TII subcells for the PSp(16,R) x Spin(14,3) block of PSp16 # cell#0 , |C| = 1 special orbit = [16] special rep = [[8], []] , dim = 1 cell rep = phi[[8],[]] TII depth = 1 TII multiplicity polynomial = X TII subcells: tii[60,1] := {0} cell#1 , |C| = 15 special orbit = [14, 2] special rep = [[7], [1]] , dim = 8 cell rep = phi[[7, 1],[]]+phi[[7],[1]] TII depth = 1 TII multiplicity polynomial = 7*X^2+X TII subcells: tii[59,1] := {1, 9} tii[59,2] := {0, 6} tii[59,3] := {2, 3} tii[59,4] := {4, 5} tii[59,5] := {7, 8} tii[59,6] := {10, 11} tii[59,7] := {12, 13} tii[59,8] := {14} cell#2 , |C| = 15 special orbit = [14, 2] special rep = [[7], [1]] , dim = 8 cell rep = phi[[7, 1],[]]+phi[[7],[1]] TII depth = 1 TII multiplicity polynomial = 7*X^2+X TII subcells: tii[59,1] := {0, 14} tii[59,2] := {1, 13} tii[59,3] := {2, 12} tii[59,4] := {3, 11} tii[59,5] := {4, 10} tii[59,6] := {5, 9} tii[59,7] := {6, 8} tii[59,8] := {7} cell#3 , |C| = 48 special orbit = [12, 2, 2] special rep = [[6, 1], [1]] , dim = 48 cell rep = phi[[6, 1],[1]] TII depth = 6 TII multiplicity polynomial = 48*X TII subcells: tii[57,1] := {5} tii[57,2] := {15} tii[57,3] := {28} tii[57,4] := {38} tii[57,5] := {44} tii[57,6] := {47} tii[57,7] := {0} tii[57,8] := {1} tii[57,9] := {2} tii[57,10] := {3} tii[57,11] := {4} tii[57,12] := {7} tii[57,13] := {8} tii[57,14] := {11} tii[57,15] := {12} tii[57,16] := {17} tii[57,17] := {18} tii[57,18] := {23} tii[57,19] := {6} tii[57,20] := {10} tii[57,21] := {9} tii[57,22] := {14} tii[57,23] := {13} tii[57,24] := {20} tii[57,25] := {19} tii[57,26] := {25} tii[57,27] := {24} tii[57,28] := {30} tii[57,29] := {16} tii[57,30] := {22} tii[57,31] := {21} tii[57,32] := {27} tii[57,33] := {26} tii[57,34] := {32} tii[57,35] := {31} tii[57,36] := {35} tii[57,37] := {29} tii[57,38] := {34} tii[57,39] := {33} tii[57,40] := {37} tii[57,41] := {36} tii[57,42] := {40} tii[57,43] := {39} tii[57,44] := {42} tii[57,45] := {41} tii[57,46] := {43} tii[57,47] := {45} tii[57,48] := {46} cell#4 , |C| = 36 special orbit = [12, 4] special rep = [[6], [2]] , dim = 28 cell rep = phi[[6],[2]]+phi[[1],[7]] TII depth = 1 TII multiplicity polynomial = 20*X+8*X^2 TII subcells: tii[58,1] := {2} tii[58,2] := {7} tii[58,3] := {15} tii[58,4] := {23} tii[58,5] := {29} tii[58,6] := {32, 33} tii[58,7] := {34, 35} tii[58,8] := {0} tii[58,9] := {1} tii[58,10] := {3} tii[58,11] := {5} tii[58,12] := {8} tii[58,13] := {11, 12} tii[58,14] := {4} tii[58,15] := {6} tii[58,16] := {9} tii[58,17] := {13} tii[58,18] := {16, 17} tii[58,19] := {10} tii[58,20] := {14} tii[58,21] := {18} tii[58,22] := {20, 21} tii[58,23] := {19} tii[58,24] := {22} tii[58,25] := {24, 25} tii[58,26] := {26} tii[58,27] := {27, 28} tii[58,28] := {30, 31} cell#5 , |C| = 48 special orbit = [12, 2, 2] special rep = [[6, 1], [1]] , dim = 48 cell rep = phi[[6, 1],[1]] TII depth = 6 TII multiplicity polynomial = 48*X TII subcells: tii[57,1] := {47} tii[57,2] := {46} tii[57,3] := {45} tii[57,4] := {44} tii[57,5] := {43} tii[57,6] := {42} tii[57,7] := {0} tii[57,8] := {41} tii[57,9] := {1} tii[57,10] := {35} tii[57,11] := {2} tii[57,12] := {29} tii[57,13] := {4} tii[57,14] := {24} tii[57,15] := {6} tii[57,16] := {19} tii[57,17] := {9} tii[57,18] := {14} tii[57,19] := {3} tii[57,20] := {5} tii[57,21] := {40} tii[57,22] := {7} tii[57,23] := {34} tii[57,24] := {10} tii[57,25] := {28} tii[57,26] := {12} tii[57,27] := {23} tii[57,28] := {18} tii[57,29] := {8} tii[57,30] := {11} tii[57,31] := {39} tii[57,32] := {13} tii[57,33] := {33} tii[57,34] := {16} tii[57,35] := {27} tii[57,36] := {22} tii[57,37] := {15} tii[57,38] := {17} tii[57,39] := {38} tii[57,40] := {20} tii[57,41] := {32} tii[57,42] := {26} tii[57,43] := {21} tii[57,44] := {25} tii[57,45] := {37} tii[57,46] := {31} tii[57,47] := {30} tii[57,48] := {36} cell#6 , |C| = 48 special orbit = [12, 2, 2] special rep = [[6, 1], [1]] , dim = 48 cell rep = phi[[6, 1],[1]] TII depth = 6 TII multiplicity polynomial = 48*X TII subcells: tii[57,1] := {26} tii[57,2] := {7} tii[57,3] := {24} tii[57,4] := {38} tii[57,5] := {44} tii[57,6] := {47} tii[57,7] := {4} tii[57,8] := {17} tii[57,9] := {3} tii[57,10] := {9} tii[57,11] := {10} tii[57,12] := {15} tii[57,13] := {16} tii[57,14] := {22} tii[57,15] := {23} tii[57,16] := {30} tii[57,17] := {31} tii[57,18] := {35} tii[57,19] := {0} tii[57,20] := {2} tii[57,21] := {1} tii[57,22] := {6} tii[57,23] := {5} tii[57,24] := {12} tii[57,25] := {11} tii[57,26] := {19} tii[57,27] := {18} tii[57,28] := {27} tii[57,29] := {8} tii[57,30] := {14} tii[57,31] := {13} tii[57,32] := {21} tii[57,33] := {20} tii[57,34] := {29} tii[57,35] := {28} tii[57,36] := {34} tii[57,37] := {25} tii[57,38] := {33} tii[57,39] := {32} tii[57,40] := {37} tii[57,41] := {36} tii[57,42] := {40} tii[57,43] := {39} tii[57,44] := {42} tii[57,45] := {41} tii[57,46] := {43} tii[57,47] := {45} tii[57,48] := {46} cell#7 , |C| = 49 special orbit = [12, 2, 1, 1] special rep = [[6], [1, 1]] , dim = 28 cell rep = phi[[6, 1, 1],[]]+phi[[6],[1, 1]] TII depth = 1 TII multiplicity polynomial = 21*X^2+7*X TII subcells: tii[56,1] := {1, 48} tii[56,2] := {3, 47} tii[56,3] := {6, 46} tii[56,4] := {9, 37} tii[56,5] := {12, 32} tii[56,6] := {15, 26} tii[56,7] := {21} tii[56,8] := {0, 45} tii[56,9] := {2, 39} tii[56,10] := {4, 33} tii[56,11] := {7, 27} tii[56,12] := {10, 22} tii[56,13] := {17} tii[56,14] := {5, 44} tii[56,15] := {8, 38} tii[56,16] := {11, 31} tii[56,17] := {14, 25} tii[56,18] := {20} tii[56,19] := {13, 43} tii[56,20] := {16, 36} tii[56,21] := {18, 30} tii[56,22] := {24} tii[56,23] := {19, 42} tii[56,24] := {23, 35} tii[56,25] := {29} tii[56,26] := {28, 41} tii[56,27] := {34} tii[56,28] := {40} cell#8 , |C| = 168 special orbit = [10, 4, 2] special rep = [[5, 1], [2]] , dim = 140 cell rep = phi[[5, 1],[2]]+phi[[1, 1],[6]] TII depth = 5 TII multiplicity polynomial = 112*X+28*X^2 TII subcells: tii[54,1] := {43} tii[54,2] := {95} tii[54,3] := {137} tii[54,4] := {159} tii[54,5] := {166, 167} tii[54,6] := {3} tii[54,7] := {18} tii[54,8] := {12} tii[54,9] := {49} tii[54,10] := {39} tii[54,11] := {72} tii[54,12] := {84} tii[54,13] := {105} tii[54,14] := {113, 114} tii[54,15] := {130, 131} tii[54,16] := {9} tii[54,17] := {26} tii[54,18] := {6} tii[54,19] := {33} tii[54,20] := {68} tii[54,21] := {14} tii[54,22] := {15} tii[54,23] := {58} tii[54,24] := {103} tii[54,25] := {91} tii[54,26] := {24} tii[54,27] := {25} tii[54,28] := {121} tii[54,29] := {37} tii[54,30] := {38} tii[54,31] := {126, 127} tii[54,32] := {53} tii[54,33] := {143, 144} tii[54,34] := {51} tii[54,35] := {78} tii[54,36] := {44} tii[54,37] := {87} tii[54,38] := {119} tii[54,39] := {61} tii[54,40] := {60} tii[54,41] := {109} tii[54,42] := {135} tii[54,43] := {77} tii[54,44] := {76} tii[54,45] := {139, 140} tii[54,46] := {90} tii[54,47] := {152, 153} tii[54,48] := {106} tii[54,49] := {124} tii[54,50] := {96} tii[54,51] := {134} tii[54,52] := {112} tii[54,53] := {111} tii[54,54] := {146} tii[54,55] := {148, 149} tii[54,56] := {123} tii[54,57] := {157, 158} tii[54,58] := {145} tii[54,59] := {154} tii[54,60] := {138} tii[54,61] := {155, 156} tii[54,62] := {147} tii[54,63] := {162, 163} tii[54,64] := {160, 161} tii[54,65] := {164, 165} tii[54,66] := {0} tii[54,67] := {2} tii[54,68] := {7} tii[54,69] := {16} tii[54,70] := {28, 29} tii[54,71] := {1} tii[54,72] := {5} tii[54,73] := {4} tii[54,74] := {8} tii[54,75] := {11} tii[54,76] := {10} tii[54,77] := {17} tii[54,78] := {21} tii[54,79] := {20} tii[54,80] := {30} tii[54,81] := {34} tii[54,82] := {45, 46} tii[54,83] := {13} tii[54,84] := {23} tii[54,85] := {22} tii[54,86] := {31} tii[54,87] := {36} tii[54,88] := {35} tii[54,89] := {47} tii[54,90] := {52} tii[54,91] := {62, 63} tii[54,92] := {40} tii[54,93] := {55} tii[54,94] := {54} tii[54,95] := {66} tii[54,96] := {70} tii[54,97] := {80, 81} tii[54,98] := {73} tii[54,99] := {97, 98} tii[54,100] := {88} tii[54,101] := {19} tii[54,102] := {32} tii[54,103] := {48} tii[54,104] := {64, 65} tii[54,105] := {27} tii[54,106] := {50} tii[54,107] := {42} tii[54,108] := {41} tii[54,109] := {67} tii[54,110] := {57} tii[54,111] := {56} tii[54,112] := {82, 83} tii[54,113] := {71} tii[54,114] := {59} tii[54,115] := {75} tii[54,116] := {74} tii[54,117] := {85} tii[54,118] := {89} tii[54,119] := {99, 100} tii[54,120] := {92} tii[54,121] := {115, 116} tii[54,122] := {107} tii[54,123] := {69} tii[54,124] := {86} tii[54,125] := {101, 102} tii[54,126] := {79} tii[54,127] := {104} tii[54,128] := {94} tii[54,129] := {93} tii[54,130] := {108} tii[54,131] := {117, 118} tii[54,132] := {110} tii[54,133] := {128, 129} tii[54,134] := {122} tii[54,135] := {120} tii[54,136] := {132, 133} tii[54,137] := {125} tii[54,138] := {141, 142} tii[54,139] := {136} tii[54,140] := {150, 151} cell#9 , |C| = 260 special orbit = [10, 2, 2, 2] special rep = [[5, 1], [1, 1]] , dim = 140 cell rep = phi[[5, 1, 1],[1]]+phi[[5, 1],[1, 1]] TII depth = 5 TII multiplicity polynomial = 120*X^2+20*X TII subcells: tii[52,1] := {6, 214} tii[52,2] := {24, 211} tii[52,3] := {56, 207} tii[52,4] := {99, 202} tii[52,5] := {138, 199} tii[52,6] := {14, 222} tii[52,7] := {41, 235} tii[52,8] := {18, 195} tii[52,9] := {79, 232} tii[52,10] := {32, 187} tii[52,11] := {127, 228} tii[52,12] := {47, 153} tii[52,13] := {170, 225} tii[52,14] := {64, 123} tii[52,15] := {93} tii[52,16] := {60, 240} tii[52,17] := {105, 247} tii[52,18] := {71, 221} tii[52,19] := {157, 244} tii[52,20] := {90, 213} tii[52,21] := {200, 243} tii[52,22] := {111, 181} tii[52,23] := {145} tii[52,24] := {131, 251} tii[52,25] := {189, 254} tii[52,26] := {139, 239} tii[52,27] := {226, 253} tii[52,28] := {169, 234} tii[52,29] := {205} tii[52,30] := {216, 257} tii[52,31] := {242, 258} tii[52,32] := {223, 250} tii[52,33] := {246} tii[52,34] := {252, 259} tii[52,35] := {256} tii[52,36] := {0, 3} tii[52,37] := {1, 188} tii[52,38] := {2, 9} tii[52,39] := {4, 155} tii[52,40] := {5, 17} tii[52,41] := {10, 126} tii[52,42] := {11, 29} tii[52,43] := {20, 97} tii[52,44] := {21, 44} tii[52,45] := {34, 70} tii[52,46] := {7, 19} tii[52,47] := {8, 165} tii[52,48] := {16, 156} tii[52,49] := {13, 31} tii[52,50] := {12, 186} tii[52,51] := {28, 125} tii[52,52] := {23, 46} tii[52,53] := {22, 152} tii[52,54] := {43, 96} tii[52,55] := {36, 63} tii[52,56] := {35, 122} tii[52,57] := {69} tii[52,58] := {51, 92} tii[52,59] := {25, 48} tii[52,60] := {30, 164} tii[52,61] := {38, 66} tii[52,62] := {45, 154} tii[52,63] := {37, 183} tii[52,64] := {62, 121} tii[52,65] := {53, 84} tii[52,66] := {52, 148} tii[52,67] := {91} tii[52,68] := {73, 117} tii[52,69] := {57, 87} tii[52,70] := {65, 163} tii[52,71] := {76, 108} tii[52,72] := {83, 151} tii[52,73] := {75, 179} tii[52,74] := {116} tii[52,75] := {95, 142} tii[52,76] := {100, 133} tii[52,77] := {107, 162} tii[52,78] := {146} tii[52,79] := {115, 173} tii[52,80] := {161} tii[52,81] := {15, 33} tii[52,82] := {26, 215} tii[52,83] := {27, 50} tii[52,84] := {39, 184} tii[52,85] := {40, 68} tii[52,86] := {54, 150} tii[52,87] := {55, 86} tii[52,88] := {74, 119} tii[52,89] := {42, 72} tii[52,90] := {49, 194} tii[52,91] := {59, 89} tii[52,92] := {58, 212} tii[52,93] := {67, 185} tii[52,94] := {77, 180} tii[52,95] := {78, 110} tii[52,96] := {85, 149} tii[52,97] := {98, 144} tii[52,98] := {118} tii[52,99] := {80, 112} tii[52,100] := {88, 193} tii[52,101] := {102, 135} tii[52,102] := {109, 182} tii[52,103] := {101, 208} tii[52,104] := {143} tii[52,105] := {120, 174} tii[52,106] := {128, 166} tii[52,107] := {134, 192} tii[52,108] := {177} tii[52,109] := {141, 203} tii[52,110] := {191} tii[52,111] := {61, 94} tii[52,112] := {81, 236} tii[52,113] := {82, 114} tii[52,114] := {103, 209} tii[52,115] := {104, 137} tii[52,116] := {124, 176} tii[52,117] := {106, 140} tii[52,118] := {113, 220} tii[52,119] := {130, 168} tii[52,120] := {129, 233} tii[52,121] := {136, 210} tii[52,122] := {147, 204} tii[52,123] := {175} tii[52,124] := {158, 196} tii[52,125] := {167, 219} tii[52,126] := {206} tii[52,127] := {172, 229} tii[52,128] := {218} tii[52,129] := {132, 171} tii[52,130] := {159, 248} tii[52,131] := {160, 198} tii[52,132] := {178, 230} tii[52,133] := {190, 224} tii[52,134] := {197, 238} tii[52,135] := {201, 245} tii[52,136] := {231} tii[52,137] := {237} tii[52,138] := {217, 241} tii[52,139] := {227, 255} tii[52,140] := {249} cell#10 , |C| = 35 special orbit = [12, 2, 1, 1] special rep = [[6], [1, 1]] , dim = 28 cell rep = phi[[6],[1, 1]]+phi[[],[7, 1]] TII depth = 1 TII multiplicity polynomial = 21*X+7*X^2 TII subcells: tii[56,1] := {2} tii[56,2] := {10} tii[56,3] := {15} tii[56,4] := {21} tii[56,5] := {26} tii[56,6] := {30} tii[56,7] := {33, 34} tii[56,8] := {7} tii[56,9] := {14} tii[56,10] := {20} tii[56,11] := {25} tii[56,12] := {29} tii[56,13] := {31, 32} tii[56,14] := {6} tii[56,15] := {13} tii[56,16] := {19} tii[56,17] := {24} tii[56,18] := {27, 28} tii[56,19] := {5} tii[56,20] := {12} tii[56,21] := {18} tii[56,22] := {22, 23} tii[56,23] := {4} tii[56,24] := {11} tii[56,25] := {16, 17} tii[56,26] := {3} tii[56,27] := {8, 9} tii[56,28] := {0, 1} cell#11 , |C| = 77 special orbit = [10, 2, 1, 1, 1, 1] special rep = [[5], [1, 1, 1]] , dim = 56 cell rep = phi[[5],[1, 1, 1]]+phi[[],[6, 1, 1]] TII depth = 1 TII multiplicity polynomial = 35*X+21*X^2 TII subcells: tii[51,1] := {2} tii[51,2] := {10} tii[51,3] := {21} tii[51,4] := {37} tii[51,5] := {54} tii[51,6] := {74, 76} tii[51,7] := {6} tii[51,8] := {18} tii[51,9] := {33} tii[51,10] := {49} tii[51,11] := {63, 64} tii[51,12] := {5} tii[51,13] := {16} tii[51,14] := {30} tii[51,15] := {44, 45} tii[51,16] := {4} tii[51,17] := {14} tii[51,18] := {26, 27} tii[51,19] := {3} tii[51,20] := {11, 12} tii[51,21] := {0, 1} tii[51,22] := {9} tii[51,23] := {20} tii[51,24] := {36} tii[51,25] := {53} tii[51,26] := {72, 75} tii[51,27] := {17} tii[51,28] := {32} tii[51,29] := {48} tii[51,30] := {61, 62} tii[51,31] := {15} tii[51,32] := {29} tii[51,33] := {42, 43} tii[51,34] := {13} tii[51,35] := {24, 25} tii[51,36] := {7, 8} tii[51,37] := {19} tii[51,38] := {35} tii[51,39] := {52} tii[51,40] := {70, 73} tii[51,41] := {31} tii[51,42] := {47} tii[51,43] := {59, 60} tii[51,44] := {28} tii[51,45] := {40, 41} tii[51,46] := {22, 23} tii[51,47] := {34} tii[51,48] := {51} tii[51,49] := {68, 71} tii[51,50] := {46} tii[51,51] := {57, 58} tii[51,52] := {38, 39} tii[51,53] := {50} tii[51,54] := {66, 69} tii[51,55] := {55, 56} tii[51,56] := {65, 67}