TII subcells for the PSp(16,R) x Spin(15,2) block of PSp16 # cell#0 , |C| = 1 special orbit = [16] special rep = [[8], []] , dim = 1 cell rep = phi[[8],[]] TII depth = 1 TII multiplicity polynomial = X TII subcells: tii[60,1] := {0} cell#1 , |C| = 15 special orbit = [14, 2] special rep = [[7], [1]] , dim = 8 cell rep = phi[[7, 1],[]]+phi[[7],[1]] TII depth = 1 TII multiplicity polynomial = 7*X^2+X TII subcells: tii[59,1] := {0, 5} tii[59,2] := {1, 2} tii[59,3] := {3, 4} tii[59,4] := {6, 7} tii[59,5] := {8, 9} tii[59,6] := {10, 11} tii[59,7] := {12, 13} tii[59,8] := {14} cell#2 , |C| = 15 special orbit = [14, 2] special rep = [[7], [1]] , dim = 8 cell rep = phi[[7, 1],[]]+phi[[7],[1]] TII depth = 1 TII multiplicity polynomial = 7*X^2+X TII subcells: tii[59,1] := {0, 14} tii[59,2] := {1, 13} tii[59,3] := {2, 12} tii[59,4] := {3, 11} tii[59,5] := {4, 10} tii[59,6] := {5, 9} tii[59,7] := {6, 8} tii[59,8] := {7} cell#3 , |C| = 15 special orbit = [14, 2] special rep = [[7], [1]] , dim = 8 cell rep = phi[[7, 1],[]]+phi[[7],[1]] TII depth = 1 TII multiplicity polynomial = 7*X^2+X TII subcells: tii[59,1] := {0, 14} tii[59,2] := {1, 13} tii[59,3] := {2, 12} tii[59,4] := {3, 11} tii[59,5] := {4, 10} tii[59,6] := {5, 9} tii[59,7] := {6, 8} tii[59,8] := {7} cell#4 , |C| = 48 special orbit = [12, 2, 2] special rep = [[6, 1], [1]] , dim = 48 cell rep = phi[[6, 1],[1]] TII depth = 6 TII multiplicity polynomial = 48*X TII subcells: tii[57,1] := {5} tii[57,2] := {15} tii[57,3] := {28} tii[57,4] := {38} tii[57,5] := {44} tii[57,6] := {47} tii[57,7] := {0} tii[57,8] := {1} tii[57,9] := {2} tii[57,10] := {3} tii[57,11] := {4} tii[57,12] := {7} tii[57,13] := {8} tii[57,14] := {11} tii[57,15] := {12} tii[57,16] := {17} tii[57,17] := {18} tii[57,18] := {23} tii[57,19] := {6} tii[57,20] := {10} tii[57,21] := {9} tii[57,22] := {14} tii[57,23] := {13} tii[57,24] := {20} tii[57,25] := {19} tii[57,26] := {25} tii[57,27] := {24} tii[57,28] := {30} tii[57,29] := {16} tii[57,30] := {22} tii[57,31] := {21} tii[57,32] := {27} tii[57,33] := {26} tii[57,34] := {32} tii[57,35] := {31} tii[57,36] := {35} tii[57,37] := {29} tii[57,38] := {34} tii[57,39] := {33} tii[57,40] := {37} tii[57,41] := {36} tii[57,42] := {40} tii[57,43] := {39} tii[57,44] := {42} tii[57,45] := {41} tii[57,46] := {43} tii[57,47] := {45} tii[57,48] := {46} cell#5 , |C| = 49 special orbit = [12, 2, 1, 1] special rep = [[6], [1, 1]] , dim = 28 cell rep = phi[[6, 1, 1],[]]+phi[[6],[1, 1]] TII depth = 1 TII multiplicity polynomial = 21*X^2+7*X TII subcells: tii[56,1] := {0, 48} tii[56,2] := {1, 41} tii[56,3] := {2, 35} tii[56,4] := {4, 29} tii[56,5] := {6, 24} tii[56,6] := {9, 19} tii[56,7] := {14} tii[56,8] := {3, 47} tii[56,9] := {5, 40} tii[56,10] := {7, 34} tii[56,11] := {10, 28} tii[56,12] := {12, 23} tii[56,13] := {18} tii[56,14] := {8, 46} tii[56,15] := {11, 39} tii[56,16] := {13, 33} tii[56,17] := {16, 27} tii[56,18] := {22} tii[56,19] := {15, 45} tii[56,20] := {17, 38} tii[56,21] := {20, 32} tii[56,22] := {26} tii[56,23] := {21, 44} tii[56,24] := {25, 37} tii[56,25] := {31} tii[56,26] := {30, 43} tii[56,27] := {36} tii[56,28] := {42} cell#6 , |C| = 49 special orbit = [12, 2, 1, 1] special rep = [[6], [1, 1]] , dim = 28 cell rep = phi[[6, 1, 1],[]]+phi[[6],[1, 1]] TII depth = 1 TII multiplicity polynomial = 21*X^2+7*X TII subcells: tii[56,1] := {0, 48} tii[56,2] := {1, 41} tii[56,3] := {2, 35} tii[56,4] := {4, 29} tii[56,5] := {6, 24} tii[56,6] := {9, 19} tii[56,7] := {14} tii[56,8] := {3, 47} tii[56,9] := {5, 40} tii[56,10] := {7, 34} tii[56,11] := {10, 28} tii[56,12] := {12, 23} tii[56,13] := {18} tii[56,14] := {8, 46} tii[56,15] := {11, 39} tii[56,16] := {13, 33} tii[56,17] := {16, 27} tii[56,18] := {22} tii[56,19] := {15, 45} tii[56,20] := {17, 38} tii[56,21] := {20, 32} tii[56,22] := {26} tii[56,23] := {21, 44} tii[56,24] := {25, 37} tii[56,25] := {31} tii[56,26] := {30, 43} tii[56,27] := {36} tii[56,28] := {42}