TII subcells for the Sp(5,2) x SO(8,7) block of Sp14 # cell#0 , |C| = 126 special orbit = [5, 5, 1, 1, 1, 1] special rep = [[2], [3, 1, 1]] , dim = 126 cell rep = phi[[2],[3, 1, 1]] TII depth = 6 TII multiplicity polynomial = 126*X TII subcells: tii[19,1] := {56} tii[19,2] := {27} tii[19,3] := {0} tii[19,4] := {77} tii[19,5] := {87} tii[19,6] := {35} tii[19,7] := {109} tii[19,8] := {17} tii[19,9] := {97} tii[19,10] := {79} tii[19,11] := {28} tii[19,12] := {102} tii[19,13] := {53} tii[19,14] := {1} tii[19,15] := {47} tii[19,16] := {72} tii[19,17] := {25} tii[19,18] := {6} tii[19,19] := {96} tii[19,20] := {105} tii[19,21] := {57} tii[19,22] := {119} tii[19,23] := {37} tii[19,24] := {111} tii[19,25] := {98} tii[19,26] := {113} tii[19,27] := {34} tii[19,28] := {115} tii[19,29] := {74} tii[19,30] := {124} tii[19,31] := {13} tii[19,32] := {106} tii[19,33] := {59} tii[19,34] := {86} tii[19,35] := {82} tii[19,36] := {120} tii[19,37] := {32} tii[19,38] := {125} tii[19,39] := {14} tii[19,40] := {121} tii[19,41] := {112} tii[19,42] := {30} tii[19,43] := {123} tii[19,44] := {94} tii[19,45] := {5} tii[19,46] := {99} tii[19,47] := {48} tii[19,48] := {73} tii[19,49] := {116} tii[19,50] := {75} tii[19,51] := {26} tii[19,52] := {122} tii[19,53] := {52} tii[19,54] := {9} tii[19,55] := {70} tii[19,56] := {93} tii[19,57] := {45} tii[19,58] := {108} tii[19,59] := {23} tii[19,60] := {12} tii[19,61] := {29} tii[19,62] := {8} tii[19,63] := {36} tii[19,64] := {68} tii[19,65] := {20} tii[19,66] := {21} tii[19,67] := {91} tii[19,68] := {46} tii[19,69] := {4} tii[19,70] := {24} tii[19,71] := {71} tii[19,72] := {49} tii[19,73] := {58} tii[19,74] := {100} tii[19,75] := {117} tii[19,76] := {40} tii[19,77] := {41} tii[19,78] := {88} tii[19,79] := {60} tii[19,80] := {66} tii[19,81] := {67} tii[19,82] := {19} tii[19,83] := {110} tii[19,84] := {83} tii[19,85] := {33} tii[19,86] := {118} tii[19,87] := {18} tii[19,88] := {62} tii[19,89] := {69} tii[19,90] := {7} tii[19,91] := {44} tii[19,92] := {92} tii[19,93] := {22} tii[19,94] := {107} tii[19,95] := {50} tii[19,96] := {89} tii[19,97] := {78} tii[19,98] := {64} tii[19,99] := {63} tii[19,100] := {81} tii[19,101] := {85} tii[19,102] := {39} tii[19,103] := {104} tii[19,104] := {54} tii[19,105] := {38} tii[19,106] := {84} tii[19,107] := {80} tii[19,108] := {95} tii[19,109] := {15} tii[19,110] := {103} tii[19,111] := {55} tii[19,112] := {65} tii[19,113] := {61} tii[19,114] := {114} tii[19,115] := {31} tii[19,116] := {16} tii[19,117] := {101} tii[19,118] := {10} tii[19,119] := {51} tii[19,120] := {90} tii[19,121] := {2} tii[19,122] := {43} tii[19,123] := {3} tii[19,124] := {76} tii[19,125] := {42} tii[19,126] := {11} cell#1 , |C| = 154 special orbit = [4, 4, 1, 1, 1, 1, 1, 1] special rep = [[2], [2, 1, 1, 1]] , dim = 84 cell rep = phi[[2],[2, 1, 1, 1]]+phi[[1],[3, 1, 1, 1]] TII depth = 4 TII multiplicity polynomial = 70*X^2+14*X TII subcells: tii[14,1] := {93} tii[14,2] := {53, 105} tii[14,3] := {38, 129} tii[14,4] := {113} tii[14,5] := {94} tii[14,6] := {35, 118} tii[14,7] := {69, 122} tii[14,8] := {20, 142} tii[14,9] := {55, 106} tii[14,10] := {79, 82} tii[14,11] := {33, 130} tii[14,12] := {21, 145} tii[14,13] := {132} tii[14,14] := {115} tii[14,15] := {19, 135} tii[14,16] := {88, 139} tii[14,17] := {6, 152} tii[14,18] := {95} tii[14,19] := {36, 117} tii[14,20] := {56, 90} tii[14,21] := {70, 123} tii[14,22] := {18, 141} tii[14,23] := {47, 136} tii[14,24] := {7, 150} tii[14,25] := {54, 107} tii[14,26] := {78, 83} tii[14,27] := {34, 131} tii[14,28] := {61, 98} tii[14,29] := {17, 146} tii[14,30] := {9, 153} tii[14,31] := {147} tii[14,32] := {134} tii[14,33] := {15, 119} tii[14,34] := {111, 151} tii[14,35] := {0, 143} tii[14,36] := {116} tii[14,37] := {28, 97} tii[14,38] := {46, 72} tii[14,39] := {89, 140} tii[14,40] := {14, 125} tii[14,41] := {67, 149} tii[14,42] := {1, 138} tii[14,43] := {96} tii[14,44] := {45, 84} tii[14,45] := {71, 124} tii[14,46] := {62, 66} tii[14,47] := {27, 110} tii[14,48] := {42, 85} tii[14,49] := {48, 137} tii[14,50] := {13, 128} tii[14,51] := {30, 148} tii[14,52] := {3, 144} tii[14,53] := {63, 64} tii[14,54] := {43, 87} tii[14,55] := {44, 86} tii[14,56] := {25, 109} tii[14,57] := {26, 108} tii[14,58] := {11, 127} tii[14,59] := {12, 126} tii[14,60] := {5, 103} tii[14,61] := {73} tii[14,62] := {58, 59} tii[14,63] := {76} tii[14,64] := {40, 81} tii[14,65] := {50, 102} tii[14,66] := {39, 80} tii[14,67] := {75} tii[14,68] := {22, 91} tii[14,69] := {52, 101} tii[14,70] := {57, 60} tii[14,71] := {31, 121} tii[14,72] := {23, 99} tii[14,73] := {74} tii[14,74] := {8, 112} tii[14,75] := {51, 100} tii[14,76] := {32, 120} tii[14,77] := {37, 68} tii[14,78] := {41, 77} tii[14,79] := {16, 133} tii[14,80] := {10, 114} tii[14,81] := {2, 92} tii[14,82] := {29, 49} tii[14,83] := {24, 65} tii[14,84] := {4, 104} cell#2 , |C| = 105 special orbit = [3, 3, 3, 3, 1, 1] special rep = [[1, 1], [2, 2, 1]] , dim = 105 cell rep = phi[[1, 1],[2, 2, 1]] TII depth = 4 TII multiplicity polynomial = 105*X TII subcells: tii[9,1] := {49} tii[9,2] := {45} tii[9,3] := {70} tii[9,4] := {66} tii[9,5] := {84} tii[9,6] := {91} tii[9,7] := {63} tii[9,8] := {89} tii[9,9] := {86} tii[9,10] := {93} tii[9,11] := {78} tii[9,12] := {102} tii[9,13] := {83} tii[9,14] := {97} tii[9,15] := {92} tii[9,16] := {77} tii[9,17] := {101} tii[9,18] := {103} tii[9,19] := {31} tii[9,20] := {7} tii[9,21] := {16} tii[9,22] := {18} tii[9,23] := {36} tii[9,24] := {10} tii[9,25] := {79} tii[9,26] := {67} tii[9,27] := {13} tii[9,28] := {73} tii[9,29] := {26} tii[9,30] := {17} tii[9,31] := {29} tii[9,32] := {62} tii[9,33] := {82} tii[9,34] := {56} tii[9,35] := {35} tii[9,36] := {53} tii[9,37] := {60} tii[9,38] := {96} tii[9,39] := {20} tii[9,40] := {55} tii[9,41] := {72} tii[9,42] := {39} tii[9,43] := {61} tii[9,44] := {33} tii[9,45] := {42} tii[9,46] := {85} tii[9,47] := {94} tii[9,48] := {30} tii[9,49] := {23} tii[9,50] := {41} tii[9,51] := {27} tii[9,52] := {81} tii[9,53] := {46} tii[9,54] := {51} tii[9,55] := {75} tii[9,56] := {76} tii[9,57] := {71} tii[9,58] := {34} tii[9,59] := {57} tii[9,60] := {88} tii[9,61] := {80} tii[9,62] := {43} tii[9,63] := {90} tii[9,64] := {50} tii[9,65] := {59} tii[9,66] := {69} tii[9,67] := {95} tii[9,68] := {99} tii[9,69] := {65} tii[9,70] := {98} tii[9,71] := {47} tii[9,72] := {104} tii[9,73] := {68} tii[9,74] := {64} tii[9,75] := {3} tii[9,76] := {8} tii[9,77] := {1} tii[9,78] := {4} tii[9,79] := {9} tii[9,80] := {44} tii[9,81] := {2} tii[9,82] := {37} tii[9,83] := {38} tii[9,84] := {21} tii[9,85] := {54} tii[9,86] := {5} tii[9,87] := {24} tii[9,88] := {25} tii[9,89] := {14} tii[9,90] := {28} tii[9,91] := {74} tii[9,92] := {6} tii[9,93] := {52} tii[9,94] := {11} tii[9,95] := {40} tii[9,96] := {48} tii[9,97] := {87} tii[9,98] := {100} tii[9,99] := {19} tii[9,100] := {12} tii[9,101] := {58} tii[9,102] := {22} tii[9,103] := {32} tii[9,104] := {0} tii[9,105] := {15} cell#3 , |C| = 35 special orbit = [3, 3, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [2, 1, 1, 1, 1]] , dim = 35 cell rep = phi[[1],[2, 1, 1, 1, 1]] TII depth = 5 TII multiplicity polynomial = 35*X TII subcells: tii[6,1] := {26} tii[6,2] := {33} tii[6,3] := {21} tii[6,4] := {16} tii[6,5] := {28} tii[6,6] := {32} tii[6,7] := {17} tii[6,8] := {13} tii[6,9] := {22} tii[6,10] := {9} tii[6,11] := {27} tii[6,12] := {31} tii[6,13] := {14} tii[6,14] := {10} tii[6,15] := {19} tii[6,16] := {7} tii[6,17] := {25} tii[6,18] := {4} tii[6,19] := {30} tii[6,20] := {34} tii[6,21] := {11} tii[6,22] := {8} tii[6,23] := {15} tii[6,24] := {5} tii[6,25] := {18} tii[6,26] := {3} tii[6,27] := {24} tii[6,28] := {1} tii[6,29] := {29} tii[6,30] := {23} tii[6,31] := {20} tii[6,32] := {12} tii[6,33] := {6} tii[6,34] := {2} tii[6,35] := {0} cell#4 , |C| = 147 special orbit = [3, 3, 2, 2, 1, 1, 1, 1] special rep = [[1, 1], [2, 1, 1, 1]] , dim = 84 cell rep = phi[[1, 1],[2, 1, 1, 1]]+phi[[1],[2, 2, 1, 1]] TII depth = 3 TII multiplicity polynomial = 63*X^2+21*X TII subcells: tii[7,1] := {33} tii[7,2] := {59} tii[7,3] := {29, 81} tii[7,4] := {63, 69} tii[7,5] := {86} tii[7,6] := {50, 114} tii[7,7] := {88} tii[7,8] := {55, 102} tii[7,9] := {92, 96} tii[7,10] := {84, 121} tii[7,11] := {108} tii[7,12] := {47, 140} tii[7,13] := {79, 131} tii[7,14] := {99, 112} tii[7,15] := {97, 123} tii[7,16] := {120} tii[7,17] := {101, 139} tii[7,18] := {73, 144} tii[7,19] := {58} tii[7,20] := {80, 87} tii[7,21] := {66, 117} tii[7,22] := {85} tii[7,23] := {105, 107} tii[7,24] := {78, 128} tii[7,25] := {51, 113} tii[7,26] := {74, 130} tii[7,27] := {67, 136} tii[7,28] := {83, 119} tii[7,29] := {104} tii[7,30] := {100, 111} tii[7,31] := {46, 138} tii[7,32] := {77, 127} tii[7,33] := {72, 91} tii[7,34] := {44, 135} tii[7,35] := {39, 143} tii[7,36] := {20, 145} tii[7,37] := {82} tii[7,38] := {45, 110} tii[7,39] := {23, 122} tii[7,40] := {10, 133} tii[7,41] := {3} tii[7,42] := {9} tii[7,43] := {5} tii[7,44] := {14, 54} tii[7,45] := {17} tii[7,46] := {37, 40} tii[7,47] := {7, 42} tii[7,48] := {21, 65} tii[7,49] := {13} tii[7,50] := {53, 106} tii[7,51] := {16, 71} tii[7,52] := {36} tii[7,53] := {25, 129} tii[7,54] := {76, 90} tii[7,55] := {31, 95} tii[7,56] := {70, 109} tii[7,57] := {15, 116} tii[7,58] := {41, 125} tii[7,59] := {28} tii[7,60] := {52, 103} tii[7,61] := {34, 98} tii[7,62] := {61} tii[7,63] := {75, 89} tii[7,64] := {24, 126} tii[7,65] := {30, 132} tii[7,66] := {43, 62} tii[7,67] := {19, 134} tii[7,68] := {57, 118} tii[7,69] := {8, 141} tii[7,70] := {49, 137} tii[7,71] := {26, 38} tii[7,72] := {2, 146} tii[7,73] := {12} tii[7,74] := {60, 68} tii[7,75] := {35} tii[7,76] := {56, 115} tii[7,77] := {32, 94} tii[7,78] := {48, 64} tii[7,79] := {27, 124} tii[7,80] := {4, 142} tii[7,81] := {0} tii[7,82] := {1, 22} tii[7,83] := {6, 93} tii[7,84] := {11, 18} cell#5 , |C| = 35 special orbit = [3, 3, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [2, 1, 1, 1, 1]] , dim = 35 cell rep = phi[[1],[2, 1, 1, 1, 1]] TII depth = 5 TII multiplicity polynomial = 35*X TII subcells: tii[6,1] := {16} tii[6,2] := {9} tii[6,3] := {21} tii[6,4] := {30} tii[6,5] := {14} tii[6,6] := {10} tii[6,7] := {26} tii[6,8] := {33} tii[6,9] := {19} tii[6,10] := {34} tii[6,11] := {13} tii[6,12] := {12} tii[6,13] := {20} tii[6,14] := {29} tii[6,15] := {15} tii[6,16] := {31} tii[6,17] := {6} tii[6,18] := {28} tii[6,19] := {5} tii[6,20] := {3} tii[6,21] := {17} tii[6,22] := {24} tii[6,23] := {7} tii[6,24] := {27} tii[6,25] := {4} tii[6,26] := {22} tii[6,27] := {2} tii[6,28] := {18} tii[6,29] := {1} tii[6,30] := {0} tii[6,31] := {11} tii[6,32] := {25} tii[6,33] := {32} tii[6,34] := {23} tii[6,35] := {8} cell#6 , |C| = 35 special orbit = [2, 2, 2, 2, 1, 1, 1, 1, 1, 1] special rep = [[1, 1], [1, 1, 1, 1, 1]] , dim = 21 cell rep = phi[[1, 1],[1, 1, 1, 1, 1]]+phi[[],[2, 2, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 14*X^2+7*X TII subcells: tii[3,1] := {12} tii[3,2] := {16} tii[3,3] := {11, 21} tii[3,4] := {20} tii[3,5] := {15, 25} tii[3,6] := {10, 27} tii[3,7] := {22} tii[3,8] := {18, 28} tii[3,9] := {13, 31} tii[3,10] := {8, 33} tii[3,11] := {19} tii[3,12] := {14, 24} tii[3,13] := {9, 26} tii[3,14] := {3, 29} tii[3,15] := {1, 32} tii[3,16] := {2} tii[3,17] := {7} tii[3,18] := {6, 17} tii[3,19] := {5, 23} tii[3,20] := {4, 30} tii[3,21] := {0, 34} cell#7 , |C| = 13 special orbit = [2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [1, 1, 1, 1, 1, 1]] , dim = 7 cell rep = phi[[1],[1, 1, 1, 1, 1, 1]]+phi[[],[2, 1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 6*X^2+X TII subcells: tii[2,1] := {7} tii[2,2] := {5, 9} tii[2,3] := {4, 11} tii[2,4] := {3, 12} tii[2,5] := {2, 10} tii[2,6] := {1, 8} tii[2,7] := {0, 6} cell#8 , |C| = 1 special orbit = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [1, 1, 1, 1, 1, 1, 1]] , dim = 1 cell rep = phi[[],[1, 1, 1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = X TII subcells: tii[1,1] := {0}