59] := {5} tii[21,60] := {19} tii[21,61] := {8} tii[21,62] := {26} tii[21,63] := {2} tii[21,64] := {21} tii[21,65] := {36} tii[21,66] := {17} tii[21,67] := {6} tii[21,68] := {29} tii[21,69] := {43} tii[21,70] := {0} cell#98 , |C| = 315 special orbit = [5, 5, 2, 2] special rep = [[2, 1], [3, 1]] , dim = 210 cell rep = phi[[2, 1, 1],[3]]+phi[[2, 1],[3, 1]] TII depth = 4 TII multiplicity polynomial = 105*X^2+105*X TII subcells: tii[20,1] := {241, 242} tii[20,2] := {301, 302} tii[20,3] := {256} tii[20,4] := {210, 211} tii[20,5] := {101, 102} tii[20,6] := {287, 288} tii[20,7] := {294} tii[20,8] := {308} tii[20,9] := {196} tii[20,10] := {243, 244} tii[20,11] := {185, 186} tii[20,12] := {303, 304} tii[20,13] := {118} tii[20,14] := {259} tii[20,15] := {167} tii[20,16] := {284} tii[20,17] := {257, 258} tii[20,18] := {306, 307} tii[20,19] := {232, 233} tii[20,20] := {293} tii[20,21] := {255} tii[20,22] := {305} tii[20,23] := {312, 313} tii[20,24] := {314} tii[20,25] := {91, 92} tii[20,26] := {141, 142} tii[20,27] := {179, 180} tii[20,28] := {226, 227} tii[20,29] := {229} tii[20,30] := {133, 134} tii[20,31] := {65, 66} tii[20,32] := {63, 64} tii[20,33] := {183, 184} tii[20,34] := {280} tii[20,35] := {161} tii[20,36] := {214, 215} tii[20,37] := {115, 116} tii[20,38] := {297} tii[20,39] := {206} tii[20,40] := {253, 254} tii[20,41] := {175, 176} tii[20,42] := {197} tii[20,43] := {216, 217} tii[20,44] := {137, 138} tii[20,45] := {160} tii[20,46] := {103, 104} tii[20,47] := {46} tii[20,48] := {260} tii[20,49] := {249, 250} tii[20,50] := {193, 194} tii[20,51] := {124} tii[20,52] := {205} tii[20,53] := {86} tii[20,54] := {275, 276} tii[20,55] := {285} tii[20,56] := {267, 268} tii[20,57] := {121, 122} tii[20,58] := {281} tii[20,59] := {157} tii[20,60] := {263} tii[20,61] := {289, 290} tii[20,62] := {298} tii[20,63] := {309} tii[20,64] := {89, 90} tii[20,65] := {199} tii[20,66] := {139, 140} tii[20,67] := {30, 31} tii[20,68] := {177, 178} tii[20,69] := {238} tii[20,70] := {73, 74} tii[20,71] := {224, 225} tii[20,72] := {131, 132} tii[20,73] := {158} tii[20,74] := {230} tii[20,75] := {181, 182} tii[20,76] := {79} tii[20,77] := {93, 94} tii[20,78] := {143, 144} tii[20,79] := {11, 12} tii[20,80] := {117} tii[20,81] := {231} tii[20,82] := {212, 213} tii[20,83] := {202} tii[20,84] := {126} tii[20,85] := {149, 150} tii[20,86] := {265} tii[20,87] := {44, 45} tii[20,88] := {82} tii[20,89] := {166} tii[20,90] := {251, 252} tii[20,91] := {266} tii[20,92] := {47} tii[20,93] := {28, 29} tii[20,94] := {245, 246} tii[20,95] := {261} tii[20,96] := {162, 163} tii[20,97] := {283} tii[20,98] := {23} tii[20,99] := {87} tii[20,100] := {236} tii[20,101] := {71, 72} tii[20,102] := {271, 272} tii[20,103] := {195} tii[20,104] := {286} tii[20,105] := {129} tii[20,106] := {300} tii[20,107] := {173, 174} tii[20,108] := {159} tii[20,109] := {218, 219} tii[20,110] := {135, 136} tii[20,111] := {247, 248} tii[20,112] := {123} tii[20,113] := {204} tii[20,114] := {191, 192} tii[20,115] := {273, 274} tii[20,116] := {200, 201} tii[20,117] := {95, 96} tii[20,118] := {269, 270} tii[20,119] := {282} tii[20,120] := {83} tii[20,121] := {234} tii[20,122] := {228} tii[20,123] := {291, 292} tii[20,124] := {151, 152} tii[20,125] := {264} tii[20,126] := {299} tii[20,127] := {209} tii[20,128] := {310} tii[20,129] := {278, 279} tii[20,130] := {277} tii[20,131] := {295, 296} tii[20,132] := {311} tii[20,133] := {34, 35} tii[20,134] := {77, 78} tii[20,135] := {61, 62} tii[20,136] := {119} tii[20,137] := {32, 33} tii[20,138] := {36, 37} tii[20,139] := {75, 76} tii[20,140] := {168} tii[20,141] := {113, 114} tii[20,142] := {57, 58} tii[20,143] := {81} tii[20,144] := {147, 148} tii[20,145] := {128} tii[20,146] := {50} tii[20,147] := {109, 110} tii[20,148] := {171} tii[20,149] := {198} tii[20,150] := {99, 100} tii[20,151] := {3, 4} tii[20,152] := {164} tii[20,153] := {237} tii[20,154] := {67, 68} tii[20,155] := {155, 156} tii[20,156] := {19, 20} tii[20,157] := {21} tii[20,158] := {97, 98} tii[20,159] := {120} tii[20,160] := {9, 10} tii[20,161] := {40, 41} tii[20,162] := {262} tii[20,163] := {125} tii[20,164] := {189, 190} tii[20,165] := {51} tii[20,166] := {42, 43} tii[20,167] := {85} tii[20,168] := {169} tii[20,169] := {153, 154} tii[20,170] := {7} tii[20,171] := {52} tii[20,172] := {88} tii[20,173] := {208} tii[20,174] := {26, 27} tii[20,175] := {235} tii[20,176] := {222, 223} tii[20,177] := {69, 70} tii[20,178] := {22} tii[20,179] := {239} tii[20,180] := {130} tii[20,181] := {59, 60} tii[20,182] := {38, 39} tii[20,183] := {111, 112} tii[20,184] := {55, 56} tii[20,185] := {80} tii[20,186] := {165} tii[20,187] := {15, 16} tii[20,188] := {145, 146} tii[20,189] := {107, 108} tii[20,190] := {49} tii[20,191] := {127} tii[20,192] := {24} tii[20,193] := {170} tii[20,194] := {53, 54} tii[20,195] := {48} tii[20,196] := {5, 6} tii[20,197] := {203} tii[20,198] := {187, 188} tii[20,199] := {105, 106} tii[20,200] := {8} tii[20,201] := {207} tii[20,202] := {172} tii[20,203] := {220, 221} tii[20,204] := {240} tii[20,205] := {13, 14} tii[20,206] := {84} tii[20,207] := {17, 18} tii[20,208] := {25} tii[20,209] := {0, 1} tii[20,210] := {2} cell#99 , |C| = 245 special orbit = [4, 4, 4, 2] special rep = [[2, 2], [2, 1]] , dim = 140 cell rep = phi[[2, 2, 1],[2]]+phi[[2, 2],[2, 1]] TII depth = 4 TII multiplicity polynomial = 105*X^2+35*X TII subcells: tii[18,1] := {200, 201} tii[18,2] := {134, 135} tii[18,3] := {219, 220} tii[18,4] := {210, 211} tii[18,5] := {173, 174} tii[18,6] := {233, 234} tii[18,7] := {229, 230} tii[18,8] := {212} tii[18,9] := {226} tii[18,10] := {235, 236} tii[18,11] := {241, 242} tii[18,12] := {244} tii[18,13] := {40, 41} tii[18,14] := {132, 133} tii[18,15] := {22, 23} tii[18,16] := {104, 105} tii[18,17] := {68, 69} tii[18,18] := {189, 190} tii[18,19] := {53, 54} tii[18,20] := {162, 163} tii[18,21] := {75, 76} tii[18,22] := {114, 115} tii[18,23] := {96, 97} tii[18,24] := {118, 119} tii[18,25] := {185, 186} tii[18,26] := {198, 199} tii[18,27] := {120, 121} tii[18,28] := {92, 93} tii[18,29] := {170} tii[18,30] := {116} tii[18,31] := {158, 159} tii[18,32] := {195} tii[18,33] := {217, 218} tii[18,34] := {228} tii[18,35] := {45, 46} tii[18,36] := {98, 99} tii[18,37] := {79, 80} tii[18,38] := {187, 188} tii[18,39] := {108, 109} tii[18,40] := {142, 143} tii[18,41] := {73, 74} tii[18,42] := {126, 127} tii[18,43] := {146, 147} tii[18,44] := {110, 111} tii[18,45] := {49, 50} tii[18,46] := {207, 208} tii[18,47] := {193} tii[18,48] := {150, 151} tii[18,49] := {215, 216} tii[18,50] := {138, 139} tii[18,51] := {124, 125} tii[18,52] := {85, 86} tii[18,53] := {213} tii[18,54] := {182, 183} tii[18,55] := {168, 169} tii[18,56] := {145} tii[18,57] := {164, 165} tii[18,58] := {179} tii[18,59] := {231, 232} tii[18,60] := {157} tii[18,61] := {191, 192} tii[18,62] := {238} tii[18,63] := {206} tii[18,64] := {225} tii[18,65] := {155, 156} tii[18,66] := {153, 154} tii[18,67] := {223, 224} tii[18,68] := {177, 178} tii[18,69] := {172} tii[18,70] := {204, 205} tii[18,71] := {239, 240} tii[18,72] := {196, 197} tii[18,73] := {194} tii[18,74] := {243} tii[18,75] := {221, 222} tii[18,76] := {237} tii[18,77] := {8, 9} tii[18,78] := {10, 11} tii[18,79] := {20, 21} tii[18,80] := {2, 3} tii[18,81] := {30, 31} tii[18,82] := {51, 52} tii[18,83] := {18, 19} tii[18,84] := {87, 88} tii[18,85] := {64, 65} tii[18,86] := {38, 39} tii[18,87] := {100, 101} tii[18,88] := {63} tii[18,89] := {47, 48} tii[18,90] := {77, 78} tii[18,91] := {12, 13} tii[18,92] := {42, 43} tii[18,93] := {26, 27} tii[18,94] := {106, 107} tii[18,95] := {57, 58} tii[18,96] := {36, 37} tii[18,97] := {140, 141} tii[18,98] := {90, 91} tii[18,99] := {66, 67} tii[18,100] := {152} tii[18,101] := {136, 137} tii[18,102] := {14, 15} tii[18,103] := {55, 56} tii[18,104] := {89} tii[18,105] := {166, 167} tii[18,106] := {129, 130} tii[18,107] := {184} tii[18,108] := {128} tii[18,109] := {34, 35} tii[18,110] := {209} tii[18,111] := {72} tii[18,112] := {148, 149} tii[18,113] := {180, 181} tii[18,114] := {144} tii[18,115] := {214} tii[18,116] := {24, 25} tii[18,117] := {70, 71} tii[18,118] := {61, 62} tii[18,119] := {28, 29} tii[18,120] := {122, 123} tii[18,121] := {94, 95} tii[18,122] := {83, 84} tii[18,123] := {59, 60} tii[18,124] := {117} tii[18,125] := {160, 161} tii[18,126] := {103} tii[18,127] := {175, 176} tii[18,128] := {171} tii[18,129] := {112, 113} tii[18,130] := {202, 203} tii[18,131] := {131} tii[18,132] := {227} tii[18,133] := {0, 1} tii[18,134] := {6, 7} tii[18,135] := {4, 5} tii[18,136] := {32, 33} tii[18,137] := {16, 17} tii[18,138] := {44} tii[18,139] := {81, 82} tii[18,140] := {102} cell#100 , |C| = 245 special orbit = [4, 4, 4, 2] special rep = [[2, 2], [2, 1]] , dim = 140 cell rep = phi[[2, 2, 1],[2]]+phi[[2, 2],[2, 1]] TII depth = 4 TII multiplicity polynomial = 105*X^2+35*X TII subcells: tii[18,1] := {194, 243} tii[18,2] := {77, 131} tii[18,3] := {212, 239} tii[18,4] := {165, 208} tii[18,5] := {129, 170} tii[18,6] := {226, 241} tii[18,7] := {207, 227} tii[18,8] := {173} tii[18,9] := {201} tii[18,10] := {235, 244} tii[18,11] := {231, 242} tii[18,12] := {238} tii[18,13] := {41, 158} tii[18,14] := {123, 223} tii[18,15] := {30, 130} tii[18,16] := {53, 104} tii[18,17] := {63, 182} tii[18,18] := {137, 188} tii[18,19] := {18, 59} tii[18,20] := {150, 233} tii[18,21] := {65, 186} tii[18,22] := {99, 211} tii[18,23] := {88, 203} tii[18,24] := {75, 117} tii[18,25] := {174, 240} tii[18,26] := {164, 197} tii[18,27] := {118, 221} tii[18,28] := {50, 93} tii[18,29] := {120} tii[18,30] := {68} tii[18,31] := {152, 234} tii[18,32] := {154} tii[18,33] := {183, 216} tii[18,34] := {198} tii[18,35] := {51, 102} tii[18,36] := {89, 157} tii[18,37] := {34, 83} tii[18,38] := {175, 222} tii[18,39] := {91, 161} tii[18,40] := {127, 191} tii[18,41] := {40, 76} tii[18,42] := {116, 181} tii[18,43] := {101, 145} tii[18,44] := {58, 109} tii[18,45] := {22, 55} tii[18,46] := {196, 232} tii[18,47] := {148} tii[18,48] := {146, 205} tii[18,49] := {187, 215} tii[18,50] := {81, 134} tii[18,51] := {74, 122} tii[18,52] := {37, 85} tii[18,53] := {178} tii[18,54] := {176, 224} tii[18,55] := {115, 169} tii[18,56] := {95} tii[18,57] := {107, 160} tii[18,58] := {121} tii[18,59] := {204, 228} tii[18,60] := {97} tii[18,61] := {142, 190} tii[18,62] := {217} tii[18,63] := {155} tii[18,64] := {180} tii[18,65] := {144, 193} tii[18,66] := {100, 149} tii[18,67] := {214, 236} tii[18,68] := {171, 213} tii[18,69] := {124} tii[18,70] := {199, 230} tii[18,71] := {220, 237} tii[18,72] := {159, 195} tii[18,73] := {151} tii[18,74] := {229} tii[18,75] := {189, 218} tii[18,76] := {219} tii[18,77] := {11, 110} tii[18,78] := {15, 103} tii[18,79] := {24, 136} tii[18,80] := {5, 79} tii[18,81] := {7, 36} tii[18,82] := {42, 162} tii[18,83] := {12, 113} tii[18,84] := {72, 192} tii[18,85] := {64, 185} tii[18,86] := {16, 44} tii[18,87] := {98, 210} tii[18,88] := {27} tii[18,89] := {23, 52} tii[18,90] := {35, 82} tii[18,91] := {14, 105} tii[18,92] := {43, 163} tii[18,93] := {10, 32} tii[18,94] := {57, 108} tii[18,95] := {20, 61} tii[18,96] := {25, 140} tii[18,97] := {87, 143} tii[18,98] := {90, 206} tii[18,99] := {31, 67} tii[18,100] := {92} tii[18,101] := {80, 133} tii[18,102] := {3, 17} tii[18,103] := {46, 166} tii[18,104] := {47} tii[18,105] := {114, 168} tii[18,106] := {126, 225} tii[18,107] := {128} tii[18,108] := {70} tii[18,109] := {8, 39} tii[18,110] := {156} tii[18,111] := {28} tii[18,112] := {106, 147} tii[18,113] := {141, 177} tii[18,114] := {96} tii[18,115] := {179} tii[18,116] := {29, 78} tii[18,117] := {66, 135} tii[18,118] := {45, 112} tii[18,119] := {9, 33} tii[18,120] := {119, 184} tii[18,121] := {54, 94} tii[18,122] := {69, 138} tii[18,123] := {19, 62} tii[18,124] := {71} tii[18,125] := {153, 209} tii[18,126] := {48} tii[18,127] := {132, 172} tii[18,128] := {125} tii[18,129] := {60, 111} tii[18,130] := {167, 200} tii[18,131] := {73} tii[18,132] := {202} tii[18,133] := {1, 56} tii[18,134] := {4, 86} tii[18,135] := {0, 6} tii[18,136] := {26, 139} tii[18,137] := {2, 21} tii[18,138] := {13} tii[18,139] := {38, 84} tii[18,140] := {49} cell#101 , |C| = 126 special orbit = [6, 2, 2, 2, 2] special rep = [[3, 1, 1], [1, 1]] , dim = 126 cell rep = phi[[3, 1, 1],[1, 1]] TII depth = 4 TII multiplicity polynomial = 126*X TII subcells: tii[24,1] := {125} tii[24,2] := {120} tii[24,3] := {108} tii[24,4] := {106} tii[24,5] := {80} tii[24,6] := {50} tii[24,7] := {89} tii[24,8] := {64} tii[24,9] := {59} tii[24,10] := {124} tii[24,11] := {103} tii[24,12] := {115} tii[24,13] := {48} tii[24,14] := {122} tii[24,15] := {93} tii[24,16] := {95} tii[24,17] := {41} tii[24,18] := {119} tii[24,19] := {104} tii[24,20] := {114} tii[24,21] := {111} tii[24,22] := {63} tii[24,23] := {81} tii[24,24] := {29} tii[24,25] := {100} tii[24,26] := {74} tii[24,27] := {91} tii[24,28] := {71} tii[24,29] := {40} tii[24,30] := {61} tii[24,31] := {109} tii[24,32] := {33} tii[24,33] := {123} tii[24,34] := {102} tii[24,35] := {28} tii[24,36] := {121} tii[24,37] := {110} tii[24,38] := {118} tii[24,39] := {88} tii[24,40] := {97} tii[24,41] := {47} tii[24,42] := {17} tii[24,43] := {56} tii[24,44] := {86} tii[24,45] := {96} tii[24,46] := {116} tii[24,47] := {65} tii[24,48] := {76} tii[24,49] := {112} tii[24,50] := {83} tii[24,51] := {54} tii[24,52] := {27} tii[24,53] := {44} tii[24,54] := {99} tii[24,55] := {55} tii[24,56] := {9} tii[24,57] := {94} tii[24,58] := {66} tii[24,59] := {84} tii[24,60] := {51} tii[24,61] := {38} tii[24,62] := {16} tii[24,63] := {31} tii[24,64] := {68} tii[24,65] := {24} tii[24,66] := {37} tii[24,67] := {6} tii[24,68] := {73} tii[24,69] := {14} tii[24,70] := {58} tii[24,71] := {25} tii[24,72] := {42} tii[24,73] := {11} tii[24,74] := {117} tii[24,75] := {79} tii[24,76] := {21} tii[24,77] := {49} tii[24,78] := {113} tii[24,79] := {90} tii[24,80] := {35} tii[24,81] := {105} tii[24,82] := {26} tii[24,83] := {101} tii[24,84] := {75} tii[24,85] := {43} tii[24,86] := {92} tii[24,87] := {78} tii[24,88] := {72} tii[24,89] := {4} tii[24,90] := {107} tii[24,91] := {34} tii[24,92] := {82} tii[24,93] := {12} tii[24,94] := {98} tii[24,95] := {23} tii[24,96] := {67} tii[24,97] := {15} tii[24,98] := {87} tii[24,99] := {57} tii[24,100] := {85} tii[24,101] := {30} tii[24,102] := {77} tii[24,103] := {62} tii[24,104] := {52} tii[24,105] := {8} tii[24,106] := {69} tii[24,107] := {19} tii[24,108] := {46} tii[24,109] := {1} tii[24,110] := {22} tii[24,111] := {5} tii[24,112] := {13} tii[24,113] := {7} tii[24,114] := {39} tii[24,115] := {70} tii[24,116] := {18} tii[24,117] := {60} tii[24,118] := {45} tii[24,119] := {36} tii[24,120] := {2} tii[24,121] := {53} tii[24,122] := {10} tii[24,123] := {32} tii[24,124] := {0} tii[24,125] := {3} tii[24,126] := {20} cell#102 , |C| = 315 special orbit = [4, 4, 2, 2, 2] special rep = [[2, 1, 1], [2, 1]] , dim = 210 cell rep = phi[[2, 2, 1],[1, 1]]+phi[[2, 1, 1],[2, 1]] TII depth = 4 TII multiplicity polynomial = 105*X^2+105*X TII subcells: tii[16,1] := {194, 309} tii[16,2] := {274} tii[16,3] := {135, 314} tii[16,4] := {101, 307} tii[16,5] := {228} tii[16,6] := {267} tii[16,7] := {97, 247} tii[16,8] := {189} tii[16,9] := {153, 193} tii[16,10] := {164, 301} tii[16,11] := {70, 269} tii[16,12] := {27, 242} tii[16,13] := {252} tii[16,14] := {128, 273} tii[16,15] := {159} tii[16,16] := {198} tii[16,17] := {236} tii[16,18] := {136, 310} tii[16,19] := {96, 286} tii[16,20] := {50, 284} tii[16,21] := {229} tii[16,22] := {188} tii[16,23] := {113, 302} tii[16,24] := {67, 282} tii[16,25] := {140} tii[16,26] := {87, 293} tii[16,27] := {179} tii[16,28] := {254} tii[16,29] := {213} tii[16,30] := {231} tii[16,31] := {45, 288} tii[16,32] := {183, 221} tii[16,33] := {129} tii[16,34] := {14, 266} tii[16,35] := {157, 290} tii[16,36] := {226} tii[16,37] := {261} tii[16,38] := {154, 246} tii[16,39] := {108, 313} tii[16,40] := {69, 300} tii[16,41] := {171, 303} tii[16,42] := {75, 297} tii[16,43] := {12, 243} tii[16,44] := {121, 271} tii[16,45] := {158} tii[16,46] := {84, 311} tii[16,47] := {44, 296} tii[16,48] := {110} tii[16,49] := {202} tii[16,50] := {199} tii[16,51] := {144, 295} tii[16,52] := {61, 305} tii[16,53] := {149} tii[16,54] := {237} tii[16,55] := {23, 265} tii[16,56] := {225} tii[16,57] := {51, 292} tii[16,58] := {230} tii[16,59] := {184} tii[16,60] := {34, 278} tii[16,61] := {260} tii[16,62] := {204} tii[16,63] := {95, 306} tii[16,64] := {187} tii[16,65] := {112, 312} tii[16,66] := {66, 299} tii[16,67] := {139} tii[16,68] := {178} tii[16,69] := {86, 308} tii[16,70] := {56, 287} tii[16,71] := {167} tii[16,72] := {255} tii[16,73] := {214} tii[16,74] := {206} tii[16,75] := {232} tii[16,76] := {77, 298} tii[16,77] := {222} tii[16,78] := {245} tii[16,79] := {68, 107} tii[16,80] := {48, 201} tii[16,81] := {109} tii[16,82] := {148} tii[16,83] := {58, 134} tii[16,84] := {124, 165} tii[16,85] := {74, 227} tii[16,86] := {36, 166} tii[16,87] := {102, 253} tii[16,88] := {24, 217} tii[16,89] := {100} tii[16,90] := {170} tii[16,91] := {94, 143} tii[16,92] := {52, 205} tii[16,93] := {133} tii[16,94] := {209} tii[16,95] := {116} tii[16,96] := {127} tii[16,97] := {76, 275} tii[16,98] := {141} tii[16,99] := {39, 240} tii[16,100] := {162} tii[16,101] := {55, 256} tii[16,102] := {180} tii[16,103] := {119} tii[16,104] := {212} tii[16,105] := {123, 220} tii[16,106] := {38, 163} tii[16,107] := {122, 172} tii[16,108] := {142, 289} tii[16,109] := {49, 251} tii[16,110] := {4, 216} tii[16,111] := {93, 249} tii[16,112] := {20, 195} tii[16,113] := {169} tii[16,114] := {73} tii[16,115] := {145} tii[16,116] := {115, 279} tii[16,117] := {31, 233} tii[16,118] := {208} tii[16,119] := {105} tii[16,120] := {85, 291} tii[16,121] := {46, 264} tii[16,122] := {9, 185} tii[16,123] := {196} tii[16,124] := {99} tii[16,125] := {111} tii[16,126] := {11, 241} tii[16,127] := {29, 276} tii[16,128] := {81, 224} tii[16,129] := {174} tii[16,130] := {63, 277} tii[16,131] := {234} tii[16,132] := {132} tii[16,133] := {15, 218} tii[16,134] := {17, 257} tii[16,135] := {90} tii[16,136] := {150} tii[16,137] := {103, 259} tii[16,138] := {41, 262} tii[16,139] := {182} tii[16,140] := {21, 248} tii[16,141] := {168} tii[16,142] := {126} tii[16,143] := {118} tii[16,144] := {207} tii[16,145] := {161} tii[16,146] := {32, 268} tii[16,147] := {211} tii[16,148] := {22, 192} tii[16,149] := {28, 272} tii[16,150] := {152, 200} tii[16,151] := {10, 223} tii[16,152] := {47} tii[16,153] := {16, 258} tii[16,154] := {173} tii[16,155] := {80} tii[16,156] := {72} tii[16,157] := {106, 250} tii[16,158] := {3, 215} tii[16,159] := {26, 283} tii[16,160] := {59, 304} tii[16,161] := {82} tii[16,162] := {203} tii[16,163] := {104} tii[16,164] := {40, 294} tii[16,165] := {130, 280} tii[16,166] := {7, 244} tii[16,167] := {120} tii[16,168] := {62} tii[16,169] := {151} tii[16,170] := {25, 281} tii[16,171] := {37, 270} tii[16,172] := {2, 186} tii[16,173] := {138} tii[16,174] := {98} tii[16,175] := {89} tii[16,176] := {175} tii[16,177] := {53, 285} tii[16,178] := {5, 219} tii[16,179] := {177} tii[16,180] := {131} tii[16,181] := {18, 263} tii[16,182] := {181} tii[16,183] := {125} tii[16,184] := {160} tii[16,185] := {117} tii[16,186] := {210} tii[16,187] := {43, 83} tii[16,188] := {60} tii[16,189] := {19, 137} tii[16,190] := {71, 114} tii[16,191] := {88} tii[16,192] := {30, 176} tii[16,193] := {91} tii[16,194] := {64} tii[16,195] := {6, 156} tii[16,196] := {57, 197} tii[16,197] := {79} tii[16,198] := {147} tii[16,199] := {13, 191} tii[16,200] := {78, 235} tii[16,201] := {35, 239} tii[16,202] := {92} tii[16,203] := {0, 155} tii[16,204] := {146} tii[16,205] := {54} tii[16,206] := {1, 190} tii[16,207] := {65} tii[16,208] := {8, 238} tii[16,209] := {33} tii[16,210] := {42} cell#103 , |C| = 245 special orbit = [4, 4, 4, 2] special rep = [[2, 2], [2, 1]] , dim = 140 cell rep = phi[[2, 2, 1],[2]]+phi[[2, 2],[2, 1]] TII depth = 4 TII multiplicity polynomial = 105*X^2+35*X TII subcells: tii[18,1] := {194, 243} tii[18,2] := {77, 131} tii[18,3] := {212, 239} tii[18,4] := {165, 208} tii[18,5] := {129, 170} tii[18,6] := {226, 241} tii[18,7] := {207, 227} tii[18,8] := {173} tii[18,9] := {201} tii[18,10] := {235, 244} tii[18,11] := {231, 242} tii[18,12] := {238} tii[18,13] := {41, 158} tii[18,14] := {123, 223} tii[18,15] := {30, 130} tii[18,16] := {53, 104} tii[18,17] := {63, 182} tii[18,18] := {137, 188} tii[18,19] := {18, 59} tii[18,20] := {150, 233} tii[18,21] := {65, 186} tii[18,22] := {99, 211} tii[18,23] := {88, 203} tii[18,24] := {75, 117} tii[18,25] := {174, 240} tii[18,26] := {164, 197} tii[18,27] := {118, 221} tii[18,28] := {50, 93} tii[18,29] := {120} tii[18,30] := {68} tii[18,31] := {152, 234} tii[18,32] := {154} tii[18,33] := {183, 216} tii[18,34] := {198} tii[18,35] := {51, 102} tii[18,36] := {89, 157} tii[18,37] := {34, 83} tii[18,38] := {175, 222} tii[18,39] := {91, 161} tii[18,40] := {127, 191} tii[18,41] := {40, 76} tii[18,42] := {116, 181} tii[18,43] := {101, 145} tii[18,44] := {58, 109} tii[18,45] := {22, 55} tii[18,46] := {196, 232} tii[18,47] := {148} tii[18,48] := {146, 205} tii[18,49] := {187, 215} tii[18,50] := {81, 134} tii[18,51] := {74, 122} tii[18,52] := {37, 85} tii[18,53] := {178} tii[18,54] := {176, 224} tii[18,55] := {115, 169} tii[18,56] := {95} tii[18,57] := {107, 160} tii[18,58] := {121} tii[18,59] := {204, 228} tii[18,60] := {97} tii[18,61] := {142, 190} tii[18,62] := {217} tii[18,63] := {155} tii[18,64] := {180} tii[18,65] := {144, 193} tii[18,66] := {100, 149} tii[18,67] := {214, 236} tii[18,68] := {171, 213} tii[18,69] := {124} tii[18,70] := {199, 230} tii[18,71] := {220, 237} tii[18,72] := {159, 195} tii[18,73] := {151} tii[18,74] := {229} tii[18,75] := {189, 218} tii[18,76] := {219} tii[18,77] := {11, 110} tii[18,78] := {15, 103} tii[18,79] := {24, 136} tii[18,80] := {5, 79} tii[18,81] := {7, 36} tii[18,82] := {42, 162} tii[18,83] := {12, 113} tii[18,84] := {72, 192} tii[18,85] := {64, 185} tii[18,86] := {16, 44} tii[18,87] := {98, 210} tii[18,88] := {27} tii[18,89] := {23, 52} tii[18,90] := {35, 82} tii[18,91] := {14, 105} tii[18,92] := {43, 163} tii[18,93] := {10, 32} tii[18,94] := {57, 108} tii[18,95] := {20, 61} tii[18,96] := {25, 140} tii[18,97] := {87, 143} tii[18,98] := {90, 206} tii[18,99] := {31, 67} tii[18,100] := {92} tii[18,101] := {80, 133} tii[18,102] := {3, 17} tii[18,103] := {46, 166} tii[18,104] := {47} tii[18,105] := {114, 168} tii[18,106] := {126, 225} tii[18,107] := {128} tii[18,108] := {70} tii[18,109] := {8, 39} tii[18,110] := {156} tii[18,111] := {28} tii[18,112] := {106, 147} tii[18,113] := {141, 177} tii[18,114] := {96} tii[18,115] := {179} tii[18,116] := {29, 78} tii[18,117] := {66, 135} tii[18,118] := {45, 112} tii[18,119] := {9, 33} tii[18,120] := {119, 184} tii[18,121] := {54, 94} tii[18,122] := {69, 138} tii[18,123] := {19, 62} tii[18,124] := {71} tii[18,125] := {153, 209} tii[18,126] := {48} tii[18,127] := {132, 172} tii[18,128] := {125} tii[18,129] := {60, 111} tii[18,130] := {167, 200} tii[18,131] := {73} tii[18,132] := {202} tii[18,133] := {1, 56} tii[18,134] := {4, 86} tii[18,135] := {0, 6} tii[18,136] := {26, 139} tii[18,137] := {2, 21} tii[18,138] := {13} tii[18,139] := {38, 84} tii[18,140] := {49} cell#104 , |C| = 126 special orbit = [6, 2, 2, 2, 2] special rep = [[3, 1, 1], [1, 1]] , dim = 126 cell rep = phi[[3, 1, 1],[1, 1]] TII depth = 4 TII multiplicity polynomial = 126*X TII subcells: tii[24,1] := {125} tii[24,2] := {120} tii[24,3] := {108} tii[24,4] := {106} tii[24,5] := {80} tii[24,6] := {50} tii[24,7] := {89} tii[24,8] := {64} tii[24,9] := {59} tii[24,10] := {124} tii[24,11] := {103} tii[24,12] := {115} tii[24,13] := {48} tii[24,14] := {122} tii[24,15] := {93} tii[24,16] := {95} tii[24,17] := {41} tii[24,18] := {119} tii[24,19] := {104} tii[24,20] := {114} tii[24,21] := {111} tii[24,22] := {63} tii[24,23] := {81} tii[24,24] := {29} tii[24,25] := {100} tii[24,26] := {74} tii[24,27] := {91} tii[24,28] := {71} tii[24,29] := {40} tii[24,30] := {61} tii[24,31] := {109} tii[24,32] := {33} tii[24,33] := {123} tii[24,34] := {102} tii[24,35] := {28} tii[24,36] := {121} tii[24,37] := {110} tii[24,38] := {118} tii[24,39] := {88} tii[24,40] := {97} tii[24,41] := {47} tii[24,42] := {17} tii[24,43] := {56} tii[24,44] := {86} tii[24,45] := {96} tii[24,46] := {116} tii[24,47] := {65} tii[24,48] := {76} tii[24,49] := {112} tii[24,50] := {83} tii[24,51] := {54} tii[24,52] := {27} tii[24,53] := {44} tii[24,54] := {99} tii[24,55] := {55} tii[24,56] := {9} tii[24,57] := {94} tii[24,58] := {66} tii[24,59] := {84} tii[24,60] := {51} tii[24,61] := {38} tii[24,62] := {16} tii[24,63] := {31} tii[24,64] := {68} tii[24,65] := {24} tii[24,66] := {37} tii[24,67] := {6} tii[24,68] := {73} tii[24,69] := {14} tii[24,70] := {58} tii[24,71] := {25} tii[24,72] := {42} tii[24,73] := {11} tii[24,74] := {117} tii[24,75] := {79} tii[24,76] := {21} tii[24,77] := {49} tii[24,78] := {113} tii[24,79] := {90} tii[24,80] := {35} tii[24,81] := {105} tii[24,82] := {26} tii[24,83] := {101} tii[24,84] := {75} tii[24,85] := {43} tii[24,86] := {92} tii[24,87] := {78} tii[24,88] := {72} tii[24,89] := {4} tii[24,90] := {107} tii[24,91] := {34} tii[24,92] := {82} tii[24,93] := {12} tii[24,94] := {98} tii[24,95] := {23} tii[24,96] := {67} tii[24,97] := {15} tii[24,98] := {87} tii[24,99] := {57} tii[24,100] := {85} tii[24,101] := {30} tii[24,102] := {77} tii[24,103] := {62} tii[24,104] := {52} tii[24,105] := {8} tii[24,106] := {69} tii[24,107] := {19} tii[24,108] := {46} tii[24,109] := {1} tii[24,110] := {22} tii[24,111] := {5} tii[24,112] := {13} tii[24,113] := {7} tii[24,114] := {39} tii[24,115] := {70} tii[24,116] := {18} tii[24,117] := {60} tii[24,118] := {45} tii[24,119] := {36} tii[24,120] := {2} tii[24,121] := {53} tii[24,122] := {10} tii[24,123] := {32} tii[24,124] := {0} tii[24,125] := {3} tii[24,126] := {20} cell#105 , |C| = 315 special orbit = [4, 4, 2, 2, 2] special rep = [[2, 1, 1], [2, 1]] , dim = 210 cell rep = phi[[2, 2, 1],[1, 1]]+phi[[2, 1, 1],[2, 1]] TII depth = 4 TII multiplicity polynomial = 105*X^2+105*X TII subcells: tii[16,1] := {194, 309} tii[16,2] := {274} tii[16,3] := {135, 314} tii[16,4] := {101, 307} tii[16,5] := {228} tii[16,6] := {267} tii[16,7] := {97, 247} tii[16,8] := {189} tii[16,9] := {153, 193} tii[16,10] := {164, 301} tii[16,11] := {70, 269} tii[16,12] := {27, 242} tii[16,13] := {252} tii[16,14] := {128, 273} tii[16,15] := {159} tii[16,16] := {198} tii[16,17] := {236} tii[16,18] := {136, 310} tii[16,19] := {96, 286} tii[16,20] := {50, 284} tii[16,21] := {229} tii[16,22] := {188} tii[16,23] := {113, 302} tii[16,24] := {67, 282} tii[16,25] := {140} tii[16,26] := {87, 293} tii[16,27] := {179} tii[16,28] := {254} tii[16,29] := {213} tii[16,30] := {231} tii[16,31] := {45, 288} tii[16,32] := {183, 221} tii[16,33] := {129} tii[16,34] := {14, 266} tii[16,35] := {157, 290} tii[16,36] := {226} tii[16,37] := {261} tii[16,38] := {154, 246} tii[16,39] := {108, 313} tii[16,40] := {69, 300} tii[16,41] := {171, 303} tii[16,42] := {75, 297} tii[16,43] := {12, 243} tii[16,44] := {121, 271} tii[16,45] := {158} tii[16,46] := {84, 311} tii[16,47] := {44, 296} tii[16,48] := {110} tii[16,49] := {202} tii[16,50] := {199} tii[16,51] := {144, 295} tii[16,52] := {61, 305} tii[16,53] := {149} tii[16,54] := {237} tii[16,55] := {23, 265} tii[16,56] := {225} tii[16,57] := {51, 292} tii[16,58] := {230} tii[16,59] := {184} tii[16,60] := {34, 278} tii[16,61] := {260} tii[16,62] := {204} tii[16,63] := {95, 306} tii[16,64] := {187} tii[16,65] := {112, 312} tii[16,66] := {66, 299} tii[16,67] := {139} tii[16,68] := {178} tii[16,69] := {86, 308} tii[16,70] := {56, 287} tii[16,71] := {167} tii[16,72] := {255} tii[16,73] := {214} tii[16,74] := {206} tii[16,75] := {232} tii[16,76] := {77, 298} tii[16,77] := {222} tii[16,78] := {245} tii[16,79] := {68, 107} tii[16,80] := {48, 201} tii[16,81] := {109} tii[16,82] := {148} tii[16,83] := {58, 134} tii[16,84] := {124, 165} tii[16,85] := {74, 227} tii[16,86] := {36, 166} tii[16,87] := {102, 253} tii[16,88] := {24, 217} tii[16,89] := {100} tii[16,90] := {170} tii[16,91] := {94, 143} tii[16,92] := {52, 205} tii[16,93] := {133} tii[16,94] := {209} tii[16,95] := {116} tii[16,96] := {127} tii[16,97] := {76, 275} tii[16,98] := {141} tii[16,99] := {39, 240} tii[16,100] := {162} tii[16,101] := {55, 256} tii[16,102] := {180} tii[16,103] := {119} tii[16,104] := {212} tii[16,105] := {123, 220} tii[16,106] := {38, 163} tii[16,107] := {122, 172} tii[16,108] := {142, 289} tii[16,109] := {49, 251} tii[16,110] := {4, 216} tii[16,111] := {93, 249} tii[16,112] := {20, 195} tii[16,113] := {169} tii[16,114] := {73} tii[16,115] := {145} tii[16,116] := {115, 279} tii[16,117] := {31, 233} tii[16,118] := {208} tii[16,119] := {105} tii[16,120] := {85, 291} tii[16,121] := {46, 264} tii[16,122] := {9, 185} tii[16,123] := {196} tii[16,124] := {99} tii[16,125] := {111} tii[16,126] := {11, 241} tii[16,127] := {29, 276} tii[16,128] := {81, 224} tii[16,129] := {174} tii[16,130] := {63, 277} tii[16,131] := {234} tii[16,132] := {132} tii[16,133] := {15, 218} tii[16,134] := {17, 257} tii[16,135] := {90} tii[16,136] := {150} tii[16,137] := {103, 259} tii[16,138] := {41, 262} tii[16,139] := {182} tii[16,140] := {21, 248} tii[16,141] := {168} tii[16,142] := {126} tii[16,143] := {118} tii[16,144] := {207} tii[16,145] := {161} tii[16,146] := {32, 268} tii[16,147] := {211} tii[16,148] := {22, 192} tii[16,149] := {28, 272} tii[16,150] := {152, 200} tii[16,151] := {10, 223} tii[16,152] := {47} tii[16,153] := {16, 258} tii[16,154] := {173} tii[16,155] := {80} tii[16,156] := {72} tii[16,157] := {106, 250} tii[16,158] := {3, 215} tii[16,159] := {26, 283} tii[16,160] := {59, 304} tii[16,161] := {82} tii[16,162] := {203} tii[16,163] := {104} tii[16,164] := {40, 294} tii[16,165] := {130, 280} tii[16,166] := {7, 244} tii[16,167] := {120} tii[16,168] := {62} tii[16,169] := {151} tii[16,170] := {25, 281} tii[16,171] := {37, 270} tii[16,172] := {2, 186} tii[16,173] := {138} tii[16,174] := {98} tii[16,175] := {89} tii[16,176] := {175} tii[16,177] := {53, 285} tii[16,178] := {5, 219} tii[16,179] := {177} tii[16,180] := {131} tii[16,181] := {18, 263} tii[16,182] := {181} tii[16,183] := {125} tii[16,184] := {160} tii[16,185] := {117} tii[16,186] := {210} tii[16,187] := {43, 83} tii[16,188] := {60} tii[16,189] := {19, 137} tii[16,190] := {71, 114} tii[16,191] := {88} tii[16,192] := {30, 176} tii[16,193] := {91} tii[16,194] := {64} tii[16,195] := {6, 156} tii[16,196] := {57, 197} tii[16,197] := {79} tii[16,198] := {147} tii[16,199] := {13, 191} tii[16,200] := {78, 235} tii[16,201] := {35, 239} tii[16,202] := {92} tii[16,203] := {0, 155} tii[16,204] := {146} tii[16,205] := {54} tii[16,206] := {1, 190} tii[16,207] := {65} tii[16,208] := {8, 238} tii[16,209] := {33} tii[16,210] := {42} cell#106 , |C| = 245 special orbit = [4, 4, 4, 2] special rep = [[2, 2], [2, 1]] , dim = 140 cell rep = phi[[2, 2, 1],[2]]+phi[[2, 2],[2, 1]] TII depth = 4 TII multiplicity polynomial = 105*X^2+35*X TII subcells: tii[18,1] := {114, 244} tii[18,2] := {90, 188} tii[18,3] := {139, 243} tii[18,4] := {106, 226} tii[18,5] := {137, 187} tii[18,6] := {164, 239} tii[18,7] := {153, 225} tii[18,8] := {176} tii[18,9] := {200} tii[18,10] := {186, 233} tii[18,11] := {195, 224} tii[18,12] := {216} tii[18,13] := {14, 194} tii[18,14] := {55, 231} tii[18,15] := {11, 172} tii[18,16] := {70, 166} tii[18,17] := {24, 213} tii[18,18] := {84, 212} tii[18,19] := {46, 117} tii[18,20] := {73, 238} tii[18,21] := {27, 208} tii[18,22] := {43, 222} tii[18,23] := {36, 227} tii[18,24] := {89, 140} tii[18,25] := {92, 242} tii[18,26] := {105, 193} tii[18,27] := {52, 232} tii[18,28] := {80, 115} tii[18,29] := {126} tii[18,30] := {96} tii[18,31] := {77, 240} tii[18,32] := {158} tii[18,33] := {125, 171} tii[18,34] := {160} tii[18,35] := {19, 163} tii[18,36] := {37, 206} tii[18,37] := {63, 144} tii[18,38] := {93, 236} tii[18,39] := {40, 198} tii[18,40] := {59, 217} tii[18,41] := {23, 138} tii[18,42] := {51, 220} tii[18,43] := {111, 165} tii[18,44] := {72, 168} tii[18,45] := {38, 124} tii[18,46] := {116, 241} tii[18,47] := {151} tii[18,48] := {71, 228} tii[18,49] := {128, 211} tii[18,50] := {49, 177} tii[18,51] := {100, 141} tii[18,52] := {57, 146} tii[18,53] := {181} tii[18,54] := {99, 237} tii[18,55] := {67, 201} tii[18,56] := {119} tii[18,57] := {65, 197} tii[18,58] := {127} tii[18,59] := {149, 192} tii[18,60] := {108} tii[18,61] := {87, 219} tii[18,62] := {183} tii[18,63] := {159} tii[18,64] := {134} tii[18,65] := {69, 205} tii[18,66] := {123, 167} tii[18,67] := {143, 235} tii[18,68] := {91, 214} tii[18,69] := {145} tii[18,70] := {122, 229} tii[18,71] := {173, 210} tii[18,72] := {103, 196} tii[18,73] := {156} tii[18,74] := {202} tii[18,75] := {132, 218} tii[18,76] := {185} tii[18,77] := {3, 154} tii[18,78] := {6, 148} tii[18,79] := {7, 178} tii[18,80] := {2, 136} tii[18,81] := {32, 95} tii[18,82] := {15, 190} tii[18,83] := {4, 155} tii[18,84] := {30, 209} tii[18,85] := {26, 207} tii[18,86] := {45, 74} tii[18,87] := {42, 223} tii[18,88] := {56} tii[18,89] := {13, 112} tii[18,90] := {54, 142} tii[18,91] := {5, 162} tii[18,92] := {16, 199} tii[18,93] := {25, 101} tii[18,94] := {34, 152} tii[18,95] := {41, 120} tii[18,96] := {8, 179} tii[18,97] := {50, 182} tii[18,98] := {39, 221} tii[18,99] := {61, 94} tii[18,100] := {104} tii[18,101] := {48, 175} tii[18,102] := {20, 81} tii[18,103] := {18, 191} tii[18,104] := {75} tii[18,105] := {66, 204} tii[18,106] := {58, 234} tii[18,107] := {133} tii[18,108] := {85} tii[18,109] := {33, 97} tii[18,110] := {110} tii[18,111] := {60} tii[18,112] := {64, 150} tii[18,113] := {86, 184} tii[18,114] := {107} tii[18,115] := {135} tii[18,116] := {10, 147} tii[18,117] := {28, 189} tii[18,118] := {17, 169} tii[18,119] := {31, 102} tii[18,120] := {53, 215} tii[18,121] := {82, 118} tii[18,122] := {29, 180} tii[18,123] := {47, 121} tii[18,124] := {98} tii[18,125] := {78, 230} tii[18,126] := {79} tii[18,127] := {83, 174} tii[18,128] := {129} tii[18,129] := {35, 157} tii[18,130] := {109, 203} tii[18,131] := {88} tii[18,132] := {161} tii[18,133] := {0, 113} tii[18,134] := {1, 131} tii[18,135] := {12, 62} tii[18,136] := {9, 170} tii[18,137] := {21, 76} tii[18,138] := {44} tii[18,139] := {22, 130} tii[18,140] := {68} cell#107 , |C| = 315 special orbit = [4, 4, 2, 2, 2] special rep = [[2, 1, 1], [2, 1]] , dim = 210 cell rep = phi[[2, 2, 1],[1, 1]]+phi[[2, 1, 1],[2, 1]] TII depth = 4 TII multiplicity polynomial = 105*X^2+105*X TII subcells: tii[16,1] := {200, 291} tii[16,2] := {283} tii[16,3] := {245, 312} tii[16,4] := {190, 313} tii[16,5] := {302} tii[16,6] := {314} tii[16,7] := {61, 148} tii[16,8] := {175} tii[16,9] := {60, 124} tii[16,10] := {166, 272} tii[16,11] := {97, 183} tii[16,12] := {41, 174} tii[16,13] := {261} tii[16,14] := {105, 228} tii[16,15] := {207} tii[16,16] := {137} tii[16,17] := {181} tii[16,18] := {185, 292} tii[16,19] := {130, 215} tii[16,20] := {118, 298} tii[16,21] := {270} tii[16,22] := {235} tii[16,23] := {153, 275} tii[16,24] := {93, 230} tii[16,25] := {186} tii[16,26] := {121, 265} tii[16,27] := {223} tii[16,28] := {289} tii[16,29] := {256} tii[16,30] := {271} tii[16,31] := {132, 216} tii[16,32] := {95, 161} tii[16,33] := {237} tii[16,34] := {69, 205} tii[16,35] := {140, 254} tii[16,36] := {172} tii[16,37] := {212} tii[16,38] := {131, 194} tii[16,39] := {217, 305} tii[16,40] := {165, 244} tii[16,41] := {173, 277} tii[16,42] := {154, 308} tii[16,43] := {40, 236} tii[16,44] := {99, 220} tii[16,45] := {260} tii[16,46] := {191, 294} tii[16,47] := {129, 257} tii[16,48] := {219} tii[16,49] := {288} tii[16,50] := {204} tii[16,51] := {143, 250} tii[16,52] := {157, 287} tii[16,53] := {249} tii[16,54] := {240} tii[16,55] := {62, 259} tii[16,56] := {232} tii[16,57] := {119, 299} tii[16,58] := {303} tii[16,59] := {279} tii[16,60] := {88, 286} tii[16,61] := {263} tii[16,62] := {290} tii[16,63] := {199, 268} tii[16,64] := {282} tii[16,65] := {221, 306} tii[16,66] := {164, 280} tii[16,67] := {247} tii[16,68] := {274} tii[16,69] := {192, 301} tii[16,70] := {128, 297} tii[16,71] := {269} tii[16,72] := {310} tii[16,73] := {296} tii[16,74] := {293} tii[16,75] := {304} tii[16,76] := {156, 309} tii[16,77] := {307} tii[16,78] := {311} tii[16,79] := {13, 14} tii[16,80] := {19, 81} tii[16,81] := {39} tii[16,82] := {77} tii[16,83] := {27, 28} tii[16,84] := {34, 87} tii[16,85] := {42, 114} tii[16,86] := {12, 51} tii[16,87] := {71, 198} tii[16,88] := {18, 139} tii[16,89] := {68} tii[16,90] := {103} tii[16,91] := {15, 58} tii[16,92] := {22, 82} tii[16,93] := {112} tii[16,94] := {147} tii[16,95] := {47} tii[16,96] := {101} tii[16,97] := {84, 229} tii[16,98] := {116} tii[16,99] := {36, 170} tii[16,100] := {145} tii[16,101] := {54, 213} tii[16,102] := {162} tii[16,103] := {86} tii[16,104] := {197} tii[16,105] := {96, 159} tii[16,106] := {49, 50} tii[16,107] := {37, 92} tii[16,108] := {138, 252} tii[16,109] := {70, 149} tii[16,110] := {17, 206} tii[16,111] := {65, 187} tii[16,112] := {26, 80} tii[16,113] := {171} tii[16,114] := {102} tii[16,115] := {76} tii[16,116] := {108, 224} tii[16,117] := {44, 115} tii[16,118] := {211} tii[16,119] := {146} tii[16,120] := {120, 255} tii[16,121] := {63, 203} tii[16,122] := {11, 100} tii[16,123] := {202} tii[16,124] := {135} tii[16,125] := {151} tii[16,126] := {35, 234} tii[16,127] := {83, 284} tii[16,128] := {38, 152} tii[16,129] := {107} tii[16,130] := {89, 241} tii[16,131] := {239} tii[16,132] := {179} tii[16,133] := {21, 144} tii[16,134] := {53, 264} tii[16,135] := {123} tii[16,136] := {195} tii[16,137] := {75, 196} tii[16,138] := {56, 214} tii[16,139] := {227} tii[16,140] := {59, 258} tii[16,141] := {218} tii[16,142] := {167} tii[16,143] := {158} tii[16,144] := {248} tii[16,145] := {208} tii[16,146] := {85, 285} tii[16,147] := {251} tii[16,148] := {78, 79} tii[16,149] := {104, 184} tii[16,150] := {64, 127} tii[16,151] := {48, 113} tii[16,152] := {136} tii[16,153] := {72, 150} tii[16,154] := {111} tii[16,155] := {180} tii[16,156] := {169} tii[16,157] := {66, 189} tii[16,158] := {25, 133} tii[16,159] := {98, 233} tii[16,160] := {155, 278} tii[16,161] := {188} tii[16,162] := {142} tii[16,163] := {210} tii[16,164] := {125, 266} tii[16,165] := {110, 226} tii[16,166] := {43, 177} tii[16,167] := {225} tii[16,168] := {160} tii[16,169] := {253} tii[16,170] := {90, 243} tii[16,171] := {94, 281} tii[16,172] := {10, 168} tii[16,173] := {246} tii[16,174] := {201} tii[16,175] := {193} tii[16,176] := {176} tii[16,177] := {122, 300} tii[16,178] := {20, 209} tii[16,179] := {273} tii[16,180] := {238} tii[16,181] := {55, 267} tii[16,182] := {276} tii[16,183] := {231} tii[16,184] := {262} tii[16,185] := {222} tii[16,186] := {295} tii[16,187] := {3, 4} tii[16,188] := {9} tii[16,189] := {2, 29} tii[16,190] := {5, 33} tii[16,191] := {23} tii[16,192] := {8, 52} tii[16,193] := {24} tii[16,194] := {32} tii[16,195] := {1, 67} tii[16,196] := {16, 117} tii[16,197] := {45} tii[16,198] := {74} tii[16,199] := {7, 109} tii[16,200] := {46, 163} tii[16,201] := {31, 182} tii[16,202] := {57} tii[16,203] := {0, 134} tii[16,204] := {141} tii[16,205] := {73} tii[16,206] := {6, 178} tii[16,207] := {91} tii[16,208] := {30, 242} tii[16,209] := {106} tii[16,210] := {126} cell#108 , |C| = 245 special orbit = [4, 4, 4, 2] special rep = [[2, 2], [2, 1]] , dim = 140 cell rep = phi[[2, 2, 1],[2]]+phi[[2, 2],[2, 1]] TII depth = 4 TII multiplicity polynomial = 105*X^2+35*X TII subcells: tii[18,1] := {114, 244} tii[18,2] := {90, 188} tii[18,3] := {139, 243} tii[18,4] := {106, 226} tii[18,5] := {137, 187} tii[18,6] := {164, 239} tii[18,7] := {153, 225} tii[18,8] := {176} tii[18,9] := {200} tii[18,10] := {186, 233} tii[18,11] := {195, 224} tii[18,12] := {216} tii[18,13] := {14, 194} tii[18,14] := {55, 231} tii[18,15] := {11, 172} tii[18,16] := {70, 166} tii[18,17] := {24, 213} tii[18,18] := {84, 212} tii[18,19] := {46, 117} tii[18,20] := {73, 238} tii[18,21] := {27, 208} tii[18,22] := {43, 222} tii[18,23] := {36, 227} tii[18,24] := {89, 140} tii[18,25] := {92, 242} tii[18,26] := {105, 193} tii[18,27] := {52, 232} tii[18,28] := {80, 115} tii[18,29] := {126} tii[18,30] := {96} tii[18,31] := {77, 240} tii[18,32] := {158} tii[18,33] := {125, 171} tii[18,34] := {160} tii[18,35] := {19, 163} tii[18,36] := {37, 206} tii[18,37] := {63, 144} tii[18,38] := {93, 236} tii[18,39] := {40, 198} tii[18,40] := {59, 217} tii[18,41] := {23, 138} tii[18,42] := {51, 220} tii[18,43] := {111, 165} tii[18,44] := {72, 168} tii[18,45] := {38, 124} tii[18,46] := {116, 241} tii[18,47] := {151} tii[18,48] := {71, 228} tii[18,49] := {128, 211} tii[18,50] := {49, 177} tii[18,51] := {100, 141} tii[18,52] := {57, 146} tii[18,53] := {181} tii[18,54] := {99, 237} tii[18,55] := {67, 201} tii[18,56] := {119} tii[18,57] := {65, 197} tii[18,58] := {127} tii[18,59] := {149, 192} tii[18,60] := {108} tii[18,61] := {87, 219} tii[18,62] := {183} tii[18,63] := {159} tii[18,64] := {134} tii[18,65] := {69, 205} tii[18,66] := {123, 167} tii[18,67] := {143, 235} tii[18,68] := {91, 214} tii[18,69] := {145} tii[18,70] := {122, 229} tii[18,71] := {173, 210} tii[18,72] := {103, 196} tii[18,73] := {156} tii[18,74] := {202} tii[18,75] := {132, 218} tii[18,76] := {185} tii[18,77] := {3, 154} tii[18,78] := {6, 148} tii[18,79] := {7, 178} tii[18,80] := {2, 136} tii[18,81] := {32, 95} tii[18,82] := {15, 190} tii[18,83] := {4, 155} tii[18,84] := {30, 209} tii[18,85] := {26, 207} tii[18,86] := {45, 74} tii[18,87] := {42, 223} tii[18,88] := {56} tii[18,89] := {13, 112} tii[18,90] := {54, 142} tii[18,91] := {5, 162} tii[18,92] := {16, 199} tii[18,93] := {25, 101} tii[18,94] := {34, 152} tii[18,95] := {41, 120} tii[18,96] := {8, 179} tii[18,97] := {50, 182} tii[18,98] := {39, 221} tii[18,99] := {61, 94} tii[18,100] := {104} tii[18,101] := {48, 175} tii[18,102] := {20, 81} tii[18,103] := {18, 191} tii[18,104] := {75} tii[18,105] := {66, 204} tii[18,106] := {58, 234} tii[18,107] := {133} tii[18,108] := {85} tii[18,109] := {33, 97} tii[18,110] := {110} tii[18,111] := {60} tii[18,112] := {64, 150} tii[18,113] := {86, 184} tii[18,114] := {107} tii[18,115] := {135} tii[18,116] := {10, 147} tii[18,117] := {28, 189} tii[18,118] := {17, 169} tii[18,119] := {31, 102} tii[18,120] := {53, 215} tii[18,121] := {82, 118} tii[18,122] := {29, 180} tii[18,123] := {47, 121} tii[18,124] := {98} tii[18,125] := {78, 230} tii[18,126] := {79} tii[18,127] := {83, 174} tii[18,128] := {129} tii[18,129] := {35, 157} tii[18,130] := {109, 203} tii[18,131] := {88} tii[18,132] := {161} tii[18,133] := {0, 113} tii[18,134] := {1, 131} tii[18,135] := {12, 62} tii[18,136] := {9, 170} tii[18,137] := {21, 76} tii[18,138] := {44} tii[18,139] := {22, 130} tii[18,140] := {68} cell#109 , |C| = 315 special orbit = [4, 4, 2, 2, 2] special rep = [[2, 1, 1], [2, 1]] , dim = 210 cell rep = phi[[2, 2, 1],[1, 1]]+phi[[2, 1, 1],[2, 1]] TII depth = 4 TII multiplicity polynomial = 105*X^2+105*X TII subcells: tii[16,1] := {200, 291} tii[16,2] := {283} tii[16,3] := {245, 312} tii[16,4] := {190, 313} tii[16,5] := {302} tii[16,6] := {314} tii[16,7] := {61, 148} tii[16,8] := {175} tii[16,9] := {60, 124} tii[16,10] := {166, 272} tii[16,11] := {97, 183} tii[16,12] := {41, 174} tii[16,13] := {261} tii[16,14] := {105, 228} tii[16,15] := {207} tii[16,16] := {137} tii[16,17] := {181} tii[16,18] := {185, 292} tii[16,19] := {130, 215} tii[16,20] := {118, 298} tii[16,21] := {270} tii[16,22] := {235} tii[16,23] := {153, 275} tii[16,24] := {93, 230} tii[16,25] := {186} tii[16,26] := {121, 265} tii[16,27] := {223} tii[16,28] := {289} tii[16,29] := {256} tii[16,30] := {271} tii[16,31] := {132, 216} tii[16,32] := {95, 161} tii[16,33] := {237} tii[16,34] := {69, 205} tii[16,35] := {140, 254} tii[16,36] := {172} tii[16,37] := {212} tii[16,38] := {131, 194} tii[16,39] := {217, 305} tii[16,40] := {165, 244} tii[16,41] := {173, 277} tii[16,42] := {154, 308} tii[16,43] := {40, 236} tii[16,44] := {99, 220} tii[16,45] := {260} tii[16,46] := {191, 294} tii[16,47] := {129, 257} tii[16,48] := {219} tii[16,49] := {288} tii[16,50] := {204} tii[16,51] := {143, 250} tii[16,52] := {157, 287} tii[16,53] := {249} tii[16,54] := {240} tii[16,55] := {62, 259} tii[16,56] := {232} tii[16,57] := {119, 299} tii[16,58] := {303} tii[16,59] := {279} tii[16,60] := {88, 286} tii[16,61] := {263} tii[16,62] := {290} tii[16,63] := {199, 268} tii[16,64] := {282} tii[16,65] := {221, 306} tii[16,66] := {164, 280} tii[16,67] := {247} tii[16,68] := {274} tii[16,69] := {192, 301} tii[16,70] := {128, 297} tii[16,71] := {269} tii[16,72] := {310} tii[16,73] := {296} tii[16,74] := {293} tii[16,75] := {304} tii[16,76] := {156, 309} tii[16,77] := {307} tii[16,78] := {311} tii[16,79] := {13, 14} tii[16,80] := {19, 81} tii[16,81] := {39} tii[16,82] := {77} tii[16,83] := {27, 28} tii[16,84] := {34, 87} tii[16,85] := {42, 114} tii[16,86] := {12, 51} tii[16,87] := {71, 198} tii[16,88] := {18, 139} tii[16,89] := {68} tii[16,90] := {103} tii[16,91] := {15, 58} tii[16,92] := {22, 82} tii[16,93] := {112} tii[16,94] := {147} tii[16,95] := {47} tii[16,96] := {101} tii[16,97] := {84, 229} tii[16,98] := {116} tii[16,99] := {36, 170} tii[16,100] := {145} tii[16,101] := {54, 213} tii[16,102] := {162} tii[16,103] := {86} tii[16,104] := {197} tii[16,105] := {96, 159} tii[16,106] := {49, 50} tii[16,107] := {37, 92} tii[16,108] := {138, 252} tii[16,109] := {70, 149} tii[16,110] := {17, 206} tii[16,111] := {65, 187} tii[16,112] := {26, 80} tii[16,113] := {171} tii[16,114] := {102} tii[16,115] := {76} tii[16,116] := {108, 224} tii[16,117] := {44, 115} tii[16,118] := {211} tii[16,119] := {146} tii[16,120] := {120, 255} tii[16,121] := {63, 203} tii[16,122] := {11, 100} tii[16,123] := {202} tii[16,124] := {135} tii[16,125] := {151} tii[16,126] := {35, 234} tii[16,127] := {83, 284} tii[16,128] := {38, 152} tii[16,129] := {107} tii[16,130] := {89, 241} tii[16,131] := {239} tii[16,132] := {179} tii[16,133] := {21, 144} tii[16,134] := {53, 264} tii[16,135] := {123} tii[16,136] := {195} tii[16,137] := {75, 196} tii[16,138] := {56, 214} tii[16,139] := {227} tii[16,140] := {59, 258} tii[16,141] := {218} tii[16,142] := {167} tii[16,143] := {158} tii[16,144] := {248} tii[16,145] := {208} tii[16,146] := {85, 285} tii[16,147] := {251} tii[16,148] := {78, 79} tii[16,149] := {104, 184} tii[16,150] := {64, 127} tii[16,151] := {48, 113} tii[16,152] := {136} tii[16,153] := {72, 150} tii[16,154] := {111} tii[16,155] := {180} tii[16,156] := {169} tii[16,157] := {66, 189} tii[16,158] := {25, 133} tii[16,159] := {98, 233} tii[16,160] := {155, 278} tii[16,161] := {188} tii[16,162] := {142} tii[16,163] := {210} tii[16,164] := {125, 266} tii[16,165] := {110, 226} tii[16,166] := {43, 177} tii[16,167] := {225} tii[16,168] := {160} tii[16,169] := {253} tii[16,170] := {90, 243} tii[16,171] := {94, 281} tii[16,172] := {10, 168} tii[16,173] := {246} tii[16,174] := {201} tii[16,175] := {193} tii[16,176] := {176} tii[16,177] := {122, 300} tii[16,178] := {20, 209} tii[16,179] := {273} tii[16,180] := {238} tii[16,181] := {55, 267} tii[16,182] := {276} tii[16,183] := {231} tii[16,184] := {262} tii[16,185] := {222} tii[16,186] := {295} tii[16,187] := {3, 4} tii[16,188] := {9} tii[16,189] := {2, 29} tii[16,190] := {5, 33} tii[16,191] := {23} tii[16,192] := {8, 52} tii[16,193] := {24} tii[16,194] := {32} tii[16,195] := {1, 67} tii[16,196] := {16, 117} tii[16,197] := {45} tii[16,198] := {74} tii[16,199] := {7, 109} tii[16,200] := {46, 163} tii[16,201] := {31, 182} tii[16,202] := {57} tii[16,203] := {0, 134} tii[16,204] := {141} tii[16,205] := {73} tii[16,206] := {6, 178} tii[16,207] := {91} tii[16,208] := {30, 242} tii[16,209] := {106} tii[16,210] := {126} cell#110 , |C| = 126 special orbit = [6, 2, 2, 2, 2] special rep = [[3, 1, 1], [1, 1]] , dim = 126 cell rep = phi[[3, 1, 1],[1, 1]] TII depth = 4 TII multiplicity polynomial = 126*X TII subcells: tii[24,1] := {93} tii[24,2] := {118} tii[24,3] := {125} tii[24,4] := {102} tii[24,5] := {121} tii[24,6] := {106} tii[24,7] := {32} tii[24,8] := {29} tii[24,9] := {27} tii[24,10] := {87} tii[24,11] := {48} tii[24,12] := {115} tii[24,13] := {44} tii[24,14] := {66} tii[24,15] := {67} tii[24,16] := {124} tii[24,17] := {38} tii[24,18] := {84} tii[24,19] := {85} tii[24,20] := {99} tii[24,21] := {100} tii[24,22] := {64} tii[24,23] := {120} tii[24,24] := {59} tii[24,25] := {80} tii[24,26] := {81} tii[24,27] := {97} tii[24,28] := {110} tii[24,29] := {77} tii[24,30] := {95} tii[24,31] := {51} tii[24,32] := {28} tii[24,33] := {70} tii[24,34] := {71} tii[24,35] := {26} tii[24,36] := {90} tii[24,37] := {91} tii[24,38] := {107} tii[24,39] := {94} tii[24,40] := {78} tii[24,41] := {43} tii[24,42] := {37} tii[24,43] := {58} tii[24,44] := {57} tii[24,45] := {109} tii[24,46] := {108} tii[24,47] := {111} tii[24,48] := {73} tii[24,49] := {117} tii[24,50] := {119} tii[24,51] := {92} tii[24,52] := {56} tii[24,53] := {72} tii[24,54] := {123} tii[24,55] := {65} tii[24,56] := {34} tii[24,57] := {82} tii[24,58] := {83} tii[24,59] := {98} tii[24,60] := {103} tii[24,61] := {86} tii[24,62] := {50} tii[24,63] := {68} tii[24,64] := {113} tii[24,65] := {69} tii[24,66] := {89} tii[24,67] := {0} tii[24,68] := {23} tii[24,69] := {1} tii[24,70] := {14} tii[24,71] := {2} tii[24,72] := {8} tii[24,73] := {4} tii[24,74] := {45} tii[24,75] := {46} tii[24,76] := {6} tii[24,77] := {22} tii[24,78] := {62} tii[24,79] := {63} tii[24,80] := {13} tii[24,81] := {76} tii[24,82] := {10} tii[24,83] := {41} tii[24,84] := {42} tii[24,85] := {19} tii[24,86] := {55} tii[24,87] := {36} tii[24,88] := {88} tii[24,89] := {7} tii[24,90] := {104} tii[24,91] := {33} tii[24,92] := {105} tii[24,93] := {11} tii[24,94] := {114} tii[24,95] := {20} tii[24,96] := {116} tii[24,97] := {17} tii[24,98] := {60} tii[24,99] := {61} tii[24,100] := {122} tii[24,101] := {31} tii[24,102] := {75} tii[24,103] := {53} tii[24,104] := {101} tii[24,105] := {25} tii[24,106] := {112} tii[24,107] := {47} tii[24,108] := {74} tii[24,109] := {3} tii[24,110] := {21} tii[24,111] := {5} tii[24,112] := {12} tii[24,113] := {9} tii[24,114] := {40} tii[24,115] := {39} tii[24,116] := {18} tii[24,117] := {54} tii[24,118] := {35} tii[24,119] := {79} tii[24,120] := {16} tii[24,121] := {96} tii[24,122] := {30} tii[24,123] := {52} tii[24,124] := {15} tii[24,125] := {24} tii[24,126] := {49} cell#111 , |C| = 175 special orbit = [6, 2, 2, 2, 1, 1] special rep = [[3, 1], [1, 1, 1]] , dim = 105 cell rep = phi[[3, 1, 1, 1],[1]]+phi[[3, 1],[1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 70*X^2+35*X TII subcells: tii[23,1] := {11, 170} tii[23,2] := {43, 173} tii[23,3] := {87, 171} tii[23,4] := {25, 157} tii[23,5] := {73, 163} tii[23,6] := {31, 136} tii[23,7] := {117, 160} tii[23,8] := {58, 128} tii[23,9] := {92} tii[23,10] := {100, 169} tii[23,11] := {140, 172} tii[23,12] := {112, 156} tii[23,13] := {148} tii[23,14] := {159, 174} tii[23,15] := {168} tii[23,16] := {9, 133} tii[23,17] := {41, 143} tii[23,18] := {15, 108} tii[23,19] := {86, 141} tii[23,20] := {29, 96} tii[23,21] := {63} tii[23,22] := {5, 80} tii[23,23] := {71, 154} tii[23,24] := {116, 161} tii[23,25] := {81, 132} tii[23,26] := {14, 67} tii[23,27] := {121} tii[23,28] := {33} tii[23,29] := {28, 79} tii[23,30] := {137, 167} tii[23,31] := {153} tii[23,32] := {65} tii[23,33] := {78} tii[23,34] := {50, 145} tii[23,35] := {104, 152} tii[23,36] := {75, 126} tii[23,37] := {105} tii[23,38] := {45, 99} tii[23,39] := {129, 162} tii[23,40] := {144} tii[23,41] := {77} tii[23,42] := {98} tii[23,43] := {102, 142} tii[23,44] := {119} tii[23,45] := {95} tii[23,46] := {0, 48} tii[23,47] := {2, 158} tii[23,48] := {3, 59} tii[23,49] := {7, 151} tii[23,50] := {8, 85} tii[23,51] := {18, 123} tii[23,52] := {12, 89} tii[23,53] := {16, 111} tii[23,54] := {24, 115} tii[23,55] := {23, 166} tii[23,56] := {30, 97} tii[23,57] := {36, 149} tii[23,58] := {64} tii[23,59] := {44, 139} tii[23,60] := {56, 110} tii[23,61] := {62, 165} tii[23,62] := {94} tii[23,63] := {109} tii[23,64] := {1, 54} tii[23,65] := {26, 60} tii[23,66] := {46, 150} tii[23,67] := {4, 37} tii[23,68] := {47, 84} tii[23,69] := {17} tii[23,70] := {66, 122} tii[23,71] := {13, 53} tii[23,72] := {74, 114} tii[23,73] := {83, 135} tii[23,74] := {34} tii[23,75] := {90, 147} tii[23,76] := {124} tii[23,77] := {52} tii[23,78] := {134} tii[23,79] := {6, 40} tii[23,80] := {101, 138} tii[23,81] := {27} tii[23,82] := {118, 164} tii[23,83] := {39} tii[23,84] := {155} tii[23,85] := {19} tii[23,86] := {10, 32} tii[23,87] := {21, 127} tii[23,88] := {22, 57} tii[23,89] := {35, 91} tii[23,90] := {42, 82} tii[23,91] := {55, 107} tii[23,92] := {61, 120} tii[23,93] := {93} tii[23,94] := {106} tii[23,95] := {20, 70} tii[23,96] := {72, 113} tii[23,97] := {49} tii[23,98] := {88, 146} tii[23,99] := {131} tii[23,100] := {69} tii[23,101] := {38} tii[23,102] := {51, 103} tii[23,103] := {76, 130} tii[23,104] := {125} tii[23,105] := {68} cell#112 , |C| = 189 special orbit = [4, 2, 2, 2, 2, 2] special rep = [[2, 1, 1], [1, 1, 1]] , dim = 105 cell rep = phi[[2, 1, 1, 1],[1, 1]]+phi[[2, 1, 1],[1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 84*X^2+21*X TII subcells: tii[13,1] := {44, 179} tii[13,2] := {74, 182} tii[13,3] := {73, 188} tii[13,4] := {63, 173} tii[13,5] := {96, 176} tii[13,6] := {81, 154} tii[13,7] := {94, 187} tii[13,8] := {120, 161} tii[13,9] := {92, 137} tii[13,10] := {123} tii[13,11] := {139, 170} tii[13,12] := {153} tii[13,13] := {119, 181} tii[13,14] := {138, 169} tii[13,15] := {152} tii[13,16] := {9, 69} tii[13,17] := {8, 104} tii[13,18] := {30, 164} tii[13,19] := {16, 89} tii[13,20] := {54, 168} tii[13,21] := {13, 128} tii[13,22] := {21, 146} tii[13,23] := {22, 103} tii[13,24] := {27, 134} tii[13,25] := {37, 177} tii[13,26] := {20, 147} tii[13,27] := {26, 163} tii[13,28] := {61, 133} tii[13,29] := {24, 113} tii[13,30] := {71, 110} tii[13,31] := {23, 149} tii[13,32] := {32, 166} tii[13,33] := {33, 126} tii[13,34] := {95, 142} tii[13,35] := {99} tii[13,36] := {41, 156} tii[13,37] := {45, 148} tii[13,38] := {53, 185} tii[13,39] := {116, 151} tii[13,40] := {29, 167} tii[13,41] := {50, 87} tii[13,42] := {132} tii[13,43] := {39, 178} tii[13,44] := {79} tii[13,45] := {56, 174} tii[13,46] := {86} tii[13,47] := {43, 180} tii[13,48] := {91, 129} tii[13,49] := {55, 186} tii[13,50] := {106} tii[13,51] := {85} tii[13,52] := {35, 101} tii[13,53] := {47, 158} tii[13,54] := {34, 141} tii[13,55] := {48, 117} tii[13,56] := {59, 144} tii[13,57] := {64, 140} tii[13,58] := {72, 112} tii[13,59] := {75, 183} tii[13,60] := {46, 160} tii[13,61] := {100} tii[13,62] := {78, 162} tii[13,63] := {57, 172} tii[13,64] := {111} tii[13,65] := {60, 175} tii[13,66] := {115, 150} tii[13,67] := {82, 118} tii[13,68] := {76, 184} tii[13,69] := {131} tii[13,70] := {98, 143} tii[13,71] := {136} tii[13,72] := {108} tii[13,73] := {80, 159} tii[13,74] := {97, 171} tii[13,75] := {135} tii[13,76] := {0, 38} tii[13,77] := {6, 51} tii[13,78] := {1, 52} tii[13,79] := {3, 65} tii[13,80] := {2, 70} tii[13,81] := {14, 125} tii[13,82] := {15, 83} tii[13,83] := {5, 84} tii[13,84] := {19, 107} tii[13,85] := {11, 124} tii[13,86] := {31, 127} tii[13,87] := {4, 90} tii[13,88] := {36, 68} tii[13,89] := {58} tii[13,90] := {40, 155} tii[13,91] := {10, 105} tii[13,92] := {18, 145} tii[13,93] := {67} tii[13,94] := {49} tii[13,95] := {7, 114} tii[13,96] := {62, 93} tii[13,97] := {17, 130} tii[13,98] := {77, 122} tii[13,99] := {28, 165} tii[13,100] := {109} tii[13,101] := {66} tii[13,102] := {12, 102} tii[13,103] := {25, 121} tii[13,104] := {42, 157} tii[13,105] := {88} cell#113 , |C| = 126 special orbit = [6, 2, 2, 2, 2] special rep = [[3, 1, 1], [1, 1]] , dim = 126 cell rep = phi[[3, 1, 1],[1, 1]] TII depth = 4 TII multiplicity polynomial = 126*X TII subcells: tii[24,1] := {93} tii[24,2] := {118} tii[24,3] := {125} tii[24,4] := {102} tii[24,5] := {121} tii[24,6] := {106} tii[24,7] := {32} tii[24,8] := {29} tii[24,9] := {27} tii[24,10] := {87} tii[24,11] := {48} tii[24,12] := {115} tii[24,13] := {44} tii[24,14] := {66} tii[24,15] := {67} tii[24,16] := {124} tii[24,17] := {38} tii[24,18] := {84} tii[24,19] := {85} tii[24,20] := {99} tii[24,21] := {100} tii[24,22] := {64} tii[24,23] := {120} tii[24,24] := {59} tii[24,25] := {80} tii[24,26] := {81} tii[24,27] := {97} tii[24,28] := {110} tii[24,29] := {77} tii[24,30] := {95} tii[24,31] := {51} tii[24,32] := {28} tii[24,33] := {70} tii[24,34] := {71} tii[24,35] := {26} tii[24,36] := {90} tii[24,37] := {91} tii[24,38] := {107} tii[24,39] := {94} tii[24,40] := {78} tii[24,41] := {43} tii[24,42] := {37} tii[24,43] := {58} tii[24,44] := {57} tii[24,45] := {109} tii[24,46] := {108} tii[24,47] := {111} tii[24,48] := {73} tii[24,49] := {117} tii[24,50] := {119} tii[24,51] := {92} tii[24,52] := {56} tii[24,53] := {72} tii[24,54] := {123} tii[24,55] := {65} tii[24,56] := {34} tii[24,57] := {82} tii[24,58] := {83} tii[24,59] := {98} tii[24,60] := {103} tii[24,61] := {86} tii[24,62] := {50} tii[24,63] := {68} tii[24,64] := {113} tii[24,65] := {69} tii[24,66] := {89} tii[24,67] := {0} tii[24,68] := {23} tii[24,69] := {1} tii[24,70] := {14} tii[24,71] := {2} tii[24,72] := {8} tii[24,73] := {4} tii[24,74] := {45} tii[24,75] := {46} tii[24,76] := {6} tii[24,77] := {22} tii[24,78] := {62} tii[24,79] := {63} tii[24,80] := {13} tii[24,81] := {76} tii[24,82] := {10} tii[24,83] := {41} tii[24,84] := {42} tii[24,85] := {19} tii[24,86] := {55} tii[24,87] := {36} tii[24,88] := {88} tii[24,89] := {7} tii[24,90] := {104} tii[24,91] := {33} tii[24,92] := {105} tii[24,93] := {11} tii[24,94] := {114} tii[24,95] := {20} tii[24,96] := {116} tii[24,97] := {17} tii[24,98] := {60} tii[24,99] := {61} tii[24,100] := {122} tii[24,101] := {31} tii[24,102] := {75} tii[24,103] := {53} tii[24,104] := {101} tii[24,105] := {25} tii[24,106] := {112} tii[24,107] := {47} tii[24,108] := {74} tii[24,109] := {3} tii[24,110] := {21} tii[24,111] := {5} tii[24,112] := {12} tii[24,113] := {9} tii[24,114] := {40} tii[24,115] := {39} tii[24,116] := {18} tii[24,117] := {54} tii[24,118] := {35} tii[24,119] := {79} tii[24,120] := {16} tii[24,121] := {96} tii[24,122] := {30} tii[24,123] := {52} tii[24,124] := {15} tii[24,125] := {24} tii[24,126] := {49} cell#114 , |C| = 175 special orbit = [6, 2, 2, 2, 1, 1] special rep = [[3, 1], [1, 1, 1]] , dim = 105 cell rep = phi[[3, 1, 1, 1],[1]]+phi[[3, 1],[1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 70*X^2+35*X TII subcells: tii[23,1] := {11, 170} tii[23,2] := {43, 173} tii[23,3] := {87, 171} tii[23,4] := {25, 157} tii[23,5] := {73, 163} tii[23,6] := {31, 136} tii[23,7] := {117, 160} tii[23,8] := {58, 128} tii[23,9] := {92} tii[23,10] := {100, 169} tii[23,11] := {140, 172} tii[23,12] := {112, 156} tii[23,13] := {148} tii[23,14] := {159, 174} tii[23,15] := {168} tii[23,16] := {9, 133} tii[23,17] := {41, 143} tii[23,18] := {15, 108} tii[23,19] := {86, 141} tii[23,20] := {29, 96} tii[23,21] := {63} tii[23,22] := {5, 80} tii[23,23] := {71, 154} tii[23,24] := {116, 161} tii[23,25] := {81, 132} tii[23,26] := {14, 67} tii[23,27] := {121} tii[23,28] := {33} tii[23,29] := {28, 79} tii[23,30] := {137, 167} tii[23,31] := {153} tii[23,32] := {65} tii[23,33] := {78} tii[23,34] := {50, 145} tii[23,35] := {104, 152} tii[23,36] := {75, 126} tii[23,37] := {105} tii[23,38] := {45, 99} tii[23,39] := {129, 162} tii[23,40] := {144} tii[23,41] := {77} tii[23,42] := {98} tii[23,43] := {102, 142} tii[23,44] := {119} tii[23,45] := {95} tii[23,46] := {0, 48} tii[23,47] := {2, 158} tii[23,48] := {3, 59} tii[23,49] := {7, 151} tii[23,50] := {8, 85} tii[23,51] := {18, 123} tii[23,52] := {12, 89} tii[23,53] := {16, 111} tii[23,54] := {24, 115} tii[23,55] := {23, 166} tii[23,56] := {30, 97} tii[23,57] := {36, 149} tii[23,58] := {64} tii[23,59] := {44, 139} tii[23,60] := {56, 110} tii[23,61] := {62, 165} tii[23,62] := {94} tii[23,63] := {109} tii[23,64] := {1, 54} tii[23,65] := {26, 60} tii[23,66] := {46, 150} tii[23,67] := {4, 37} tii[23,68] := {47, 84} tii[23,69] := {17} tii[23,70] := {66, 122} tii[23,71] := {13, 53} tii[23,72] := {74, 114} tii[23,73] := {83, 135} tii[23,74] := {34} tii[23,75] := {90, 147} tii[23,76] := {124} tii[23,77] := {52} tii[23,78] := {134} tii[23,79] := {6, 40} tii[23,80] := {101, 138} tii[23,81] := {27} tii[23,82] := {118, 164} tii[23,83] := {39} tii[23,84] := {155} tii[23,85] := {19} tii[23,86] := {10, 32} tii[23,87] := {21, 127} tii[23,88] := {22, 57} tii[23,89] := {35, 91} tii[23,90] := {42, 82} tii[23,91] := {55, 107} tii[23,92] := {61, 120} tii[23,93] := {93} tii[23,94] := {106} tii[23,95] := {20, 70} tii[23,96] := {72, 113} tii[23,97] := {49} tii[23,98] := {88, 146} tii[23,99] := {131} tii[23,100] := {69} tii[23,101] := {38} tii[23,102] := {51, 103} tii[23,103] := {76, 130} tii[23,104] := {125} tii[23,105] := {68} cell#115 , |C| = 189 special orbit = [4, 2, 2, 2, 2, 2] special rep = [[2, 1, 1], [1, 1, 1]] , dim = 105 cell rep = phi[[2, 1, 1, 1],[1, 1]]+phi[[2, 1, 1],[1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 84*X^2+21*X TII subcells: tii[13,1] := {44, 179} tii[13,2] := {74, 182} tii[13,3] := {73, 188} tii[13,4] := {63, 173} tii[13,5] := {96, 176} tii[13,6] := {81, 154} tii[13,7] := {94, 187} tii[13,8] := {120, 161} tii[13,9] := {92, 137} tii[13,10] := {123} tii[13,11] := {139, 170} tii[13,12] := {153} tii[13,13] := {119, 181} tii[13,14] := {138, 169} tii[13,15] := {152} tii[13,16] := {9, 69} tii[13,17] := {8, 104} tii[13,18] := {30, 164} tii[13,19] := {16, 89} tii[13,20] := {54, 168} tii[13,21] := {13, 128} tii[13,22] := {21, 146} tii[13,23] := {22, 103} tii[13,24] := {27, 134} tii[13,25] := {37, 177} tii[13,26] := {20, 147} tii[13,27] := {26, 163} tii[13,28] := {61, 133} tii[13,29] := {24, 113} tii[13,30] := {71, 110} tii[13,31] := {23, 149} tii[13,32] := {32, 166} tii[13,33] := {33, 126} tii[13,34] := {95, 142} tii[13,35] := {99} tii[13,36] := {41, 156} tii[13,37] := {45, 148} tii[13,38] := {53, 185} tii[13,39] := {116, 151} tii[13,40] := {29, 167} tii[13,41] := {50, 87} tii[13,42] := {132} tii[13,43] := {39, 178} tii[13,44] := {79} tii[13,45] := {56, 174} tii[13,46] := {86} tii[13,47] := {43, 180} tii[13,48] := {91, 129} tii[13,49] := {55, 186} tii[13,50] := {106} tii[13,51] := {85} tii[13,52] := {35, 101} tii[13,53] := {47, 158} tii[13,54] := {34, 141} tii[13,55] := {48, 117} tii[13,56] := {59, 144} tii[13,57] := {64, 140} tii[13,58] := {72, 112} tii[13,59] := {75, 183} tii[13,60] := {46, 160} tii[13,61] := {100} tii[13,62] := {78, 162} tii[13,63] := {57, 172} tii[13,64] := {111} tii[13,65] := {60, 175} tii[13,66] := {115, 150} tii[13,67] := {82, 118} tii[13,68] := {76, 184} tii[13,69] := {131} tii[13,70] := {98, 143} tii[13,71] := {136} tii[13,72] := {108} tii[13,73] := {80, 159} tii[13,74] := {97, 171} tii[13,75] := {135} tii[13,76] := {0, 38} tii[13,77] := {6, 51} tii[13,78] := {1, 52} tii[13,79] := {3, 65} tii[13,80] := {2, 70} tii[13,81] := {14, 125} tii[13,82] := {15, 83} tii[13,83] := {5, 84} tii[13,84] := {19, 107} tii[13,85] := {11, 124} tii[13,86] := {31, 127} tii[13,87] := {4, 90} tii[13,88] := {36, 68} tii[13,89] := {58} tii[13,90] := {40, 155} tii[13,91] := {10, 105} tii[13,92] := {18, 145} tii[13,93] := {67} tii[13,94] := {49} tii[13,95] := {7, 114} tii[13,96] := {62, 93} tii[13,97] := {17, 130} tii[13,98] := {77, 122} tii[13,99] := {28, 165} tii[13,100] := {109} tii[13,101] := {66} tii[13,102] := {12, 102} tii[13,103] := {25, 121} tii[13,104] := {42, 157} tii[13,105] := {88} cell#116 , |C| = 55 special orbit = [8, 2, 1, 1, 1, 1] special rep = [[4], [1, 1, 1]] , dim = 35 cell rep = phi[[4, 1, 1, 1],[]]+phi[[4],[1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 20*X^2+15*X TII subcells: tii[31,1] := {43, 54} tii[31,2] := {44, 53} tii[31,3] := {42, 52} tii[31,4] := {48, 49} tii[31,5] := {50} tii[31,6] := {35, 51} tii[31,7] := {34, 47} tii[31,8] := {40, 41} tii[31,9] := {45} tii[31,10] := {24, 39} tii[31,11] := {32, 33} tii[31,12] := {37} tii[31,13] := {21, 22} tii[31,14] := {28} tii[31,15] := {25} tii[31,16] := {26, 46} tii[31,17] := {23, 38} tii[31,18] := {30, 31} tii[31,19] := {36} tii[31,20] := {14, 29} tii[31,21] := {19, 20} tii[31,22] := {27} tii[31,23] := {12, 13} tii[31,24] := {17} tii[31,25] := {15} tii[31,26] := {7, 18} tii[31,27] := {10, 11} tii[31,28] := {16} tii[31,29] := {5, 6} tii[31,30] := {9} tii[31,31] := {8} tii[31,32] := {0, 1} tii[31,33] := {4} tii[31,34] := {2} tii[31,35] := {3} cell#117 , |C| = 175 special orbit = [6, 2, 2, 2, 1, 1] special rep = [[3, 1], [1, 1, 1]] , dim = 105 cell rep = phi[[3, 1, 1, 1],[1]]+phi[[3, 1],[1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 70*X^2+35*X TII subcells: tii[23,1] := {126, 173} tii[23,2] := {68, 166} tii[23,3] := {79, 174} tii[23,4] := {147, 169} tii[23,5] := {53, 151} tii[23,6] := {124, 158} tii[23,7] := {60, 171} tii[23,8] := {143, 144} tii[23,9] := {156} tii[23,10] := {83, 132} tii[23,11] := {88, 162} tii[23,12] := {108, 109} tii[23,13] := {129} tii[23,14] := {114, 155} tii[23,15] := {138} tii[23,16] := {125, 157} tii[23,17] := {29, 130} tii[23,18] := {96, 141} tii[23,19] := {36, 161} tii[23,20] := {118, 119} tii[23,21] := {139} tii[23,22] := {67, 117} tii[23,23] := {52, 104} tii[23,24] := {59, 145} tii[23,25] := {77, 78} tii[23,26] := {92, 93} tii[23,27] := {101} tii[23,28] := {115} tii[23,29] := {65, 66} tii[23,30] := {87, 136} tii[23,31] := {112} tii[23,32] := {90} tii[23,33] := {72} tii[23,34] := {28, 74} tii[23,35] := {35, 123} tii[23,36] := {48, 49} tii[23,37] := {71} tii[23,38] := {26, 27} tii[23,39] := {58, 110} tii[23,40] := {84} tii[23,41] := {47} tii[23,42] := {32} tii[23,43] := {75, 122} tii[23,44] := {99} tii[23,45] := {70} tii[23,46] := {33, 163} tii[23,47] := {98, 170} tii[23,48] := {13, 146} tii[23,49] := {69, 159} tii[23,50] := {24, 160} tii[23,51] := {55, 168} tii[23,52] := {3, 137} tii[23,53] := {97, 142} tii[23,54] := {8, 154} tii[23,55] := {44, 153} tii[23,56] := {120, 121} tii[23,57] := {30, 165} tii[23,58] := {140} tii[23,59] := {25, 167} tii[23,60] := {94, 95} tii[23,61] := {54, 172} tii[23,62] := {116} tii[23,63] := {102} tii[23,64] := {43, 91} tii[23,65] := {2, 111} tii[23,66] := {31, 134} tii[23,67] := {63, 64} tii[23,68] := {4, 135} tii[23,69] := {89} tii[23,70] := {18, 150} tii[23,71] := {41, 42} tii[23,72] := {15, 152} tii[23,73] := {80, 81} tii[23,74] := {62} tii[23,75] := {38, 164} tii[23,76] := {103} tii[23,77] := {45} tii[23,78] := {86} tii[23,79] := {19, 20} tii[23,80] := {34, 133} tii[23,81] := {40} tii[23,82] := {61, 149} tii[23,83] := {21} tii[23,84] := {113} tii[23,85] := {39} tii[23,86] := {0, 82} tii[23,87] := {11, 106} tii[23,88] := {1, 107} tii[23,89] := {7, 128} tii[23,90] := {6, 131} tii[23,91] := {50, 51} tii[23,92] := {17, 148} tii[23,93] := {73} tii[23,94] := {57} tii[23,95] := {9, 10} tii[23,96] := {14, 105} tii[23,97] := {23} tii[23,98] := {37, 127} tii[23,99] := {85} tii[23,100] := {12} tii[23,101] := {22} tii[23,102] := {5, 76} tii[23,103] := {16, 100} tii[23,104] := {56} tii[23,105] := {46} cell#118 , |C| = 140 special orbit = [6, 4, 1, 1, 1, 1] special rep = [[3], [2, 1, 1]] , dim = 105 cell rep = phi[[3, 2, 1, 1],[]]+phi[[3],[2, 1, 1]] TII depth = 3 TII multiplicity polynomial = 35*X^2+70*X TII subcells: tii[25,1] := {96, 130} tii[25,2] := {126, 127} tii[25,3] := {137} tii[25,4] := {139} tii[25,5] := {74, 118} tii[25,6] := {110, 111} tii[25,7] := {62, 101} tii[25,8] := {81, 82} tii[25,9] := {131} tii[25,10] := {99} tii[25,11] := {138} tii[25,12] := {91, 92} tii[25,13] := {72, 73} tii[25,14] := {121} tii[25,15] := {88} tii[25,16] := {134} tii[25,17] := {112} tii[25,18] := {97} tii[25,19] := {128} tii[25,20] := {136} tii[25,21] := {51, 100} tii[25,22] := {89, 90} tii[25,23] := {39, 79} tii[25,24] := {58, 59} tii[25,25] := {120} tii[25,26] := {76} tii[25,27] := {133} tii[25,28] := {22, 57} tii[25,29] := {67, 68} tii[25,30] := {47, 48} tii[25,31] := {35, 36} tii[25,32] := {104} tii[25,33] := {65} tii[25,34] := {54} tii[25,35] := {123} tii[25,36] := {20, 21} tii[25,37] := {93} tii[25,38] := {75} tii[25,39] := {33} tii[25,40] := {115} tii[25,41] := {23} tii[25,42] := {129} tii[25,43] := {45, 46} tii[25,44] := {26, 27} tii[25,45] := {85} tii[25,46] := {43} tii[25,47] := {108} tii[25,48] := {14, 15} tii[25,49] := {69} tii[25,50] := {52} tii[25,51] := {25} tii[25,52] := {98} tii[25,53] := {16} tii[25,54] := {117} tii[25,55] := {84} tii[25,56] := {63} tii[25,57] := {107} tii[25,58] := {42} tii[25,59] := {125} tii[25,60] := {135} tii[25,61] := {83, 119} tii[25,62] := {102, 103} tii[25,63] := {116} tii[25,64] := {40, 80} tii[25,65] := {113, 114} tii[25,66] := {60, 61} tii[25,67] := {124} tii[25,68] := {78} tii[25,69] := {37, 38} tii[25,70] := {132} tii[25,71] := {56} tii[25,72] := {41} tii[25,73] := {10, 34} tii[25,74] := {94, 95} tii[25,75] := {18, 19} tii[25,76] := {31} tii[25,77] := {109} tii[25,78] := {8, 9} tii[25,79] := {49, 50} tii[25,80] := {122} tii[25,81] := {17} tii[25,82] := {66} tii[25,83] := {11} tii[25,84] := {55} tii[25,85] := {0, 1} tii[25,86] := {106} tii[25,87] := {7} tii[25,88] := {77} tii[25,89] := {2} tii[25,90] := {6} tii[25,91] := {70, 71} tii[25,92] := {87} tii[25,93] := {28, 29} tii[25,94] := {105} tii[25,95] := {44} tii[25,96] := {32} tii[25,97] := {3, 4} tii[25,98] := {86} tii[25,99] := {13} tii[25,100] := {53} tii[25,101] := {5} tii[25,102] := {12} tii[25,103] := {64} tii[25,104] := {30} tii[25,105] := {24} cell#119 , |C| = 175 special orbit = [6, 2, 2, 2, 1, 1] special rep = [[3, 1], [1, 1, 1]] , dim = 105 cell rep = phi[[3, 1, 1, 1],[1]]+phi[[3, 1],[1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 70*X^2+35*X TII subcells: tii[23,1] := {117, 174} tii[23,2] := {111, 166} tii[23,3] := {71, 144} tii[23,4] := {136, 172} tii[23,5] := {85, 158} tii[23,6] := {151, 169} tii[23,7] := {49, 123} tii[23,8] := {135, 164} tii[23,9] := {154} tii[23,10] := {108, 152} tii[23,11] := {32, 100} tii[23,12] := {92, 132} tii[23,13] := {114} tii[23,14] := {48, 88} tii[23,15] := {66} tii[23,16] := {149, 173} tii[23,17] := {60, 140} tii[23,18] := {155, 170} tii[23,19] := {31, 98} tii[23,20] := {147, 167} tii[23,21] := {161} tii[23,22] := {137, 165} tii[23,23] := {82, 131} tii[23,24] := {16, 74} tii[23,25] := {69, 112} tii[23,26] := {128, 159} tii[23,27] := {89} tii[23,28] := {145} tii[23,29] := {109, 143} tii[23,30] := {28, 64} tii[23,31] := {43} tii[23,32] := {126} tii[23,33] := {105} tii[23,34] := {95, 139} tii[23,35] := {7, 53} tii[23,36] := {80, 120} tii[23,37] := {101} tii[23,38] := {58, 97} tii[23,39] := {14, 42} tii[23,40] := {25} tii[23,41] := {75} tii[23,42] := {56} tii[23,43] := {22, 52} tii[23,44] := {34} tii[23,45] := {19} tii[23,46] := {4, 150} tii[23,47] := {94, 171} tii[23,48] := {13, 156} tii[23,49] := {72, 168} tii[23,50] := {30, 148} tii[23,51] := {51, 162} tii[23,52] := {21, 138} tii[23,53] := {130, 163} tii[23,54] := {40, 129} tii[23,55] := {86, 160} tii[23,56] := {116, 153} tii[23,57] := {67, 146} tii[23,58] := {134} tii[23,59] := {29, 110} tii[23,60] := {93, 133} tii[23,61] := {50, 127} tii[23,62] := {115} tii[23,63] := {91} tii[23,64] := {118, 157} tii[23,65] := {10, 119} tii[23,66] := {63, 142} tii[23,67] := {106, 141} tii[23,68] := {24, 107} tii[23,69] := {124} tii[23,70] := {44, 125} tii[23,71] := {83, 122} tii[23,72] := {15, 84} tii[23,73] := {70, 113} tii[23,74] := {103} tii[23,75] := {33, 104} tii[23,76] := {90} tii[23,77] := {79} tii[23,78] := {68} tii[23,79] := {61, 99} tii[23,80] := {6, 62} tii[23,81] := {77} tii[23,82] := {18, 78} tii[23,83] := {57} tii[23,84] := {46} tii[23,85] := {37} tii[23,86] := {3, 96} tii[23,87] := {41, 121} tii[23,88] := {11, 81} tii[23,89] := {26, 102} tii[23,90] := {5, 59} tii[23,91] := {47, 87} tii[23,92] := {17, 76} tii[23,93] := {65} tii[23,94] := {45} tii[23,95] := {38, 73} tii[23,96] := {1, 39} tii[23,97] := {54} tii[23,98] := {8, 55} tii[23,99] := {27} tii[23,100] := {36} tii[23,101] := {20} tii[23,102] := {0, 23} tii[23,103] := {2, 35} tii[23,104] := {12} tii[23,105] := {9} cell#120 , |C| = 126 special orbit = [6, 2, 2, 2, 2] special rep = [[3, 1, 1], [1, 1]] , dim = 126 cell rep = phi[[3, 1, 1],[1, 1]] TII depth = 4 TII multiplicity polynomial = 126*X TII subcells: tii[24,1] := {125} tii[24,2] := {121} tii[24,3] := {119} tii[24,4] := {105} tii[24,5] := {102} tii[24,6] := {104} tii[24,7] := {44} tii[24,8] := {47} tii[24,9] := {43} tii[24,10] := {123} tii[24,11] := {57} tii[24,12] := {113} tii[24,13] := {32} tii[24,14] := {120} tii[24,15] := {74} tii[24,16] := {112} tii[24,17] := {29} tii[24,18] := {117} tii[24,19] := {85} tii[24,20] := {108} tii[24,21] := {106} tii[24,22] := {46} tii[24,23] := {103} tii[24,24] := {42} tii[24,25] := {98} tii[24,26] := {55} tii[24,27] := {80} tii[24,28] := {88} tii[24,29] := {53} tii[24,30] := {78} tii[24,31] := {73} tii[24,32] := {21} tii[24,33] := {124} tii[24,34] := {90} tii[24,35] := {20} tii[24,36] := {122} tii[24,37] := {101} tii[24,38] := {116} tii[24,39] := {75} tii[24,40] := {91} tii[24,41] := {30} tii[24,42] := {28} tii[24,43] := {39} tii[24,44] := {82} tii[24,45] := {86} tii[24,46] := {118} tii[24,47] := {87} tii[24,48] := {61} tii[24,49] := {109} tii[24,50] := {100} tii[24,51] := {72} tii[24,52] := {38} tii[24,53] := {60} tii[24,54] := {115} tii[24,55] := {45} tii[24,56] := {41} tii[24,57] := {97} tii[24,58] := {54} tii[24,59] := {79} tii[24,60] := {68} tii[24,61] := {89} tii[24,62] := {52} tii[24,63] := {77} tii[24,64] := {93} tii[24,65] := {67} tii[24,66] := {92} tii[24,67] := {0} tii[24,68] := {31} tii[24,69] := {3} tii[24,70] := {25} tii[24,71] := {6} tii[24,72] := {14} tii[24,73] := {8} tii[24,74] := {114} tii[24,75] := {59} tii[24,76] := {12} tii[24,77] := {36} tii[24,78] := {111} tii[24,79] := {71} tii[24,80] := {24} tii[24,81] := {96} tii[24,82] := {19} tii[24,83] := {99} tii[24,84] := {56} tii[24,85] := {35} tii[24,86] := {81} tii[24,87] := {65} tii[24,88] := {58} tii[24,89] := {4} tii[24,90] := {110} tii[24,91] := {26} tii[24,92] := {70} tii[24,93] := {7} tii[24,94] := {95} tii[24,95] := {15} tii[24,96] := {84} tii[24,97] := {11} tii[24,98] := {83} tii[24,99] := {40} tii[24,100] := {107} tii[24,101] := {23} tii[24,102] := {62} tii[24,103] := {50} tii[24,104] := {69} tii[24,105] := {18} tii[24,106] := {94} tii[24,107] := {34} tii[24,108] := {64} tii[24,109] := {1} tii[24,110] := {16} tii[24,111] := {2} tii[24,112] := {9} tii[24,113] := {5} tii[24,114] := {27} tii[24,115] := {66} tii[24,116] := {13} tii[24,117] := {48} tii[24,118] := {37} tii[24,119] := {51} tii[24,120] := {10} tii[24,121] := {76} tii[24,122] := {22} tii[24,123] := {49} tii[24,124] := {17} tii[24,125] := {33} tii[24,126] := {63} cell#121 , |C| = 175 special orbit = [4, 4, 3, 3] special rep = [[2, 1], [2, 2]] , dim = 140 cell rep = phi[[2, 2, 2],[1]]+phi[[2, 1],[2, 2]] TII depth = 4 TII multiplicity polynomial = 35*X^2+105*X TII subcells: tii[17,1] := {111, 141} tii[17,2] := {132} tii[17,3] := {146, 166} tii[17,4] := {154} tii[17,5] := {169} tii[17,6] := {173} tii[17,7] := {171} tii[17,8] := {174} tii[17,9] := {10, 29} tii[17,10] := {90, 122} tii[17,11] := {113} tii[17,12] := {53, 88} tii[17,13] := {35} tii[17,14] := {57} tii[17,15] := {110, 139} tii[17,16] := {120} tii[17,17] := {91, 125} tii[17,18] := {59} tii[17,19] := {147} tii[17,20] := {116} tii[17,21] := {83} tii[17,22] := {162} tii[17,23] := {137} tii[17,24] := {157} tii[17,25] := {121} tii[17,26] := {20, 46} tii[17,27] := {73, 108} tii[17,28] := {52} tii[17,29] := {76} tii[17,30] := {32, 64} tii[17,31] := {129, 155} tii[17,32] := {94, 127} tii[17,33] := {49, 81} tii[17,34] := {160} tii[17,35] := {112, 143} tii[17,36] := {80} tii[17,37] := {138} tii[17,38] := {71} tii[17,39] := {74, 104} tii[17,40] := {170} tii[17,41] := {135} tii[17,42] := {103} tii[17,43] := {96} tii[17,44] := {92} tii[17,45] := {148} tii[17,46] := {153} tii[17,47] := {134} tii[17,48] := {115} tii[17,49] := {167} tii[17,50] := {140} tii[17,51] := {163} tii[17,52] := {152} tii[17,53] := {130, 158} tii[17,54] := {101} tii[17,55] := {150} tii[17,56] := {124} tii[17,57] := {164} tii[17,58] := {119} tii[17,59] := {161} tii[17,60] := {172} tii[17,61] := {156} tii[17,62] := {142} tii[17,63] := {168} tii[17,64] := {165} tii[17,65] := {5, 16} tii[17,66] := {36, 68} tii[17,67] := {22} tii[17,68] := {1, 9} tii[17,69] := {40} tii[17,70] := {7} tii[17,71] := {26} tii[17,72] := {50, 89} tii[17,73] := {15} tii[17,74] := {77} tii[17,75] := {47} tii[17,76] := {67} tii[17,77] := {19, 44} tii[17,78] := {6, 18} tii[17,79] := {72, 106} tii[17,80] := {33, 60} tii[17,81] := {51} tii[17,82] := {14} tii[17,83] := {55, 84} tii[17,84] := {75} tii[17,85] := {70, 109} tii[17,86] := {69} tii[17,87] := {41} tii[17,88] := {131} tii[17,89] := {21, 42} tii[17,90] := {23} tii[17,91] := {97} tii[17,92] := {95} tii[17,93] := {151} tii[17,94] := {114} tii[17,95] := {28} tii[17,96] := {65} tii[17,97] := {39, 66} tii[17,98] := {136} tii[17,99] := {87} tii[17,100] := {78} tii[17,101] := {79} tii[17,102] := {43} tii[17,103] := {133} tii[17,104] := {102} tii[17,105] := {145} tii[17,106] := {105} tii[17,107] := {11, 31} tii[17,108] := {25} tii[17,109] := {34, 62} tii[17,110] := {93, 128} tii[17,111] := {61} tii[17,112] := {38} tii[17,113] := {56, 86} tii[17,114] := {117} tii[17,115] := {85} tii[17,116] := {45} tii[17,117] := {107} tii[17,118] := {99} tii[17,119] := {100} tii[17,120] := {149} tii[17,121] := {63} tii[17,122] := {54} tii[17,123] := {123} tii[17,124] := {118} tii[17,125] := {126} tii[17,126] := {159} tii[17,127] := {82} tii[17,128] := {144} tii[17,129] := {0, 4} tii[17,130] := {2} tii[17,131] := {3} tii[17,132] := {12, 27} tii[17,133] := {13} tii[17,134] := {24, 48} tii[17,135] := {8} tii[17,136] := {58} tii[17,137] := {37} tii[17,138] := {17} tii[17,139] := {98} tii[17,140] := {30} cell#122 , |C| = 315 special orbit = [4, 4, 2, 2, 2] special rep = [[2, 1, 1], [2, 1]] , dim = 210 cell rep = phi[[2, 2, 1],[1, 1]]+phi[[2, 1, 1],[2, 1]] TII depth = 4 TII multiplicity polynomial = 105*X^2+105*X TII subcells: tii[16,1] := {270, 310} tii[16,2] := {313} tii[16,3] := {269, 311} tii[16,4] := {233, 286} tii[16,5] := {312} tii[16,6] := {314} tii[16,7] := {75, 76} tii[16,8] := {96} tii[16,9] := {147, 148} tii[16,10] := {242, 300} tii[16,11] := {111, 112} tii[16,12] := {53, 119} tii[16,13] := {304} tii[16,14] := {173, 262} tii[16,15] := {130} tii[16,16] := {209} tii[16,17] := {256} tii[16,18] := {206, 283} tii[16,19] := {145, 146} tii[16,20] := {158, 235} tii[16,21] := {293} tii[16,22] := {171} tii[16,23] := {170, 261} tii[16,24] := {106, 193} tii[16,25] := {208} tii[16,26] := {133, 238} tii[16,27] := {255} tii[16,28] := {276} tii[16,29] := {207} tii[16,30] := {254} tii[16,31] := {150, 151} tii[16,32] := {191, 192} tii[16,33] := {172} tii[16,34] := {81, 159} tii[16,35] := {214, 287} tii[16,36] := {248} tii[16,37] := {281} tii[16,38] := {227, 228} tii[16,39] := {243, 301} tii[16,40] := {189, 190} tii[16,41] := {250, 303} tii[16,42] := {197, 263} tii[16,43] := {65, 120} tii[16,44] := {186, 260} tii[16,45] := {213} tii[16,46] := {212, 285} tii[16,47] := {144, 230} tii[16,48] := {247} tii[16,49] := {305} tii[16,50] := {275} tii[16,51] := {216, 289} tii[16,52] := {176, 266} tii[16,53] := {280} tii[16,54] := {299} tii[16,55] := {93, 155} tii[16,56] := {292} tii[16,57] := {160, 237} tii[16,58] := {294} tii[16,59] := {245} tii[16,60] := {123, 204} tii[16,61] := {309} tii[16,62] := {278} tii[16,63] := {225, 226} tii[16,64] := {251} tii[16,65] := {249, 302} tii[16,66] := {185, 259} tii[16,67] := {274} tii[16,68] := {298} tii[16,69] := {215, 288} tii[16,70] := {166, 231} tii[16,71] := {291} tii[16,72] := {306} tii[16,73] := {273} tii[16,74] := {308} tii[16,75] := {297} tii[16,76] := {200, 267} tii[16,77] := {290} tii[16,78] := {307} tii[16,79] := {3, 4} tii[16,80] := {35, 36} tii[16,81] := {12} tii[16,82] := {26} tii[16,83] := {6, 7} tii[16,84] := {107, 108} tii[16,85] := {54, 55} tii[16,86] := {17, 18} tii[16,87] := {132, 234} tii[16,88] := {34, 85} tii[16,89] := {24} tii[16,90] := {168} tii[16,91] := {79, 80} tii[16,92] := {38, 39} tii[16,93] := {45} tii[16,94] := {221} tii[16,95] := {103} tii[16,96] := {42} tii[16,97] := {97, 198} tii[16,98] := {129} tii[16,99] := {48, 114} tii[16,100] := {69} tii[16,101] := {68, 163} tii[16,102] := {182} tii[16,103] := {99} tii[16,104] := {142} tii[16,105] := {187, 188} tii[16,106] := {14, 15} tii[16,107] := {115, 116} tii[16,108] := {211, 284} tii[16,109] := {82, 83} tii[16,110] := {40, 84} tii[16,111] := {143, 229} tii[16,112] := {30, 31} tii[16,113] := {246} tii[16,114] := {43} tii[16,115] := {140} tii[16,116] := {175, 265} tii[16,117] := {59, 60} tii[16,118] := {279} tii[16,119] := {70} tii[16,120] := {131, 236} tii[16,121] := {74, 154} tii[16,122] := {16, 51} tii[16,123] := {271} tii[16,124] := {66} tii[16,125] := {169} tii[16,126] := {64, 113} tii[16,127] := {121, 199} tii[16,128] := {109, 195} tii[16,129] := {178} tii[16,130] := {98, 203} tii[16,131] := {295} tii[16,132] := {101} tii[16,133] := {37, 89} tii[16,134] := {86, 162} tii[16,135] := {137} tii[16,136] := {222} tii[16,137] := {135, 240} tii[16,138] := {71, 164} tii[16,139] := {184} tii[16,140] := {92, 152} tii[16,141] := {244} tii[16,142] := {94} tii[16,143] := {177} tii[16,144] := {277} tii[16,145] := {138} tii[16,146] := {122, 201} tii[16,147] := {223} tii[16,148] := {27, 28} tii[16,149] := {117, 118} tii[16,150] := {156, 157} tii[16,151] := {49, 50} tii[16,152] := {67} tii[16,153] := {87, 88} tii[16,154] := {183} tii[16,155] := {102} tii[16,156] := {95} tii[16,157] := {149, 232} tii[16,158] := {29, 78} tii[16,159] := {110, 196} tii[16,160] := {174, 264} tii[16,161] := {210} tii[16,162] := {219} tii[16,163] := {139} tii[16,164] := {136, 241} tii[16,165] := {179, 268} tii[16,166] := {58, 124} tii[16,167] := {257} tii[16,168] := {180} tii[16,169] := {224} tii[16,170] := {104, 205} tii[16,171] := {127, 194} tii[16,172] := {22, 52} tii[16,173] := {272} tii[16,174] := {128} tii[16,175] := {218} tii[16,176] := {253} tii[16,177] := {161, 239} tii[16,178] := {41, 90} tii[16,179] := {296} tii[16,180] := {181} tii[16,181] := {91, 165} tii[16,182] := {258} tii[16,183] := {167} tii[16,184] := {220} tii[16,185] := {252} tii[16,186] := {282} tii[16,187] := {0, 1} tii[16,188] := {2} tii[16,189] := {9, 10} tii[16,190] := {56, 57} tii[16,191] := {5} tii[16,192] := {20, 21} tii[16,193] := {73} tii[16,194] := {47} tii[16,195] := {8, 33} tii[16,196] := {77, 153} tii[16,197] := {13} tii[16,198] := {134} tii[16,199] := {19, 62} tii[16,200] := {100, 202} tii[16,201] := {46, 126} tii[16,202] := {72} tii[16,203] := {11, 32} tii[16,204] := {217} tii[16,205] := {25} tii[16,206] := {23, 61} tii[16,207] := {105} tii[16,208] := {63, 125} tii[16,209] := {44} tii[16,210] := {141} cell#123 , |C| = 315 special orbit = [4, 4, 2, 2, 2] special rep = [[2, 1, 1], [2, 1]] , dim = 210 cell rep = phi[[2, 2, 1],[1, 1]]+phi[[2, 1, 1],[2, 1]] TII depth = 4 TII multiplicity polynomial = 105*X^2+105*X TII subcells: tii[16,1] := {231, 314} tii[16,2] := {300} tii[16,3] := {164, 310} tii[16,4] := {100, 293} tii[16,5] := {262} tii[16,6] := {301} tii[16,7] := {118, 178} tii[16,8] := {156} tii[16,9] := {186, 243} tii[16,10] := {199, 313} tii[16,11] := {86, 212} tii[16,12] := {41, 208} tii[16,13] := {285} tii[16,14] := {132, 304} tii[16,15] := {190} tii[16,16] := {255} tii[16,17] := {280} tii[16,18] := {176, 309} tii[16,19] := {117, 240} tii[16,20] := {49, 252} tii[16,21] := {275} tii[16,22] := {224} tii[16,23] := {146, 305} tii[16,24] := {87, 264} tii[16,25] := {187} tii[16,26] := {127, 289} tii[16,27] := {226} tii[16,28] := {297} tii[16,29] := {254} tii[16,30] := {281} tii[16,31] := {58, 177} tii[16,32] := {201, 260} tii[16,33] := {157} tii[16,34] := {24, 173} tii[16,35] := {166, 308} tii[16,36] := {266} tii[16,37] := {288} tii[16,38] := {167, 283} tii[16,39] := {140, 302} tii[16,40] := {85, 209} tii[16,41] := {200, 312} tii[16,42] := {72, 276} tii[16,43] := {12, 138} tii[16,44] := {134, 298} tii[16,45] := {189} tii[16,46] := {114, 295} tii[16,47] := {59, 235} tii[16,48] := {154} tii[16,49] := {251} tii[16,50] := {236} tii[16,51] := {181, 307} tii[16,52] := {94, 270} tii[16,53] := {194} tii[16,54] := {269} tii[16,55] := {23, 172} tii[16,56] := {259} tii[16,57] := {57, 253} tii[16,58] := {279} tii[16,59] := {222} tii[16,60] := {46, 217} tii[16,61] := {284} tii[16,62] := {257} tii[16,63] := {102, 241} tii[16,64] := {207} tii[16,65] := {131, 306} tii[16,66] := {73, 265} tii[16,67] := {169} tii[16,68] := {214} tii[16,69] := {110, 290} tii[16,70] := {51, 237} tii[16,71] := {198} tii[16,72] := {286} tii[16,73] := {234} tii[16,74] := {232} tii[16,75] := {274} tii[16,76] := {81, 271} tii[16,77] := {263} tii[16,78] := {292} tii[16,79] := {8, 32} tii[16,80] := {64, 115} tii[16,81] := {39} tii[16,82] := {67} tii[16,83] := {19, 55} tii[16,84] := {151, 211} tii[16,85] := {92, 148} tii[16,86] := {36, 77} tii[16,87] := {101, 294} tii[16,88] := {25, 174} tii[16,89] := {61} tii[16,90] := {223} tii[16,91] := {119, 183} tii[16,92] := {66, 112} tii[16,93] := {95} tii[16,94] := {256} tii[16,95] := {162} tii[16,96] := {88} tii[16,97] := {84, 277} tii[16,98] := {188} tii[16,99] := {38, 206} tii[16,100] := {125} tii[16,101] := {69, 248} tii[16,102] := {227} tii[16,103] := {159} tii[16,104] := {196} tii[16,105] := {133, 268} tii[16,106] := {35, 78} tii[16,107] := {152, 218} tii[16,108] := {165, 311} tii[16,109] := {63, 184} tii[16,110] := {6, 108} tii[16,111] := {103, 287} tii[16,112] := {21, 107} tii[16,113] := {202} tii[16,114] := {91} tii[16,115] := {193} tii[16,116] := {143, 303} tii[16,117] := {44, 144} tii[16,118] := {244} tii[16,119] := {128} tii[16,120] := {116, 296} tii[16,121] := {60, 239} tii[16,122] := {10, 136} tii[16,123] := {230} tii[16,124] := {121} tii[16,125] := {155} tii[16,126] := {11, 137} tii[16,127] := {34, 221} tii[16,128] := {75, 267} tii[16,129] := {225} tii[16,130] := {97, 273} tii[16,131] := {261} tii[16,132] := {161} tii[16,133] := {28, 180} tii[16,134] := {29, 182} tii[16,135] := {124} tii[16,136] := {195} tii[16,137] := {113, 291} tii[16,138] := {71, 249} tii[16,139] := {229} tii[16,140] := {17, 171} tii[16,141] := {203} tii[16,142] := {153} tii[16,143] := {158} tii[16,144] := {245} tii[16,145] := {192} tii[16,146] := {33, 216} tii[16,147] := {258} tii[16,148] := {20, 54} tii[16,149] := {40, 147} tii[16,150] := {168, 233} tii[16,151] := {9, 76} tii[16,152] := {62} tii[16,153] := {27, 111} tii[16,154] := {213} tii[16,155] := {96} tii[16,156] := {89} tii[16,157] := {106, 282} tii[16,158] := {4, 104} tii[16,159] := {37, 205} tii[16,160] := {83, 278} tii[16,161] := {122} tii[16,162] := {242} tii[16,163] := {126} tii[16,164] := {68, 247} tii[16,165] := {145, 299} tii[16,166] := {13, 141} tii[16,167] := {163} tii[16,168] := {93} tii[16,169] := {197} tii[16,170] := {47, 219} tii[16,171] := {31, 204} tii[16,172] := {1, 74} tii[16,173] := {170} tii[16,174] := {120} tii[16,175] := {123} tii[16,176] := {210} tii[16,177] := {56, 246} tii[16,178] := {7, 109} tii[16,179] := {215} tii[16,180] := {160} tii[16,181] := {30, 185} tii[16,182] := {228} tii[16,183] := {135} tii[16,184] := {179} tii[16,185] := {139} tii[16,186] := {250} tii[16,187] := {3, 18} tii[16,188] := {15} tii[16,189] := {22, 53} tii[16,190] := {90, 150} tii[16,191] := {26} tii[16,192] := {45, 80} tii[16,193] := {129} tii[16,194] := {99} tii[16,195] := {5, 105} tii[16,196] := {52, 238} tii[16,197] := {42} tii[16,198] := {191} tii[16,199] := {14, 142} tii[16,200] := {82, 272} tii[16,201] := {48, 220} tii[16,202] := {130} tii[16,203] := {0, 50} tii[16,204] := {175} tii[16,205] := {65} tii[16,206] := {2, 79} tii[16,207] := {98} tii[16,208] := {16, 149} tii[16,209] := {43} tii[16,210] := {70} cell#124 , |C| = 175 special orbit = [6, 2, 2, 2, 1, 1] special rep = [[3, 1], [1, 1, 1]] , dim = 105 cell rep = phi[[3, 1, 1, 1],[1]]+phi[[3, 1],[1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 70*X^2+35*X TII subcells: tii[23,1] := {120, 167} tii[23,2] := {131, 132} tii[23,3] := {125, 126} tii[23,4] := {146, 172} tii[23,5] := {102, 103} tii[23,6] := {161, 162} tii[23,7] := {94, 95} tii[23,8] := {170, 171} tii[23,9] := {174} tii[23,10] := {118, 119} tii[23,11] := {62, 63} tii[23,12] := {142, 143} tii[23,13] := {158} tii[23,14] := {96, 97} tii[23,15] := {122} tii[23,16] := {135, 168} tii[23,17] := {68, 69} tii[23,18] := {154, 155} tii[23,19] := {60, 61} tii[23,20] := {165, 166} tii[23,21] := {173} tii[23,22] := {133, 134} tii[23,23] := {87, 88} tii[23,24] := {36, 37} tii[23,25] := {116, 117} tii[23,26] := {152, 153} tii[23,27] := {141} tii[23,28] := {164} tii[23,29] := {139, 140} tii[23,30] := {64, 65} tii[23,31] := {92} tii[23,32] := {157} tii[23,33] := {137} tii[23,34] := {70, 71} tii[23,35] := {21, 22} tii[23,36] := {100, 101} tii[23,37] := {124} tii[23,38] := {83, 84} tii[23,39] := {38, 39} tii[23,40] := {56} tii[23,41] := {112} tii[23,42] := {79} tii[23,43] := {66, 67} tii[23,44] := {93} tii[23,45] := {81} tii[23,46] := {4, 23} tii[23,47] := {91, 156} tii[23,48] := {9, 40} tii[23,49] := {78, 136} tii[23,50] := {20, 59} tii[23,51] := {47, 108} tii[23,52] := {24, 25} tii[23,53] := {144, 145} tii[23,54] := {34, 35} tii[23,55] := {109, 110} tii[23,56] := {159, 160} tii[23,57] := {74, 75} tii[23,58] := {169} tii[23,59] := {57, 58} tii[23,60] := {150, 151} tii[23,61] := {106, 107} tii[23,62] := {163} tii[23,63] := {147} tii[23,64] := {104, 105} tii[23,65] := {10, 11} tii[23,66] := {76, 77} tii[23,67] := {129, 130} tii[23,68] := {18, 19} tii[23,69] := {149} tii[23,70] := {45, 46} tii[23,71] := {114, 115} tii[23,72] := {32, 33} tii[23,73] := {127, 128} tii[23,74] := {138} tii[23,75] := {72, 73} tii[23,76] := {148} tii[23,77] := {111} tii[23,78] := {121} tii[23,79] := {85, 86} tii[23,80] := {16, 17} tii[23,81] := {113} tii[23,82] := {43, 44} tii[23,83] := {80} tii[23,84] := {90} tii[23,85] := {51} tii[23,86] := {2, 3} tii[23,87] := {48, 49} tii[23,88] := {7, 8} tii[23,89] := {28, 29} tii[23,90] := {14, 15} tii[23,91] := {98, 99} tii[23,92] := {41, 42} tii[23,93] := {123} tii[23,94] := {89} tii[23,95] := {53, 54} tii[23,96] := {5, 6} tii[23,97] := {82} tii[23,98] := {26, 27} tii[23,99] := {55} tii[23,100] := {50} tii[23,101] := {30} tii[23,102] := {0, 1} tii[23,103] := {12, 13} tii[23,104] := {31} tii[23,105] := {52} cell#125 , |C| = 427 special orbit = [4, 4, 2, 2, 1, 1] special rep = [[2, 1], [2, 1, 1]] , dim = 210 cell rep = phi[[2, 2, 1, 1],[1]]+phi[[2, 1, 1, 1],[2]]+phi[[2, 2],[1, 1, 1]]+phi[[2, 1],[2, 1, 1]] TII depth = 3 TII multiplicity polynomial = 49*X^4+70*X^2+91*X TII subcells: tii[15,1] := {122, 308, 362, 421} tii[15,2] := {272, 425} tii[15,3] := {193, 194} tii[15,4] := {169, 323, 352, 404} tii[15,5] := {84, 230, 343, 344} tii[15,6] := {321, 415} tii[15,7] := {279} tii[15,8] := {332} tii[15,9] := {219, 294, 386, 422} tii[15,10] := {361, 412} tii[15,11] := {167, 253, 407, 408} tii[15,12] := {298} tii[15,13] := {209, 419} tii[15,14] := {356} tii[15,15] := {393, 424} tii[15,16] := {414} tii[15,17] := {143, 144} tii[15,18] := {121, 276, 307, 375} tii[15,19] := {271, 396} tii[15,20] := {48, 178, 299, 300} tii[15,21] := {226} tii[15,22] := {286} tii[15,23] := {98, 99} tii[15,24] := {168, 246, 351, 405} tii[15,25] := {24, 132, 254, 255} tii[15,26] := {66, 67} tii[15,27] := {320, 381} tii[15,28] := {120, 205, 377, 378} tii[15,29] := {251} tii[15,30] := {176} tii[15,31] := {96} tii[15,32] := {157, 401} tii[15,33] := {313} tii[15,34] := {237} tii[15,35] := {46, 111, 303, 304} tii[15,36] := {152} tii[15,37] := {360, 413} tii[15,38] := {114} tii[15,39] := {73, 337} tii[15,40] := {388} tii[15,41] := {216} tii[15,42] := {268} tii[15,43] := {191, 275, 387, 423} tii[15,44] := {342, 395} tii[15,45] := {141, 228, 409, 410} tii[15,46] := {277} tii[15,47] := {180, 420} tii[15,48] := {330} tii[15,49] := {100, 177, 382, 383} tii[15,50] := {225} tii[15,51] := {376, 416} tii[15,52] := {182} tii[15,53] := {397} tii[15,54] := {135, 402} tii[15,55] := {285} tii[15,56] := {94, 392} tii[15,57] := {333} tii[15,58] := {406, 426} tii[15,59] := {417} tii[15,60] := {400} tii[15,61] := {19, 71, 244, 245} tii[15,62] := {50, 217, 281, 380} tii[15,63] := {81, 327} tii[15,64] := {128, 368} tii[15,65] := {45, 113, 292, 293} tii[15,66] := {145, 146} tii[15,67] := {83, 267, 328, 411} tii[15,68] := {22, 151, 241, 339} tii[15,69] := {49, 179, 301, 302} tii[15,70] := {125, 364} tii[15,71] := {227} tii[15,72] := {109, 110} tii[15,73] := {53, 215, 282, 389} tii[15,74] := {174, 399} tii[15,75] := {287} tii[15,76] := {140} tii[15,77] := {171, 394} tii[15,78] := {202} tii[15,79] := {80, 156, 347, 348} tii[15,80] := {223, 418} tii[15,81] := {160} tii[15,82] := {116, 373} tii[15,83] := {265} tii[15,84] := {317} tii[15,85] := {62, 63} tii[15,86] := {78, 158, 242, 243} tii[15,87] := {153, 154} tii[15,88] := {126, 280, 315, 379} tii[15,89] := {10, 89, 206, 207} tii[15,90] := {35, 36} tii[15,91] := {47, 189, 200, 295} tii[15,92] := {130} tii[15,93] := {172, 326} tii[15,94] := {188} tii[15,95] := {58} tii[15,96] := {87, 231, 263, 353} tii[15,97] := {187} tii[15,98] := {224, 367} tii[15,99] := {106} tii[15,100] := {123, 208, 384, 385} tii[15,101] := {23, 147, 249, 250} tii[15,102] := {221, 363} tii[15,103] := {252} tii[15,104] := {20, 70, 256, 257} tii[15,105] := {15, 16} tii[15,106] := {234} tii[15,107] := {161, 403} tii[15,108] := {72} tii[15,109] := {274, 398} tii[15,110] := {39, 291} tii[15,111] := {165} tii[15,112] := {54, 185, 311, 312} tii[15,113] := {211} tii[15,114] := {314} tii[15,115] := {32} tii[15,116] := {218} tii[15,117] := {119, 370} tii[15,118] := {18} tii[15,119] := {358} tii[15,120] := {129} tii[15,121] := {33, 88, 305, 306} tii[15,122] := {270, 340} tii[15,123] := {258} tii[15,124] := {90} tii[15,125] := {322, 390} tii[15,126] := {186} tii[15,127] := {55, 338} tii[15,128] := {29, 318} tii[15,129] := {239} tii[15,130] := {391} tii[15,131] := {57} tii[15,132] := {290} tii[15,133] := {44, 112, 190, 192} tii[15,134] := {82, 229, 266, 341} tii[15,135] := {107, 108} tii[15,136] := {21, 142, 150, 247} tii[15,137] := {124, 278} tii[15,138] := {52, 181, 214, 309} tii[15,139] := {139} tii[15,140] := {173, 331} tii[15,141] := {170, 325} tii[15,142] := {37, 38} tii[15,143] := {7, 101, 196, 197} tii[15,144] := {201} tii[15,145] := {79, 155, 345, 346} tii[15,146] := {183} tii[15,147] := {222, 366} tii[15,148] := {61} tii[15,149] := {115, 372} tii[15,150] := {25, 136, 259, 260} tii[15,151] := {159} tii[15,152] := {264} tii[15,153] := {43} tii[15,154] := {75, 334} tii[15,155] := {316} tii[15,156] := {64, 131, 349, 350} tii[15,157] := {1, 65, 148, 149} tii[15,158] := {175} tii[15,159] := {220, 297} tii[15,160] := {134} tii[15,161] := {210} tii[15,162] := {92, 374} tii[15,163] := {133} tii[15,164] := {11, 93, 212, 213} tii[15,165] := {273, 355} tii[15,166] := {236} tii[15,167] := {59, 359} tii[15,168] := {74} tii[15,169] := {42, 289} tii[15,170] := {357} tii[15,171] := {288} tii[15,172] := {95} tii[15,173] := {30, 319} tii[15,174] := {336} tii[15,175] := {248, 324} tii[15,176] := {232} tii[15,177] := {310, 365} tii[15,178] := {138} tii[15,179] := {369} tii[15,180] := {371} tii[15,181] := {6, 40, 203, 204} tii[15,182] := {28, 238} tii[15,183] := {9, 105, 195, 296} tii[15,184] := {68, 69} tii[15,185] := {51, 284} tii[15,186] := {27, 164, 235, 354} tii[15,187] := {97} tii[15,188] := {77} tii[15,189] := {8, 102, 198, 199} tii[15,190] := {3, 4} tii[15,191] := {86, 329} tii[15,192] := {184} tii[15,193] := {26, 137, 261, 262} tii[15,194] := {14} tii[15,195] := {118} tii[15,196] := {5} tii[15,197] := {76, 335} tii[15,198] := {13} tii[15,199] := {0, 34, 103, 104} tii[15,200] := {91} tii[15,201] := {127, 283} tii[15,202] := {2, 56, 162, 163} tii[15,203] := {41} tii[15,204] := {166} tii[15,205] := {17, 240} tii[15,206] := {31} tii[15,207] := {12, 269} tii[15,208] := {85, 233} tii[15,209] := {117} tii[15,210] := {60} cell#126 , |C| = 189 special orbit = [4, 2, 2, 2, 2, 2] special rep = [[2, 1, 1], [1, 1, 1]] , dim = 105 cell rep = phi[[2, 1, 1, 1],[1, 1]]+phi[[2, 1, 1],[1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 84*X^2+21*X TII subcells: tii[13,1] := {136, 187} tii[13,2] := {88, 177} tii[13,3] := {57, 147} tii[13,4] := {156, 188} tii[13,5] := {113, 183} tii[13,6] := {171, 185} tii[13,7] := {37, 126} tii[13,8] := {100, 172} tii[13,9] := {154, 179} tii[13,10] := {169} tii[13,11] := {124, 158} tii[13,12] := {142} tii[13,13] := {56, 139} tii[13,14] := {75, 115} tii[13,15] := {93} tii[13,16] := {53, 146} tii[13,17] := {21, 101} tii[13,18] := {111, 182} tii[13,19] := {74, 164} tii[13,20] := {65, 165} tii[13,21] := {11, 85} tii[13,22] := {89, 173} tii[13,23] := {51, 145} tii[13,24] := {68, 161} tii[13,25] := {45, 148} tii[13,26] := {20, 108} tii[13,27] := {31, 130} tii[13,28] := {155, 178} tii[13,29] := {98, 176} tii[13,30] := {135, 167} tii[13,31] := {10, 62} tii[13,32] := {114, 184} tii[13,33] := {73, 163} tii[13,34] := {78, 157} tii[13,35] := {152} tii[13,36] := {92, 175} tii[13,37] := {50, 150} tii[13,38] := {38, 128} tii[13,39] := {99, 140} tii[13,40] := {17, 84} tii[13,41] := {112, 151} tii[13,42] := {119} tii[13,43] := {25, 104} tii[13,44] := {133} tii[13,45] := {67, 166} tii[13,46] := {110} tii[13,47] := {27, 107} tii[13,48] := {76, 116} tii[13,49] := {40, 129} tii[13,50] := {94} tii[13,51] := {71} tii[13,52] := {123, 181} tii[13,53] := {138, 186} tii[13,54] := {4, 43} tii[13,55] := {96, 170} tii[13,56] := {117, 180} tii[13,57] := {72, 162} tii[13,58] := {137, 168} tii[13,59] := {22, 102} tii[13,60] := {9, 61} tii[13,61] := {153} tii[13,62] := {91, 174} tii[13,63] := {13, 80} tii[13,64] := {134} tii[13,65] := {16, 83} tii[13,66] := {54, 90} tii[13,67] := {60, 144} tii[13,68] := {24, 103} tii[13,69] := {69} tii[13,70] := {79, 160} tii[13,71] := {120} tii[13,72] := {48} tii[13,73] := {26, 97} tii[13,74] := {39, 118} tii[13,75] := {70} tii[13,76] := {28, 52} tii[13,77] := {36, 127} tii[13,78] := {15, 77} tii[13,79] := {23, 105} tii[13,80] := {8, 55} tii[13,81] := {66, 159} tii[13,82] := {35, 125} tii[13,83] := {12, 81} tii[13,84] := {47, 143} tii[13,85] := {32, 121} tii[13,86] := {34, 131} tii[13,87] := {3, 42} tii[13,88] := {87, 132} tii[13,89] := {109} tii[13,90] := {46, 149} tii[13,91] := {6, 63} tii[13,92] := {19, 106} tii[13,93] := {86} tii[13,94] := {64} tii[13,95] := {2, 29} tii[13,96] := {41, 122} tii[13,97] := {5, 44} tii[13,98] := {58, 141} tii[13,99] := {14, 82} tii[13,100] := {95} tii[13,101] := {49} tii[13,102] := {0, 18} tii[13,103] := {1, 30} tii[13,104] := {7, 59} tii[13,105] := {33} cell#127 , |C| = 55 special orbit = [8, 2, 1, 1, 1, 1] special rep = [[4], [1, 1, 1]] , dim = 35 cell rep = phi[[4, 1, 1, 1],[]]+phi[[4],[1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 20*X^2+15*X TII subcells: tii[31,1] := {43, 54} tii[31,2] := {44, 53} tii[31,3] := {42, 52} tii[31,4] := {48, 49} tii[31,5] := {50} tii[31,6] := {35, 51} tii[31,7] := {34, 47} tii[31,8] := {40, 41} tii[31,9] := {45} tii[31,10] := {24, 39} tii[31,11] := {32, 33} tii[31,12] := {37} tii[31,13] := {21, 22} tii[31,14] := {28} tii[31,15] := {25} tii[31,16] := {26, 46} tii[31,17] := {23, 38} tii[31,18] := {30, 31} tii[31,19] := {36} tii[31,20] := {14, 29} tii[31,21] := {19, 20} tii[31,22] := {27} tii[31,23] := {12, 13} tii[31,24] := {17} tii[31,25] := {15} tii[31,26] := {7, 18} tii[31,27] := {10, 11} tii[31,28] := {16} tii[31,29] := {5, 6} tii[31,30] := {9} tii[31,31] := {8} tii[31,32] := {0, 1} tii[31,33] := {4} tii[31,34] := {2} tii[31,35] := {3} cell#128 , |C| = 175 special orbit = [6, 2, 2, 2, 1, 1] special rep = [[3, 1], [1, 1, 1]] , dim = 105 cell rep = phi[[3, 1, 1, 1],[1]]+phi[[3, 1],[1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 70*X^2+35*X TII subcells: tii[23,1] := {126, 173} tii[23,2] := {68, 166} tii[23,3] := {79, 174} tii[23,4] := {147, 169} tii[23,5] := {53, 151} tii[23,6] := {124, 158} tii[23,7] := {60, 171} tii[23,8] := {143, 144} tii[23,9] := {156} tii[23,10] := {83, 132} tii[23,11] := {88, 162} tii[23,12] := {108, 109} tii[23,13] := {129} tii[23,14] := {114, 155} tii[23,15] := {138} tii[23,16] := {125, 157} tii[23,17] := {29, 130} tii[23,18] := {96, 141} tii[23,19] := {36, 161} tii[23,20] := {118, 119} tii[23,21] := {139} tii[23,22] := {67, 117} tii[23,23] := {52, 104} tii[23,24] := {59, 145} tii[23,25] := {77, 78} tii[23,26] := {92, 93} tii[23,27] := {101} tii[23,28] := {115} tii[23,29] := {65, 66} tii[23,30] := {87, 136} tii[23,31] := {112} tii[23,32] := {90} tii[23,33] := {72} tii[23,34] := {28, 74} tii[23,35] := {35, 123} tii[23,36] := {48, 49} tii[23,37] := {71} tii[23,38] := {26, 27} tii[23,39] := {58, 110} tii[23,40] := {84} tii[23,41] := {47} tii[23,42] := {32} tii[23,43] := {75, 122} tii[23,44] := {99} tii[23,45] := {70} tii[23,46] := {33, 163} tii[23,47] := {98, 170} tii[23,48] := {13, 146} tii[23,49] := {69, 159} tii[23,50] := {24, 160} tii[23,51] := {55, 168} tii[23,52] := {3, 137} tii[23,53] := {97, 142} tii[23,54] := {8, 154} tii[23,55] := {44, 153} tii[23,56] := {120, 121} tii[23,57] := {30, 165} tii[23,58] := {140} tii[23,59] := {25, 167} tii[23,60] := {94, 95} tii[23,61] := {54, 172} tii[23,62] := {116} tii[23,63] := {102} tii[23,64] := {43, 91} tii[23,65] := {2, 111} tii[23,66] := {31, 134} tii[23,67] := {63, 64} tii[23,68] := {4, 135} tii[23,69] := {89} tii[23,70] := {18, 150} tii[23,71] := {41, 42} tii[23,72] := {15, 152} tii[23,73] := {80, 81} tii[23,74] := {62} tii[23,75] := {38, 164} tii[23,76] := {103} tii[23,77] := {45} tii[23,78] := {86} tii[23,79] := {19, 20} tii[23,80] := {34, 133} tii[23,81] := {40} tii[23,82] := {61, 149} tii[23,83] := {21} tii[23,84] := {113} tii[23,85] := {39} tii[23,86] := {0, 82} tii[23,87] := {11, 106} tii[23,88] := {1, 107} tii[23,89] := {7, 128} tii[23,90] := {6, 131} tii[23,91] := {50, 51} tii[23,92] := {17, 148} tii[23,93] := {73} tii[23,94] := {57} tii[23,95] := {9, 10} tii[23,96] := {14, 105} tii[23,97] := {23} tii[23,98] := {37, 127} tii[23,99] := {85} tii[23,100] := {12} tii[23,101] := {22} tii[23,102] := {5, 76} tii[23,103] := {16, 100} tii[23,104] := {56} tii[23,105] := {46} cell#129 , |C| = 140 special orbit = [6, 4, 1, 1, 1, 1] special rep = [[3], [2, 1, 1]] , dim = 105 cell rep = phi[[3, 2, 1, 1],[]]+phi[[3],[2, 1, 1]] TII depth = 3 TII multiplicity polynomial = 35*X^2+70*X TII subcells: tii[25,1] := {96, 130} tii[25,2] := {126, 127} tii[25,3] := {137} tii[25,4] := {139} tii[25,5] := {74, 118} tii[25,6] := {110, 111} tii[25,7] := {62, 101} tii[25,8] := {81, 82} tii[25,9] := {131} tii[25,10] := {99} tii[25,11] := {138} tii[25,12] := {91, 92} tii[25,13] := {72, 73} tii[25,14] := {121} tii[25,15] := {88} tii[25,16] := {134} tii[25,17] := {112} tii[25,18] := {97} tii[25,19] := {128} tii[25,20] := {136} tii[25,21] := {51, 100} tii[25,22] := {89, 90} tii[25,23] := {39, 79} tii[25,24] := {58, 59} tii[25,25] := {120} tii[25,26] := {76} tii[25,27] := {133} tii[25,28] := {22, 57} tii[25,29] := {67, 68} tii[25,30] := {47, 48} tii[25,31] := {35, 36} tii[25,32] := {104} tii[25,33] := {65} tii[25,34] := {54} tii[25,35] := {123} tii[25,36] := {20, 21} tii[25,37] := {93} tii[25,38] := {75} tii[25,39] := {33} tii[25,40] := {115} tii[25,41] := {23} tii[25,42] := {129} tii[25,43] := {45, 46} tii[25,44] := {26, 27} tii[25,45] := {85} tii[25,46] := {43} tii[25,47] := {108} tii[25,48] := {14, 15} tii[25,49] := {69} tii[25,50] := {52} tii[25,51] := {25} tii[25,52] := {98} tii[25,53] := {16} tii[25,54] := {117} tii[25,55] := {84} tii[25,56] := {63} tii[25,57] := {107} tii[25,58] := {42} tii[25,59] := {125} tii[25,60] := {135} tii[25,61] := {83, 119} tii[25,62] := {102, 103} tii[25,63] := {116} tii[25,64] := {40, 80} tii[25,65] := {113, 114} tii[25,66] := {60, 61} tii[25,67] := {124} tii[25,68] := {78} tii[25,69] := {37, 38} tii[25,70] := {132} tii[25,71] := {56} tii[25,72] := {41} tii[25,73] := {10, 34} tii[25,74] := {94, 95} tii[25,75] := {18, 19} tii[25,76] := {31} tii[25,77] := {109} tii[25,78] := {8, 9} tii[25,79] := {49, 50} tii[25,80] := {122} tii[25,81] := {17} tii[25,82] := {66} tii[25,83] := {11} tii[25,84] := {55} tii[25,85] := {0, 1} tii[25,86] := {106} tii[25,87] := {7} tii[25,88] := {77} tii[25,89] := {2} tii[25,90] := {6} tii[25,91] := {70, 71} tii[25,92] := {87} tii[25,93] := {28, 29} tii[25,94] := {105} tii[25,95] := {44} tii[25,96] := {32} tii[25,97] := {3, 4} tii[25,98] := {86} tii[25,99] := {13} tii[25,100] := {53} tii[25,101] := {5} tii[25,102] := {12} tii[25,103] := {64} tii[25,104] := {30} tii[25,105] := {24} cell#130 , |C| = 175 special orbit = [6, 2, 2, 2, 1, 1] special rep = [[3, 1], [1, 1, 1]] , dim = 105 cell rep = phi[[3, 1, 1, 1],[1]]+phi[[3, 1],[1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 70*X^2+35*X TII subcells: tii[23,1] := {117, 174} tii[23,2] := {111, 166} tii[23,3] := {71, 144} tii[23,4] := {136, 172} tii[23,5] := {85, 158} tii[23,6] := {151, 169} tii[23,7] := {49, 123} tii[23,8] := {135, 164} tii[23,9] := {154} tii[23,10] := {108, 152} tii[23,11] := {32, 100} tii[23,12] := {92, 132} tii[23,13] := {114} tii[23,14] := {48, 88} tii[23,15] := {66} tii[23,16] := {149, 173} tii[23,17] := {60, 140} tii[23,18] := {155, 170} tii[23,19] := {31, 98} tii[23,20] := {147, 167} tii[23,21] := {161} tii[23,22] := {137, 165} tii[23,23] := {82, 131} tii[23,24] := {16, 74} tii[23,25] := {69, 112} tii[23,26] := {128, 159} tii[23,27] := {89} tii[23,28] := {145} tii[23,29] := {109, 143} tii[23,30] := {28, 64} tii[23,31] := {43} tii[23,32] := {126} tii[23,33] := {105} tii[23,34] := {95, 139} tii[23,35] := {7, 53} tii[23,36] := {80, 120} tii[23,37] := {101} tii[23,38] := {58, 97} tii[23,39] := {14, 42} tii[23,40] := {25} tii[23,41] := {75} tii[23,42] := {56} tii[23,43] := {22, 52} tii[23,44] := {34} tii[23,45] := {19} tii[23,46] := {4, 150} tii[23,47] := {94, 171} tii[23,48] := {13, 156} tii[23,49] := {72, 168} tii[23,50] := {30, 148} tii[23,51] := {51, 162} tii[23,52] := {21, 138} tii[23,53] := {130, 163} tii[23,54] := {40, 129} tii[23,55] := {86, 160} tii[23,56] := {116, 153} tii[23,57] := {67, 146} tii[23,58] := {134} tii[23,59] := {29, 110} tii[23,60] := {93, 133} tii[23,61] := {50, 127} tii[23,62] := {115} tii[23,63] := {91} tii[23,64] := {118, 157} tii[23,65] := {10, 119} tii[23,66] := {63, 142} tii[23,67] := {106, 141} tii[23,68] := {24, 107} tii[23,69] := {124} tii[23,70] := {44, 125} tii[23,71] := {83, 122} tii[23,72] := {15, 84} tii[23,73] := {70, 113} tii[23,74] := {103} tii[23,75] := {33, 104} tii[23,76] := {90} tii[23,77] := {79} tii[23,78] := {68} tii[23,79] := {61, 99} tii[23,80] := {6, 62} tii[23,81] := {77} tii[23,82] := {18, 78} tii[23,83] := {57} tii[23,84] := {46} tii[23,85] := {37} tii[23,86] := {3, 96} tii[23,87] := {41, 121} tii[23,88] := {11, 81} tii[23,89] := {26, 102} tii[23,90] := {5, 59} tii[23,91] := {47, 87} tii[23,92] := {17, 76} tii[23,93] := {65} tii[23,94] := {45} tii[23,95] := {38, 73} tii[23,96] := {1, 39} tii[23,97] := {54} tii[23,98] := {8, 55} tii[23,99] := {27} tii[23,100] := {36} tii[23,101] := {20} tii[23,102] := {0, 23} tii[23,103] := {2, 35} tii[23,104] := {12} tii[23,105] := {9} cell#131 , |C| = 126 special orbit = [6, 2, 2, 2, 2] special rep = [[3, 1, 1], [1, 1]] , dim = 126 cell rep = phi[[3, 1, 1],[1, 1]] TII depth = 4 TII multiplicity polynomial = 126*X TII subcells: tii[24,1] := {125} tii[24,2] := {121} tii[24,3] := {119} tii[24,4] := {105} tii[24,5] := {102} tii[24,6] := {104} tii[24,7] := {44} tii[24,8] := {47} tii[24,9] := {43} tii[24,10] := {123} tii[24,11] := {57} tii[24,12] := {113} tii[24,13] := {32} tii[24,14] := {120} tii[24,15] := {74} tii[24,16] := {112} tii[24,17] := {29} tii[24,18] := {117} tii[24,19] := {85} tii[24,20] := {108} tii[24,21] := {106} tii[24,22] := {46} tii[24,23] := {103} tii[24,24] := {42} tii[24,25] := {98} tii[24,26] := {55} tii[24,27] := {80} tii[24,28] := {88} tii[24,29] := {53} tii[24,30] := {78} tii[24,31] := {73} tii[24,32] := {21} tii[24,33] := {124} tii[24,34] := {90} tii[24,35] := {20} tii[24,36] := {122} tii[24,37] := {101} tii[24,38] := {116} tii[24,39] := {75} tii[24,40] := {91} tii[24,41] := {30} tii[24,42] := {28} tii[24,43] := {39} tii[24,44] := {82} tii[24,45] := {86} tii[24,46] := {118} tii[24,47] := {87} tii[24,48] := {61} tii[24,49] := {109} tii[24,50] := {100} tii[24,51] := {72} tii[24,52] := {38} tii[24,53] := {60} tii[24,54] := {115} tii[24,55] := {45} tii[24,56] := {41} tii[24,57] := {97} tii[24,58] := {54} tii[24,59] := {79} tii[24,60] := {68} tii[24,61] := {89} tii[24,62] := {52} tii[24,63] := {77} tii[24,64] := {93} tii[24,65] := {67} tii[24,66] := {92} tii[24,67] := {0} tii[24,68] := {31} tii[24,69] := {3} tii[24,70] := {25} tii[24,71] := {6} tii[24,72] := {14} tii[24,73] := {8} tii[24,74] := {114} tii[24,75] := {59} tii[24,76] := {12} tii[24,77] := {36} tii[24,78] := {111} tii[24,79] := {71} tii[24,80] := {24} tii[24,81] := {96} tii[24,82] := {19} tii[24,83] := {99} tii[24,84] := {56} tii[24,85] := {35} tii[24,86] := {81} tii[24,87] := {65} tii[24,88] := {58} tii[24,89] := {4} tii[24,90] := {110} tii[24,91] := {26} tii[24,92] := {70} tii[24,93] := {7} tii[24,94] := {95} tii[24,95] := {15} tii[24,96] := {84} tii[24,97] := {11} tii[24,98] := {83} tii[24,99] := {40} tii[24,100] := {107} tii[24,101] := {23} tii[24,102] := {62} tii[24,103] := {50} tii[24,104] := {69} tii[24,105] := {18} tii[24,106] := {94} tii[24,107] := {34} tii[24,108] := {64} tii[24,109] := {1} tii[24,110] := {16} tii[24,111] := {2} tii[24,112] := {9} tii[24,113] := {5} tii[24,114] := {27} tii[24,115] := {66} tii[24,116] := {13} tii[24,117] := {48} tii[24,118] := {37} tii[24,119] := {51} tii[24,120] := {10} tii[24,121] := {76} tii[24,122] := {22} tii[24,123] := {49} tii[24,124] := {17} tii[24,125] := {33} tii[24,126] := {63} cell#132 , |C| = 315 special orbit = [4, 4, 2, 2, 2] special rep = [[2, 1, 1], [2, 1]] , dim = 210 cell rep = phi[[2, 2, 1],[1, 1]]+phi[[2, 1, 1],[2, 1]] TII depth = 4 TII multiplicity polynomial = 105*X^2+105*X TII subcells: tii[16,1] := {270, 310} tii[16,2] := {313} tii[16,3] := {269, 311} tii[16,4] := {233, 286} tii[16,5] := {312} tii[16,6] := {314} tii[16,7] := {75, 76} tii[16,8] := {96} tii[16,9] := {147, 148} tii[16,10] := {242, 300} tii[16,11] := {111, 112} tii[16,12] := {53, 119} tii[16,13] := {304} tii[16,14] := {173, 262} tii[16,15] := {130} tii[16,16] := {209} tii[16,17] := {256} tii[16,18] := {206, 283} tii[16,19] := {145, 146} tii[16,20] := {158, 235} tii[16,21] := {293} tii[16,22] := {171} tii[16,23] := {170, 261} tii[16,24] := {106, 193} tii[16,25] := {208} tii[16,26] := {133, 238} tii[16,27] := {255} tii[16,28] := {276} tii[16,29] := {207} tii[16,30] := {254} tii[16,31] := {150, 151} tii[16,32] := {191, 192} tii[16,33] := {172} tii[16,34] := {81, 159} tii[16,35] := {214, 287} tii[16,36] := {248} tii[16,37] := {281} tii[16,38] := {227, 228} tii[16,39] := {243, 301} tii[16,40] := {189, 190} tii[16,41] := {250, 303} tii[16,42] := {197, 263} tii[16,43] := {65, 120} tii[16,44] := {186, 260} tii[16,45] := {213} tii[16,46] := {212, 285} tii[16,47] := {144, 230} tii[16,48] := {247} tii[16,49] := {305} tii[16,50] := {275} tii[16,51] := {216, 289} tii[16,52] := {176, 266} tii[16,53] := {280} tii[16,54] := {299} tii[16,55] := {93, 155} tii[16,56] := {292} tii[16,57] := {160, 237} tii[16,58] := {294} tii[16,59] := {245} tii[16,60] := {123, 204} tii[16,61] := {309} tii[16,62] := {278} tii[16,63] := {225, 226} tii[16,64] := {251} tii[16,65] := {249, 302} tii[16,66] := {185, 259} tii[16,67] := {274} tii[16,68] := {298} tii[16,69] := {215, 288} tii[16,70] := {166, 231} tii[16,71] := {291} tii[16,72] := {306} tii[16,73] := {273} tii[16,74] := {308} tii[16,75] := {297} tii[16,76] := {200, 267} tii[16,77] := {290} tii[16,78] := {307} tii[16,79] := {3, 4} tii[16,80] := {35, 36} tii[16,81] := {12} tii[16,82] := {26} tii[16,83] := {6, 7} tii[16,84] := {107, 108} tii[16,85] := {54, 55} tii[16,86] := {17, 18} tii[16,87] := {132, 234} tii[16,88] := {34, 85} tii[16,89] := {24} tii[16,90] := {168} tii[16,91] := {79, 80} tii[16,92] := {38, 39} tii[16,93] := {45} tii[16,94] := {221} tii[16,95] := {103} tii[16,96] := {42} tii[16,97] := {97, 198} tii[16,98] := {129} tii[16,99] := {48, 114} tii[16,100] := {69} tii[16,101] := {68, 163} tii[16,102] := {182} tii[16,103] := {99} tii[16,104] := {142} tii[16,105] := {187, 188} tii[16,106] := {14, 15} tii[16,107] := {115, 116} tii[16,108] := {211, 284} tii[16,109] := {82, 83} tii[16,110] := {40, 84} tii[16,111] := {143, 229} tii[16,112] := {30, 31} tii[16,113] := {246} tii[16,114] := {43} tii[16,115] := {140} tii[16,116] := {175, 265} tii[16,117] := {59, 60} tii[16,118] := {279} tii[16,119] := {70} tii[16,120] := {131, 236} tii[16,121] := {74, 154} tii[16,122] := {16, 51} tii[16,123] := {271} tii[16,124] := {66} tii[16,125] := {169} tii[16,126] := {64, 113} tii[16,127] := {121, 199} tii[16,128] := {109, 195} tii[16,129] := {178} tii[16,130] := {98, 203} tii[16,131] := {295} tii[16,132] := {101} tii[16,133] := {37, 89} tii[16,134] := {86, 162} tii[16,135] := {137} tii[16,136] := {222} tii[16,137] := {135, 240} tii[16,138] := {71, 164} tii[16,139] := {184} tii[16,140] := {92, 152} tii[16,141] := {244} tii[16,142] := {94} tii[16,143] := {177} tii[16,144] := {277} tii[16,145] := {138} tii[16,146] := {122, 201} tii[16,147] := {223} tii[16,148] := {27, 28} tii[16,149] := {117, 118} tii[16,150] := {156, 157} tii[16,151] := {49, 50} tii[16,152] := {67} tii[16,153] := {87, 88} tii[16,154] := {183} tii[16,155] := {102} tii[16,156] := {95} tii[16,157] := {149, 232} tii[16,158] := {29, 78} tii[16,159] := {110, 196} tii[16,160] := {174, 264} tii[16,161] := {210} tii[16,162] := {219} tii[16,163] := {139} tii[16,164] := {136, 241} tii[16,165] := {179, 268} tii[16,166] := {58, 124} tii[16,167] := {257} tii[16,168] := {180} tii[16,169] := {224} tii[16,170] := {104, 205} tii[16,171] := {127, 194} tii[16,172] := {22, 52} tii[16,173] := {272} tii[16,174] := {128} tii[16,175] := {218} tii[16,176] := {253} tii[16,177] := {161, 239} tii[16,178] := {41, 90} tii[16,179] := {296} tii[16,180] := {181} tii[16,181] := {91, 165} tii[16,182] := {258} tii[16,183] := {167} tii[16,184] := {220} tii[16,185] := {252} tii[16,186] := {282} tii[16,187] := {0, 1} tii[16,188] := {2} tii[16,189] := {9, 10} tii[16,190] := {56, 57} tii[16,191] := {5} tii[16,192] := {20, 21} tii[16,193] := {73} tii[16,194] := {47} tii[16,195] := {8, 33} tii[16,196] := {77, 153} tii[16,197] := {13} tii[16,198] := {134} tii[16,199] := {19, 62} tii[16,200] := {100, 202} tii[16,201] := {46, 126} tii[16,202] := {72} tii[16,203] := {11, 32} tii[16,204] := {217} tii[16,205] := {25} tii[16,206] := {23, 61} tii[16,207] := {105} tii[16,208] := {63, 125} tii[16,209] := {44} tii[16,210] := {141} cell#133 , |C| = 175 special orbit = [6, 2, 2, 2, 1, 1] special rep = [[3, 1], [1, 1, 1]] , dim = 105 cell rep = phi[[3, 1, 1, 1],[1]]+phi[[3, 1],[1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 70*X^2+35*X TII subcells: tii[23,1] := {120, 167} tii[23,2] := {131, 132} tii[23,3] := {125, 126} tii[23,4] := {146, 172} tii[23,5] := {102, 103} tii[23,6] := {161, 162} tii[23,7] := {94, 95} tii[23,8] := {170, 171} tii[23,9] := {174} tii[23,10] := {118, 119} tii[23,11] := {62, 63} tii[23,12] := {142, 143} tii[23,13] := {158} tii[23,14] := {96, 97} tii[23,15] := {122} tii[23,16] := {135, 168} tii[23,17] := {68, 69} tii[23,18] := {154, 155} tii[23,19] := {60, 61} tii[23,20] := {165, 166} tii[23,21] := {173} tii[23,22] := {133, 134} tii[23,23] := {87, 88} tii[23,24] := {36, 37} tii[23,25] := {116, 117} tii[23,26] := {152, 153} tii[23,27] := {141} tii[23,28] := {164} tii[23,29] := {139, 140} tii[23,30] := {64, 65} tii[23,31] := {92} tii[23,32] := {157} tii[23,33] := {137} tii[23,34] := {70, 71} tii[23,35] := {21, 22} tii[23,36] := {100, 101} tii[23,37] := {124} tii[23,38] := {83, 84} tii[23,39] := {38, 39} tii[23,40] := {56} tii[23,41] := {112} tii[23,42] := {79} tii[23,43] := {66, 67} tii[23,44] := {93} tii[23,45] := {81} tii[23,46] := {4, 23} tii[23,47] := {91, 156} tii[23,48] := {9, 40} tii[23,49] := {78, 136} tii[23,50] := {20, 59} tii[23,51] := {47, 108} tii[23,52] := {24, 25} tii[23,53] := {144, 145} tii[23,54] := {34, 35} tii[23,55] := {109, 110} tii[23,56] := {159, 160} tii[23,57] := {74, 75} tii[23,58] := {169} tii[23,59] := {57, 58} tii[23,60] := {150, 151} tii[23,61] := {106, 107} tii[23,62] := {163} tii[23,63] := {147} tii[23,64] := {104, 105} tii[23,65] := {10, 11} tii[23,66] := {76, 77} tii[23,67] := {129, 130} tii[23,68] := {18, 19} tii[23,69] := {149} tii[23,70] := {45, 46} tii[23,71] := {114, 115} tii[23,72] := {32, 33} tii[23,73] := {127, 128} tii[23,74] := {138} tii[23,75] := {72, 73} tii[23,76] := {148} tii[23,77] := {111} tii[23,78] := {121} tii[23,79] := {85, 86} tii[23,80] := {16, 17} tii[23,81] := {113} tii[23,82] := {43, 44} tii[23,83] := {80} tii[23,84] := {90} tii[23,85] := {51} tii[23,86] := {2, 3} tii[23,87] := {48, 49} tii[23,88] := {7, 8} tii[23,89] := {28, 29} tii[23,90] := {14, 15} tii[23,91] := {98, 99} tii[23,92] := {41, 42} tii[23,93] := {123} tii[23,94] := {89} tii[23,95] := {53, 54} tii[23,96] := {5, 6} tii[23,97] := {82} tii[23,98] := {26, 27} tii[23,99] := {55} tii[23,100] := {50} tii[23,101] := {30} tii[23,102] := {0, 1} tii[23,103] := {12, 13} tii[23,104] := {31} tii[23,105] := {52} cell#134 , |C| = 427 special orbit = [4, 4, 2, 2, 1, 1] special rep = [[2, 1], [2, 1, 1]] , dim = 210 cell rep = phi[[2, 2, 1, 1],[1]]+phi[[2, 1, 1, 1],[2]]+phi[[2, 2],[1, 1, 1]]+phi[[2, 1],[2, 1, 1]] TII depth = 3 TII multiplicity polynomial = 49*X^4+70*X^2+91*X TII subcells: tii[15,1] := {122, 308, 362, 421} tii[15,2] := {272, 425} tii[15,3] := {193, 194} tii[15,4] := {169, 323, 352, 404} tii[15,5] := {84, 230, 343, 344} tii[15,6] := {321, 415} tii[15,7] := {279} tii[15,8] := {332} tii[15,9] := {219, 294, 386, 422} tii[15,10] := {361, 412} tii[15,11] := {167, 253, 407, 408} tii[15,12] := {298} tii[15,13] := {209, 419} tii[15,14] := {356} tii[15,15] := {393, 424} tii[15,16] := {414} tii[15,17] := {143, 144} tii[15,18] := {121, 276, 307, 375} tii[15,19] := {271, 396} tii[15,20] := {48, 178, 299, 300} tii[15,21] := {226} tii[15,22] := {286} tii[15,23] := {98, 99} tii[15,24] := {168, 246, 351, 405} tii[15,25] := {24, 132, 254, 255} tii[15,26] := {66, 67} tii[15,27] := {320, 381} tii[15,28] := {120, 205, 377, 378} tii[15,29] := {251} tii[15,30] := {176} tii[15,31] := {96} tii[15,32] := {157, 401} tii[15,33] := {313} tii[15,34] := {237} tii[15,35] := {46, 111, 303, 304} tii[15,36] := {152} tii[15,37] := {360, 413} tii[15,38] := {114} tii[15,39] := {73, 337} tii[15,40] := {388} tii[15,41] := {216} tii[15,42] := {268} tii[15,43] := {191, 275, 387, 423} tii[15,44] := {342, 395} tii[15,45] := {141, 228, 409, 410} tii[15,46] := {277} tii[15,47] := {180, 420} tii[15,48] := {330} tii[15,49] := {100, 177, 382, 383} tii[15,50] := {225} tii[15,51] := {376, 416} tii[15,52] := {182} tii[15,53] := {397} tii[15,54] := {135, 402} tii[15,55] := {285} tii[15,56] := {94, 392} tii[15,57] := {333} tii[15,58] := {406, 426} tii[15,59] := {417} tii[15,60] := {400} tii[15,61] := {19, 71, 244, 245} tii[15,62] := {50, 217, 281, 380} tii[15,63] := {81, 327} tii[15,64] := {128, 368} tii[15,65] := {45, 113, 292, 293} tii[15,66] := {145, 146} tii[15,67] := {83, 267, 328, 411} tii[15,68] := {22, 151, 241, 339} tii[15,69] := {49, 179, 301, 302} tii[15,70] := {125, 364} tii[15,71] := {227} tii[15,72] := {109, 110} tii[15,73] := {53, 215, 282, 389} tii[15,74] := {174, 399} tii[15,75] := {287} tii[15,76] := {140} tii[15,77] := {171, 394} tii[15,78] := {202} tii[15,79] := {80, 156, 347, 348} tii[15,80] := {223, 418} tii[15,81] := {160} tii[15,82] := {116, 373} tii[15,83] := {265} tii[15,84] := {317} tii[15,85] := {62, 63} tii[15,86] := {78, 158, 242, 243} tii[15,87] := {153, 154} tii[15,88] := {126, 280, 315, 379} tii[15,89] := {10, 89, 206, 207} tii[15,90] := {35, 36} tii[15,91] := {47, 189, 200, 295} tii[15,92] := {130} tii[15,93] := {172, 326} tii[15,94] := {188} tii[15,95] := {58} tii[15,96] := {87, 231, 263, 353} tii[15,97] := {187} tii[15,98] := {224, 367} tii[15,99] := {106} tii[15,100] := {123, 208, 384, 385} tii[15,101] := {23, 147, 249, 250} tii[15,102] := {221, 363} tii[15,103] := {252} tii[15,104] := {20, 70, 256, 257} tii[15,105] := {15, 16} tii[15,106] := {234} tii[15,107] := {161, 403} tii[15,108] := {72} tii[15,109] := {274, 398} tii[15,110] := {39, 291} tii[15,111] := {165} tii[15,112] := {54, 185, 311, 312} tii[15,113] := {211} tii[15,114] := {314} tii[15,115] := {32} tii[15,116] := {218} tii[15,117] := {119, 370} tii[15,118] := {18} tii[15,119] := {358} tii[15,120] := {129} tii[15,121] := {33, 88, 305, 306} tii[15,122] := {270, 340} tii[15,123] := {258} tii[15,124] := {90} tii[15,125] := {322, 390} tii[15,126] := {186} tii[15,127] := {55, 338} tii[15,128] := {29, 318} tii[15,129] := {239} tii[15,130] := {391} tii[15,131] := {57} tii[15,132] := {290} tii[15,133] := {44, 112, 190, 192} tii[15,134] := {82, 229, 266, 341} tii[15,135] := {107, 108} tii[15,136] := {21, 142, 150, 247} tii[15,137] := {124, 278} tii[15,138] := {52, 181, 214, 309} tii[15,139] := {139} tii[15,140] := {173, 331} tii[15,141] := {170, 325} tii[15,142] := {37, 38} tii[15,143] := {7, 101, 196, 197} tii[15,144] := {201} tii[15,145] := {79, 155, 345, 346} tii[15,146] := {183} tii[15,147] := {222, 366} tii[15,148] := {61} tii[15,149] := {115, 372} tii[15,150] := {25, 136, 259, 260} tii[15,151] := {159} tii[15,152] := {264} tii[15,153] := {43} tii[15,154] := {75, 334} tii[15,155] := {316} tii[15,156] := {64, 131, 349, 350} tii[15,157] := {1, 65, 148, 149} tii[15,158] := {175} tii[15,159] := {220, 297} tii[15,160] := {134} tii[15,161] := {210} tii[15,162] := {92, 374} tii[15,163] := {133} tii[15,164] := {11, 93, 212, 213} tii[15,165] := {273, 355} tii[15,166] := {236} tii[15,167] := {59, 359} tii[15,168] := {74} tii[15,169] := {42, 289} tii[15,170] := {357} tii[15,171] := {288} tii[15,172] := {95} tii[15,173] := {30, 319} tii[15,174] := {336} tii[15,175] := {248, 324} tii[15,176] := {232} tii[15,177] := {310, 365} tii[15,178] := {138} tii[15,179] := {369} tii[15,180] := {371} tii[15,181] := {6, 40, 203, 204} tii[15,182] := {28, 238} tii[15,183] := {9, 105, 195, 296} tii[15,184] := {68, 69} tii[15,185] := {51, 284} tii[15,186] := {27, 164, 235, 354} tii[15,187] := {97} tii[15,188] := {77} tii[15,189] := {8, 102, 198, 199} tii[15,190] := {3, 4} tii[15,191] := {86, 329} tii[15,192] := {184} tii[15,193] := {26, 137, 261, 262} tii[15,194] := {14} tii[15,195] := {118} tii[15,196] := {5} tii[15,197] := {76, 335} tii[15,198] := {13} tii[15,199] := {0, 34, 103, 104} tii[15,200] := {91} tii[15,201] := {127, 283} tii[15,202] := {2, 56, 162, 163} tii[15,203] := {41} tii[15,204] := {166} tii[15,205] := {17, 240} tii[15,206] := {31} tii[15,207] := {12, 269} tii[15,208] := {85, 233} tii[15,209] := {117} tii[15,210] := {60} cell#135 , |C| = 189 special orbit = [4, 2, 2, 2, 2, 2] special rep = [[2, 1, 1], [1, 1, 1]] , dim = 105 cell rep = phi[[2, 1, 1, 1],[1, 1]]+phi[[2, 1, 1],[1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 84*X^2+21*X TII subcells: tii[13,1] := {136, 187} tii[13,2] := {88, 177} tii[13,3] := {57, 147} tii[13,4] := {156, 188} tii[13,5] := {113, 183} tii[13,6] := {171, 185} tii[13,7] := {37, 126} tii[13,8] := {100, 172} tii[13,9] := {154, 179} tii[13,10] := {169} tii[13,11] := {124, 158} tii[13,12] := {142} tii[13,13] := {56, 139} tii[13,14] := {75, 115} tii[13,15] := {93} tii[13,16] := {53, 146} tii[13,17] := {21, 101} tii[13,18] := {111, 182} tii[13,19] := {74, 164} tii[13,20] := {65, 165} tii[13,21] := {11, 85} tii[13,22] := {89, 173} tii[13,23] := {51, 145} tii[13,24] := {68, 161} tii[13,25] := {45, 148} tii[13,26] := {20, 108} tii[13,27] := {31, 130} tii[13,28] := {155, 178} tii[13,29] := {98, 176} tii[13,30] := {135, 167} tii[13,31] := {10, 62} tii[13,32] := {114, 184} tii[13,33] := {73, 163} tii[13,34] := {78, 157} tii[13,35] := {152} tii[13,36] := {92, 175} tii[13,37] := {50, 150} tii[13,38] := {38, 128} tii[13,39] := {99, 140} tii[13,40] := {17, 84} tii[13,41] := {112, 151} tii[13,42] := {119} tii[13,43] := {25, 104} tii[13,44] := {133} tii[13,45] := {67, 166} tii[13,46] := {110} tii[13,47] := {27, 107} tii[13,48] := {76, 116} tii[13,49] := {40, 129} tii[13,50] := {94} tii[13,51] := {71} tii[13,52] := {123, 181} tii[13,53] := {138, 186} tii[13,54] := {4, 43} tii[13,55] := {96, 170} tii[13,56] := {117, 180} tii[13,57] := {72, 162} tii[13,58] := {137, 168} tii[13,59] := {22, 102} tii[13,60] := {9, 61} tii[13,61] := {153} tii[13,62] := {91, 174} tii[13,63] := {13, 80} tii[13,64] := {134} tii[13,65] := {16, 83} tii[13,66] := {54, 90} tii[13,67] := {60, 144} tii[13,68] := {24, 103} tii[13,69] := {69} tii[13,70] := {79, 160} tii[13,71] := {120} tii[13,72] := {48} tii[13,73] := {26, 97} tii[13,74] := {39, 118} tii[13,75] := {70} tii[13,76] := {28, 52} tii[13,77] := {36, 127} tii[13,78] := {15, 77} tii[13,79] := {23, 105} tii[13,80] := {8, 55} tii[13,81] := {66, 159} tii[13,82] := {35, 125} tii[13,83] := {12, 81} tii[13,84] := {47, 143} tii[13,85] := {32, 121} tii[13,86] := {34, 131} tii[13,87] := {3, 42} tii[13,88] := {87, 132} tii[13,89] := {109} tii[13,90] := {46, 149} tii[13,91] := {6, 63} tii[13,92] := {19, 106} tii[13,93] := {86} tii[13,94] := {64} tii[13,95] := {2, 29} tii[13,96] := {41, 122} tii[13,97] := {5, 44} tii[13,98] := {58, 141} tii[13,99] := {14, 82} tii[13,100] := {95} tii[13,101] := {49} tii[13,102] := {0, 18} tii[13,103] := {1, 30} tii[13,104] := {7, 59} tii[13,105] := {33} cell#136 , |C| = 35 special orbit = [2, 2, 2, 2, 2, 2, 2] special rep = [[1, 1, 1, 1], [1, 1, 1]] , dim = 35 cell rep = phi[[1, 1, 1, 1],[1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 35*X TII subcells: tii[5,1] := {34} tii[5,2] := {11} tii[5,3] := {31} tii[5,4] := {16} tii[5,5] := {27} tii[5,6] := {20} tii[5,7] := {23} tii[5,8] := {21} tii[5,9] := {32} tii[5,10] := {26} tii[5,11] := {29} tii[5,12] := {30} tii[5,13] := {33} tii[5,14] := {2} tii[5,15] := {7} tii[5,16] := {4} tii[5,17] := {5} tii[5,18] := {22} tii[5,19] := {6} tii[5,20] := {15} tii[5,21] := {8} tii[5,22] := {18} tii[5,23] := {14} tii[5,24] := {25} tii[5,25] := {9} tii[5,26] := {28} tii[5,27] := {12} tii[5,28] := {19} tii[5,29] := {13} tii[5,30] := {17} tii[5,31] := {24} tii[5,32] := {0} tii[5,33] := {1} tii[5,34] := {3} tii[5,35] := {10} cell#137 , |C| = 35 special orbit = [2, 2, 2, 2, 2, 2, 2] special rep = [[1, 1, 1, 1], [1, 1, 1]] , dim = 35 cell rep = phi[[1, 1, 1, 1],[1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 35*X TII subcells: tii[5,1] := {34} tii[5,2] := {11} tii[5,3] := {31} tii[5,4] := {16} tii[5,5] := {27} tii[5,6] := {20} tii[5,7] := {23} tii[5,8] := {21} tii[5,9] := {32} tii[5,10] := {26} tii[5,11] := {29} tii[5,12] := {30} tii[5,13] := {33} tii[5,14] := {2} tii[5,15] := {7} tii[5,16] := {4} tii[5,17] := {5} tii[5,18] := {22} tii[5,19] := {6} tii[5,20] := {15} tii[5,21] := {8} tii[5,22] := {18} tii[5,23] := {14} tii[5,24] := {25} tii[5,25] := {9} tii[5,26] := {28} tii[5,27] := {12} tii[5,28] := {19} tii[5,29] := {13} tii[5,30] := {17} tii[5,31] := {24} tii[5,32] := {0} tii[5,33] := {1} tii[5,34] := {3} tii[5,35] := {10} cell#138 , |C| = 427 special orbit = [4, 4, 2, 2, 1, 1] special rep = [[2, 1], [2, 1, 1]] , dim = 210 cell rep = phi[[2, 2, 1, 1],[1]]+phi[[2, 1, 1, 1],[2]]+phi[[2, 2],[1, 1, 1]]+phi[[2, 1],[2, 1, 1]] TII depth = 3 TII multiplicity polynomial = 49*X^4+70*X^2+91*X TII subcells: tii[15,1] := {163, 254, 322, 425} tii[15,2] := {190, 396} tii[15,3] := {253, 337} tii[15,4] := {119, 278, 298, 423} tii[15,5] := {61, 192, 285, 405} tii[15,6] := {140, 372} tii[15,7] := {326} tii[15,8] := {363} tii[15,9] := {160, 255, 336, 413} tii[15,10] := {189, 357} tii[15,11] := {128, 209, 360, 404} tii[15,12] := {232} tii[15,13] := {168, 391} tii[15,14] := {291} tii[15,15] := {229, 317} tii[15,16] := {293} tii[15,17] := {275, 358} tii[15,18] := {80, 227, 338, 424} tii[15,19] := {100, 341} tii[15,20] := {36, 142, 329, 410} tii[15,21] := {346} tii[15,22] := {377} tii[15,23] := {224, 321} tii[15,24] := {116, 207, 368, 422} tii[15,25] := {18, 102, 286, 395} tii[15,26] := {204, 283} tii[15,27] := {139, 320} tii[15,28] := {91, 165, 389, 417} tii[15,29] := {184} tii[15,30] := {305} tii[15,31] := {240} tii[15,32] := {124, 407} tii[15,33] := {245} tii[15,34] := {348} tii[15,35] := {34, 85, 324, 384} tii[15,36] := {265} tii[15,37] := {183, 274} tii[15,38] := {220} tii[15,39] := {55, 365} tii[15,40] := {247} tii[15,41] := {311} tii[15,42] := {353} tii[15,43] := {134, 226, 388, 426} tii[15,44] := {188, 340} tii[15,45] := {113, 186, 400, 421} tii[15,46] := {215} tii[15,47] := {145, 416} tii[15,48] := {268} tii[15,49] := {78, 141, 376, 412} tii[15,50] := {172} tii[15,51] := {230, 319} tii[15,52] := {131} tii[15,53] := {294} tii[15,54] := {103, 403} tii[15,55] := {221} tii[15,56] := {74, 409} tii[15,57] := {271} tii[15,58] := {262, 342} tii[15,59] := {314} tii[15,60] := {339} tii[15,61] := {15, 48, 276, 359} tii[15,62] := {93, 166, 239, 411} tii[15,63] := {52, 347} tii[15,64] := {89, 378} tii[15,65] := {25, 77, 225, 387} tii[15,66] := {206, 299} tii[15,67] := {121, 210, 284, 420} tii[15,68] := {51, 120, 205, 399} tii[15,69] := {37, 144, 237, 385} tii[15,70] := {67, 306} tii[15,71] := {282} tii[15,72] := {171, 256} tii[15,73] := {88, 170, 241, 415} tii[15,74] := {110, 349} tii[15,75] := {330} tii[15,76] := {212} tii[15,77] := {99, 344} tii[15,78] := {233} tii[15,79] := {60, 123, 279, 354} tii[15,80] := {153, 380} tii[15,81] := {198} tii[15,82] := {87, 331} tii[15,83] := {292} tii[15,84] := {248} tii[15,85] := {179, 277} tii[15,86] := {11, 115, 180, 369} tii[15,87] := {214, 300} tii[15,88] := {84, 235, 257, 418} tii[15,89] := {7, 69, 236, 371} tii[15,90] := {157, 234} tii[15,91] := {28, 158, 164, 390} tii[15,92] := {263} tii[15,93] := {41, 264} tii[15,94] := {258} tii[15,95] := {193} tii[15,96] := {56, 194, 213, 408} tii[15,97] := {309} tii[15,98] := {73, 310} tii[15,99] := {217} tii[15,100] := {92, 167, 323, 382} tii[15,101] := {17, 118, 181, 361} tii[15,102] := {66, 303} tii[15,103] := {185} tii[15,104] := {16, 54, 280, 356} tii[15,105] := {117, 191} tii[15,106] := {289} tii[15,107] := {125, 364} tii[15,108] := {176} tii[15,109] := {109, 351} tii[15,110] := {31, 332} tii[15,111] := {270} tii[15,112] := {38, 149, 243, 392} tii[15,113] := {150} tii[15,114] := {246} tii[15,115] := {148} tii[15,116] := {315} tii[15,117] := {90, 334} tii[15,118] := {111} tii[15,119] := {202} tii[15,120] := {173} tii[15,121] := {26, 68, 304, 373} tii[15,122] := {98, 281} tii[15,123] := {195} tii[15,124] := {132} tii[15,125] := {152, 333} tii[15,126] := {222} tii[15,127] := {43, 352} tii[15,128] := {23, 370} tii[15,129] := {272} tii[15,130] := {250} tii[15,131] := {96} tii[15,132] := {316} tii[15,133] := {3, 135, 159, 386} tii[15,134] := {53, 187, 301, 419} tii[15,135] := {251, 327} tii[15,136] := {12, 114, 208, 398} tii[15,137] := {21, 216} tii[15,138] := {32, 146, 259, 414} tii[15,139] := {287} tii[15,140] := {45, 269} tii[15,141] := {40, 261} tii[15,142] := {161, 238} tii[15,143] := {5, 79, 228, 374} tii[15,144] := {138} tii[15,145] := {59, 122, 362, 406} tii[15,146] := {307} tii[15,147] := {72, 313} tii[15,148] := {196} tii[15,149] := {86, 393} tii[15,150] := {19, 104, 290, 401} tii[15,151] := {105} tii[15,152] := {201} tii[15,153] := {154} tii[15,154] := {57, 367} tii[15,155] := {156} tii[15,156] := {49, 101, 345, 397} tii[15,157] := {1, 50, 182, 343} tii[15,158] := {130} tii[15,159] := {65, 231} tii[15,160] := {266} tii[15,161] := {147} tii[15,162] := {70, 381} tii[15,163] := {94} tii[15,164] := {8, 71, 244, 379} tii[15,165] := {108, 295} tii[15,166] := {177} tii[15,167] := {46, 394} tii[15,168] := {178} tii[15,169] := {33, 335} tii[15,170] := {203} tii[15,171] := {223} tii[15,172] := {63} tii[15,173] := {24, 383} tii[15,174] := {273} tii[15,175] := {97, 260} tii[15,176] := {174} tii[15,177] := {151, 312} tii[15,178] := {95} tii[15,179] := {249} tii[15,180] := {318} tii[15,181] := {4, 29, 252, 328} tii[15,182] := {13, 288} tii[15,183] := {35, 83, 162, 375} tii[15,184] := {129, 211} tii[15,185] := {30, 308} tii[15,186] := {62, 126, 197, 402} tii[15,187] := {169} tii[15,188] := {127} tii[15,189] := {6, 82, 137, 325} tii[15,190] := {81, 143} tii[15,191] := {42, 267} tii[15,192] := {242} tii[15,193] := {20, 107, 200, 366} tii[15,194] := {106} tii[15,195] := {155} tii[15,196] := {75} tii[15,197] := {58, 297} tii[15,198] := {47} tii[15,199] := {0, 27, 136, 302} tii[15,200] := {218} tii[15,201] := {22, 219} tii[15,202] := {2, 44, 199, 350} tii[15,203] := {133} tii[15,204] := {112} tii[15,205] := {14, 296} tii[15,206] := {64} tii[15,207] := {10, 355} tii[15,208] := {9, 175} tii[15,209] := {76} tii[15,210] := {39} cell#139 , |C| = 427 special orbit = [4, 4, 2, 2, 1, 1] special rep = [[2, 1], [2, 1, 1]] , dim = 210 cell rep = phi[[2, 2, 1, 1],[1]]+phi[[2, 1, 1, 1],[2]]+phi[[2, 2],[1, 1, 1]]+phi[[2, 1],[2, 1, 1]] TII depth = 3 TII multiplicity polynomial = 49*X^4+70*X^2+91*X TII subcells: tii[15,1] := {163, 254, 322, 425} tii[15,2] := {190, 396} tii[15,3] := {253, 337} tii[15,4] := {119, 278, 298, 423} tii[15,5] := {61, 192, 285, 405} tii[15,6] := {140, 372} tii[15,7] := {326} tii[15,8] := {363} tii[15,9] := {160, 255, 336, 413} tii[15,10] := {189, 357} tii[15,11] := {128, 209, 360, 404} tii[15,12] := {232} tii[15,13] := {168, 391} tii[15,14] := {291} tii[15,15] := {229, 317} tii[15,16] := {293} tii[15,17] := {275, 358} tii[15,18] := {80, 227, 338, 424} tii[15,19] := {100, 341} tii[15,20] := {36, 142, 329, 410} tii[15,21] := {346} tii[15,22] := {377} tii[15,23] := {224, 321} tii[15,24] := {116, 207, 368, 422} tii[15,25] := {18, 102, 286, 395} tii[15,26] := {204, 283} tii[15,27] := {139, 320} tii[15,28] := {91, 165, 389, 417} tii[15,29] := {184} tii[15,30] := {305} tii[15,31] := {240} tii[15,32] := {124, 407} tii[15,33] := {245} tii[15,34] := {348} tii[15,35] := {34, 85, 324, 384} tii[15,36] := {265} tii[15,37] := {183, 274} tii[15,38] := {220} tii[15,39] := {55, 365} tii[15,40] := {247} tii[15,41] := {311} tii[15,42] := {353} tii[15,43] := {134, 226, 388, 426} tii[15,44] := {188, 340} tii[15,45] := {113, 186, 400, 421} tii[15,46] := {215} tii[15,47] := {145, 416} tii[15,48] := {268} tii[15,49] := {78, 141, 376, 412} tii[15,50] := {172} tii[15,51] := {230, 319} tii[15,52] := {131} tii[15,53] := {294} tii[15,54] := {103, 403} tii[15,55] := {221} tii[15,56] := {74, 409} tii[15,57] := {271} tii[15,58] := {262, 342} tii[15,59] := {314} tii[15,60] := {339} tii[15,61] := {15, 48, 276, 359} tii[15,62] := {93, 166, 239, 411} tii[15,63] := {52, 347} tii[15,64] := {89, 378} tii[15,65] := {25, 77, 225, 387} tii[15,66] := {206, 299} tii[15,67] := {121, 210, 284, 420} tii[15,68] := {51, 120, 205, 399} tii[15,69] := {37, 144, 237, 385} tii[15,70] := {67, 306} tii[15,71] := {282} tii[15,72] := {171, 256} tii[15,73] := {88, 170, 241, 415} tii[15,74] := {110, 349} tii[15,75] := {330} tii[15,76] := {212} tii[15,77] := {99, 344} tii[15,78] := {233} tii[15,79] := {60, 123, 279, 354} tii[15,80] := {153, 380} tii[15,81] := {198} tii[15,82] := {87, 331} tii[15,83] := {292} tii[15,84] := {248} tii[15,85] := {179, 277} tii[15,86] := {11, 115, 180, 369} tii[15,87] := {214, 300} tii[15,88] := {84, 235, 257, 418} tii[15,89] := {7, 69, 236, 371} tii[15,90] := {157, 234} tii[15,91] := {28, 158, 164, 390} tii[15,92] := {263} tii[15,93] := {41, 264} tii[15,94] := {258} tii[15,95] := {193} tii[15,96] := {56, 194, 213, 408} tii[15,97] := {309} tii[15,98] := {73, 310} tii[15,99] := {217} tii[15,100] := {92, 167, 323, 382} tii[15,101] := {17, 118, 181, 361} tii[15,102] := {66, 303} tii[15,103] := {185} tii[15,104] := {16, 54, 280, 356} tii[15,105] := {117, 191} tii[15,106] := {289} tii[15,107] := {125, 364} tii[15,108] := {176} tii[15,109] := {109, 351} tii[15,110] := {31, 332} tii[15,111] := {270} tii[15,112] := {38, 149, 243, 392} tii[15,113] := {150} tii[15,114] := {246} tii[15,115] := {148} tii[15,116] := {315} tii[15,117] := {90, 334} tii[15,118] := {111} tii[15,119] := {202} tii[15,120] := {173} tii[15,121] := {26, 68, 304, 373} tii[15,122] := {98, 281} tii[15,123] := {195} tii[15,124] := {132} tii[15,125] := {152, 333} tii[15,126] := {222} tii[15,127] := {43, 352} tii[15,128] := {23, 370} tii[15,129] := {272} tii[15,130] := {250} tii[15,131] := {96} tii[15,132] := {316} tii[15,133] := {3, 135, 159, 386} tii[15,134] := {53, 187, 301, 419} tii[15,135] := {251, 327} tii[15,136] := {12, 114, 208, 398} tii[15,137] := {21, 216} tii[15,138] := {32, 146, 259, 414} tii[15,139] := {287} tii[15,140] := {45, 269} tii[15,141] := {40, 261} tii[15,142] := {161, 238} tii[15,143] := {5, 79, 228, 374} tii[15,144] := {138} tii[15,145] := {59, 122, 362, 406} tii[15,146] := {307} tii[15,147] := {72, 313} tii[15,148] := {196} tii[15,149] := {86, 393} tii[15,150] := {19, 104, 290, 401} tii[15,151] := {105} tii[15,152] := {201} tii[15,153] := {154} tii[15,154] := {57, 367} tii[15,155] := {156} tii[15,156] := {49, 101, 345, 397} tii[15,157] := {1, 50, 182, 343} tii[15,158] := {130} tii[15,159] := {65, 231} tii[15,160] := {266} tii[15,161] := {147} tii[15,162] := {70, 381} tii[15,163] := {94} tii[15,164] := {8, 71, 244, 379} tii[15,165] := {108, 295} tii[15,166] := {177} tii[15,167] := {46, 394} tii[15,168] := {178} tii[15,169] := {33, 335} tii[15,170] := {203} tii[15,171] := {223} tii[15,172] := {63} tii[15,173] := {24, 383} tii[15,174] := {273} tii[15,175] := {97, 260} tii[15,176] := {174} tii[15,177] := {151, 312} tii[15,178] := {95} tii[15,179] := {249} tii[15,180] := {318} tii[15,181] := {4, 29, 252, 328} tii[15,182] := {13, 288} tii[15,183] := {35, 83, 162, 375} tii[15,184] := {129, 211} tii[15,185] := {30, 308} tii[15,186] := {62, 126, 197, 402} tii[15,187] := {169} tii[15,188] := {127} tii[15,189] := {6, 82, 137, 325} tii[15,190] := {81, 143} tii[15,191] := {42, 267} tii[15,192] := {242} tii[15,193] := {20, 107, 200, 366} tii[15,194] := {106} tii[15,195] := {155} tii[15,196] := {75} tii[15,197] := {58, 297} tii[15,198] := {47} tii[15,199] := {0, 27, 136, 302} tii[15,200] := {218} tii[15,201] := {22, 219} tii[15,202] := {2, 44, 199, 350} tii[15,203] := {133} tii[15,204] := {112} tii[15,205] := {14, 296} tii[15,206] := {64} tii[15,207] := {10, 355} tii[15,208] := {9, 175} tii[15,209] := {76} tii[15,210] := {39} cell#140 , |C| = 189 special orbit = [4, 2, 2, 2, 2, 2] special rep = [[2, 1, 1], [1, 1, 1]] , dim = 105 cell rep = phi[[2, 1, 1, 1],[1, 1]]+phi[[2, 1, 1],[1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 84*X^2+21*X TII subcells: tii[13,1] := {71, 177} tii[13,2] := {67, 188} tii[13,3] := {66, 180} tii[13,4] := {92, 170} tii[13,5] := {88, 187} tii[13,6] := {114, 157} tii[13,7] := {87, 162} tii[13,8] := {111, 184} tii[13,9] := {136, 137} tii[13,10] := {156} tii[13,11] := {132, 172} tii[13,12] := {153} tii[13,13] := {110, 181} tii[13,14] := {133, 173} tii[13,15] := {154} tii[13,16] := {9, 99} tii[13,17] := {8, 98} tii[13,18] := {52, 168} tii[13,19] := {14, 124} tii[13,20] := {50, 186} tii[13,21] := {13, 120} tii[13,22] := {42, 147} tii[13,23] := {18, 148} tii[13,24] := {30, 166} tii[13,25] := {38, 179} tii[13,26] := {17, 144} tii[13,27] := {29, 163} tii[13,28] := {91, 134} tii[13,29] := {20, 139} tii[13,30] := {108, 109} tii[13,31] := {19, 97} tii[13,32] := {57, 159} tii[13,33] := {26, 160} tii[13,34] := {86, 174} tii[13,35] := {128} tii[13,36] := {41, 176} tii[13,37] := {35, 178} tii[13,38] := {51, 161} tii[13,39] := {106, 151} tii[13,40] := {25, 118} tii[13,41] := {89, 90} tii[13,42] := {126} tii[13,43] := {40, 140} tii[13,44] := {105} tii[13,45] := {54, 185} tii[13,46] := {82} tii[13,47] := {34, 145} tii[13,48] := {85, 123} tii[13,49] := {53, 164} tii[13,50] := {100} tii[13,51] := {81} tii[13,52] := {28, 125} tii[13,53] := {75, 149} tii[13,54] := {27, 77} tii[13,55] := {37, 150} tii[13,56] := {56, 167} tii[13,57] := {49, 171} tii[13,58] := {112, 113} tii[13,59] := {68, 138} tii[13,60] := {36, 96} tii[13,61] := {131} tii[13,62] := {74, 183} tii[13,63] := {55, 115} tii[13,64] := {104} tii[13,65] := {48, 119} tii[13,66] := {107, 152} tii[13,67] := {65, 158} tii[13,68] := {73, 141} tii[13,69] := {127} tii[13,70] := {94, 175} tii[13,71] := {130} tii[13,72] := {103} tii[13,73] := {64, 146} tii[13,74] := {93, 165} tii[13,75] := {129} tii[13,76] := {0, 33} tii[13,77] := {6, 80} tii[13,78] := {1, 45} tii[13,79] := {3, 61} tii[13,80] := {2, 59} tii[13,81] := {32, 121} tii[13,82] := {12, 122} tii[13,83] := {5, 79} tii[13,84] := {22, 143} tii[13,85] := {16, 117} tii[13,86] := {24, 169} tii[13,87] := {4, 76} tii[13,88] := {69, 70} tii[13,89] := {84} tii[13,90] := {39, 182} tii[13,91] := {10, 101} tii[13,92] := {23, 142} tii[13,93] := {62} tii[13,94] := {46} tii[13,95] := {7, 58} tii[13,96] := {47, 135} tii[13,97] := {15, 78} tii[13,98] := {72, 155} tii[13,99] := {31, 116} tii[13,100] := {102} tii[13,101] := {63} tii[13,102] := {11, 44} tii[13,103] := {21, 60} tii[13,104] := {43, 95} tii[13,105] := {83} cell#141 , |C| = 189 special orbit = [4, 2, 2, 2, 2, 2] special rep = [[2, 1, 1], [1, 1, 1]] , dim = 105 cell rep = phi[[2, 1, 1, 1],[1, 1]]+phi[[2, 1, 1],[1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 84*X^2+21*X TII subcells: tii[13,1] := {71, 177} tii[13,2] := {67, 188} tii[13,3] := {66, 180} tii[13,4] := {92, 170} tii[13,5] := {88, 187} tii[13,6] := {114, 157} tii[13,7] := {87, 162} tii[13,8] := {111, 184} tii[13,9] := {136, 137} tii[13,10] := {156} tii[13,11] := {132, 172} tii[13,12] := {153} tii[13,13] := {110, 181} tii[13,14] := {133, 173} tii[13,15] := {154} tii[13,16] := {9, 99} tii[13,17] := {8, 98} tii[13,18] := {52, 168} tii[13,19] := {14, 124} tii[13,20] := {50, 186} tii[13,21] := {13, 120} tii[13,22] := {42, 147} tii[13,23] := {18, 148} tii[13,24] := {30, 166} tii[13,25] := {38, 179} tii[13,26] := {17, 144} tii[13,27] := {29, 163} tii[13,28] := {91, 134} tii[13,29] := {20, 139} tii[13,30] := {108, 109} tii[13,31] := {19, 97} tii[13,32] := {57, 159} tii[13,33] := {26, 160} tii[13,34] := {86, 174} tii[13,35] := {128} tii[13,36] := {41, 176} tii[13,37] := {35, 178} tii[13,38] := {51, 161} tii[13,39] := {106, 151} tii[13,40] := {25, 118} tii[13,41] := {89, 90} tii[13,42] := {126} tii[13,43] := {40, 140} tii[13,44] := {105} tii[13,45] := {54, 185} tii[13,46] := {82} tii[13,47] := {34, 145} tii[13,48] := {85, 123} tii[13,49] := {53, 164} tii[13,50] := {100} tii[13,51] := {81} tii[13,52] := {28, 125} tii[13,53] := {75, 149} tii[13,54] := {27, 77} tii[13,55] := {37, 150} tii[13,56] := {56, 167} tii[13,57] := {49, 171} tii[13,58] := {112, 113} tii[13,59] := {68, 138} tii[13,60] := {36, 96} tii[13,61] := {131} tii[13,62] := {74, 183} tii[13,63] := {55, 115} tii[13,64] := {104} tii[13,65] := {48, 119} tii[13,66] := {107, 152} tii[13,67] := {65, 158} tii[13,68] := {73, 141} tii[13,69] := {127} tii[13,70] := {94, 175} tii[13,71] := {130} tii[13,72] := {103} tii[13,73] := {64, 146} tii[13,74] := {93, 165} tii[13,75] := {129} tii[13,76] := {0, 33} tii[13,77] := {6, 80} tii[13,78] := {1, 45} tii[13,79] := {3, 61} tii[13,80] := {2, 59} tii[13,81] := {32, 121} tii[13,82] := {12, 122} tii[13,83] := {5, 79} tii[13,84] := {22, 143} tii[13,85] := {16, 117} tii[13,86] := {24, 169} tii[13,87] := {4, 76} tii[13,88] := {69, 70} tii[13,89] := {84} tii[13,90] := {39, 182} tii[13,91] := {10, 101} tii[13,92] := {23, 142} tii[13,93] := {62} tii[13,94] := {46} tii[13,95] := {7, 58} tii[13,96] := {47, 135} tii[13,97] := {15, 78} tii[13,98] := {72, 155} tii[13,99] := {31, 116} tii[13,100] := {102} tii[13,101] := {63} tii[13,102] := {11, 44} tii[13,103] := {21, 60} tii[13,104] := {43, 95} tii[13,105] := {83} cell#142 , |C| = 55 special orbit = [8, 2, 1, 1, 1, 1] special rep = [[4], [1, 1, 1]] , dim = 35 cell rep = phi[[4, 1, 1, 1],[]]+phi[[4],[1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 20*X^2+15*X TII subcells: tii[31,1] := {28, 54} tii[31,2] := {22, 53} tii[31,3] := {29, 52} tii[31,4] := {37, 50} tii[31,5] := {46} tii[31,6] := {11, 51} tii[31,7] := {16, 49} tii[31,8] := {27, 47} tii[31,9] := {38} tii[31,10] := {8, 45} tii[31,11] := {15, 41} tii[31,12] := {31} tii[31,13] := {26, 44} tii[31,14] := {39} tii[31,15] := {43} tii[31,16] := {4, 48} tii[31,17] := {7, 42} tii[31,18] := {14, 40} tii[31,19] := {30} tii[31,20] := {2, 36} tii[31,21] := {6, 33} tii[31,22] := {17} tii[31,23] := {13, 35} tii[31,24] := {32} tii[31,25] := {34} tii[31,26] := {0, 25} tii[31,27] := {1, 19} tii[31,28] := {9} tii[31,29] := {5, 24} tii[31,30] := {18} tii[31,31] := {23} tii[31,32] := {3, 21} tii[31,33] := {12} tii[31,34] := {20} tii[31,35] := {10} cell#143 , |C| = 55 special orbit = [8, 2, 1, 1, 1, 1] special rep = [[4], [1, 1, 1]] , dim = 35 cell rep = phi[[4, 1, 1, 1],[]]+phi[[4],[1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 20*X^2+15*X TII subcells: tii[31,1] := {28, 54} tii[31,2] := {22, 53} tii[31,3] := {29, 52} tii[31,4] := {37, 50} tii[31,5] := {46} tii[31,6] := {11, 51} tii[31,7] := {16, 49} tii[31,8] := {27, 47} tii[31,9] := {38} tii[31,10] := {8, 45} tii[31,11] := {15, 41} tii[31,12] := {31} tii[31,13] := {26, 44} tii[31,14] := {39} tii[31,15] := {43} tii[31,16] := {4, 48} tii[31,17] := {7, 42} tii[31,18] := {14, 40} tii[31,19] := {30} tii[31,20] := {2, 36} tii[31,21] := {6, 33} tii[31,22] := {17} tii[31,23] := {13, 35} tii[31,24] := {32} tii[31,25] := {34} tii[31,26] := {0, 25} tii[31,27] := {1, 19} tii[31,28] := {9} tii[31,29] := {5, 24} tii[31,30] := {18} tii[31,31] := {23} tii[31,32] := {3, 21} tii[31,33] := {12} tii[31,34] := {20} tii[31,35] := {10} cell#144 , |C| = 140 special orbit = [6, 4, 1, 1, 1, 1] special rep = [[3], [2, 1, 1]] , dim = 105 cell rep = phi[[3, 2, 1, 1],[]]+phi[[3],[2, 1, 1]] TII depth = 3 TII multiplicity polynomial = 35*X^2+70*X TII subcells: tii[25,1] := {51, 123} tii[25,2] := {91, 126} tii[25,3] := {124} tii[25,4] := {133} tii[25,5] := {32, 108} tii[25,6] := {70, 115} tii[25,7] := {16, 89} tii[25,8] := {31, 82} tii[25,9] := {110} tii[25,10] := {53} tii[25,11] := {127} tii[25,12] := {90, 122} tii[25,13] := {71, 107} tii[25,14] := {125} tii[25,15] := {100} tii[25,16] := {134} tii[25,17] := {131} tii[25,18] := {121} tii[25,19] := {137} tii[25,20] := {139} tii[25,21] := {15, 86} tii[25,22] := {46, 96} tii[25,23] := {6, 65} tii[25,24] := {13, 57} tii[25,25] := {92} tii[25,26] := {34} tii[25,27] := {116} tii[25,28] := {2, 45} tii[25,29] := {69, 105} tii[25,30] := {47, 85} tii[25,31] := {5, 37} tii[25,32] := {111} tii[25,33] := {76} tii[25,34] := {17} tii[25,35] := {128} tii[25,36] := {12, 44} tii[25,37] := {120} tii[25,38] := {104} tii[25,39] := {36} tii[25,40] := {132} tii[25,41] := {43} tii[25,42] := {138} tii[25,43] := {61, 98} tii[25,44] := {41, 81} tii[25,45] := {103} tii[25,46] := {62} tii[25,47] := {119} tii[25,48] := {23, 60} tii[25,49] := {112} tii[25,50] := {97} tii[25,51] := {42} tii[25,52] := {129} tii[25,53] := {59} tii[25,54] := {135} tii[25,55] := {93} tii[25,56] := {74} tii[25,57] := {117} tii[25,58] := {56} tii[25,59] := {130} tii[25,60] := {136} tii[25,61] := {33, 109} tii[25,62] := {50, 102} tii[25,63] := {77} tii[25,64] := {7, 68} tii[25,65] := {72, 118} tii[25,66] := {14, 58} tii[25,67] := {99} tii[25,68] := {35} tii[25,69] := {29, 67} tii[25,70] := {113} tii[25,71] := {55} tii[25,72] := {66} tii[25,73] := {0, 27} tii[25,74] := {49, 101} tii[25,75] := {1, 19} tii[25,76] := {8} tii[25,77] := {75} tii[25,78] := {4, 26} tii[25,79] := {48, 88} tii[25,80] := {94} tii[25,81] := {18} tii[25,82] := {78} tii[25,83] := {25} tii[25,84] := {87} tii[25,85] := {3, 22} tii[25,86] := {114} tii[25,87] := {11} tii[25,88] := {106} tii[25,89] := {21} tii[25,90] := {9} tii[25,91] := {30, 79} tii[25,92] := {52} tii[25,93] := {28, 64} tii[25,94] := {73} tii[25,95] := {54} tii[25,96] := {63} tii[25,97] := {10, 40} tii[25,98] := {95} tii[25,99] := {24} tii[25,100] := {84} tii[25,101] := {39} tii[25,102] := {20} tii[25,103] := {83} tii[25,104] := {80} tii[25,105] := {38} cell#145 , |C| = 175 special orbit = [6, 2, 2, 2, 1, 1] special rep = [[3, 1], [1, 1, 1]] , dim = 105 cell rep = phi[[3, 1, 1, 1],[1]]+phi[[3, 1],[1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 70*X^2+35*X TII subcells: tii[23,1] := {35, 173} tii[23,2] := {32, 152} tii[23,3] := {30, 124} tii[23,4] := {52, 169} tii[23,5] := {48, 136} tii[23,6] := {72, 161} tii[23,7] := {45, 101} tii[23,8] := {93, 144} tii[23,9] := {121} tii[23,10] := {70, 155} tii[23,11] := {69, 111} tii[23,12] := {91, 145} tii[23,13] := {119} tii[23,14] := {89, 135} tii[23,15] := {122} tii[23,16] := {63, 174} tii[23,17] := {31, 115} tii[23,18] := {84, 165} tii[23,19] := {29, 78} tii[23,20] := {108, 151} tii[23,21] := {132} tii[23,22] := {109, 172} tii[23,23] := {46, 139} tii[23,24] := {44, 87} tii[23,25] := {65, 126} tii[23,26] := {130, 163} tii[23,27] := {95} tii[23,28] := {149} tii[23,29] := {148, 171} tii[23,30] := {64, 114} tii[23,31] := {99} tii[23,32] := {162} tii[23,33] := {170} tii[23,34] := {71, 158} tii[23,35] := {37, 79} tii[23,36] := {92, 146} tii[23,37] := {120} tii[23,38] := {117, 157} tii[23,39] := {55, 105} tii[23,40] := {81} tii[23,41] := {143} tii[23,42] := {156} tii[23,43] := {80, 129} tii[23,44] := {106} tii[23,45] := {128} tii[23,46] := {0, 62} tii[23,47] := {23, 164} tii[23,48] := {1, 83} tii[23,49] := {14, 150} tii[23,50] := {2, 107} tii[23,51] := {8, 131} tii[23,52] := {4, 59} tii[23,53] := {47, 147} tii[23,54] := {6, 82} tii[23,55] := {22, 133} tii[23,56] := {67, 125} tii[23,57] := {13, 110} tii[23,58] := {97} tii[23,59] := {10, 66} tii[23,60] := {43, 102} tii[23,61] := {19, 96} tii[23,62] := {75} tii[23,63] := {54} tii[23,64] := {94, 168} tii[23,65] := {7, 40} tii[23,66] := {36, 112} tii[23,67] := {118, 160} tii[23,68] := {11, 58} tii[23,69] := {141} tii[23,70] := {20, 86} tii[23,71] := {140, 167} tii[23,72] := {17, 41} tii[23,73] := {68, 127} tii[23,74] := {159} tii[23,75] := {34, 73} tii[23,76] := {98} tii[23,77] := {166} tii[23,78] := {76} tii[23,79] := {116, 154} tii[23,80] := {26, 57} tii[23,81] := {142} tii[23,82] := {49, 85} tii[23,83] := {153} tii[23,84] := {100} tii[23,85] := {134} tii[23,86] := {3, 25} tii[23,87] := {21, 88} tii[23,88] := {5, 39} tii[23,89] := {12, 61} tii[23,90] := {9, 27} tii[23,91] := {42, 103} tii[23,92] := {18, 50} tii[23,93] := {74} tii[23,94] := {53} tii[23,95] := {90, 138} tii[23,96] := {16, 38} tii[23,97] := {123} tii[23,98] := {33, 60} tii[23,99] := {77} tii[23,100] := {137} tii[23,101] := {113} tii[23,102] := {15, 28} tii[23,103] := {24, 51} tii[23,104] := {56} tii[23,105] := {104} cell#146 , |C| = 175 special orbit = [6, 2, 2, 2, 1, 1] special rep = [[3, 1], [1, 1, 1]] , dim = 105 cell rep = phi[[3, 1, 1, 1],[1]]+phi[[3, 1],[1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 70*X^2+35*X TII subcells: tii[23,1] := {107, 172} tii[23,2] := {62, 161} tii[23,3] := {115, 159} tii[23,4] := {140, 174} tii[23,5] := {30, 146} tii[23,6] := {129, 171} tii[23,7] := {82, 143} tii[23,8] := {142, 168} tii[23,9] := {163} tii[23,10] := {60, 157} tii[23,11] := {113, 160} tii[23,12] := {76, 137} tii[23,13] := {122} tii[23,14] := {141, 166} tii[23,15] := {156} tii[23,16] := {130, 173} tii[23,17] := {8, 117} tii[23,18] := {102, 169} tii[23,19] := {46, 114} tii[23,20] := {131, 164} tii[23,21] := {154} tii[23,22] := {71, 162} tii[23,23] := {28, 135} tii[23,24] := {81, 144} tii[23,25] := {40, 104} tii[23,26] := {98, 152} tii[23,27] := {88} tii[23,28] := {133} tii[23,29] := {67, 128} tii[23,30] := {108, 155} tii[23,31] := {134} tii[23,32] := {101} tii[23,33] := {127} tii[23,34] := {16, 119} tii[23,35] := {68, 132} tii[23,36] := {32, 92} tii[23,37] := {69} tii[23,38] := {10, 57} tii[23,39] := {97, 145} tii[23,40] := {118} tii[23,41] := {37} tii[23,42] := {56} tii[23,43] := {64, 116} tii[23,44] := {86} tii[23,45] := {55} tii[23,46] := {47, 48} tii[23,47] := {75, 170} tii[23,48] := {20, 84} tii[23,49] := {44, 165} tii[23,50] := {45, 112} tii[23,51] := {72, 151} tii[23,52] := {14, 50} tii[23,53] := {96, 167} tii[23,54] := {35, 80} tii[23,55] := {34, 153} tii[23,56] := {109, 158} tii[23,57] := {54, 123} tii[23,58] := {150} tii[23,59] := {63, 111} tii[23,60] := {79, 139} tii[23,61] := {85, 149} tii[23,62] := {124} tii[23,63] := {138} tii[23,64] := {39, 147} tii[23,65] := {4, 21} tii[23,66] := {12, 126} tii[23,67] := {65, 125} tii[23,68] := {13, 43} tii[23,69] := {100} tii[23,70] := {23, 89} tii[23,71] := {33, 95} tii[23,72] := {31, 78} tii[23,73] := {42, 106} tii[23,74] := {70} tii[23,75] := {51, 121} tii[23,76] := {90} tii[23,77] := {94} tii[23,78] := {105} tii[23,79] := {11, 59} tii[23,80] := {61, 110} tii[23,81] := {38} tii[23,82] := {83, 148} tii[23,83] := {58} tii[23,84] := {136} tii[23,85] := {25} tii[23,86] := {0, 5} tii[23,87] := {2, 93} tii[23,88] := {3, 19} tii[23,89] := {6, 52} tii[23,90] := {9, 41} tii[23,91] := {18, 74} tii[23,92] := {22, 87} tii[23,93] := {53} tii[23,94] := {73} tii[23,95] := {1, 27} tii[23,96] := {29, 77} tii[23,97] := {15} tii[23,98] := {49, 120} tii[23,99] := {103} tii[23,100] := {26} tii[23,101] := {7} tii[23,102] := {17, 66} tii[23,103] := {36, 99} tii[23,104] := {91} tii[23,105] := {24} cell#147 , |C| = 175 special orbit = [6, 2, 2, 2, 1, 1] special rep = [[3, 1], [1, 1, 1]] , dim = 105 cell rep = phi[[3, 1, 1, 1],[1]]+phi[[3, 1],[1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 70*X^2+35*X TII subcells: tii[23,1] := {107, 172} tii[23,2] := {62, 161} tii[23,3] := {115, 159} tii[23,4] := {140, 174} tii[23,5] := {30, 146} tii[23,6] := {129, 171} tii[23,7] := {82, 143} tii[23,8] := {142, 168} tii[23,9] := {163} tii[23,10] := {60, 157} tii[23,11] := {113, 160} tii[23,12] := {76, 137} tii[23,13] := {122} tii[23,14] := {141, 166} tii[23,15] := {156} tii[23,16] := {130, 173} tii[23,17] := {8, 117} tii[23,18] := {102, 169} tii[23,19] := {46, 114} tii[23,20] := {131, 164} tii[23,21] := {154} tii[23,22] := {71, 162} tii[23,23] := {28, 135} tii[23,24] := {81, 144} tii[23,25] := {40, 104} tii[23,26] := {98, 152} tii[23,27] := {88} tii[23,28] := {133} tii[23,29] := {67, 128} tii[23,30] := {108, 155} tii[23,31] := {134} tii[23,32] := {101} tii[23,33] := {127} tii[23,34] := {16, 119} tii[23,35] := {68, 132} tii[23,36] := {32, 92} tii[23,37] := {69} tii[23,38] := {10, 57} tii[23,39] := {97, 145} tii[23,40] := {118} tii[23,41] := {37} tii[23,42] := {56} tii[23,43] := {64, 116} tii[23,44] := {86} tii[23,45] := {55} tii[23,46] := {47, 48} tii[23,47] := {75, 170} tii[23,48] := {20, 84} tii[23,49] := {44, 165} tii[23,50] := {45, 112} tii[23,51] := {72, 151} tii[23,52] := {14, 50} tii[23,53] := {96, 167} tii[23,54] := {35, 80} tii[23,55] := {34, 153} tii[23,56] := {109, 158} tii[23,57] := {54, 123} tii[23,58] := {150} tii[23,59] := {63, 111} tii[23,60] := {79, 139} tii[23,61] := {85, 149} tii[23,62] := {124} tii[23,63] := {138} tii[23,64] := {39, 147} tii[23,65] := {4, 21} tii[23,66] := {12, 126} tii[23,67] := {65, 125} tii[23,68] := {13, 43} tii[23,69] := {100} tii[23,70] := {23, 89} tii[23,71] := {33, 95} tii[23,72] := {31, 78} tii[23,73] := {42, 106} tii[23,74] := {70} tii[23,75] := {51, 121} tii[23,76] := {90} tii[23,77] := {94} tii[23,78] := {105} tii[23,79] := {11, 59} tii[23,80] := {61, 110} tii[23,81] := {38} tii[23,82] := {83, 148} tii[23,83] := {58} tii[23,84] := {136} tii[23,85] := {25} tii[23,86] := {0, 5} tii[23,87] := {2, 93} tii[23,88] := {3, 19} tii[23,89] := {6, 52} tii[23,90] := {9, 41} tii[23,91] := {18, 74} tii[23,92] := {22, 87} tii[23,93] := {53} tii[23,94] := {73} tii[23,95] := {1, 27} tii[23,96] := {29, 77} tii[23,97] := {15} tii[23,98] := {49, 120} tii[23,99] := {103} tii[23,100] := {26} tii[23,101] := {7} tii[23,102] := {17, 66} tii[23,103] := {36, 99} tii[23,104] := {91} tii[23,105] := {24} cell#148 , |C| = 427 special orbit = [4, 4, 2, 2, 1, 1] special rep = [[2, 1], [2, 1, 1]] , dim = 210 cell rep = phi[[2, 2, 1, 1],[1]]+phi[[2, 1, 1, 1],[2]]+phi[[2, 2],[1, 1, 1]]+phi[[2, 1],[2, 1, 1]] TII depth = 3 TII multiplicity polynomial = 49*X^4+70*X^2+91*X TII subcells: tii[15,1] := {212, 213, 350, 351} tii[15,2] := {375, 376} tii[15,3] := {211, 327} tii[15,4] := {276, 277, 387, 388} tii[15,5] := {177, 178, 312, 313} tii[15,6] := {403, 404} tii[15,7] := {333} tii[15,8] := {381} tii[15,9] := {328, 329, 401, 402} tii[15,10] := {417, 418} tii[15,11] := {299, 300, 373, 374} tii[15,12] := {397} tii[15,13] := {337, 338} tii[15,14] := {414} tii[15,15] := {422, 423} tii[15,16] := {426} tii[15,17] := {169, 290} tii[15,18] := {239, 240, 365, 366} tii[15,19] := {391, 392} tii[15,20] := {137, 138, 268, 269} tii[15,21] := {307} tii[15,22] := {364} tii[15,23] := {103, 225} tii[15,24] := {301, 302, 389, 390} tii[15,25] := {77, 78, 205, 206} tii[15,26] := {56, 162} tii[15,27] := {412, 413} tii[15,28] := {266, 267, 356, 357} tii[15,29] := {372} tii[15,30] := {247} tii[15,31] := {122} tii[15,32] := {316, 317} tii[15,33] := {409} tii[15,34] := {322} tii[15,35] := {133, 134, 254, 255} tii[15,36] := {284} tii[15,37] := {419, 420} tii[15,38] := {224} tii[15,39] := {190, 191} tii[15,40] := {425} tii[15,41] := {346} tii[15,42] := {385} tii[15,43] := {237, 238, 352, 353} tii[15,44] := {393, 394} tii[15,45] := {199, 200, 308, 309} tii[15,46] := {332} tii[15,47] := {256, 257} tii[15,48] := {382} tii[15,49] := {131, 132, 252, 253} tii[15,50] := {283} tii[15,51] := {405, 406} tii[15,52] := {223} tii[15,53] := {416} tii[15,54] := {188, 189} tii[15,55] := {345} tii[15,56] := {123, 124} tii[15,57] := {384} tii[15,58] := {377, 378} tii[15,59] := {400} tii[15,60] := {386} tii[15,61] := {52, 53, 54, 55} tii[15,62] := {84, 85, 248, 249} tii[15,63] := {147, 148} tii[15,64] := {229, 230} tii[15,65] := {99, 100, 101, 102} tii[15,66] := {145, 273} tii[15,67] := {150, 151, 310, 311} tii[15,68] := {49, 50, 172, 173} tii[15,69] := {109, 110, 250, 251} tii[15,70] := {214, 215} tii[15,71] := {282} tii[15,72] := {83, 210} tii[15,73] := {86, 87, 261, 262} tii[15,74] := {293, 294} tii[15,75] := {344} tii[15,76] := {159} tii[15,77] := {278, 279} tii[15,78] := {325} tii[15,79] := {170, 171, 285, 286} tii[15,80] := {340, 341} tii[15,81] := {272} tii[15,82] := {226, 227} tii[15,83] := {369} tii[15,84] := {399} tii[15,85] := {51, 157} tii[15,86] := {165, 166, 167, 168} tii[15,87] := {146, 275} tii[15,88] := {218, 219, 358, 359} tii[15,89] := {34, 35, 139, 140} tii[15,90] := {17, 93} tii[15,91] := {97, 98, 243, 244} tii[15,92] := {176} tii[15,93] := {280, 281} tii[15,94] := {228} tii[15,95] := {61} tii[15,96] := {152, 153, 318, 319} tii[15,97] := {265} tii[15,98] := {342, 343} tii[15,99] := {216} tii[15,100] := {241, 242, 335, 336} tii[15,101] := {67, 68, 174, 175} tii[15,102] := {330, 331} tii[15,103] := {367} tii[15,104] := {73, 74, 183, 184} tii[15,105] := {4, 47} tii[15,106] := {288} tii[15,107] := {291, 292} tii[15,108] := {156} tii[15,109] := {379, 380} tii[15,110] := {120, 121} tii[15,111] := {295} tii[15,112] := {113, 114, 263, 264} tii[15,113] := {326} tii[15,114] := {398} tii[15,115] := {23} tii[15,116] := {347} tii[15,117] := {232, 233} tii[15,118] := {46} tii[15,119] := {415} tii[15,120] := {149} tii[15,121] := {30, 31, 111, 112} tii[15,122] := {370, 371} tii[15,123] := {368} tii[15,124] := {90} tii[15,125] := {407, 408} tii[15,126] := {231} tii[15,127] := {59, 60} tii[15,128] := {24, 25} tii[15,129] := {297} tii[15,130] := {424} tii[15,131] := {45} tii[15,132] := {236} tii[15,133] := {127, 128, 129, 130} tii[15,134] := {179, 180, 323, 324} tii[15,135] := {104, 235} tii[15,136] := {69, 70, 203, 204} tii[15,137] := {245, 246} tii[15,138] := {115, 116, 270, 271} tii[15,139] := {196} tii[15,140] := {320, 321} tii[15,141] := {305, 306} tii[15,142] := {18, 96} tii[15,143] := {38, 39, 135, 136} tii[15,144] := {334} tii[15,145] := {201, 202, 314, 315} tii[15,146] := {258} tii[15,147] := {362, 363} tii[15,148] := {62} tii[15,149] := {259, 260} tii[15,150] := {79, 80, 207, 208} tii[15,151] := {289} tii[15,152] := {383} tii[15,153] := {95} tii[15,154] := {197, 198} tii[15,155] := {410} tii[15,156] := {71, 72, 181, 182} tii[15,157] := {10, 11, 75, 76} tii[15,158] := {217} tii[15,159] := {354, 355} tii[15,160] := {187} tii[15,161] := {339} tii[15,162] := {118, 119} tii[15,163] := {158} tii[15,164] := {36, 37, 141, 142} tii[15,165] := {395, 396} tii[15,166] := {296} tii[15,167] := {63, 64} tii[15,168] := {161} tii[15,169] := {125, 126} tii[15,170] := {421} tii[15,171] := {348} tii[15,172] := {94} tii[15,173] := {26, 27} tii[15,174] := {298} tii[15,175] := {303, 304} tii[15,176] := {287} tii[15,177] := {360, 361} tii[15,178] := {160} tii[15,179] := {411} tii[15,180] := {349} tii[15,181] := {19, 20, 21, 22} tii[15,182] := {43, 44} tii[15,183] := {15, 16, 107, 108} tii[15,184] := {40, 144} tii[15,185] := {88, 89} tii[15,186] := {41, 42, 194, 195} tii[15,187] := {91} tii[15,188] := {143} tii[15,189] := {28, 29, 105, 106} tii[15,190] := {0, 14} tii[15,191] := {154, 155} tii[15,192] := {222} tii[15,193] := {57, 58, 192, 193} tii[15,194] := {5} tii[15,195] := {209} tii[15,196] := {13} tii[15,197] := {163, 164} tii[15,198] := {3} tii[15,199] := {1, 2, 32, 33} tii[15,200] := {117} tii[15,201] := {220, 221} tii[15,202] := {8, 9, 81, 82} tii[15,203] := {92} tii[15,204] := {274} tii[15,205] := {65, 66} tii[15,206] := {12} tii[15,207] := {6, 7} tii[15,208] := {185, 186} tii[15,209] := {234} tii[15,210] := {48} cell#149 , |C| = 189 special orbit = [4, 2, 2, 2, 2, 2] special rep = [[2, 1, 1], [1, 1, 1]] , dim = 105 cell rep = phi[[2, 1, 1, 1],[1, 1]]+phi[[2, 1, 1],[1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 84*X^2+21*X TII subcells: tii[13,1] := {65, 188} tii[13,2] := {63, 172} tii[13,3] := {62, 187} tii[13,4] := {83, 186} tii[13,5] := {81, 163} tii[13,6] := {102, 180} tii[13,7] := {80, 185} tii[13,8] := {101, 143} tii[13,9] := {123, 169} tii[13,10] := {147} tii[13,11] := {121, 165} tii[13,12] := {148} tii[13,13] := {100, 174} tii[13,14] := {122, 166} tii[13,15] := {149} tii[13,16] := {9, 93} tii[13,17] := {8, 92} tii[13,18] := {50, 184} tii[13,19] := {14, 114} tii[13,20] := {48, 155} tii[13,21] := {13, 113} tii[13,22] := {42, 177} tii[13,23] := {18, 137} tii[13,24] := {30, 158} tii[13,25] := {38, 173} tii[13,26] := {17, 135} tii[13,27] := {29, 160} tii[13,28] := {82, 167} tii[13,29] := {20, 133} tii[13,30] := {98, 151} tii[13,31] := {19, 139} tii[13,32] := {55, 182} tii[13,33] := {26, 153} tii[13,34] := {79, 119} tii[13,35] := {125} tii[13,36] := {41, 171} tii[13,37] := {35, 132} tii[13,38] := {49, 183} tii[13,39] := {96, 144} tii[13,40] := {25, 156} tii[13,41] := {78, 131} tii[13,42] := {127} tii[13,43] := {40, 175} tii[13,44] := {104} tii[13,45] := {52, 154} tii[13,46] := {87} tii[13,47] := {34, 170} tii[13,48] := {77, 120} tii[13,49] := {51, 181} tii[13,50] := {105} tii[13,51] := {88} tii[13,52] := {28, 115} tii[13,53] := {69, 178} tii[13,54] := {27, 124} tii[13,55] := {37, 138} tii[13,56] := {54, 159} tii[13,57] := {47, 111} tii[13,58] := {99, 152} tii[13,59] := {64, 179} tii[13,60] := {36, 146} tii[13,61] := {126} tii[13,62] := {68, 140} tii[13,63] := {53, 168} tii[13,64] := {106} tii[13,65] := {46, 157} tii[13,66] := {97, 145} tii[13,67] := {60, 91} tii[13,68] := {67, 176} tii[13,69] := {128} tii[13,70] := {85, 117} tii[13,71] := {130} tii[13,72] := {108} tii[13,73] := {59, 136} tii[13,74] := {84, 161} tii[13,75] := {129} tii[13,76] := {0, 33} tii[13,77] := {6, 75} tii[13,78] := {1, 44} tii[13,79] := {3, 58} tii[13,80] := {2, 57} tii[13,81] := {32, 164} tii[13,82] := {12, 112} tii[13,83] := {5, 74} tii[13,84] := {22, 141} tii[13,85] := {16, 118} tii[13,86] := {24, 110} tii[13,87] := {4, 72} tii[13,88] := {61, 109} tii[13,89] := {86} tii[13,90] := {39, 134} tii[13,91] := {10, 94} tii[13,92] := {23, 142} tii[13,93] := {70} tii[13,94] := {56} tii[13,95] := {7, 90} tii[13,96] := {45, 73} tii[13,97] := {15, 116} tii[13,98] := {66, 95} tii[13,99] := {31, 162} tii[13,100] := {107} tii[13,101] := {71} tii[13,102] := {11, 76} tii[13,103] := {21, 103} tii[13,104] := {43, 150} tii[13,105] := {89} cell#150 , |C| = 189 special orbit = [4, 2, 2, 2, 2, 2] special rep = [[2, 1, 1], [1, 1, 1]] , dim = 105 cell rep = phi[[2, 1, 1, 1],[1, 1]]+phi[[2, 1, 1],[1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 84*X^2+21*X TII subcells: tii[13,1] := {148, 180} tii[13,2] := {153, 154} tii[13,3] := {104, 105} tii[13,4] := {159, 185} tii[13,5] := {162, 163} tii[13,6] := {174, 188} tii[13,7] := {78, 79} tii[13,8] := {144, 145} tii[13,9] := {182, 183} tii[13,10] := {187} tii[13,11] := {157, 158} tii[13,12] := {171} tii[13,13] := {91, 92} tii[13,14] := {112, 113} tii[13,15] := {137} tii[13,16] := {31, 49} tii[13,17] := {23, 55} tii[13,18] := {123, 169} tii[13,19] := {46, 73} tii[13,20] := {131, 132} tii[13,21] := {38, 39} tii[13,22] := {97, 152} tii[13,23] := {50, 101} tii[13,24] := {86, 134} tii[13,25] := {106, 107} tii[13,26] := {53, 54} tii[13,27] := {84, 85} tii[13,28] := {166, 186} tii[13,29] := {65, 100} tii[13,30] := {177, 178} tii[13,31] := {24, 25} tii[13,32] := {127, 170} tii[13,33] := {74, 130} tii[13,34] := {119, 120} tii[13,35] := {184} tii[13,36] := {111, 155} tii[13,37] := {102, 103} tii[13,38] := {80, 81} tii[13,39] := {138, 139} tii[13,40] := {35, 36} tii[13,41] := {164, 165} tii[13,42] := {156} tii[13,43] := {60, 61} tii[13,44] := {176} tii[13,45] := {135, 136} tii[13,46] := {168} tii[13,47] := {51, 52} tii[13,48] := {121, 122} tii[13,49] := {82, 83} tii[13,50] := {142} tii[13,51] := {128} tii[13,52] := {72, 116} tii[13,53] := {140, 179} tii[13,54] := {14, 15} tii[13,55] := {88, 143} tii[13,56] := {126, 167} tii[13,57] := {117, 118} tii[13,58] := {172, 173} tii[13,59] := {56, 57} tii[13,60] := {21, 22} tii[13,61] := {181} tii[13,62] := {149, 150} tii[13,63] := {41, 42} tii[13,64] := {175} tii[13,65] := {32, 33} tii[13,66] := {93, 94} tii[13,67] := {89, 90} tii[13,68] := {58, 59} tii[13,69] := {115} tii[13,70] := {124, 125} tii[13,71] := {160} tii[13,72] := {98} tii[13,73] := {47, 48} tii[13,74] := {68, 69} tii[13,75] := {114} tii[13,76] := {0, 4} tii[13,77] := {19, 37} tii[13,78] := {3, 11} tii[13,79] := {10, 26} tii[13,80] := {5, 20} tii[13,81] := {70, 133} tii[13,82] := {34, 77} tii[13,83] := {16, 40} tii[13,84] := {62, 110} tii[13,85] := {45, 87} tii[13,86] := {75, 76} tii[13,87] := {12, 13} tii[13,88] := {146, 147} tii[13,89] := {161} tii[13,90] := {108, 109} tii[13,91] := {27, 28} tii[13,92] := {63, 64} tii[13,93] := {151} tii[13,94] := {129} tii[13,95] := {6, 7} tii[13,96] := {66, 67} tii[13,97] := {17, 18} tii[13,98] := {95, 96} tii[13,99] := {43, 44} tii[13,100] := {141} tii[13,101] := {99} tii[13,102] := {1, 2} tii[13,103] := {8, 9} tii[13,104] := {29, 30} tii[13,105] := {71} cell#151 , |C| = 189 special orbit = [4, 2, 2, 2, 2, 2] special rep = [[2, 1, 1], [1, 1, 1]] , dim = 105 cell rep = phi[[2, 1, 1, 1],[1, 1]]+phi[[2, 1, 1],[1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 84*X^2+21*X TII subcells: tii[13,1] := {148, 180} tii[13,2] := {153, 154} tii[13,3] := {104, 105} tii[13,4] := {159, 185} tii[13,5] := {162, 163} tii[13,6] := {174, 188} tii[13,7] := {78, 79} tii[13,8] := {144, 145} tii[13,9] := {182, 183} tii[13,10] := {187} tii[13,11] := {157, 158} tii[13,12] := {171} tii[13,13] := {91, 92} tii[13,14] := {112, 113} tii[13,15] := {137} tii[13,16] := {31, 49} tii[13,17] := {23, 55} tii[13,18] := {123, 169} tii[13,19] := {46, 73} tii[13,20] := {131, 132} tii[13,21] := {38, 39} tii[13,22] := {97, 152} tii[13,23] := {50, 101} tii[13,24] := {86, 134} tii[13,25] := {106, 107} tii[13,26] := {53, 54} tii[13,27] := {84, 85} tii[13,28] := {166, 186} tii[13,29] := {65, 100} tii[13,30] := {177, 178} tii[13,31] := {24, 25} tii[13,32] := {127, 170} tii[13,33] := {74, 130} tii[13,34] := {119, 120} tii[13,35] := {184} tii[13,36] := {111, 155} tii[13,37] := {102, 103} tii[13,38] := {80, 81} tii[13,39] := {138, 139} tii[13,40] := {35, 36} tii[13,41] := {164, 165} tii[13,42] := {156} tii[13,43] := {60, 61} tii[13,44] := {176} tii[13,45] := {135, 136} tii[13,46] := {168} tii[13,47] := {51, 52} tii[13,48] := {121, 122} tii[13,49] := {82, 83} tii[13,50] := {142} tii[13,51] := {128} tii[13,52] := {72, 116} tii[13,53] := {140, 179} tii[13,54] := {14, 15} tii[13,55] := {88, 143} tii[13,56] := {126, 167} tii[13,57] := {117, 118} tii[13,58] := {172, 173} tii[13,59] := {56, 57} tii[13,60] := {21, 22} tii[13,61] := {181} tii[13,62] := {149, 150} tii[13,63] := {41, 42} tii[13,64] := {175} tii[13,65] := {32, 33} tii[13,66] := {93, 94} tii[13,67] := {89, 90} tii[13,68] := {58, 59} tii[13,69] := {115} tii[13,70] := {124, 125} tii[13,71] := {160} tii[13,72] := {98} tii[13,73] := {47, 48} tii[13,74] := {68, 69} tii[13,75] := {114} tii[13,76] := {0, 4} tii[13,77] := {19, 37} tii[13,78] := {3, 11} tii[13,79] := {10, 26} tii[13,80] := {5, 20} tii[13,81] := {70, 133} tii[13,82] := {34, 77} tii[13,83] := {16, 40} tii[13,84] := {62, 110} tii[13,85] := {45, 87} tii[13,86] := {75, 76} tii[13,87] := {12, 13} tii[13,88] := {146, 147} tii[13,89] := {161} tii[13,90] := {108, 109} tii[13,91] := {27, 28} tii[13,92] := {63, 64} tii[13,93] := {151} tii[13,94] := {129} tii[13,95] := {6, 7} tii[13,96] := {66, 67} tii[13,97] := {17, 18} tii[13,98] := {95, 96} tii[13,99] := {43, 44} tii[13,100] := {141} tii[13,101] := {99} tii[13,102] := {1, 2} tii[13,103] := {8, 9} tii[13,104] := {29, 30} tii[13,105] := {71} cell#152 , |C| = 70 special orbit = [3, 3, 3, 3, 2] special rep = [[1, 1, 1], [2, 2]] , dim = 70 cell rep = phi[[1, 1, 1],[2, 2]] TII depth = 3 TII multiplicity polynomial = 70*X TII subcells: tii[10,1] := {69} tii[10,2] := {26} tii[10,3] := {65} tii[10,4] := {41} tii[10,5] := {52} tii[10,6] := {34} tii[10,7] := {68} tii[10,8] := {43} tii[10,9] := {51} tii[10,10] := {59} tii[10,11] := {64} tii[10,12] := {49} tii[10,13] := {60} tii[10,14] := {56} tii[10,15] := {63} tii[10,16] := {62} tii[10,17] := {67} tii[10,18] := {19} tii[10,19] := {4} tii[10,20] := {10} tii[10,21] := {25} tii[10,22] := {38} tii[10,23] := {20} tii[10,24] := {33} tii[10,25] := {8} tii[10,26] := {15} tii[10,27] := {57} tii[10,28] := {32} tii[10,29] := {40} tii[10,30] := {12} tii[10,31] := {45} tii[10,32] := {54} tii[10,33] := {27} tii[10,34] := {21} tii[10,35] := {39} tii[10,36] := {50} tii[10,37] := {35} tii[10,38] := {61} tii[10,39] := {13} tii[10,40] := {22} tii[10,41] := {18} tii[10,42] := {42} tii[10,43] := {29} tii[10,44] := {53} tii[10,45] := {36} tii[10,46] := {46} tii[10,47] := {58} tii[10,48] := {24} tii[10,49] := {44} tii[10,50] := {66} tii[10,51] := {37} tii[10,52] := {55} tii[10,53] := {48} tii[10,54] := {2} tii[10,55] := {6} tii[10,56] := {1} tii[10,57] := {11} tii[10,58] := {7} tii[10,59] := {3} tii[10,60] := {14} tii[10,61] := {31} tii[10,62] := {16} tii[10,63] := {17} tii[10,64] := {5} tii[10,65] := {28} tii[10,66] := {23} tii[10,67] := {47} tii[10,68] := {9} tii[10,69] := {30} tii[10,70] := {0} cell#153 , |C| = 175 special orbit = [3, 3, 2, 2, 2, 2] special rep = [[1, 1, 1], [2, 1, 1]] , dim = 105 cell rep = phi[[1, 1, 1, 1],[2, 1]]+phi[[1, 1, 1],[2, 1, 1]] TII depth = 3 TII multiplicity polynomial = 70*X^2+35*X TII subcells: tii[8,1] := {78, 159} tii[8,2] := {123, 160} tii[8,3] := {102, 165} tii[8,4] := {144, 170} tii[8,5] := {124, 152} tii[8,6] := {91} tii[8,7] := {114} tii[8,8] := {141, 166} tii[8,9] := {154} tii[8,10] := {151, 172} tii[8,11] := {164, 174} tii[8,12] := {171} tii[8,13] := {20, 41} tii[8,14] := {59, 145} tii[8,15] := {33, 58} tii[8,16] := {15, 76} tii[8,17] := {29, 108} tii[8,18] := {79, 126} tii[8,19] := {47, 75} tii[8,20] := {61, 107} tii[8,21] := {69} tii[8,22] := {48, 77} tii[8,23] := {100, 133} tii[8,24] := {26, 99} tii[8,25] := {93} tii[8,26] := {45, 130} tii[8,27] := {39, 121} tii[8,28] := {103, 146} tii[8,29] := {50} tii[8,30] := {119, 153} tii[8,31] := {67, 98} tii[8,32] := {36} tii[8,33] := {63, 148} tii[8,34] := {135} tii[8,35] := {81, 129} tii[8,36] := {72} tii[8,37] := {95} tii[8,38] := {88, 120} tii[8,39] := {142, 167} tii[8,40] := {104, 147} tii[8,41] := {155} tii[8,42] := {138} tii[8,43] := {68, 101} tii[8,44] := {40, 112} tii[8,45] := {64, 137} tii[8,46] := {56, 132} tii[8,47] := {70} tii[8,48] := {125, 161} tii[8,49] := {89, 122} tii[8,50] := {84, 156} tii[8,51] := {94} tii[8,52] := {52} tii[8,53] := {105, 149} tii[8,54] := {116} tii[8,55] := {110, 143} tii[8,56] := {158, 173} tii[8,57] := {74, 111} tii[8,58] := {71} tii[8,59] := {127, 162} tii[8,60] := {168} tii[8,61] := {106, 136} tii[8,62] := {139} tii[8,63] := {157} tii[8,64] := {118, 150} tii[8,65] := {134, 169} tii[8,66] := {163} tii[8,67] := {2, 8} tii[8,68] := {6, 17} tii[8,69] := {5, 14} tii[8,70] := {9, 57} tii[8,71] := {12, 28} tii[8,72] := {18, 85} tii[8,73] := {4, 42} tii[8,74] := {31, 66} tii[8,75] := {35} tii[8,76] := {25, 97} tii[8,77] := {11, 24} tii[8,78] := {10, 60} tii[8,79] := {53} tii[8,80] := {22} tii[8,81] := {44, 128} tii[8,82] := {21, 43} tii[8,83] := {46, 87} tii[8,84] := {73} tii[8,85] := {13} tii[8,86] := {96} tii[8,87] := {19, 38} tii[8,88] := {54, 90} tii[8,89] := {51} tii[8,90] := {16, 80} tii[8,91] := {34, 62} tii[8,92] := {82, 113} tii[8,93] := {23} tii[8,94] := {65, 109} tii[8,95] := {115} tii[8,96] := {117} tii[8,97] := {32, 55} tii[8,98] := {27, 92} tii[8,99] := {49, 83} tii[8,100] := {37} tii[8,101] := {86, 131} tii[8,102] := {140} tii[8,103] := {0, 3} tii[8,104] := {1, 30} tii[8,105] := {7} cell#154 , |C| = 175 special orbit = [3, 3, 2, 2, 2, 2] special rep = [[1, 1, 1], [2, 1, 1]] , dim = 105 cell rep = phi[[1, 1, 1, 1],[2, 1]]+phi[[1, 1, 1],[2, 1, 1]] TII depth = 3 TII multiplicity polynomial = 70*X^2+35*X TII subcells: tii[8,1] := {78, 159} tii[8,2] := {123, 160} tii[8,3] := {102, 165} tii[8,4] := {144, 170} tii[8,5] := {124, 152} tii[8,6] := {91} tii[8,7] := {114} tii[8,8] := {141, 166} tii[8,9] := {154} tii[8,10] := {151, 172} tii[8,11] := {164, 174} tii[8,12] := {171} tii[8,13] := {20, 41} tii[8,14] := {59, 145} tii[8,15] := {33, 58} tii[8,16] := {15, 76} tii[8,17] := {29, 108} tii[8,18] := {79, 126} tii[8,19] := {47, 75} tii[8,20] := {61, 107} tii[8,21] := {69} tii[8,22] := {48, 77} tii[8,23] := {100, 133} tii[8,24] := {26, 99} tii[8,25] := {93} tii[8,26] := {45, 130} tii[8,27] := {39, 121} tii[8,28] := {103, 146} tii[8,29] := {50} tii[8,30] := {119, 153} tii[8,31] := {67, 98} tii[8,32] := {36} tii[8,33] := {63, 148} tii[8,34] := {135} tii[8,35] := {81, 129} tii[8,36] := {72} tii[8,37] := {95} tii[8,38] := {88, 120} tii[8,39] := {142, 167} tii[8,40] := {104, 147} tii[8,41] := {155} tii[8,42] := {138} tii[8,43] := {68, 101} tii[8,44] := {40, 112} tii[8,45] := {64, 137} tii[8,46] := {56, 132} tii[8,47] := {70} tii[8,48] := {125, 161} tii[8,49] := {89, 122} tii[8,50] := {84, 156} tii[8,51] := {94} tii[8,52] := {52} tii[8,53] := {105, 149} tii[8,54] := {116} tii[8,55] := {110, 143} tii[8,56] := {158, 173} tii[8,57] := {74, 111} tii[8,58] := {71} tii[8,59] := {127, 162} tii[8,60] := {168} tii[8,61] := {106, 136} tii[8,62] := {139} tii[8,63] := {157} tii[8,64] := {118, 150} tii[8,65] := {134, 169} tii[8,66] := {163} tii[8,67] := {2, 8} tii[8,68] := {6, 17} tii[8,69] := {5, 14} tii[8,70] := {9, 57} tii[8,71] := {12, 28} tii[8,72] := {18, 85} tii[8,73] := {4, 42} tii[8,74] := {31, 66} tii[8,75] := {35} tii[8,76] := {25, 97} tii[8,77] := {11, 24} tii[8,78] := {10, 60} tii[8,79] := {53} tii[8,80] := {22} tii[8,81] := {44, 128} tii[8,82] := {21, 43} tii[8,83] := {46, 87} tii[8,84] := {73} tii[8,85] := {13} tii[8,86] := {96} tii[8,87] := {19, 38} tii[8,88] := {54, 90} tii[8,89] := {51} tii[8,90] := {16, 80} tii[8,91] := {34, 62} tii[8,92] := {82, 113} tii[8,93] := {23} tii[8,94] := {65, 109} tii[8,95] := {115} tii[8,96] := {117} tii[8,97] := {32, 55} tii[8,98] := {27, 92} tii[8,99] := {49, 83} tii[8,100] := {37} tii[8,101] := {86, 131} tii[8,102] := {140} tii[8,103] := {0, 3} tii[8,104] := {1, 30} tii[8,105] := {7} cell#155 , |C| = 105 special orbit = [4, 2, 2, 2, 1, 1, 1, 1] special rep = [[2, 1], [1, 1, 1, 1]] , dim = 70 cell rep = phi[[2, 1, 1, 1, 1],[1]]+phi[[2, 1],[1, 1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 35*X^2+35*X TII subcells: tii[12,1] := {29, 103} tii[12,2] := {59, 104} tii[12,3] := {46, 98} tii[12,4] := {78, 100} tii[12,5] := {56, 89} tii[12,6] := {83} tii[12,7] := {90, 102} tii[12,8] := {97} tii[12,9] := {27, 87} tii[12,10] := {58, 92} tii[12,11] := {36, 72} tii[12,12] := {63} tii[12,13] := {20, 53} tii[12,14] := {75, 96} tii[12,15] := {86} tii[12,16] := {43} tii[12,17] := {52} tii[12,18] := {67, 93} tii[12,19] := {81} tii[12,20] := {65} tii[12,21] := {12, 70} tii[12,22] := {39, 79} tii[12,23] := {19, 51} tii[12,24] := {42} tii[12,25] := {55, 85} tii[12,26] := {8, 33} tii[12,27] := {69} tii[12,28] := {22} tii[12,29] := {32} tii[12,30] := {1, 18} tii[12,31] := {48, 80} tii[12,32] := {10} tii[12,33] := {61} tii[12,34] := {44} tii[12,35] := {17} tii[12,36] := {11} tii[12,37] := {54, 84} tii[12,38] := {68} tii[12,39] := {49} tii[12,40] := {31} tii[12,41] := {4, 66} tii[12,42] := {14, 99} tii[12,43] := {15, 76} tii[12,44] := {24, 95} tii[12,45] := {30, 91} tii[12,46] := {38, 74} tii[12,47] := {41, 101} tii[12,48] := {64} tii[12,49] := {73} tii[12,50] := {47, 77} tii[12,51] := {9, 35} tii[12,52] := {60, 94} tii[12,53] := {23} tii[12,54] := {88} tii[12,55] := {34} tii[12,56] := {26} tii[12,57] := {28, 57} tii[12,58] := {0, 7} tii[12,59] := {2} tii[12,60] := {40, 82} tii[12,61] := {6} tii[12,62] := {71} tii[12,63] := {3} tii[12,64] := {45} tii[12,65] := {5} tii[12,66] := {13, 37} tii[12,67] := {21, 62} tii[12,68] := {50} tii[12,69] := {25} tii[12,70] := {16} cell#156 , |C| = 35 special orbit = [2, 2, 2, 2, 2, 2, 2] special rep = [[1, 1, 1, 1], [1, 1, 1]] , dim = 35 cell rep = phi[[1, 1, 1, 1],[1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 35*X TII subcells: tii[5,1] := {34} tii[5,2] := {12} tii[5,3] := {33} tii[5,4] := {17} tii[5,5] := {30} tii[5,6] := {21} tii[5,7] := {26} tii[5,8] := {18} tii[5,9] := {32} tii[5,10] := {23} tii[5,11] := {28} tii[5,12] := {27} tii[5,13] := {31} tii[5,14] := {2} tii[5,15] := {8} tii[5,16] := {3} tii[5,17] := {6} tii[5,18] := {25} tii[5,19] := {5} tii[5,20] := {16} tii[5,21] := {9} tii[5,22] := {19} tii[5,23] := {15} tii[5,24] := {24} tii[5,25] := {7} tii[5,26] := {29} tii[5,27] := {13} tii[5,28] := {20} tii[5,29] := {10} tii[5,30] := {14} tii[5,31] := {22} tii[5,32] := {0} tii[5,33] := {1} tii[5,34] := {4} tii[5,35] := {11} cell#157 , |C| = 56 special orbit = [2, 2, 2, 2, 2, 2, 1, 1] special rep = [[1, 1, 1], [1, 1, 1, 1]] , dim = 35 cell rep = phi[[1, 1, 1, 1, 1],[1, 1]]+phi[[1, 1, 1],[1, 1, 1, 1]] TII depth = 2 TII multiplicity polynomial = 21*X^2+14*X TII subcells: tii[4,1] := {15, 55} tii[4,2] := {24, 53} tii[4,3] := {32, 47} tii[4,4] := {40} tii[4,5] := {28, 54} tii[4,6] := {37, 49} tii[4,7] := {43} tii[4,8] := {27, 42} tii[4,9] := {34} tii[4,10] := {26} tii[4,11] := {2, 29} tii[4,12] := {8, 50} tii[4,13] := {4, 38} tii[4,14] := {5, 44} tii[4,15] := {6, 46} tii[4,16] := {23, 39} tii[4,17] := {9, 52} tii[4,18] := {30} tii[4,19] := {22} tii[4,20] := {19, 33} tii[4,21] := {10, 41} tii[4,22] := {25} tii[4,23] := {16, 48} tii[4,24] := {17} tii[4,25] := {31} tii[4,26] := {11} tii[4,27] := {13, 45} tii[4,28] := {20, 51} tii[4,29] := {35} tii[4,30] := {18} tii[4,31] := {0, 14} tii[4,32] := {1, 21} tii[4,33] := {3, 36} tii[4,34] := {12} tii[4,35] := {7} cell#158 , |C| = 105 special orbit = [4, 2, 2, 2, 1, 1, 1, 1] special rep = [[2, 1], [1, 1, 1, 1]] , dim = 70 cell rep = phi[[2, 1, 1, 1, 1],[1]]+phi[[2, 1],[1, 1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 35*X^2+35*X TII subcells: tii[12,1] := {29, 103} tii[12,2] := {59, 104} tii[12,3] := {46, 98} tii[12,4] := {78, 100} tii[12,5] := {56, 89} tii[12,6] := {83} tii[12,7] := {90, 102} tii[12,8] := {97} tii[12,9] := {27, 87} tii[12,10] := {58, 92} tii[12,11] := {36, 72} tii[12,12] := {63} tii[12,13] := {20, 53} tii[12,14] := {75, 96} tii[12,15] := {86} tii[12,16] := {43} tii[12,17] := {52} tii[12,18] := {67, 93} tii[12,19] := {81} tii[12,20] := {65} tii[12,21] := {12, 70} tii[12,22] := {39, 79} tii[12,23] := {19, 51} tii[12,24] := {42} tii[12,25] := {55, 85} tii[12,26] := {8, 33} tii[12,27] := {69} tii[12,28] := {22} tii[12,29] := {32} tii[12,30] := {1, 18} tii[12,31] := {48, 80} tii[12,32] := {10} tii[12,33] := {61} tii[12,34] := {44} tii[12,35] := {17} tii[12,36] := {11} tii[12,37] := {54, 84} tii[12,38] := {68} tii[12,39] := {49} tii[12,40] := {31} tii[12,41] := {4, 66} tii[12,42] := {14, 99} tii[12,43] := {15, 76} tii[12,44] := {24, 95} tii[12,45] := {30, 91} tii[12,46] := {38, 74} tii[12,47] := {41, 101} tii[12,48] := {64} tii[12,49] := {73} tii[12,50] := {47, 77} tii[12,51] := {9, 35} tii[12,52] := {60, 94} tii[12,53] := {23} tii[12,54] := {88} tii[12,55] := {34} tii[12,56] := {26} tii[12,57] := {28, 57} tii[12,58] := {0, 7} tii[12,59] := {2} tii[12,60] := {40, 82} tii[12,61] := {6} tii[12,62] := {71} tii[12,63] := {3} tii[12,64] := {45} tii[12,65] := {5} tii[12,66] := {13, 37} tii[12,67] := {21, 62} tii[12,68] := {50} tii[12,69] := {25} tii[12,70] := {16} cell#159 , |C| = 35 special orbit = [2, 2, 2, 2, 2, 2, 2] special rep = [[1, 1, 1, 1], [1, 1, 1]] , dim = 35 cell rep = phi[[1, 1, 1, 1],[1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 35*X TII subcells: tii[5,1] := {34} tii[5,2] := {12} tii[5,3] := {33} tii[5,4] := {17} tii[5,5] := {30} tii[5,6] := {21} tii[5,7] := {26} tii[5,8] := {18} tii[5,9] := {32} tii[5,10] := {23} tii[5,11] := {28} tii[5,12] := {27} tii[5,13] := {31} tii[5,14] := {2} tii[5,15] := {8} tii[5,16] := {3} tii[5,17] := {6} tii[5,18] := {25} tii[5,19] := {5} tii[5,20] := {16} tii[5,21] := {9} tii[5,22] := {19} tii[5,23] := {15} tii[5,24] := {24} tii[5,25] := {7} tii[5,26] := {29} tii[5,27] := {13} tii[5,28] := {20} tii[5,29] := {10} tii[5,30] := {14} tii[5,31] := {22} tii[5,32] := {0} tii[5,33] := {1} tii[5,34] := {4} tii[5,35] := {11} cell#160 , |C| = 56 special orbit = [2, 2, 2, 2, 2, 2, 1, 1] special rep = [[1, 1, 1], [1, 1, 1, 1]] , dim = 35 cell rep = phi[[1, 1, 1, 1, 1],[1, 1]]+phi[[1, 1, 1],[1, 1, 1, 1]] TII depth = 2 TII multiplicity polynomial = 21*X^2+14*X TII subcells: tii[4,1] := {15, 55} tii[4,2] := {24, 53} tii[4,3] := {32, 47} tii[4,4] := {40} tii[4,5] := {28, 54} tii[4,6] := {37, 49} tii[4,7] := {43} tii[4,8] := {27, 42} tii[4,9] := {34} tii[4,10] := {26} tii[4,11] := {2, 29} tii[4,12] := {8, 50} tii[4,13] := {4, 38} tii[4,14] := {5, 44} tii[4,15] := {6, 46} tii[4,16] := {23, 39} tii[4,17] := {9, 52} tii[4,18] := {30} tii[4,19] := {22} tii[4,20] := {19, 33} tii[4,21] := {10, 41} tii[4,22] := {25} tii[4,23] := {16, 48} tii[4,24] := {17} tii[4,25] := {31} tii[4,26] := {11} tii[4,27] := {13, 45} tii[4,28] := {20, 51} tii[4,29] := {35} tii[4,30] := {18} tii[4,31] := {0, 14} tii[4,32] := {1, 21} tii[4,33] := {3, 36} tii[4,34] := {12} tii[4,35] := {7} cell#161 , |C| = 50 special orbit = [6, 2, 1, 1, 1, 1, 1, 1] special rep = [[3], [1, 1, 1, 1]] , dim = 35 cell rep = phi[[3, 1, 1, 1, 1],[]]+phi[[3],[1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 15*X^2+20*X TII subcells: tii[22,1] := {40, 49} tii[22,2] := {35, 48} tii[22,3] := {41, 47} tii[22,4] := {45} tii[22,5] := {28, 46} tii[22,6] := {32, 44} tii[22,7] := {42} tii[22,8] := {25, 39} tii[22,9] := {34} tii[22,10] := {38} tii[22,11] := {19, 43} tii[22,12] := {24, 37} tii[22,13] := {33} tii[22,14] := {15, 31} tii[22,15] := {27} tii[22,16] := {30} tii[22,17] := {8, 23} tii[22,18] := {17} tii[22,19] := {22} tii[22,20] := {18} tii[22,21] := {11, 36} tii[22,22] := {14, 29} tii[22,23] := {26} tii[22,24] := {7, 21} tii[22,25] := {16} tii[22,26] := {20} tii[22,27] := {1, 13} tii[22,28] := {9} tii[22,29] := {12} tii[22,30] := {10} tii[22,31] := {0, 6} tii[22,32] := {2} tii[22,33] := {5} tii[22,34] := {3} tii[22,35] := {4} cell#162 , |C| = 50 special orbit = [6, 2, 1, 1, 1, 1, 1, 1] special rep = [[3], [1, 1, 1, 1]] , dim = 35 cell rep = phi[[3, 1, 1, 1, 1],[]]+phi[[3],[1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 15*X^2+20*X TII subcells: tii[22,1] := {40, 49} tii[22,2] := {35, 48} tii[22,3] := {41, 47} tii[22,4] := {45} tii[22,5] := {28, 46} tii[22,6] := {32, 44} tii[22,7] := {42} tii[22,8] := {25, 39} tii[22,9] := {34} tii[22,10] := {38} tii[22,11] := {19, 43} tii[22,12] := {24, 37} tii[22,13] := {33} tii[22,14] := {15, 31} tii[22,15] := {27} tii[22,16] := {30} tii[22,17] := {8, 23} tii[22,18] := {17} tii[22,19] := {22} tii[22,20] := {18} tii[22,21] := {11, 36} tii[22,22] := {14, 29} tii[22,23] := {26} tii[22,24] := {7, 21} tii[22,25] := {16} tii[22,26] := {20} tii[22,27] := {1, 13} tii[22,28] := {9} tii[22,29] := {12} tii[22,30] := {10} tii[22,31] := {0, 6} tii[22,32] := {2} tii[22,33] := {5} tii[22,34] := {3} tii[22,35] := {4} cell#163 , |C| = 98 special orbit = [4, 4, 1, 1, 1, 1, 1, 1] special rep = [[2], [2, 1, 1, 1]] , dim = 84 cell rep = phi[[2, 2, 1, 1, 1],[]]+phi[[2],[2, 1, 1, 1]] TII depth = 4 TII multiplicity polynomial = 14*X^2+70*X TII subcells: tii[14,1] := {64, 83} tii[14,2] := {87} tii[14,3] := {94} tii[14,4] := {51, 73} tii[14,5] := {38, 63} tii[14,6] := {77} tii[14,7] := {57} tii[14,8] := {88} tii[14,9] := {82} tii[14,10] := {72} tii[14,11] := {91} tii[14,12] := {96} tii[14,13] := {37, 61} tii[14,14] := {26, 48} tii[14,15] := {65} tii[14,16] := {41} tii[14,17] := {79} tii[14,18] := {15, 36} tii[14,19] := {71} tii[14,20] := {60} tii[14,21] := {29} tii[14,22] := {84} tii[14,23] := {35} tii[14,24] := {92} tii[14,25] := {66} tii[14,26] := {56} tii[14,27] := {80} tii[14,28] := {43} tii[14,29] := {89} tii[14,30] := {95} tii[14,31] := {25, 46} tii[14,32] := {14, 34} tii[14,33] := {53} tii[14,34] := {28} tii[14,35] := {69} tii[14,36] := {7, 22} tii[14,37] := {59} tii[14,38] := {45} tii[14,39] := {16} tii[14,40] := {75} tii[14,41] := {21} tii[14,42] := {86} tii[14,43] := {1, 13} tii[14,44] := {54} tii[14,45] := {9} tii[14,46] := {40} tii[14,47] := {70} tii[14,48] := {30} tii[14,49] := {12} tii[14,50] := {81} tii[14,51] := {10} tii[14,52] := {90} tii[14,53] := {58} tii[14,54] := {44} tii[14,55] := {74} tii[14,56] := {32} tii[14,57] := {85} tii[14,58] := {20} tii[14,59] := {93} tii[14,60] := {97} tii[14,61] := {52, 76} tii[14,62] := {68} tii[14,63] := {27, 50} tii[14,64] := {78} tii[14,65] := {42} tii[14,66] := {49} tii[14,67] := {8, 24} tii[14,68] := {67} tii[14,69] := {17} tii[14,70] := {62} tii[14,71] := {23} tii[14,72] := {19} tii[14,73] := {0, 6} tii[14,74] := {55} tii[14,75] := {2} tii[14,76] := {5} tii[14,77] := {47} tii[14,78] := {31} tii[14,79] := {3} tii[14,80] := {4} tii[14,81] := {39} tii[14,82] := {33} tii[14,83] := {18} tii[14,84] := {11} cell#164 , |C| = 105 special orbit = [4, 2, 2, 2, 1, 1, 1, 1] special rep = [[2, 1], [1, 1, 1, 1]] , dim = 70 cell rep = phi[[2, 1, 1, 1, 1],[1]]+phi[[2, 1],[1, 1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 35*X^2+35*X TII subcells: tii[12,1] := {79, 101} tii[12,2] := {57, 87} tii[12,3] := {92, 104} tii[12,4] := {37, 74} tii[12,5] := {85, 100} tii[12,6] := {96} tii[12,7] := {55, 81} tii[12,8] := {68} tii[12,9] := {86, 102} tii[12,10] := {20, 58} tii[12,11] := {78, 97} tii[12,12] := {89} tii[12,13] := {63, 88} tii[12,14] := {35, 66} tii[12,15] := {49} tii[12,16] := {76} tii[12,17] := {62} tii[12,18] := {27, 59} tii[12,19] := {41} tii[12,20] := {24} tii[12,21] := {91, 103} tii[12,22] := {8, 38} tii[12,23] := {84, 99} tii[12,24] := {95} tii[12,25] := {18, 46} tii[12,26] := {71, 93} tii[12,27] := {29} tii[12,28] := {82} tii[12,29] := {69} tii[12,30] := {54, 80} tii[12,31] := {13, 39} tii[12,32] := {67} tii[12,33] := {22} tii[12,34] := {10} tii[12,35] := {50} tii[12,36] := {32} tii[12,37] := {17, 45} tii[12,38] := {28} tii[12,39] := {14} tii[12,40] := {5} tii[12,41] := {52, 53} tii[12,42] := {64, 98} tii[12,43] := {33, 73} tii[12,44] := {47, 90} tii[12,45] := {26, 56} tii[12,46] := {72, 94} tii[12,47] := {40, 77} tii[12,48] := {83} tii[12,49] := {70} tii[12,50] := {12, 36} tii[12,51] := {44, 75} tii[12,52] := {21, 61} tii[12,53] := {60} tii[12,54] := {51} tii[12,55] := {43} tii[12,56] := {25} tii[12,57] := {4, 19} tii[12,58] := {34, 65} tii[12,59] := {48} tii[12,60] := {9, 42} tii[12,61] := {30} tii[12,62] := {31} tii[12,63] := {16} tii[12,64] := {11} tii[12,65] := {6} tii[12,66] := {0, 7} tii[12,67] := {2, 23} tii[12,68] := {15} tii[12,69] := {3} tii[12,70] := {1} cell#165 , |C| = 105 special orbit = [4, 2, 2, 2, 1, 1, 1, 1] special rep = [[2, 1], [1, 1, 1, 1]] , dim = 70 cell rep = phi[[2, 1, 1, 1, 1],[1]]+phi[[2, 1],[1, 1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 35*X^2+35*X TII subcells: tii[12,1] := {79, 101} tii[12,2] := {57, 87} tii[12,3] := {92, 104} tii[12,4] := {37, 74} tii[12,5] := {85, 100} tii[12,6] := {96} tii[12,7] := {55, 81} tii[12,8] := {68} tii[12,9] := {86, 102} tii[12,10] := {20, 58} tii[12,11] := {78, 97} tii[12,12] := {89} tii[12,13] := {63, 88} tii[12,14] := {35, 66} tii[12,15] := {49} tii[12,16] := {76} tii[12,17] := {62} tii[12,18] := {27, 59} tii[12,19] := {41} tii[12,20] := {24} tii[12,21] := {91, 103} tii[12,22] := {8, 38} tii[12,23] := {84, 99} tii[12,24] := {95} tii[12,25] := {18, 46} tii[12,26] := {71, 93} tii[12,27] := {29} tii[12,28] := {82} tii[12,29] := {69} tii[12,30] := {54, 80} tii[12,31] := {13, 39} tii[12,32] := {67} tii[12,33] := {22} tii[12,34] := {10} tii[12,35] := {50} tii[12,36] := {32} tii[12,37] := {17, 45} tii[12,38] := {28} tii[12,39] := {14} tii[12,40] := {5} tii[12,41] := {52, 53} tii[12,42] := {64, 98} tii[12,43] := {33, 73} tii[12,44] := {47, 90} tii[12,45] := {26, 56} tii[12,46] := {72, 94} tii[12,47] := {40, 77} tii[12,48] := {83} tii[12,49] := {70} tii[12,50] := {12, 36} tii[12,51] := {44, 75} tii[12,52] := {21, 61} tii[12,53] := {60} tii[12,54] := {51} tii[12,55] := {43} tii[12,56] := {25} tii[12,57] := {4, 19} tii[12,58] := {34, 65} tii[12,59] := {48} tii[12,60] := {9, 42} tii[12,61] := {30} tii[12,62] := {31} tii[12,63] := {16} tii[12,64] := {11} tii[12,65] := {6} tii[12,66] := {0, 7} tii[12,67] := {2, 23} tii[12,68] := {15} tii[12,69] := {3} tii[12,70] := {1} cell#166 , |C| = 105 special orbit = [4, 2, 2, 2, 1, 1, 1, 1] special rep = [[2, 1], [1, 1, 1, 1]] , dim = 70 cell rep = phi[[2, 1, 1, 1, 1],[1]]+phi[[2, 1],[1, 1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 35*X^2+35*X TII subcells: tii[12,1] := {18, 103} tii[12,2] := {17, 79} tii[12,3] := {28, 97} tii[12,4] := {27, 58} tii[12,5] := {45, 88} tii[12,6] := {65} tii[12,7] := {42, 81} tii[12,8] := {67} tii[12,9] := {37, 104} tii[12,10] := {16, 39} tii[12,11] := {56, 94} tii[12,12] := {78} tii[12,13] := {76, 102} tii[12,14] := {24, 60} tii[12,15] := {48} tii[12,16] := {92} tii[12,17] := {101} tii[12,18] := {43, 83} tii[12,19] := {68} tii[12,20] := {82} tii[12,21] := {29, 100} tii[12,22] := {9, 23} tii[12,23] := {46, 89} tii[12,24] := {66} tii[12,25] := {15, 41} tii[12,26] := {64, 99} tii[12,27] := {30} tii[12,28] := {87} tii[12,29] := {98} tii[12,30] := {53, 91} tii[12,31] := {25, 62} tii[12,32] := {75} tii[12,33] := {49} tii[12,34] := {61} tii[12,35] := {90} tii[12,36] := {71} tii[12,37] := {44, 85} tii[12,38] := {69} tii[12,39] := {84} tii[12,40] := {72} tii[12,41] := {0, 36} tii[12,42] := {12, 93} tii[12,43] := {2, 55} tii[12,44] := {6, 77} tii[12,45] := {4, 35} tii[12,46] := {26, 70} tii[12,47] := {11, 57} tii[12,48] := {47} tii[12,49] := {31} tii[12,50] := {8, 21} tii[12,51] := {63, 96} tii[12,52] := {19, 38} tii[12,53] := {86} tii[12,54] := {50} tii[12,55] := {95} tii[12,56] := {80} tii[12,57] := {3, 13} tii[12,58] := {34, 74} tii[12,59] := {54} tii[12,60] := {10, 22} tii[12,61] := {73} tii[12,62] := {32} tii[12,63] := {51} tii[12,64] := {59} tii[12,65] := {33} tii[12,66] := {1, 7} tii[12,67] := {5, 14} tii[12,68] := {20} tii[12,69] := {40} tii[12,70] := {52} cell#167 , |C| = 105 special orbit = [3, 3, 2, 2, 1, 1, 1, 1] special rep = [[1, 1], [2, 1, 1, 1]] , dim = 84 cell rep = phi[[1, 1, 1, 1, 1],[2]]+phi[[1, 1],[2, 1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 21*X^2+63*X TII subcells: tii[7,1] := {58, 59} tii[7,2] := {80, 82} tii[7,3] := {53} tii[7,4] := {73} tii[7,5] := {90, 93} tii[7,6] := {103} tii[7,7] := {70, 71} tii[7,8] := {44} tii[7,9] := {66} tii[7,10] := {26} tii[7,11] := {85, 86} tii[7,12] := {19} tii[7,13] := {100} tii[7,14] := {47} tii[7,15] := {67} tii[7,16] := {60, 61} tii[7,17] := {78} tii[7,18] := {68} tii[7,19] := {79, 81} tii[7,20] := {52} tii[7,21] := {72} tii[7,22] := {89, 92} tii[7,23] := {34} tii[7,24] := {21} tii[7,25] := {102} tii[7,26] := {54} tii[7,27] := {74} tii[7,28] := {20} tii[7,29] := {83, 84} tii[7,30] := {13} tii[7,31] := {38} tii[7,32] := {99} tii[7,33] := {7} tii[7,34] := {87} tii[7,35] := {56} tii[7,36] := {76} tii[7,37] := {91, 94} tii[7,38] := {104} tii[7,39] := {97} tii[7,40] := {101} tii[7,41] := {16, 17} tii[7,42] := {28, 29} tii[7,43] := {24, 25} tii[7,44] := {35} tii[7,45] := {45, 46} tii[7,46] := {55} tii[7,47] := {22} tii[7,48] := {75} tii[7,49] := {41, 43} tii[7,50] := {18} tii[7,51] := {37} tii[7,52] := {63, 65} tii[7,53] := {10} tii[7,54] := {30} tii[7,55] := {96} tii[7,56] := {48} tii[7,57] := {5} tii[7,58] := {31} tii[7,59] := {32, 33} tii[7,60] := {12} tii[7,61] := {27} tii[7,62] := {50, 51} tii[7,63] := {6} tii[7,64] := {23} tii[7,65] := {11} tii[7,66] := {3} tii[7,67] := {39} tii[7,68] := {88} tii[7,69] := {57} tii[7,70] := {49} tii[7,71] := {1} tii[7,72] := {77} tii[7,73] := {40, 42} tii[7,74] := {36} tii[7,75] := {62, 64} tii[7,76] := {14} tii[7,77] := {95} tii[7,78] := {4} tii[7,79] := {69} tii[7,80] := {98} tii[7,81] := {8, 9} tii[7,82] := {15} tii[7,83] := {2} tii[7,84] := {0} cell#168 , |C| = 56 special orbit = [2, 2, 2, 2, 2, 2, 1, 1] special rep = [[1, 1, 1], [1, 1, 1, 1]] , dim = 35 cell rep = phi[[1, 1, 1, 1, 1],[1, 1]]+phi[[1, 1, 1],[1, 1, 1, 1]] TII depth = 2 TII multiplicity polynomial = 21*X^2+14*X TII subcells: tii[4,1] := {12, 54} tii[4,2] := {18, 50} tii[4,3] := {22, 42} tii[4,4] := {33} tii[4,5] := {20, 53} tii[4,6] := {25, 47} tii[4,7] := {37} tii[4,8] := {36, 55} tii[4,9] := {45} tii[4,10] := {52} tii[4,11] := {2, 21} tii[4,12] := {8, 48} tii[4,13] := {3, 26} tii[4,14] := {6, 38} tii[4,15] := {5, 35} tii[4,16] := {17, 32} tii[4,17] := {9, 44} tii[4,18] := {23} tii[4,19] := {19} tii[4,20] := {28, 51} tii[4,21] := {7, 27} tii[4,22] := {40} tii[4,23] := {13, 39} tii[4,24] := {49} tii[4,25] := {24} tii[4,26] := {41} tii[4,27] := {10, 34} tii[4,28] := {15, 43} tii[4,29] := {29} tii[4,30] := {46} tii[4,31] := {0, 11} tii[4,32] := {1, 16} tii[4,33] := {4, 30} tii[4,34] := {14} tii[4,35] := {31} cell#169 , |C| = 50 special orbit = [6, 2, 1, 1, 1, 1, 1, 1] special rep = [[3], [1, 1, 1, 1]] , dim = 35 cell rep = phi[[3, 1, 1, 1, 1],[]]+phi[[3],[1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 15*X^2+20*X TII subcells: tii[22,1] := {31, 48} tii[22,2] := {42, 43} tii[22,3] := {46, 47} tii[22,4] := {49} tii[22,5] := {29, 30} tii[22,6] := {40, 41} tii[22,7] := {45} tii[22,8] := {35, 36} tii[22,9] := {44} tii[22,10] := {32} tii[22,11] := {13, 14} tii[22,12] := {26, 28} tii[22,13] := {39} tii[22,14] := {20, 21} tii[22,15] := {34} tii[22,16] := {15} tii[22,17] := {25, 27} tii[22,18] := {38} tii[22,19] := {33} tii[22,20] := {37} tii[22,21] := {0, 1} tii[22,22] := {10, 12} tii[22,23] := {24} tii[22,24] := {4, 5} tii[22,25] := {17} tii[22,26] := {2} tii[22,27] := {9, 11} tii[22,28] := {23} tii[22,29] := {16} tii[22,30] := {22} tii[22,31] := {6, 7} tii[22,32] := {19} tii[22,33] := {8} tii[22,34] := {18} tii[22,35] := {3} cell#170 , |C| = 105 special orbit = [4, 2, 2, 2, 1, 1, 1, 1] special rep = [[2, 1], [1, 1, 1, 1]] , dim = 70 cell rep = phi[[2, 1, 1, 1, 1],[1]]+phi[[2, 1],[1, 1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 35*X^2+35*X TII subcells: tii[12,1] := {19, 84} tii[12,2] := {16, 104} tii[12,3] := {35, 74} tii[12,4] := {30, 99} tii[12,5] := {54, 55} tii[12,6] := {69} tii[12,7] := {52, 88} tii[12,8] := {67} tii[12,9] := {44, 83} tii[12,10] := {58, 103} tii[12,11] := {63, 65} tii[12,12] := {81} tii[12,13] := {42, 43} tii[12,14] := {73, 98} tii[12,15] := {90} tii[12,16] := {62} tii[12,17] := {48} tii[12,18] := {85, 102} tii[12,19] := {95} tii[12,20] := {80} tii[12,21] := {36, 76} tii[12,22] := {39, 101} tii[12,23] := {56, 57} tii[12,24] := {71} tii[12,25] := {60, 94} tii[12,26] := {31, 32} tii[12,27] := {79} tii[12,28] := {50} tii[12,29] := {38} tii[12,30] := {17, 18} tii[12,31] := {77, 100} tii[12,32] := {29} tii[12,33] := {92} tii[12,34] := {70} tii[12,35] := {21} tii[12,36] := {28} tii[12,37] := {53, 89} tii[12,38] := {68} tii[12,39] := {46} tii[12,40] := {27} tii[12,41] := {0, 45} tii[12,42] := {9, 64} tii[12,43] := {1, 66} tii[12,44] := {3, 82} tii[12,45] := {2, 87} tii[12,46] := {33, 34} tii[12,47] := {8, 97} tii[12,48] := {51} tii[12,49] := {25} tii[12,50] := {5, 75} tii[12,51] := {23, 24} tii[12,52] := {20, 91} tii[12,53] := {41} tii[12,54] := {47} tii[12,55] := {26} tii[12,56] := {40} tii[12,57] := {15, 86} tii[12,58] := {6, 7} tii[12,59] := {14} tii[12,60] := {37, 96} tii[12,61] := {10} tii[12,62] := {72} tii[12,63] := {13} tii[12,64] := {61} tii[12,65] := {4} tii[12,66] := {11, 78} tii[12,67] := {22, 93} tii[12,68] := {59} tii[12,69] := {49} tii[12,70] := {12} cell#171 , |C| = 50 special orbit = [6, 2, 1, 1, 1, 1, 1, 1] special rep = [[3], [1, 1, 1, 1]] , dim = 35 cell rep = phi[[3, 1, 1, 1, 1],[]]+phi[[3],[1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 15*X^2+20*X TII subcells: tii[22,1] := {31, 48} tii[22,2] := {42, 43} tii[22,3] := {46, 47} tii[22,4] := {49} tii[22,5] := {29, 30} tii[22,6] := {40, 41} tii[22,7] := {45} tii[22,8] := {35, 36} tii[22,9] := {44} tii[22,10] := {32} tii[22,11] := {13, 14} tii[22,12] := {26, 28} tii[22,13] := {39} tii[22,14] := {20, 21} tii[22,15] := {34} tii[22,16] := {15} tii[22,17] := {25, 27} tii[22,18] := {38} tii[22,19] := {33} tii[22,20] := {37} tii[22,21] := {0, 1} tii[22,22] := {10, 12} tii[22,23] := {24} tii[22,24] := {4, 5} tii[22,25] := {17} tii[22,26] := {2} tii[22,27] := {9, 11} tii[22,28] := {23} tii[22,29] := {16} tii[22,30] := {22} tii[22,31] := {6, 7} tii[22,32] := {19} tii[22,33] := {8} tii[22,34] := {18} tii[22,35] := {3} cell#172 , |C| = 105 special orbit = [4, 2, 2, 2, 1, 1, 1, 1] special rep = [[2, 1], [1, 1, 1, 1]] , dim = 70 cell rep = phi[[2, 1, 1, 1, 1],[1]]+phi[[2, 1],[1, 1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 35*X^2+35*X TII subcells: tii[12,1] := {19, 84} tii[12,2] := {16, 104} tii[12,3] := {35, 74} tii[12,4] := {30, 99} tii[12,5] := {54, 55} tii[12,6] := {69} tii[12,7] := {52, 88} tii[12,8] := {67} tii[12,9] := {44, 83} tii[12,10] := {58, 103} tii[12,11] := {63, 65} tii[12,12] := {81} tii[12,13] := {42, 43} tii[12,14] := {73, 98} tii[12,15] := {90} tii[12,16] := {62} tii[12,17] := {48} tii[12,18] := {85, 102} tii[12,19] := {95} tii[12,20] := {80} tii[12,21] := {36, 76} tii[12,22] := {39, 101} tii[12,23] := {56, 57} tii[12,24] := {71} tii[12,25] := {60, 94} tii[12,26] := {31, 32} tii[12,27] := {79} tii[12,28] := {50} tii[12,29] := {38} tii[12,30] := {17, 18} tii[12,31] := {77, 100} tii[12,32] := {29} tii[12,33] := {92} tii[12,34] := {70} tii[12,35] := {21} tii[12,36] := {28} tii[12,37] := {53, 89} tii[12,38] := {68} tii[12,39] := {46} tii[12,40] := {27} tii[12,41] := {0, 45} tii[12,42] := {9, 64} tii[12,43] := {1, 66} tii[12,44] := {3, 82} tii[12,45] := {2, 87} tii[12,46] := {33, 34} tii[12,47] := {8, 97} tii[12,48] := {51} tii[12,49] := {25} tii[12,50] := {5, 75} tii[12,51] := {23, 24} tii[12,52] := {20, 91} tii[12,53] := {41} tii[12,54] := {47} tii[12,55] := {26} tii[12,56] := {40} tii[12,57] := {15, 86} tii[12,58] := {6, 7} tii[12,59] := {14} tii[12,60] := {37, 96} tii[12,61] := {10} tii[12,62] := {72} tii[12,63] := {13} tii[12,64] := {61} tii[12,65] := {4} tii[12,66] := {11, 78} tii[12,67] := {22, 93} tii[12,68] := {59} tii[12,69] := {49} tii[12,70] := {12} cell#173 , |C| = 27 special orbit = [4, 2, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[2], [1, 1, 1, 1, 1]] , dim = 21 cell rep = phi[[2, 1, 1, 1, 1, 1],[]]+phi[[2],[1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 6*X^2+15*X TII subcells: tii[11,1] := {20, 26} tii[11,2] := {23, 24} tii[11,3] := {25} tii[11,4] := {18, 19} tii[11,5] := {22} tii[11,6] := {21} tii[11,7] := {13, 14} tii[11,8] := {17} tii[11,9] := {15} tii[11,10] := {16} tii[11,11] := {7, 8} tii[11,12] := {12} tii[11,13] := {9} tii[11,14] := {11} tii[11,15] := {10} tii[11,16] := {0, 1} tii[11,17] := {6} tii[11,18] := {2} tii[11,19] := {5} tii[11,20] := {3} tii[11,21] := {4} cell#174 , |C| = 27 special orbit = [4, 2, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[2], [1, 1, 1, 1, 1]] , dim = 21 cell rep = phi[[2, 1, 1, 1, 1, 1],[]]+phi[[2],[1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 6*X^2+15*X TII subcells: tii[11,1] := {20, 26} tii[11,2] := {23, 24} tii[11,3] := {25} tii[11,4] := {18, 19} tii[11,5] := {22} tii[11,6] := {21} tii[11,7] := {13, 14} tii[11,8] := {17} tii[11,9] := {15} tii[11,10] := {16} tii[11,11] := {7, 8} tii[11,12] := {12} tii[11,13] := {9} tii[11,14] := {11} tii[11,15] := {10} tii[11,16] := {0, 1} tii[11,17] := {6} tii[11,18] := {2} tii[11,19] := {5} tii[11,20] := {3} tii[11,21] := {4} cell#175 , |C| = 28 special orbit = [2, 2, 2, 2, 1, 1, 1, 1, 1, 1] special rep = [[1, 1], [1, 1, 1, 1, 1]] , dim = 21 cell rep = phi[[1, 1, 1, 1, 1, 1],[1]]+phi[[1, 1],[1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 7*X^2+14*X TII subcells: tii[3,1] := {6, 27} tii[3,2] := {11, 23} tii[3,3] := {18} tii[3,4] := {16, 26} tii[3,5] := {21} tii[3,6] := {14} tii[3,7] := {12, 24} tii[3,8] := {19} tii[3,9] := {9} tii[3,10] := {5} tii[3,11] := {15, 25} tii[3,12] := {20} tii[3,13] := {13} tii[3,14] := {7} tii[3,15] := {4} tii[3,16] := {0, 17} tii[3,17] := {3, 22} tii[3,18] := {10} tii[3,19] := {8} tii[3,20] := {2} tii[3,21] := {1} cell#176 , |C| = 28 special orbit = [2, 2, 2, 2, 1, 1, 1, 1, 1, 1] special rep = [[1, 1], [1, 1, 1, 1, 1]] , dim = 21 cell rep = phi[[1, 1, 1, 1, 1, 1],[1]]+phi[[1, 1],[1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 7*X^2+14*X TII subcells: tii[3,1] := {6, 27} tii[3,2] := {11, 23} tii[3,3] := {18} tii[3,4] := {16, 26} tii[3,5] := {21} tii[3,6] := {14} tii[3,7] := {12, 24} tii[3,8] := {19} tii[3,9] := {9} tii[3,10] := {5} tii[3,11] := {15, 25} tii[3,12] := {20} tii[3,13] := {13} tii[3,14] := {7} tii[3,15] := {4} tii[3,16] := {0, 17} tii[3,17] := {3, 22} tii[3,18] := {10} tii[3,19] := {8} tii[3,20] := {2} tii[3,21] := {1} cell#177 , |C| = 27 special orbit = [4, 2, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[2], [1, 1, 1, 1, 1]] , dim = 21 cell rep = phi[[2, 1, 1, 1, 1, 1],[]]+phi[[2],[1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 6*X^2+15*X TII subcells: tii[11,1] := {0, 26} tii[11,2] := {1, 14} tii[11,3] := {6} tii[11,4] := {5, 25} tii[11,5] := {13} tii[11,6] := {23} tii[11,7] := {2, 17} tii[11,8] := {9} tii[11,9] := {16} tii[11,10] := {7} tii[11,11] := {4, 24} tii[11,12] := {12} tii[11,13] := {22} tii[11,14] := {15} tii[11,15] := {21} tii[11,16] := {3, 20} tii[11,17] := {10} tii[11,18] := {19} tii[11,19] := {11} tii[11,20] := {18} tii[11,21] := {8} cell#178 , |C| = 8 special orbit = [2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [1, 1, 1, 1, 1, 1]] , dim = 7 cell rep = phi[[1, 1, 1, 1, 1, 1, 1],[]]+phi[[1],[1, 1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = X^2+6*X TII subcells: tii[2,1] := {0, 7} tii[2,2] := {1} tii[2,3] := {6} tii[2,4] := {2} tii[2,5] := {5} tii[2,6] := {3} tii[2,7] := {4}