TII subcells for the Sp(16,R) x SO(13,4) block of Sp16 # cell#0 , |C| = 1 special orbit = [16] special rep = [[8], []] , dim = 1 cell rep = phi[[8],[]] TII depth = 1 TII multiplicity polynomial = X TII subcells: tii[60,1] := {0} cell#1 , |C| = 1 special orbit = [16] special rep = [[8], []] , dim = 1 cell rep = phi[[8],[]] TII depth = 1 TII multiplicity polynomial = X TII subcells: tii[60,1] := {0} cell#2 , |C| = 15 special orbit = [14, 2] special rep = [[7], [1]] , dim = 8 cell rep = phi[[7, 1],[]]+phi[[7],[1]] TII depth = 1 TII multiplicity polynomial = 7*X^2+X TII subcells: tii[59,1] := {1, 14} tii[59,2] := {0, 13} tii[59,3] := {2, 12} tii[59,4] := {3, 11} tii[59,5] := {4, 10} tii[59,6] := {5, 9} tii[59,7] := {6, 8} tii[59,8] := {7} cell#3 , |C| = 15 special orbit = [14, 2] special rep = [[7], [1]] , dim = 8 cell rep = phi[[7, 1],[]]+phi[[7],[1]] TII depth = 1 TII multiplicity polynomial = 7*X^2+X TII subcells: tii[59,1] := {1, 13} tii[59,2] := {2, 10} tii[59,3] := {0, 7} tii[59,4] := {3, 4} tii[59,5] := {5, 6} tii[59,6] := {8, 9} tii[59,7] := {11, 12} tii[59,8] := {14} cell#4 , |C| = 48 special orbit = [12, 4] special rep = [[6], [2]] , dim = 28 cell rep = phi[[6, 2],[]]+phi[[6],[2]] TII depth = 1 TII multiplicity polynomial = 20*X^2+8*X TII subcells: tii[58,1] := {1, 15} tii[58,2] := {11, 12} tii[58,3] := {26, 27} tii[58,4] := {37, 38} tii[58,5] := {43, 44} tii[58,6] := {46} tii[58,7] := {47} tii[58,8] := {0, 8} tii[58,9] := {2, 3} tii[58,10] := {6, 7} tii[58,11] := {13, 14} tii[58,12] := {20, 21} tii[58,13] := {28} tii[58,14] := {4, 5} tii[58,15] := {9, 10} tii[58,16] := {16, 17} tii[58,17] := {22, 23} tii[58,18] := {29} tii[58,19] := {18, 19} tii[58,20] := {24, 25} tii[58,21] := {30, 31} tii[58,22] := {34} tii[58,23] := {32, 33} tii[58,24] := {35, 36} tii[58,25] := {39} tii[58,26] := {40, 41} tii[58,27] := {42} tii[58,28] := {45} cell#5 , |C| = 15 special orbit = [14, 2] special rep = [[7], [1]] , dim = 8 cell rep = phi[[7, 1],[]]+phi[[7],[1]] TII depth = 1 TII multiplicity polynomial = 7*X^2+X TII subcells: tii[59,1] := {1, 14} tii[59,2] := {0, 13} tii[59,3] := {2, 12} tii[59,4] := {3, 11} tii[59,5] := {4, 10} tii[59,6] := {5, 9} tii[59,7] := {6, 8} tii[59,8] := {7} cell#6 , |C| = 48 special orbit = [12, 4] special rep = [[6], [2]] , dim = 28 cell rep = phi[[6, 2],[]]+phi[[6],[2]] TII depth = 1 TII multiplicity polynomial = 20*X^2+8*X TII subcells: tii[58,1] := {2, 41} tii[58,2] := {7, 46} tii[58,3] := {14, 45} tii[58,4] := {20, 44} tii[58,5] := {29, 43} tii[58,6] := {42} tii[58,7] := {47} tii[58,8] := {0, 35} tii[58,9] := {1, 34} tii[58,10] := {3, 28} tii[58,11] := {5, 23} tii[58,12] := {8, 18} tii[58,13] := {13} tii[58,14] := {4, 40} tii[58,15] := {6, 33} tii[58,16] := {9, 27} tii[58,17] := {11, 22} tii[58,18] := {17} tii[58,19] := {10, 39} tii[58,20] := {12, 32} tii[58,21] := {15, 26} tii[58,22] := {21} tii[58,23] := {16, 38} tii[58,24] := {19, 31} tii[58,25] := {25} tii[58,26] := {24, 37} tii[58,27] := {30} tii[58,28] := {36} cell#7 , |C| = 48 special orbit = [12, 2, 2] special rep = [[6, 1], [1]] , dim = 48 cell rep = phi[[6, 1],[1]] TII depth = 6 TII multiplicity polynomial = 48*X TII subcells: tii[57,1] := {20} tii[57,2] := {9} tii[57,3] := {25} tii[57,4] := {38} tii[57,5] := {44} tii[57,6] := {47} tii[57,7] := {6} tii[57,8] := {13} tii[57,9] := {1} tii[57,10] := {4} tii[57,11] := {5} tii[57,12] := {11} tii[57,13] := {12} tii[57,14] := {18} tii[57,15] := {19} tii[57,16] := {27} tii[57,17] := {28} tii[57,18] := {34} tii[57,19] := {0} tii[57,20] := {3} tii[57,21] := {2} tii[57,22] := {8} tii[57,23] := {7} tii[57,24] := {15} tii[57,25] := {14} tii[57,26] := {22} tii[57,27] := {21} tii[57,28] := {29} tii[57,29] := {10} tii[57,30] := {17} tii[57,31] := {16} tii[57,32] := {24} tii[57,33] := {23} tii[57,34] := {31} tii[57,35] := {30} tii[57,36] := {35} tii[57,37] := {26} tii[57,38] := {33} tii[57,39] := {32} tii[57,40] := {37} tii[57,41] := {36} tii[57,42] := {40} tii[57,43] := {39} tii[57,44] := {42} tii[57,45] := {41} tii[57,46] := {43} tii[57,47] := {45} tii[57,48] := {46} cell#8 , |C| = 15 special orbit = [14, 2] special rep = [[7], [1]] , dim = 8 cell rep = phi[[7, 1],[]]+phi[[7],[1]] TII depth = 1 TII multiplicity polynomial = 7*X^2+X TII subcells: tii[59,1] := {1, 13} tii[59,2] := {2, 10} tii[59,3] := {0, 7} tii[59,4] := {3, 4} tii[59,5] := {5, 6} tii[59,6] := {8, 9} tii[59,7] := {11, 12} tii[59,8] := {14} cell#9 , |C| = 48 special orbit = [12, 4] special rep = [[6], [2]] , dim = 28 cell rep = phi[[6, 2],[]]+phi[[6],[2]] TII depth = 1 TII multiplicity polynomial = 20*X^2+8*X TII subcells: tii[58,1] := {1, 15} tii[58,2] := {11, 12} tii[58,3] := {26, 27} tii[58,4] := {37, 38} tii[58,5] := {43, 44} tii[58,6] := {46} tii[58,7] := {47} tii[58,8] := {0, 8} tii[58,9] := {2, 3} tii[58,10] := {6, 7} tii[58,11] := {13, 14} tii[58,12] := {20, 21} tii[58,13] := {28} tii[58,14] := {4, 5} tii[58,15] := {9, 10} tii[58,16] := {16, 17} tii[58,17] := {22, 23} tii[58,18] := {29} tii[58,19] := {18, 19} tii[58,20] := {24, 25} tii[58,21] := {30, 31} tii[58,22] := {34} tii[58,23] := {32, 33} tii[58,24] := {35, 36} tii[58,25] := {39} tii[58,26] := {40, 41} tii[58,27] := {42} tii[58,28] := {45} cell#10 , |C| = 48 special orbit = [12, 2, 2] special rep = [[6, 1], [1]] , dim = 48 cell rep = phi[[6, 1],[1]] TII depth = 6 TII multiplicity polynomial = 48*X TII subcells: tii[57,1] := {42} tii[57,2] := {47} tii[57,3] := {46} tii[57,4] := {45} tii[57,5] := {44} tii[57,6] := {43} tii[57,7] := {0} tii[57,8] := {36} tii[57,9] := {1} tii[57,10] := {35} tii[57,11] := {2} tii[57,12] := {29} tii[57,13] := {4} tii[57,14] := {24} tii[57,15] := {6} tii[57,16] := {19} tii[57,17] := {9} tii[57,18] := {14} tii[57,19] := {3} tii[57,20] := {5} tii[57,21] := {41} tii[57,22] := {7} tii[57,23] := {34} tii[57,24] := {10} tii[57,25] := {28} tii[57,26] := {12} tii[57,27] := {23} tii[57,28] := {18} tii[57,29] := {8} tii[57,30] := {11} tii[57,31] := {40} tii[57,32] := {13} tii[57,33] := {33} tii[57,34] := {16} tii[57,35] := {27} tii[57,36] := {22} tii[57,37] := {15} tii[57,38] := {17} tii[57,39] := {39} tii[57,40] := {20} tii[57,41] := {32} tii[57,42] := {26} tii[57,43] := {21} tii[57,44] := {25} tii[57,45] := {38} tii[57,46] := {31} tii[57,47] := {30} tii[57,48] := {37} cell#11 , |C| = 48 special orbit = [12, 2, 2] special rep = [[6, 1], [1]] , dim = 48 cell rep = phi[[6, 1],[1]] TII depth = 6 TII multiplicity polynomial = 48*X TII subcells: tii[57,1] := {20} tii[57,2] := {9} tii[57,3] := {25} tii[57,4] := {38} tii[57,5] := {44} tii[57,6] := {47} tii[57,7] := {6} tii[57,8] := {13} tii[57,9] := {1} tii[57,10] := {4} tii[57,11] := {5} tii[57,12] := {11} tii[57,13] := {12} tii[57,14] := {18} tii[57,15] := {19} tii[57,16] := {27} tii[57,17] := {28} tii[57,18] := {34} tii[57,19] := {0} tii[57,20] := {3} tii[57,21] := {2} tii[57,22] := {8} tii[57,23] := {7} tii[57,24] := {15} tii[57,25] := {14} tii[57,26] := {22} tii[57,27] := {21} tii[57,28] := {29} tii[57,29] := {10} tii[57,30] := {17} tii[57,31] := {16} tii[57,32] := {24} tii[57,33] := {23} tii[57,34] := {31} tii[57,35] := {30} tii[57,36] := {35} tii[57,37] := {26} tii[57,38] := {33} tii[57,39] := {32} tii[57,40] := {37} tii[57,41] := {36} tii[57,42] := {40} tii[57,43] := {39} tii[57,44] := {42} tii[57,45] := {41} tii[57,46] := {43} tii[57,47] := {45} tii[57,48] := {46} cell#12 , |C| = 48 special orbit = [12, 2, 2] special rep = [[6, 1], [1]] , dim = 48 cell rep = phi[[6, 1],[1]] TII depth = 6 TII multiplicity polynomial = 48*X TII subcells: tii[57,1] := {42} tii[57,2] := {47} tii[57,3] := {46} tii[57,4] := {45} tii[57,5] := {44} tii[57,6] := {43} tii[57,7] := {0} tii[57,8] := {36} tii[57,9] := {1} tii[57,10] := {35} tii[57,11] := {2} tii[57,12] := {29} tii[57,13] := {4} tii[57,14] := {24} tii[57,15] := {6} tii[57,16] := {19} tii[57,17] := {9} tii[57,18] := {14} tii[57,19] := {3} tii[57,20] := {5} tii[57,21] := {41} tii[57,22] := {7} tii[57,23] := {34} tii[57,24] := {10} tii[57,25] := {28} tii[57,26] := {12} tii[57,27] := {23} tii[57,28] := {18} tii[57,29] := {8} tii[57,30] := {11} tii[57,31] := {40} tii[57,32] := {13} tii[57,33] := {33} tii[57,34] := {16} tii[57,35] := {27} tii[57,36] := {22} tii[57,37] := {15} tii[57,38] := {17} tii[57,39] := {39} tii[57,40] := {20} tii[57,41] := {32} tii[57,42] := {26} tii[57,43] := {21} tii[57,44] := {25} tii[57,45] := {38} tii[57,46] := {31} tii[57,47] := {30} tii[57,48] := {37} cell#13 , |C| = 48 special orbit = [12, 2, 2] special rep = [[6, 1], [1]] , dim = 48 cell rep = phi[[6, 1],[1]] TII depth = 6 TII multiplicity polynomial = 48*X TII subcells: tii[57,1] := {45} tii[57,2] := {32} tii[57,3] := {7} tii[57,4] := {28} tii[57,5] := {43} tii[57,6] := {47} tii[57,7] := {12} tii[57,8] := {40} tii[57,9] := {13} tii[57,10] := {33} tii[57,11] := {11} tii[57,12] := {21} tii[57,13] := {22} tii[57,14] := {30} tii[57,15] := {31} tii[57,16] := {38} tii[57,17] := {39} tii[57,18] := {42} tii[57,19] := {4} tii[57,20] := {3} tii[57,21] := {20} tii[57,22] := {10} tii[57,23] := {9} tii[57,24] := {19} tii[57,25] := {18} tii[57,26] := {27} tii[57,27] := {26} tii[57,28] := {35} tii[57,29] := {0} tii[57,30] := {2} tii[57,31] := {1} tii[57,32] := {6} tii[57,33] := {5} tii[57,34] := {15} tii[57,35] := {14} tii[57,36] := {23} tii[57,37] := {8} tii[57,38] := {17} tii[57,39] := {16} tii[57,40] := {25} tii[57,41] := {24} tii[57,42] := {34} tii[57,43] := {29} tii[57,44] := {37} tii[57,45] := {36} tii[57,46] := {41} tii[57,47] := {44} tii[57,48] := {46} cell#14 , |C| = 252 special orbit = [10, 4, 2] special rep = [[5, 1], [2]] , dim = 140 cell rep = phi[[5, 2],[1]]+phi[[5, 1],[2]] TII depth = 5 TII multiplicity polynomial = 28*X+112*X^2 TII subcells: tii[54,1] := {47, 227} tii[54,2] := {151, 154} tii[54,3] := {223, 226} tii[54,4] := {246, 247} tii[54,5] := {251} tii[54,6] := {14, 81} tii[54,7] := {58, 59} tii[54,8] := {8, 188} tii[54,9] := {130, 131} tii[54,10] := {38, 114} tii[54,11] := {99, 180} tii[54,12] := {195, 196} tii[54,13] := {167, 220} tii[54,14] := {229} tii[54,15] := {241} tii[54,16] := {4, 119} tii[54,17] := {23, 211} tii[54,18] := {3, 133} tii[54,19] := {28, 29} tii[54,20] := {87, 88} tii[54,21] := {10, 189} tii[54,22] := {9, 118} tii[54,23] := {70, 73} tii[54,24] := {161, 162} tii[54,25] := {139, 142} tii[54,26] := {20, 156} tii[54,27] := {19, 157} tii[54,28] := {199, 200} tii[54,29] := {36, 186} tii[54,30] := {35, 187} tii[54,31] := {212} tii[54,32] := {61, 206} tii[54,33] := {231} tii[54,34] := {56, 57} tii[54,35] := {110, 113} tii[54,36] := {45, 46} tii[54,37] := {128, 129} tii[54,38] := {193, 194} tii[54,39] := {75, 76} tii[54,40] := {74, 77} tii[54,41] := {176, 179} tii[54,42] := {218, 219} tii[54,43] := {105, 106} tii[54,44] := {104, 107} tii[54,45] := {228} tii[54,46] := {136, 137} tii[54,47] := {240} tii[54,48] := {168, 169} tii[54,49] := {207, 210} tii[54,50] := {152, 153} tii[54,51] := {216, 217} tii[54,52] := {183, 184} tii[54,53] := {182, 185} tii[54,54] := {234, 235} tii[54,55] := {238} tii[54,56] := {204, 205} tii[54,57] := {245} tii[54,58] := {232, 233} tii[54,59] := {242, 243} tii[54,60] := {224, 225} tii[54,61] := {244} tii[54,62] := {236, 237} tii[54,63] := {249} tii[54,64] := {248} tii[54,65] := {250} tii[54,66] := {11, 49} tii[54,67] := {24, 25} tii[54,68] := {43, 44} tii[54,69] := {68, 69} tii[54,70] := {97} tii[54,71] := {0, 93} tii[54,72] := {1, 80} tii[54,73] := {2, 155} tii[54,74] := {30, 31} tii[54,75] := {5, 117} tii[54,76] := {6, 116} tii[54,77] := {54, 55} tii[54,78] := {15, 150} tii[54,79] := {16, 149} tii[54,80] := {85, 86} tii[54,81] := {32, 175} tii[54,82] := {121} tii[54,83] := {7, 48} tii[54,84] := {17, 79} tii[54,85] := {18, 78} tii[54,86] := {91, 92} tii[54,87] := {33, 109} tii[54,88] := {34, 108} tii[54,89] := {126, 127} tii[54,90] := {60, 138} tii[54,91] := {160} tii[54,92] := {37, 115} tii[54,93] := {62, 148} tii[54,94] := {63, 147} tii[54,95] := {165, 166} tii[54,96] := {94, 174} tii[54,97] := {192} tii[54,98] := {98, 181} tii[54,99] := {214} tii[54,100] := {132, 203} tii[54,101] := {12, 13} tii[54,102] := {26, 27} tii[54,103] := {50, 51} tii[54,104] := {82} tii[54,105] := {21, 22} tii[54,106] := {52, 53} tii[54,107] := {40, 41} tii[54,108] := {39, 42} tii[54,109] := {83, 84} tii[54,110] := {65, 66} tii[54,111] := {64, 67} tii[54,112] := {120} tii[54,113] := {95, 96} tii[54,114] := {71, 72} tii[54,115] := {101, 102} tii[54,116] := {100, 103} tii[54,117] := {122, 123} tii[54,118] := {134, 135} tii[54,119] := {158} tii[54,120] := {140, 141} tii[54,121] := {190} tii[54,122] := {170, 171} tii[54,123] := {89, 90} tii[54,124] := {124, 125} tii[54,125] := {159} tii[54,126] := {111, 112} tii[54,127] := {163, 164} tii[54,128] := {144, 145} tii[54,129] := {143, 146} tii[54,130] := {172, 173} tii[54,131] := {191} tii[54,132] := {177, 178} tii[54,133] := {213} tii[54,134] := {201, 202} tii[54,135] := {197, 198} tii[54,136] := {215} tii[54,137] := {208, 209} tii[54,138] := {230} tii[54,139] := {221, 222} tii[54,140] := {239} cell#15 , |C| = 260 special orbit = [10, 2, 2, 2] special rep = [[5, 1], [1, 1]] , dim = 140 cell rep = phi[[5, 1, 1],[1]]+phi[[5, 1],[1, 1]] TII depth = 5 TII multiplicity polynomial = 120*X^2+20*X TII subcells: tii[52,1] := {5, 236} tii[52,2] := {20, 248} tii[52,3] := {51, 245} tii[52,4] := {92, 242} tii[52,5] := {130, 240} tii[52,6] := {12, 212} tii[52,7] := {37, 228} tii[52,8] := {15, 185} tii[52,9] := {73, 224} tii[52,10] := {27, 178} tii[52,11] := {119, 219} tii[52,12] := {41, 145} tii[52,13] := {162, 216} tii[52,14] := {58, 116} tii[52,15] := {86} tii[52,16] := {55, 235} tii[52,17] := {98, 246} tii[52,18] := {64, 211} tii[52,19] := {148, 241} tii[52,20] := {83, 202} tii[52,21] := {190, 239} tii[52,22] := {103, 172} tii[52,23] := {137} tii[52,24] := {123, 251} tii[52,25] := {179, 254} tii[52,26] := {131, 234} tii[52,27] := {217, 253} tii[52,28] := {161, 227} tii[52,29] := {195} tii[52,30] := {206, 257} tii[52,31] := {238, 258} tii[52,32] := {214, 250} tii[52,33] := {244} tii[52,34] := {252, 259} tii[52,35] := {256} tii[52,36] := {0, 24} tii[52,37] := {1, 213} tii[52,38] := {2, 28} tii[52,39] := {3, 205} tii[52,40] := {4, 44} tii[52,41] := {8, 176} tii[52,42] := {9, 62} tii[52,43] := {16, 143} tii[52,44] := {17, 80} tii[52,45] := {30, 113} tii[52,46] := {6, 45} tii[52,47] := {7, 156} tii[52,48] := {14, 147} tii[52,49] := {11, 66} tii[52,50] := {10, 231} tii[52,51] := {25, 118} tii[52,52] := {19, 84} tii[52,53] := {18, 203} tii[52,54] := {39, 90} tii[52,55] := {32, 104} tii[52,56] := {31, 173} tii[52,57] := {63} tii[52,58] := {46, 138} tii[52,59] := {21, 88} tii[52,60] := {26, 155} tii[52,61] := {34, 108} tii[52,62] := {40, 146} tii[52,63] := {33, 230} tii[52,64] := {57, 115} tii[52,65] := {48, 129} tii[52,66] := {47, 199} tii[52,67] := {85} tii[52,68] := {67, 168} tii[52,69] := {52, 133} tii[52,70] := {59, 154} tii[52,71] := {70, 160} tii[52,72] := {77, 144} tii[52,73] := {69, 226} tii[52,74] := {110} tii[52,75] := {89, 194} tii[52,76] := {93, 187} tii[52,77] := {100, 153} tii[52,78] := {139} tii[52,79] := {109, 221} tii[52,80] := {152} tii[52,81] := {13, 29} tii[52,82] := {22, 204} tii[52,83] := {23, 43} tii[52,84] := {35, 175} tii[52,85] := {36, 61} tii[52,86] := {49, 142} tii[52,87] := {50, 79} tii[52,88] := {68, 112} tii[52,89] := {38, 65} tii[52,90] := {42, 184} tii[52,91] := {54, 82} tii[52,92] := {53, 201} tii[52,93] := {60, 177} tii[52,94] := {71, 171} tii[52,95] := {72, 102} tii[52,96] := {78, 141} tii[52,97] := {91, 136} tii[52,98] := {111} tii[52,99] := {74, 105} tii[52,100] := {81, 183} tii[52,101] := {95, 126} tii[52,102] := {101, 174} tii[52,103] := {94, 197} tii[52,104] := {135} tii[52,105] := {114, 165} tii[52,106] := {120, 157} tii[52,107] := {125, 182} tii[52,108] := {169} tii[52,109] := {134, 192} tii[52,110] := {181} tii[52,111] := {56, 87} tii[52,112] := {75, 229} tii[52,113] := {76, 107} tii[52,114] := {96, 198} tii[52,115] := {97, 128} tii[52,116] := {117, 167} tii[52,117] := {99, 132} tii[52,118] := {106, 210} tii[52,119] := {122, 159} tii[52,120] := {121, 225} tii[52,121] := {127, 200} tii[52,122] := {140, 193} tii[52,123] := {166} tii[52,124] := {149, 186} tii[52,125] := {158, 209} tii[52,126] := {196} tii[52,127] := {164, 220} tii[52,128] := {208} tii[52,129] := {124, 163} tii[52,130] := {150, 247} tii[52,131] := {151, 189} tii[52,132] := {170, 222} tii[52,133] := {180, 215} tii[52,134] := {188, 233} tii[52,135] := {191, 243} tii[52,136] := {223} tii[52,137] := {232} tii[52,138] := {207, 237} tii[52,139] := {218, 255} tii[52,140] := {249} cell#16 , |C| = 48 special orbit = [12, 2, 2] special rep = [[6, 1], [1]] , dim = 48 cell rep = phi[[6, 1],[1]] TII depth = 6 TII multiplicity polynomial = 48*X TII subcells: tii[57,1] := {45} tii[57,2] := {32} tii[57,3] := {7} tii[57,4] := {28} tii[57,5] := {43} tii[57,6] := {47} tii[57,7] := {12} tii[57,8] := {40} tii[57,9] := {13} tii[57,10] := {33} tii[57,11] := {11} tii[57,12] := {21} tii[57,13] := {22} tii[57,14] := {30} tii[57,15] := {31} tii[57,16] := {38} tii[57,17] := {39} tii[57,18] := {42} tii[57,19] := {4} tii[57,20] := {3} tii[57,21] := {20} tii[57,22] := {10} tii[57,23] := {9} tii[57,24] := {19} tii[57,25] := {18} tii[57,26] := {27} tii[57,27] := {26} tii[57,28] := {35} tii[57,29] := {0} tii[57,30] := {2} tii[57,31] := {1} tii[57,32] := {6} tii[57,33] := {5} tii[57,34] := {15} tii[57,35] := {14} tii[57,36] := {23} tii[57,37] := {8} tii[57,38] := {17} tii[57,39] := {16} tii[57,40] := {25} tii[57,41] := {24} tii[57,42] := {34} tii[57,43] := {29} tii[57,44] := {37} tii[57,45] := {36} tii[57,46] := {41} tii[57,47] := {44} tii[57,48] := {46} cell#17 , |C| = 252 special orbit = [10, 4, 2] special rep = [[5, 1], [2]] , dim = 140 cell rep = phi[[5, 2],[1]]+phi[[5, 1],[2]] TII depth = 5 TII multiplicity polynomial = 28*X+112*X^2 TII subcells: tii[54,1] := {47, 227} tii[54,2] := {151, 154} tii[54,3] := {223, 226} tii[54,4] := {246, 247} tii[54,5] := {251} tii[54,6] := {14, 81} tii[54,7] := {58, 59} tii[54,8] := {8, 188} tii[54,9] := {130, 131} tii[54,10] := {38, 114} tii[54,11] := {99, 180} tii[54,12] := {195, 196} tii[54,13] := {167, 220} tii[54,14] := {229} tii[54,15] := {241} tii[54,16] := {4, 119} tii[54,17] := {23, 211} tii[54,18] := {3, 133} tii[54,19] := {28, 29} tii[54,20] := {87, 88} tii[54,21] := {10, 189} tii[54,22] := {9, 118} tii[54,23] := {70, 73} tii[54,24] := {161, 162} tii[54,25] := {139, 142} tii[54,26] := {20, 156} tii[54,27] := {19, 157} tii[54,28] := {199, 200} tii[54,29] := {36, 186} tii[54,30] := {35, 187} tii[54,31] := {212} tii[54,32] := {61, 206} tii[54,33] := {231} tii[54,34] := {56, 57} tii[54,35] := {110, 113} tii[54,36] := {45, 46} tii[54,37] := {128, 129} tii[54,38] := {193, 194} tii[54,39] := {75, 76} tii[54,40] := {74, 77} tii[54,41] := {176, 179} tii[54,42] := {218, 219} tii[54,43] := {105, 106} tii[54,44] := {104, 107} tii[54,45] := {228} tii[54,46] := {136, 137} tii[54,47] := {240} tii[54,48] := {168, 169} tii[54,49] := {207, 210} tii[54,50] := {152, 153} tii[54,51] := {216, 217} tii[54,52] := {183, 184} tii[54,53] := {182, 185} tii[54,54] := {234, 235} tii[54,55] := {238} tii[54,56] := {204, 205} tii[54,57] := {245} tii[54,58] := {232, 233} tii[54,59] := {242, 243} tii[54,60] := {224, 225} tii[54,61] := {244} tii[54,62] := {236, 237} tii[54,63] := {249} tii[54,64] := {248} tii[54,65] := {250} tii[54,66] := {11, 49} tii[54,67] := {24, 25} tii[54,68] := {43, 44} tii[54,69] := {68, 69} tii[54,70] := {97} tii[54,71] := {0, 93} tii[54,72] := {1, 80} tii[54,73] := {2, 155} tii[54,74] := {30, 31} tii[54,75] := {5, 117} tii[54,76] := {6, 116} tii[54,77] := {54, 55} tii[54,78] := {15, 150} tii[54,79] := {16, 149} tii[54,80] := {85, 86} tii[54,81] := {32, 175} tii[54,82] := {121} tii[54,83] := {7, 48} tii[54,84] := {17, 79} tii[54,85] := {18, 78} tii[54,86] := {91, 92} tii[54,87] := {33, 109} tii[54,88] := {34, 108} tii[54,89] := {126, 127} tii[54,90] := {60, 138} tii[54,91] := {160} tii[54,92] := {37, 115} tii[54,93] := {62, 148} tii[54,94] := {63, 147} tii[54,95] := {165, 166} tii[54,96] := {94, 174} tii[54,97] := {192} tii[54,98] := {98, 181} tii[54,99] := {214} tii[54,100] := {132, 203} tii[54,101] := {12, 13} tii[54,102] := {26, 27} tii[54,103] := {50, 51} tii[54,104] := {82} tii[54,105] := {21, 22} tii[54,106] := {52, 53} tii[54,107] := {40, 41} tii[54,108] := {39, 42} tii[54,109] := {83, 84} tii[54,110] := {65, 66} tii[54,111] := {64, 67} tii[54,112] := {120} tii[54,113] := {95, 96} tii[54,114] := {71, 72} tii[54,115] := {101, 102} tii[54,116] := {100, 103} tii[54,117] := {122, 123} tii[54,118] := {134, 135} tii[54,119] := {158} tii[54,120] := {140, 141} tii[54,121] := {190} tii[54,122] := {170, 171} tii[54,123] := {89, 90} tii[54,124] := {124, 125} tii[54,125] := {159} tii[54,126] := {111, 112} tii[54,127] := {163, 164} tii[54,128] := {144, 145} tii[54,129] := {143, 146} tii[54,130] := {172, 173} tii[54,131] := {191} tii[54,132] := {177, 178} tii[54,133] := {213} tii[54,134] := {201, 202} tii[54,135] := {197, 198} tii[54,136] := {215} tii[54,137] := {208, 209} tii[54,138] := {230} tii[54,139] := {221, 222} tii[54,140] := {239} cell#18 , |C| = 260 special orbit = [10, 2, 2, 2] special rep = [[5, 1], [1, 1]] , dim = 140 cell rep = phi[[5, 1, 1],[1]]+phi[[5, 1],[1, 1]] TII depth = 5 TII multiplicity polynomial = 120*X^2+20*X TII subcells: tii[52,1] := {5, 236} tii[52,2] := {20, 248} tii[52,3] := {51, 245} tii[52,4] := {92, 242} tii[52,5] := {130, 240} tii[52,6] := {12, 212} tii[52,7] := {37, 228} tii[52,8] := {15, 185} tii[52,9] := {73, 224} tii[52,10] := {27, 178} tii[52,11] := {119, 219} tii[52,12] := {41, 145} tii[52,13] := {162, 216} tii[52,14] := {58, 116} tii[52,15] := {86} tii[52,16] := {55, 235} tii[52,17] := {98, 246} tii[52,18] := {64, 211} tii[52,19] := {148, 241} tii[52,20] := {83, 202} tii[52,21] := {190, 239} tii[52,22] := {103, 172} tii[52,23] := {137} tii[52,24] := {123, 251} tii[52,25] := {179, 254} tii[52,26] := {131, 234} tii[52,27] := {217, 253} tii[52,28] := {161, 227} tii[52,29] := {195} tii[52,30] := {206, 257} tii[52,31] := {238, 258} tii[52,32] := {214, 250} tii[52,33] := {244} tii[52,34] := {252, 259} tii[52,35] := {256} tii[52,36] := {0, 24} tii[52,37] := {1, 213} tii[52,38] := {2, 28} tii[52,39] := {3, 205} tii[52,40] := {4, 44} tii[52,41] := {8, 176} tii[52,42] := {9, 62} tii[52,43] := {16, 143} tii[52,44] := {17, 80} tii[52,45] := {30, 113} tii[52,46] := {6, 45} tii[52,47] := {7, 156} tii[52,48] := {14, 147} tii[52,49] := {11, 66} tii[52,50] := {10, 231} tii[52,51] := {25, 118} tii[52,52] := {19, 84} tii[52,53] := {18, 203} tii[52,54] := {39, 90} tii[52,55] := {32, 104} tii[52,56] := {31, 173} tii[52,57] := {63} tii[52,58] := {46, 138} tii[52,59] := {21, 88} tii[52,60] := {26, 155} tii[52,61] := {34, 108} tii[52,62] := {40, 146} tii[52,63] := {33, 230} tii[52,64] := {57, 115} tii[52,65] := {48, 129} tii[52,66] := {47, 199} tii[52,67] := {85} tii[52,68] := {67, 168} tii[52,69] := {52, 133} tii[52,70] := {59, 154} tii[52,71] := {70, 160} tii[52,72] := {77, 144} tii[52,73] := {69, 226} tii[52,74] := {110} tii[52,75] := {89, 194} tii[52,76] := {93, 187} tii[52,77] := {100, 153} tii[52,78] := {139} tii[52,79] := {109, 221} tii[52,80] := {152} tii[52,81] := {13, 29} tii[52,82] := {22, 204} tii[52,83] := {23, 43} tii[52,84] := {35, 175} tii[52,85] := {36, 61} tii[52,86] := {49, 142} tii[52,87] := {50, 79} tii[52,88] := {68, 112} tii[52,89] := {38, 65} tii[52,90] := {42, 184} tii[52,91] := {54, 82} tii[52,92] := {53, 201} tii[52,93] := {60, 177} tii[52,94] := {71, 171} tii[52,95] := {72, 102} tii[52,96] := {78, 141} tii[52,97] := {91, 136} tii[52,98] := {111} tii[52,99] := {74, 105} tii[52,100] := {81, 183} tii[52,101] := {95, 126} tii[52,102] := {101, 174} tii[52,103] := {94, 197} tii[52,104] := {135} tii[52,105] := {114, 165} tii[52,106] := {120, 157} tii[52,107] := {125, 182} tii[52,108] := {169} tii[52,109] := {134, 192} tii[52,110] := {181} tii[52,111] := {56, 87} tii[52,112] := {75, 229} tii[52,113] := {76, 107} tii[52,114] := {96, 198} tii[52,115] := {97, 128} tii[52,116] := {117, 167} tii[52,117] := {99, 132} tii[52,118] := {106, 210} tii[52,119] := {122, 159} tii[52,120] := {121, 225} tii[52,121] := {127, 200} tii[52,122] := {140, 193} tii[52,123] := {166} tii[52,124] := {149, 186} tii[52,125] := {158, 209} tii[52,126] := {196} tii[52,127] := {164, 220} tii[52,128] := {208} tii[52,129] := {124, 163} tii[52,130] := {150, 247} tii[52,131] := {151, 189} tii[52,132] := {170, 222} tii[52,133] := {180, 215} tii[52,134] := {188, 233} tii[52,135] := {191, 243} tii[52,136] := {223} tii[52,137] := {232} tii[52,138] := {207, 237} tii[52,139] := {218, 255} tii[52,140] := {249} cell#19 , |C| = 48 special orbit = [12, 2, 2] special rep = [[6, 1], [1]] , dim = 48 cell rep = phi[[6, 1],[1]] TII depth = 6 TII multiplicity polynomial = 48*X TII subcells: tii[57,1] := {47} tii[57,2] := {44} tii[57,3] := {43} tii[57,4] := {42} tii[57,5] := {41} tii[57,6] := {40} tii[57,7] := {0} tii[57,8] := {46} tii[57,9] := {3} tii[57,10] := {45} tii[57,11] := {6} tii[57,12] := {38} tii[57,13] := {9} tii[57,14] := {32} tii[57,15] := {12} tii[57,16] := {26} tii[57,17] := {15} tii[57,18] := {21} tii[57,19] := {1} tii[57,20] := {2} tii[57,21] := {39} tii[57,22] := {4} tii[57,23] := {33} tii[57,24] := {7} tii[57,25] := {27} tii[57,26] := {10} tii[57,27] := {22} tii[57,28] := {17} tii[57,29] := {5} tii[57,30] := {8} tii[57,31] := {37} tii[57,32] := {11} tii[57,33] := {31} tii[57,34] := {14} tii[57,35] := {25} tii[57,36] := {20} tii[57,37] := {13} tii[57,38] := {16} tii[57,39] := {36} tii[57,40] := {18} tii[57,41] := {30} tii[57,42] := {24} tii[57,43] := {19} tii[57,44] := {23} tii[57,45] := {35} tii[57,46] := {29} tii[57,47] := {28} tii[57,48] := {34} cell#20 , |C| = 48 special orbit = [12, 2, 2] special rep = [[6, 1], [1]] , dim = 48 cell rep = phi[[6, 1],[1]] TII depth = 6 TII multiplicity polynomial = 48*X TII subcells: tii[57,1] := {47} tii[57,2] := {44} tii[57,3] := {43} tii[57,4] := {42} tii[57,5] := {41} tii[57,6] := {40} tii[57,7] := {0} tii[57,8] := {46} tii[57,9] := {3} tii[57,10] := {45} tii[57,11] := {6} tii[57,12] := {38} tii[57,13] := {9} tii[57,14] := {32} tii[57,15] := {12} tii[57,16] := {26} tii[57,17] := {15} tii[57,18] := {21} tii[57,19] := {1} tii[57,20] := {2} tii[57,21] := {39} tii[57,22] := {4} tii[57,23] := {33} tii[57,24] := {7} tii[57,25] := {27} tii[57,26] := {10} tii[57,27] := {22} tii[57,28] := {17} tii[57,29] := {5} tii[57,30] := {8} tii[57,31] := {37} tii[57,32] := {11} tii[57,33] := {31} tii[57,34] := {14} tii[57,35] := {25} tii[57,36] := {20} tii[57,37] := {13} tii[57,38] := {16} tii[57,39] := {36} tii[57,40] := {18} tii[57,41] := {30} tii[57,42] := {24} tii[57,43] := {19} tii[57,44] := {23} tii[57,45] := {35} tii[57,46] := {29} tii[57,47] := {28} tii[57,48] := {34} cell#21 , |C| = 252 special orbit = [10, 4, 2] special rep = [[5, 1], [2]] , dim = 140 cell rep = phi[[5, 2],[1]]+phi[[5, 1],[2]] TII depth = 5 TII multiplicity polynomial = 28*X+112*X^2 TII subcells: tii[54,1] := {58, 237} tii[54,2] := {132, 244} tii[54,3] := {195, 248} tii[54,4] := {238, 250} tii[54,5] := {251} tii[54,6] := {8, 9} tii[54,7] := {33, 34} tii[54,8] := {14, 208} tii[54,9] := {76, 77} tii[54,10] := {49, 205} tii[54,11] := {93, 202} tii[54,12] := {120, 121} tii[54,13] := {141, 201} tii[54,14] := {166} tii[54,15] := {193} tii[54,16] := {20, 21} tii[54,17] := {35, 225} tii[54,18] := {7, 40} tii[54,19] := {60, 61} tii[54,20] := {105, 106} tii[54,21] := {16, 210} tii[54,22] := {17, 63} tii[54,23] := {78, 223} tii[54,24] := {147, 148} tii[54,25] := {122, 220} tii[54,26] := {29, 187} tii[54,27] := {30, 81} tii[54,28] := {167, 219} tii[54,29] := {45, 164} tii[54,30] := {46, 96} tii[54,31] := {189} tii[54,32] := {65, 139} tii[54,33] := {215} tii[54,34] := {86, 87} tii[54,35] := {107, 235} tii[54,36] := {59, 114} tii[54,37] := {134, 135} tii[54,38] := {172, 173} tii[54,39] := {83, 137} tii[54,40] := {82, 226} tii[54,41] := {149, 233} tii[54,42] := {190, 232} tii[54,43] := {102, 153} tii[54,44] := {101, 207} tii[54,45] := {211} tii[54,46] := {118, 183} tii[54,47] := {230} tii[54,48] := {158, 159} tii[54,49] := {174, 242} tii[54,50] := {133, 180} tii[54,51] := {197, 198} tii[54,52] := {155, 200} tii[54,53] := {154, 236} tii[54,54] := {212, 241} tii[54,55] := {227} tii[54,56] := {170, 222} tii[54,57] := {240} tii[54,58] := {216, 217} tii[54,59] := {228, 247} tii[54,60] := {196, 231} tii[54,61] := {239} tii[54,62] := {213, 243} tii[54,63] := {246} tii[54,64] := {245} tii[54,65] := {249} tii[54,66] := {1, 2} tii[54,67] := {5, 6} tii[54,68] := {12, 13} tii[54,69] := {25, 26} tii[54,70] := {42} tii[54,71] := {0, 22} tii[54,72] := {4, 37} tii[54,73] := {3, 188} tii[54,74] := {18, 19} tii[54,75] := {11, 51} tii[54,76] := {10, 165} tii[54,77] := {31, 32} tii[54,78] := {24, 67} tii[54,79] := {23, 140} tii[54,80] := {47, 48} tii[54,81] := {41, 113} tii[54,82] := {66} tii[54,83] := {15, 62} tii[54,84] := {28, 80} tii[54,85] := {27, 186} tii[54,86] := {52, 53} tii[54,87] := {44, 95} tii[54,88] := {43, 163} tii[54,89] := {70, 71} tii[54,90] := {64, 138} tii[54,91] := {90} tii[54,92] := {50, 109} tii[54,93] := {69, 124} tii[54,94] := {68, 184} tii[54,95] := {97, 98} tii[54,96] := {89, 161} tii[54,97] := {116} tii[54,98] := {94, 151} tii[54,99] := {142} tii[54,100] := {115, 181} tii[54,101] := {38, 39} tii[54,102] := {56, 57} tii[54,103] := {74, 75} tii[54,104] := {92} tii[54,105] := {36, 88} tii[54,106] := {84, 85} tii[54,107] := {55, 110} tii[54,108] := {54, 209} tii[54,109] := {103, 104} tii[54,110] := {73, 125} tii[54,111] := {72, 185} tii[54,112] := {119} tii[54,113] := {91, 162} tii[54,114] := {79, 136} tii[54,115] := {100, 152} tii[54,116] := {99, 206} tii[54,117] := {126, 127} tii[54,118] := {117, 182} tii[54,119] := {144} tii[54,120] := {123, 176} tii[54,121] := {168} tii[54,122] := {143, 203} tii[54,123] := {111, 112} tii[54,124] := {130, 131} tii[54,125] := {146} tii[54,126] := {108, 160} tii[54,127] := {156, 157} tii[54,128] := {129, 177} tii[54,129] := {128, 224} tii[54,130] := {145, 204} tii[54,131] := {171} tii[54,132] := {150, 199} tii[54,133] := {191} tii[54,134] := {169, 221} tii[54,135] := {178, 179} tii[54,136] := {194} tii[54,137] := {175, 218} tii[54,138] := {214} tii[54,139] := {192, 234} tii[54,140] := {229} cell#22 , |C| = 252 special orbit = [10, 4, 2] special rep = [[5, 1], [2]] , dim = 140 cell rep = phi[[5, 2],[1]]+phi[[5, 1],[2]] TII depth = 5 TII multiplicity polynomial = 28*X+112*X^2 TII subcells: tii[54,1] := {58, 237} tii[54,2] := {132, 244} tii[54,3] := {195, 248} tii[54,4] := {238, 250} tii[54,5] := {251} tii[54,6] := {8, 9} tii[54,7] := {33, 34} tii[54,8] := {14, 208} tii[54,9] := {76, 77} tii[54,10] := {49, 205} tii[54,11] := {93, 202} tii[54,12] := {120, 121} tii[54,13] := {141, 201} tii[54,14] := {166} tii[54,15] := {193} tii[54,16] := {20, 21} tii[54,17] := {35, 225} tii[54,18] := {7, 40} tii[54,19] := {60, 61} tii[54,20] := {105, 106} tii[54,21] := {16, 210} tii[54,22] := {17, 63} tii[54,23] := {78, 223} tii[54,24] := {147, 148} tii[54,25] := {122, 220} tii[54,26] := {29, 187} tii[54,27] := {30, 81} tii[54,28] := {167, 219} tii[54,29] := {45, 164} tii[54,30] := {46, 96} tii[54,31] := {189} tii[54,32] := {65, 139} tii[54,33] := {215} tii[54,34] := {86, 87} tii[54,35] := {107, 235} tii[54,36] := {59, 114} tii[54,37] := {134, 135} tii[54,38] := {172, 173} tii[54,39] := {83, 137} tii[54,40] := {82, 226} tii[54,41] := {149, 233} tii[54,42] := {190, 232} tii[54,43] := {102, 153} tii[54,44] := {101, 207} tii[54,45] := {211} tii[54,46] := {118, 183} tii[54,47] := {230} tii[54,48] := {158, 159} tii[54,49] := {174, 242} tii[54,50] := {133, 180} tii[54,51] := {197, 198} tii[54,52] := {155, 200} tii[54,53] := {154, 236} tii[54,54] := {212, 241} tii[54,55] := {227} tii[54,56] := {170, 222} tii[54,57] := {240} tii[54,58] := {216, 217} tii[54,59] := {228, 247} tii[54,60] := {196, 231} tii[54,61] := {239} tii[54,62] := {213, 243} tii[54,63] := {246} tii[54,64] := {245} tii[54,65] := {249} tii[54,66] := {1, 2} tii[54,67] := {5, 6} tii[54,68] := {12, 13} tii[54,69] := {25, 26} tii[54,70] := {42} tii[54,71] := {0, 22} tii[54,72] := {4, 37} tii[54,73] := {3, 188} tii[54,74] := {18, 19} tii[54,75] := {11, 51} tii[54,76] := {10, 165} tii[54,77] := {31, 32} tii[54,78] := {24, 67} tii[54,79] := {23, 140} tii[54,80] := {47, 48} tii[54,81] := {41, 113} tii[54,82] := {66} tii[54,83] := {15, 62} tii[54,84] := {28, 80} tii[54,85] := {27, 186} tii[54,86] := {52, 53} tii[54,87] := {44, 95} tii[54,88] := {43, 163} tii[54,89] := {70, 71} tii[54,90] := {64, 138} tii[54,91] := {90} tii[54,92] := {50, 109} tii[54,93] := {69, 124} tii[54,94] := {68, 184} tii[54,95] := {97, 98} tii[54,96] := {89, 161} tii[54,97] := {116} tii[54,98] := {94, 151} tii[54,99] := {142} tii[54,100] := {115, 181} tii[54,101] := {38, 39} tii[54,102] := {56, 57} tii[54,103] := {74, 75} tii[54,104] := {92} tii[54,105] := {36, 88} tii[54,106] := {84, 85} tii[54,107] := {55, 110} tii[54,108] := {54, 209} tii[54,109] := {103, 104} tii[54,110] := {73, 125} tii[54,111] := {72, 185} tii[54,112] := {119} tii[54,113] := {91, 162} tii[54,114] := {79, 136} tii[54,115] := {100, 152} tii[54,116] := {99, 206} tii[54,117] := {126, 127} tii[54,118] := {117, 182} tii[54,119] := {144} tii[54,120] := {123, 176} tii[54,121] := {168} tii[54,122] := {143, 203} tii[54,123] := {111, 112} tii[54,124] := {130, 131} tii[54,125] := {146} tii[54,126] := {108, 160} tii[54,127] := {156, 157} tii[54,128] := {129, 177} tii[54,129] := {128, 224} tii[54,130] := {145, 204} tii[54,131] := {171} tii[54,132] := {150, 199} tii[54,133] := {191} tii[54,134] := {169, 221} tii[54,135] := {178, 179} tii[54,136] := {194} tii[54,137] := {175, 218} tii[54,138] := {214} tii[54,139] := {192, 234} tii[54,140] := {229} cell#23 , |C| = 49 special orbit = [12, 2, 1, 1] special rep = [[6], [1, 1]] , dim = 28 cell rep = phi[[6, 1, 1],[]]+phi[[6],[1, 1]] TII depth = 1 TII multiplicity polynomial = 21*X^2+7*X TII subcells: tii[56,1] := {8, 48} tii[56,2] := {4, 47} tii[56,3] := {9, 46} tii[56,4] := {13, 44} tii[56,5] := {17, 41} tii[56,6] := {20, 31} tii[56,7] := {26} tii[56,8] := {1, 45} tii[56,9] := {3, 43} tii[56,10] := {7, 42} tii[56,11] := {12, 33} tii[56,12] := {15, 28} tii[56,13] := {22} tii[56,14] := {0, 40} tii[56,15] := {2, 35} tii[56,16] := {5, 29} tii[56,17] := {10, 23} tii[56,18] := {18} tii[56,19] := {6, 39} tii[56,20] := {11, 34} tii[56,21] := {14, 27} tii[56,22] := {21} tii[56,23] := {16, 38} tii[56,24] := {19, 32} tii[56,25] := {25} tii[56,26] := {24, 37} tii[56,27] := {30} tii[56,28] := {36} cell#24 , |C| = 49 special orbit = [12, 2, 1, 1] special rep = [[6], [1, 1]] , dim = 28 cell rep = phi[[6, 1, 1],[]]+phi[[6],[1, 1]] TII depth = 1 TII multiplicity polynomial = 21*X^2+7*X TII subcells: tii[56,1] := {8, 48} tii[56,2] := {4, 47} tii[56,3] := {9, 46} tii[56,4] := {13, 44} tii[56,5] := {17, 41} tii[56,6] := {20, 31} tii[56,7] := {26} tii[56,8] := {1, 45} tii[56,9] := {3, 43} tii[56,10] := {7, 42} tii[56,11] := {12, 33} tii[56,12] := {15, 28} tii[56,13] := {22} tii[56,14] := {0, 40} tii[56,15] := {2, 35} tii[56,16] := {5, 29} tii[56,17] := {10, 23} tii[56,18] := {18} tii[56,19] := {6, 39} tii[56,20] := {11, 34} tii[56,21] := {14, 27} tii[56,22] := {21} tii[56,23] := {16, 38} tii[56,24] := {19, 32} tii[56,25] := {25} tii[56,26] := {24, 37} tii[56,27] := {30} tii[56,28] := {36} cell#25 , |C| = 48 special orbit = [12, 2, 2] special rep = [[6, 1], [1]] , dim = 48 cell rep = phi[[6, 1],[1]] TII depth = 6 TII multiplicity polynomial = 48*X TII subcells: tii[57,1] := {47} tii[57,2] := {45} tii[57,3] := {41} tii[57,4] := {35} tii[57,5] := {27} tii[57,6] := {17} tii[57,7] := {1} tii[57,8] := {46} tii[57,9] := {7} tii[57,10] := {44} tii[57,11] := {13} tii[57,12] := {42} tii[57,13] := {19} tii[57,14] := {39} tii[57,15] := {24} tii[57,16] := {36} tii[57,17] := {28} tii[57,18] := {32} tii[57,19] := {0} tii[57,20] := {6} tii[57,21] := {43} tii[57,22] := {12} tii[57,23] := {40} tii[57,24] := {18} tii[57,25] := {37} tii[57,26] := {23} tii[57,27] := {33} tii[57,28] := {29} tii[57,29] := {5} tii[57,30] := {11} tii[57,31] := {38} tii[57,32] := {15} tii[57,33] := {34} tii[57,34] := {20} tii[57,35] := {30} tii[57,36] := {25} tii[57,37] := {4} tii[57,38] := {9} tii[57,39] := {31} tii[57,40] := {14} tii[57,41] := {26} tii[57,42] := {21} tii[57,43] := {3} tii[57,44] := {8} tii[57,45] := {22} tii[57,46] := {16} tii[57,47] := {2} tii[57,48] := {10} cell#26 , |C| = 49 special orbit = [12, 2, 1, 1] special rep = [[6], [1, 1]] , dim = 28 cell rep = phi[[6, 1, 1],[]]+phi[[6],[1, 1]] TII depth = 1 TII multiplicity polynomial = 21*X^2+7*X TII subcells: tii[56,1] := {3, 27} tii[56,2] := {15, 16} tii[56,3] := {25, 26} tii[56,4] := {35, 36} tii[56,5] := {42, 43} tii[56,6] := {46, 47} tii[56,7] := {48} tii[56,8] := {1, 2} tii[56,9] := {12, 13} tii[56,10] := {23, 24} tii[56,11] := {33, 34} tii[56,12] := {40, 41} tii[56,13] := {45} tii[56,14] := {10, 11} tii[56,15] := {21, 22} tii[56,16] := {31, 32} tii[56,17] := {38, 39} tii[56,18] := {44} tii[56,19] := {8, 9} tii[56,20] := {19, 20} tii[56,21] := {29, 30} tii[56,22] := {37} tii[56,23] := {6, 7} tii[56,24] := {17, 18} tii[56,25] := {28} tii[56,26] := {4, 5} tii[56,27] := {14} tii[56,28] := {0} cell#27 , |C| = 260 special orbit = [10, 2, 2, 2] special rep = [[5, 1], [1, 1]] , dim = 140 cell rep = phi[[5, 1, 1],[1]]+phi[[5, 1],[1, 1]] TII depth = 5 TII multiplicity polynomial = 120*X^2+20*X TII subcells: tii[52,1] := {64, 139} tii[52,2] := {62, 195} tii[52,3] := {59, 235} tii[52,4] := {56, 253} tii[52,5] := {55, 259} tii[52,6] := {84, 134} tii[52,7] := {80, 188} tii[52,8] := {107, 108} tii[52,9] := {76, 229} tii[52,10] := {132, 133} tii[52,11] := {71, 250} tii[52,12] := {158, 159} tii[52,13] := {68, 258} tii[52,14] := {180, 181} tii[52,15] := {200} tii[52,16] := {106, 160} tii[52,17] := {100, 209} tii[52,18] := {130, 131} tii[52,19] := {94, 240} tii[52,20] := {156, 157} tii[52,21] := {89, 255} tii[52,22] := {178, 179} tii[52,23] := {199} tii[52,24] := {129, 182} tii[52,25] := {121, 223} tii[52,26] := {154, 155} tii[52,27] := {114, 247} tii[52,28] := {176, 177} tii[52,29] := {198} tii[52,30] := {153, 201} tii[52,31] := {144, 234} tii[52,32] := {174, 175} tii[52,33] := {197} tii[52,34] := {173, 214} tii[52,35] := {192} tii[52,36] := {0, 87} tii[52,37] := {52, 110} tii[52,38] := {1, 111} tii[52,39] := {40, 136} tii[52,40] := {2, 137} tii[52,41] := {30, 164} tii[52,42] := {4, 165} tii[52,43] := {22, 190} tii[52,44] := {7, 191} tii[52,45] := {14, 213} tii[52,46] := {3, 140} tii[52,47] := {81, 82} tii[52,48] := {103, 104} tii[52,49] := {5, 167} tii[52,50] := {51, 166} tii[52,51] := {126, 127} tii[52,52] := {8, 194} tii[52,53] := {39, 193} tii[52,54] := {151, 152} tii[52,55] := {11, 216} tii[52,56] := {29, 215} tii[52,57] := {172} tii[52,58] := {20, 231} tii[52,59] := {9, 196} tii[52,60] := {77, 78} tii[52,61] := {12, 218} tii[52,62] := {97, 98} tii[52,63] := {49, 217} tii[52,64] := {119, 120} tii[52,65] := {16, 233} tii[52,66] := {37, 232} tii[52,67] := {143} tii[52,68] := {27, 244} tii[52,69] := {18, 236} tii[52,70] := {72, 73} tii[52,71] := {23, 246} tii[52,72] := {92, 93} tii[52,73] := {47, 245} tii[52,74] := {113} tii[52,75] := {35, 252} tii[52,76] := {31, 254} tii[52,77] := {69, 70} tii[52,78] := {86} tii[52,79] := {44, 257} tii[52,80] := {66} tii[52,81] := {6, 135} tii[52,82] := {65, 162} tii[52,83] := {10, 163} tii[52,84] := {50, 186} tii[52,85] := {13, 187} tii[52,86] := {38, 207} tii[52,87] := {17, 208} tii[52,88] := {28, 222} tii[52,89] := {15, 189} tii[52,90] := {101, 102} tii[52,91] := {19, 212} tii[52,92] := {63, 211} tii[52,93] := {124, 125} tii[52,94] := {48, 227} tii[52,95] := {24, 228} tii[52,96] := {149, 150} tii[52,97] := {36, 239} tii[52,98] := {171} tii[52,99] := {25, 230} tii[52,100] := {95, 96} tii[52,101] := {32, 243} tii[52,102] := {117, 118} tii[52,103] := {60, 242} tii[52,104] := {142} tii[52,105] := {45, 249} tii[52,106] := {41, 251} tii[52,107] := {90, 91} tii[52,108] := {112} tii[52,109] := {57, 256} tii[52,110] := {85} tii[52,111] := {21, 161} tii[52,112] := {83, 184} tii[52,113] := {26, 185} tii[52,114] := {61, 205} tii[52,115] := {33, 206} tii[52,116] := {46, 221} tii[52,117] := {34, 210} tii[52,118] := {122, 123} tii[52,119] := {42, 226} tii[52,120] := {79, 225} tii[52,121] := {147, 148} tii[52,122] := {58, 238} tii[52,123] := {170} tii[52,124] := {53, 241} tii[52,125] := {115, 116} tii[52,126] := {141} tii[52,127] := {74, 248} tii[52,128] := {109} tii[52,129] := {43, 183} tii[52,130] := {105, 203} tii[52,131] := {54, 204} tii[52,132] := {75, 220} tii[52,133] := {67, 224} tii[52,134] := {145, 146} tii[52,135] := {99, 237} tii[52,136] := {169} tii[52,137] := {138} tii[52,138] := {88, 202} tii[52,139] := {128, 219} tii[52,140] := {168} cell#28 , |C| = 49 special orbit = [12, 2, 1, 1] special rep = [[6], [1, 1]] , dim = 28 cell rep = phi[[6, 1, 1],[]]+phi[[6],[1, 1]] TII depth = 1 TII multiplicity polynomial = 21*X^2+7*X TII subcells: tii[56,1] := {3, 27} tii[56,2] := {15, 16} tii[56,3] := {25, 26} tii[56,4] := {35, 36} tii[56,5] := {42, 43} tii[56,6] := {46, 47} tii[56,7] := {48} tii[56,8] := {1, 2} tii[56,9] := {12, 13} tii[56,10] := {23, 24} tii[56,11] := {33, 34} tii[56,12] := {40, 41} tii[56,13] := {45} tii[56,14] := {10, 11} tii[56,15] := {21, 22} tii[56,16] := {31, 32} tii[56,17] := {38, 39} tii[56,18] := {44} tii[56,19] := {8, 9} tii[56,20] := {19, 20} tii[56,21] := {29, 30} tii[56,22] := {37} tii[56,23] := {6, 7} tii[56,24] := {17, 18} tii[56,25] := {28} tii[56,26] := {4, 5} tii[56,27] := {14} tii[56,28] := {0} cell#29 , |C| = 260 special orbit = [10, 2, 2, 2] special rep = [[5, 1], [1, 1]] , dim = 140 cell rep = phi[[5, 1, 1],[1]]+phi[[5, 1],[1, 1]] TII depth = 5 TII multiplicity polynomial = 120*X^2+20*X TII subcells: tii[52,1] := {64, 139} tii[52,2] := {62, 195} tii[52,3] := {59, 235} tii[52,4] := {56, 253} tii[52,5] := {55, 259} tii[52,6] := {84, 134} tii[52,7] := {80, 188} tii[52,8] := {107, 108} tii[52,9] := {76, 229} tii[52,10] := {132, 133} tii[52,11] := {71, 250} tii[52,12] := {158, 159} tii[52,13] := {68, 258} tii[52,14] := {180, 181} tii[52,15] := {200} tii[52,16] := {106, 160} tii[52,17] := {100, 209} tii[52,18] := {130, 131} tii[52,19] := {94, 240} tii[52,20] := {156, 157} tii[52,21] := {89, 255} tii[52,22] := {178, 179} tii[52,23] := {199} tii[52,24] := {129, 182} tii[52,25] := {121, 223} tii[52,26] := {154, 155} tii[52,27] := {114, 247} tii[52,28] := {176, 177} tii[52,29] := {198} tii[52,30] := {153, 201} tii[52,31] := {144, 234} tii[52,32] := {174, 175} tii[52,33] := {197} tii[52,34] := {173, 214} tii[52,35] := {192} tii[52,36] := {0, 87} tii[52,37] := {52, 110} tii[52,38] := {1, 111} tii[52,39] := {40, 136} tii[52,40] := {2, 137} tii[52,41] := {30, 164} tii[52,42] := {4, 165} tii[52,43] := {22, 190} tii[52,44] := {7, 191} tii[52,45] := {14, 213} tii[52,46] := {3, 140} tii[52,47] := {81, 82} tii[52,48] := {103, 104} tii[52,49] := {5, 167} tii[52,50] := {51, 166} tii[52,51] := {126, 127} tii[52,52] := {8, 194} tii[52,53] := {39, 193} tii[52,54] := {151, 152} tii[52,55] := {11, 216} tii[52,56] := {29, 215} tii[52,57] := {172} tii[52,58] := {20, 231} tii[52,59] := {9, 196} tii[52,60] := {77, 78} tii[52,61] := {12, 218} tii[52,62] := {97, 98} tii[52,63] := {49, 217} tii[52,64] := {119, 120} tii[52,65] := {16, 233} tii[52,66] := {37, 232} tii[52,67] := {143} tii[52,68] := {27, 244} tii[52,69] := {18, 236} tii[52,70] := {72, 73} tii[52,71] := {23, 246} tii[52,72] := {92, 93} tii[52,73] := {47, 245} tii[52,74] := {113} tii[52,75] := {35, 252} tii[52,76] := {31, 254} tii[52,77] := {69, 70} tii[52,78] := {86} tii[52,79] := {44, 257} tii[52,80] := {66} tii[52,81] := {6, 135} tii[52,82] := {65, 162} tii[52,83] := {10, 163} tii[52,84] := {50, 186} tii[52,85] := {13, 187} tii[52,86] := {38, 207} tii[52,87] := {17, 208} tii[52,88] := {28, 222} tii[52,89] := {15, 189} tii[52,90] := {101, 102} tii[52,91] := {19, 212} tii[52,92] := {63, 211} tii[52,93] := {124, 125} tii[52,94] := {48, 227} tii[52,95] := {24, 228} tii[52,96] := {149, 150} tii[52,97] := {36, 239} tii[52,98] := {171} tii[52,99] := {25, 230} tii[52,100] := {95, 96} tii[52,101] := {32, 243} tii[52,102] := {117, 118} tii[52,103] := {60, 242} tii[52,104] := {142} tii[52,105] := {45, 249} tii[52,106] := {41, 251} tii[52,107] := {90, 91} tii[52,108] := {112} tii[52,109] := {57, 256} tii[52,110] := {85} tii[52,111] := {21, 161} tii[52,112] := {83, 184} tii[52,113] := {26, 185} tii[52,114] := {61, 205} tii[52,115] := {33, 206} tii[52,116] := {46, 221} tii[52,117] := {34, 210} tii[52,118] := {122, 123} tii[52,119] := {42, 226} tii[52,120] := {79, 225} tii[52,121] := {147, 148} tii[52,122] := {58, 238} tii[52,123] := {170} tii[52,124] := {53, 241} tii[52,125] := {115, 116} tii[52,126] := {141} tii[52,127] := {74, 248} tii[52,128] := {109} tii[52,129] := {43, 183} tii[52,130] := {105, 203} tii[52,131] := {54, 204} tii[52,132] := {75, 220} tii[52,133] := {67, 224} tii[52,134] := {145, 146} tii[52,135] := {99, 237} tii[52,136] := {169} tii[52,137] := {138} tii[52,138] := {88, 202} tii[52,139] := {128, 219} tii[52,140] := {168} cell#30 , |C| = 176 special orbit = [10, 4, 1, 1] special rep = [[5], [2, 1]] , dim = 112 cell rep = phi[[5, 2, 1],[]]+phi[[5],[2, 1]] TII depth = 3 TII multiplicity polynomial = 64*X^2+48*X TII subcells: tii[53,1] := {14, 147} tii[53,2] := {36, 159} tii[53,3] := {60, 157} tii[53,4] := {104, 153} tii[53,5] := {150} tii[53,6] := {167} tii[53,7] := {6, 125} tii[53,8] := {22, 141} tii[53,9] := {2, 102} tii[53,10] := {43, 137} tii[53,11] := {5, 97} tii[53,12] := {79, 132} tii[53,13] := {10, 71} tii[53,14] := {16, 52} tii[53,15] := {129} tii[53,16] := {34} tii[53,17] := {155} tii[53,18] := {35, 146} tii[53,19] := {59, 158} tii[53,20] := {23, 124} tii[53,21] := {103, 152} tii[53,22] := {31, 118} tii[53,23] := {41, 91} tii[53,24] := {149} tii[53,25] := {64} tii[53,26] := {166} tii[53,27] := {84, 162} tii[53,28] := {127, 165} tii[53,29] := {61, 145} tii[53,30] := {83, 138} tii[53,31] := {163} tii[53,32] := {110} tii[53,33] := {171} tii[53,34] := {148, 169} tii[53,35] := {128, 161} tii[53,36] := {170} tii[53,37] := {154} tii[53,38] := {173} tii[53,39] := {172} tii[53,40] := {168} tii[53,41] := {174} tii[53,42] := {175} tii[53,43] := {7, 126} tii[53,44] := {13, 120} tii[53,45] := {20, 95} tii[53,46] := {28, 69} tii[53,47] := {50} tii[53,48] := {0, 78} tii[53,49] := {1, 73} tii[53,50] := {24, 142} tii[53,51] := {3, 53} tii[53,52] := {32, 117} tii[53,53] := {8, 37} tii[53,54] := {42, 92} tii[53,55] := {21} tii[53,56] := {65} tii[53,57] := {4, 77} tii[53,58] := {9, 72} tii[53,59] := {46, 139} tii[53,60] := {15, 51} tii[53,61] := {58, 114} tii[53,62] := {33} tii[53,63] := {88} tii[53,64] := {17, 76} tii[53,65] := {25, 70} tii[53,66] := {82, 136} tii[53,67] := {47} tii[53,68] := {109} tii[53,69] := {38, 75} tii[53,70] := {131} tii[53,71] := {66} tii[53,72] := {74} tii[53,73] := {12, 119} tii[53,74] := {19, 94} tii[53,75] := {27, 68} tii[53,76] := {49} tii[53,77] := {11, 101} tii[53,78] := {30, 116} tii[53,79] := {18, 96} tii[53,80] := {40, 90} tii[53,81] := {26, 67} tii[53,82] := {63} tii[53,83] := {48} tii[53,84] := {29, 100} tii[53,85] := {39, 93} tii[53,86] := {55, 112} tii[53,87] := {62} tii[53,88] := {85} tii[53,89] := {54, 99} tii[53,90] := {107} tii[53,91] := {89} tii[53,92] := {98} tii[53,93] := {45, 140} tii[53,94] := {57, 113} tii[53,95] := {87} tii[53,96] := {44, 123} tii[53,97] := {81, 135} tii[53,98] := {56, 115} tii[53,99] := {86} tii[53,100] := {108} tii[53,101] := {80, 122} tii[53,102] := {130} tii[53,103] := {111} tii[53,104] := {121} tii[53,105] := {106, 156} tii[53,106] := {133} tii[53,107] := {105, 144} tii[53,108] := {151} tii[53,109] := {134} tii[53,110] := {143} tii[53,111] := {164} tii[53,112] := {160} cell#31 , |C| = 260 special orbit = [10, 2, 2, 2] special rep = [[5, 1], [1, 1]] , dim = 140 cell rep = phi[[5, 1, 1],[1]]+phi[[5, 1],[1, 1]] TII depth = 5 TII multiplicity polynomial = 120*X^2+20*X TII subcells: tii[52,1] := {60, 257} tii[52,2] := {27, 240} tii[52,3] := {75, 237} tii[52,4] := {130, 234} tii[52,5] := {172, 232} tii[52,6] := {93, 259} tii[52,7] := {8, 218} tii[52,8] := {77, 255} tii[52,9] := {44, 213} tii[52,10] := {94, 247} tii[52,11] := {98, 208} tii[52,12] := {117, 241} tii[52,13] := {141, 205} tii[52,14] := {140, 217} tii[52,15] := {178} tii[52,16] := {25, 227} tii[52,17] := {73, 238} tii[52,18] := {34, 198} tii[52,19] := {128, 233} tii[52,20] := {57, 189} tii[52,21] := {171, 231} tii[52,22] := {81, 155} tii[52,23] := {121} tii[52,24] := {104, 245} tii[52,25] := {161, 250} tii[52,26] := {114, 226} tii[52,27] := {206, 249} tii[52,28] := {139, 216} tii[52,29] := {177} tii[52,30] := {193, 254} tii[52,31] := {230, 256} tii[52,32] := {203, 244} tii[52,33] := {236} tii[52,34] := {248, 258} tii[52,35] := {253} tii[52,36] := {16, 17} tii[52,37] := {33, 252} tii[52,38] := {4, 38} tii[52,39] := {14, 242} tii[52,40] := {15, 64} tii[52,41] := {31, 222} tii[52,42] := {32, 90} tii[52,43] := {53, 185} tii[52,44] := {54, 113} tii[52,45] := {78, 151} tii[52,46] := {3, 18} tii[52,47] := {50, 246} tii[52,48] := {61, 228} tii[52,49] := {11, 37} tii[52,50] := {10, 223} tii[52,51] := {89, 221} tii[52,52] := {24, 59} tii[52,53] := {23, 190} tii[52,54] := {112, 184} tii[52,55] := {43, 83} tii[52,56] := {42, 157} tii[52,57] := {150} tii[52,58] := {66, 123} tii[52,59] := {28, 63} tii[52,60] := {36, 202} tii[52,61] := {49, 88} tii[52,62] := {58, 191} tii[52,63] := {48, 220} tii[52,64] := {82, 156} tii[52,65] := {72, 111} tii[52,66] := {71, 183} tii[52,67] := {122} tii[52,68] := {97, 149} tii[52,69] := {76, 116} tii[52,70] := {86, 201} tii[52,71] := {103, 138} tii[52,72] := {109, 187} tii[52,73] := {102, 215} tii[52,74] := {147} tii[52,75] := {125, 176} tii[52,76] := {131, 168} tii[52,77] := {136, 200} tii[52,78] := {180} tii[52,79] := {144, 210} tii[52,80] := {199} tii[52,81] := {0, 5} tii[52,82] := {1, 192} tii[52,83] := {2, 13} tii[52,84] := {6, 159} tii[52,85] := {7, 30} tii[52,86] := {19, 127} tii[52,87] := {20, 52} tii[52,88] := {39, 92} tii[52,89] := {9, 35} tii[52,90] := {12, 166} tii[52,91] := {22, 56} tii[52,92] := {21, 188} tii[52,93] := {29, 160} tii[52,94] := {40, 154} tii[52,95] := {41, 80} tii[52,96] := {51, 126} tii[52,97] := {65, 120} tii[52,98] := {91} tii[52,99] := {45, 84} tii[52,100] := {55, 165} tii[52,101] := {68, 107} tii[52,102] := {79, 158} tii[52,103] := {67, 181} tii[52,104] := {119} tii[52,105] := {95, 145} tii[52,106] := {99, 134} tii[52,107] := {106, 164} tii[52,108] := {152} tii[52,109] := {118, 174} tii[52,110] := {163} tii[52,111] := {26, 62} tii[52,112] := {46, 219} tii[52,113] := {47, 87} tii[52,114] := {69, 182} tii[52,115] := {70, 110} tii[52,116] := {96, 148} tii[52,117] := {74, 115} tii[52,118] := {85, 197} tii[52,119] := {101, 137} tii[52,120] := {100, 214} tii[52,121] := {108, 186} tii[52,122] := {124, 175} tii[52,123] := {146} tii[52,124] := {129, 167} tii[52,125] := {135, 196} tii[52,126] := {179} tii[52,127] := {143, 209} tii[52,128] := {195} tii[52,129] := {105, 142} tii[52,130] := {132, 239} tii[52,131] := {133, 170} tii[52,132] := {153, 211} tii[52,133] := {162, 204} tii[52,134] := {169, 225} tii[52,135] := {173, 235} tii[52,136] := {212} tii[52,137] := {224} tii[52,138] := {194, 229} tii[52,139] := {207, 251} tii[52,140] := {243} cell#32 , |C| = 260 special orbit = [10, 2, 2, 2] special rep = [[5, 1], [1, 1]] , dim = 140 cell rep = phi[[5, 1, 1],[1]]+phi[[5, 1],[1, 1]] TII depth = 5 TII multiplicity polynomial = 120*X^2+20*X TII subcells: tii[52,1] := {60, 257} tii[52,2] := {27, 240} tii[52,3] := {75, 237} tii[52,4] := {130, 234} tii[52,5] := {172, 232} tii[52,6] := {93, 259} tii[52,7] := {8, 218} tii[52,8] := {77, 255} tii[52,9] := {44, 213} tii[52,10] := {94, 247} tii[52,11] := {98, 208} tii[52,12] := {117, 241} tii[52,13] := {141, 205} tii[52,14] := {140, 217} tii[52,15] := {178} tii[52,16] := {25, 227} tii[52,17] := {73, 238} tii[52,18] := {34, 198} tii[52,19] := {128, 233} tii[52,20] := {57, 189} tii[52,21] := {171, 231} tii[52,22] := {81, 155} tii[52,23] := {121} tii[52,24] := {104, 245} tii[52,25] := {161, 250} tii[52,26] := {114, 226} tii[52,27] := {206, 249} tii[52,28] := {139, 216} tii[52,29] := {177} tii[52,30] := {193, 254} tii[52,31] := {230, 256} tii[52,32] := {203, 244} tii[52,33] := {236} tii[52,34] := {248, 258} tii[52,35] := {253} tii[52,36] := {16, 17} tii[52,37] := {33, 252} tii[52,38] := {4, 38} tii[52,39] := {14, 242} tii[52,40] := {15, 64} tii[52,41] := {31, 222} tii[52,42] := {32, 90} tii[52,43] := {53, 185} tii[52,44] := {54, 113} tii[52,45] := {78, 151} tii[52,46] := {3, 18} tii[52,47] := {50, 246} tii[52,48] := {61, 228} tii[52,49] := {11, 37} tii[52,50] := {10, 223} tii[52,51] := {89, 221} tii[52,52] := {24, 59} tii[52,53] := {23, 190} tii[52,54] := {112, 184} tii[52,55] := {43, 83} tii[52,56] := {42, 157} tii[52,57] := {150} tii[52,58] := {66, 123} tii[52,59] := {28, 63} tii[52,60] := {36, 202} tii[52,61] := {49, 88} tii[52,62] := {58, 191} tii[52,63] := {48, 220} tii[52,64] := {82, 156} tii[52,65] := {72, 111} tii[52,66] := {71, 183} tii[52,67] := {122} tii[52,68] := {97, 149} tii[52,69] := {76, 116} tii[52,70] := {86, 201} tii[52,71] := {103, 138} tii[52,72] := {109, 187} tii[52,73] := {102, 215} tii[52,74] := {147} tii[52,75] := {125, 176} tii[52,76] := {131, 168} tii[52,77] := {136, 200} tii[52,78] := {180} tii[52,79] := {144, 210} tii[52,80] := {199} tii[52,81] := {0, 5} tii[52,82] := {1, 192} tii[52,83] := {2, 13} tii[52,84] := {6, 159} tii[52,85] := {7, 30} tii[52,86] := {19, 127} tii[52,87] := {20, 52} tii[52,88] := {39, 92} tii[52,89] := {9, 35} tii[52,90] := {12, 166} tii[52,91] := {22, 56} tii[52,92] := {21, 188} tii[52,93] := {29, 160} tii[52,94] := {40, 154} tii[52,95] := {41, 80} tii[52,96] := {51, 126} tii[52,97] := {65, 120} tii[52,98] := {91} tii[52,99] := {45, 84} tii[52,100] := {55, 165} tii[52,101] := {68, 107} tii[52,102] := {79, 158} tii[52,103] := {67, 181} tii[52,104] := {119} tii[52,105] := {95, 145} tii[52,106] := {99, 134} tii[52,107] := {106, 164} tii[52,108] := {152} tii[52,109] := {118, 174} tii[52,110] := {163} tii[52,111] := {26, 62} tii[52,112] := {46, 219} tii[52,113] := {47, 87} tii[52,114] := {69, 182} tii[52,115] := {70, 110} tii[52,116] := {96, 148} tii[52,117] := {74, 115} tii[52,118] := {85, 197} tii[52,119] := {101, 137} tii[52,120] := {100, 214} tii[52,121] := {108, 186} tii[52,122] := {124, 175} tii[52,123] := {146} tii[52,124] := {129, 167} tii[52,125] := {135, 196} tii[52,126] := {179} tii[52,127] := {143, 209} tii[52,128] := {195} tii[52,129] := {105, 142} tii[52,130] := {132, 239} tii[52,131] := {133, 170} tii[52,132] := {153, 211} tii[52,133] := {162, 204} tii[52,134] := {169, 225} tii[52,135] := {173, 235} tii[52,136] := {212} tii[52,137] := {224} tii[52,138] := {194, 229} tii[52,139] := {207, 251} tii[52,140] := {243} cell#33 , |C| = 260 special orbit = [10, 2, 2, 2] special rep = [[5, 1], [1, 1]] , dim = 140 cell rep = phi[[5, 1, 1],[1]]+phi[[5, 1],[1, 1]] TII depth = 5 TII multiplicity polynomial = 120*X^2+20*X TII subcells: tii[52,1] := {64, 259} tii[52,2] := {62, 254} tii[52,3] := {59, 243} tii[52,4] := {56, 214} tii[52,5] := {55, 168} tii[52,6] := {84, 258} tii[52,7] := {82, 249} tii[52,8] := {112, 256} tii[52,9] := {78, 233} tii[52,10] := {139, 250} tii[52,11] := {73, 196} tii[52,12] := {158, 241} tii[52,13] := {70, 141} tii[52,14] := {182, 227} tii[52,15] := {207} tii[52,16] := {111, 255} tii[52,17] := {108, 238} tii[52,18] := {138, 251} tii[52,19] := {101, 215} tii[52,20] := {157, 240} tii[52,21] := {95, 167} tii[52,22] := {181, 226} tii[52,23] := {206} tii[52,24] := {137, 248} tii[52,25] := {130, 222} tii[52,26] := {156, 242} tii[52,27] := {125, 189} tii[52,28] := {180, 225} tii[52,29] := {205} tii[52,30] := {155, 237} tii[52,31] := {154, 200} tii[52,32] := {179, 228} tii[52,33] := {204} tii[52,34] := {178, 221} tii[52,35] := {208} tii[52,36] := {0, 88} tii[52,37] := {52, 257} tii[52,38] := {1, 117} tii[52,39] := {40, 253} tii[52,40] := {2, 148} tii[52,41] := {30, 246} tii[52,42] := {4, 173} tii[52,43] := {22, 235} tii[52,44] := {7, 198} tii[52,45] := {14, 219} tii[52,46] := {3, 87} tii[52,47] := {81, 252} tii[52,48] := {106, 244} tii[52,49] := {5, 116} tii[52,50] := {51, 247} tii[52,51] := {127, 230} tii[52,52] := {8, 147} tii[52,53] := {39, 236} tii[52,54] := {150, 210} tii[52,55] := {11, 172} tii[52,56] := {29, 220} tii[52,57] := {184} tii[52,58] := {20, 199} tii[52,59] := {9, 105} tii[52,60] := {77, 234} tii[52,61] := {12, 126} tii[52,62] := {99, 217} tii[52,63] := {49, 229} tii[52,64] := {122, 193} tii[52,65] := {16, 149} tii[52,66] := {37, 209} tii[52,67] := {163} tii[52,68] := {27, 183} tii[52,69] := {18, 96} tii[52,70] := {72, 197} tii[52,71] := {23, 119} tii[52,72] := {93, 170} tii[52,73] := {47, 190} tii[52,74] := {135} tii[52,75] := {35, 160} tii[52,76] := {31, 91} tii[52,77] := {69, 142} tii[52,78] := {104} tii[52,79] := {44, 133} tii[52,80] := {80} tii[52,81] := {6, 66} tii[52,82] := {65, 239} tii[52,83] := {10, 86} tii[52,84] := {50, 224} tii[52,85] := {13, 115} tii[52,86] := {38, 203} tii[52,87] := {17, 146} tii[52,88] := {28, 177} tii[52,89] := {15, 76} tii[52,90] := {107, 245} tii[52,91] := {19, 98} tii[52,92] := {63, 216} tii[52,93] := {128, 231} tii[52,94] := {48, 192} tii[52,95] := {24, 121} tii[52,96] := {151, 211} tii[52,97] := {36, 162} tii[52,98] := {185} tii[52,99] := {25, 71} tii[52,100] := {100, 218} tii[52,101] := {32, 92} tii[52,102] := {123, 194} tii[52,103] := {60, 169} tii[52,104] := {164} tii[52,105] := {45, 134} tii[52,106] := {41, 68} tii[52,107] := {94, 171} tii[52,108] := {136} tii[52,109] := {57, 103} tii[52,110] := {110} tii[52,111] := {21, 85} tii[52,112] := {83, 223} tii[52,113] := {26, 114} tii[52,114] := {61, 202} tii[52,115] := {33, 145} tii[52,116] := {46, 176} tii[52,117] := {34, 97} tii[52,118] := {129, 232} tii[52,119] := {42, 120} tii[52,120] := {79, 191} tii[52,121] := {152, 212} tii[52,122] := {58, 161} tii[52,123] := {186} tii[52,124] := {53, 90} tii[52,125] := {124, 195} tii[52,126] := {165} tii[52,127] := {74, 132} tii[52,128] := {140} tii[52,129] := {43, 113} tii[52,130] := {109, 201} tii[52,131] := {54, 144} tii[52,132] := {75, 175} tii[52,133] := {67, 118} tii[52,134] := {153, 213} tii[52,135] := {102, 159} tii[52,136] := {187} tii[52,137] := {166} tii[52,138] := {89, 143} tii[52,139] := {131, 174} tii[52,140] := {188} cell#34 , |C| = 252 special orbit = [8, 4, 4] special rep = [[4, 2], [2]] , dim = 252 cell rep = phi[[4, 2],[2]] TII depth = 6 TII multiplicity polynomial = 252*X TII subcells: tii[47,1] := {204} tii[47,2] := {243} tii[47,3] := {251} tii[47,4] := {43} tii[47,5] := {129} tii[47,6] := {126} tii[47,7] := {197} tii[47,8] := {196} tii[47,9] := {232} tii[47,10] := {14} tii[47,11] := {74} tii[47,12] := {54} tii[47,13] := {55} tii[47,14] := {161} tii[47,15] := {158} tii[47,16] := {112} tii[47,17] := {113} tii[47,18] := {96} tii[47,19] := {217} tii[47,20] := {216} tii[47,21] := {150} tii[47,22] := {239} tii[47,23] := {167} tii[47,24] := {193} tii[47,25] := {106} tii[47,26] := {184} tii[47,27] := {118} tii[47,28] := {187} tii[47,29] := {119} tii[47,30] := {174} tii[47,31] := {175} tii[47,32] := {229} tii[47,33] := {228} tii[47,34] := {162} tii[47,35] := {105} tii[47,36] := {200} tii[47,37] := {245} tii[47,38] := {134} tii[47,39] := {136} tii[47,40] := {210} tii[47,41] := {156} tii[47,42] := {226} tii[47,43] := {207} tii[47,44] := {237} tii[47,45] := {238} tii[47,46] := {215} tii[47,47] := {214} tii[47,48] := {248} tii[47,49] := {230} tii[47,50] := {206} tii[47,51] := {234} tii[47,52] := {241} tii[47,53] := {220} tii[47,54] := {244} tii[47,55] := {250} tii[47,56] := {246} tii[47,57] := {249} tii[47,58] := {8} tii[47,59] := {34} tii[47,60] := {83} tii[47,61] := {4} tii[47,62] := {22} tii[47,63] := {3} tii[47,64] := {27} tii[47,65] := {28} tii[47,66] := {77} tii[47,67] := {78} tii[47,68] := {10} tii[47,69] := {9} tii[47,70] := {60} tii[47,71] := {63} tii[47,72] := {116} tii[47,73] := {117} tii[47,74] := {19} tii[47,75] := {18} tii[47,76] := {138} tii[47,77] := {32} tii[47,78] := {170} tii[47,79] := {52} tii[47,80] := {53} tii[47,81] := {95} tii[47,82] := {41} tii[47,83] := {92} tii[47,84] := {110} tii[47,85] := {111} tii[47,86] := {42} tii[47,87] := {65} tii[47,88] := {67} tii[47,89] := {148} tii[47,90] := {149} tii[47,91] := {66} tii[47,92] := {166} tii[47,93] := {64} tii[47,94] := {89} tii[47,95] := {88} tii[47,96] := {192} tii[47,97] := {142} tii[47,98] := {143} tii[47,99] := {177} tii[47,100] := {176} tii[47,101] := {127} tii[47,102] := {128} tii[47,103] := {188} tii[47,104] := {153} tii[47,105] := {152} tii[47,106] := {212} tii[47,107] := {208} tii[47,108] := {227} tii[47,109] := {11} tii[47,110] := {46} tii[47,111] := {99} tii[47,112] := {23} tii[47,113] := {24} tii[47,114] := {151} tii[47,115] := {39} tii[47,116] := {40} tii[47,117] := {59} tii[47,118] := {84} tii[47,119] := {85} tii[47,120] := {133} tii[47,121] := {73} tii[47,122] := {130} tii[47,123] := {72} tii[47,124] := {29} tii[47,125] := {30} tii[47,126] := {145} tii[47,127] := {144} tii[47,128] := {102} tii[47,129] := {100} tii[47,130] := {101} tii[47,131] := {50} tii[47,132] := {51} tii[47,133] := {103} tii[47,134] := {178} tii[47,135] := {179} tii[47,136] := {189} tii[47,137] := {124} tii[47,138] := {125} tii[47,139] := {76} tii[47,140] := {213} tii[47,141] := {45} tii[47,142] := {172} tii[47,143] := {173} tii[47,144] := {199} tii[47,145] := {159} tii[47,146] := {70} tii[47,147] := {68} tii[47,148] := {81} tii[47,149] := {82} tii[47,150] := {198} tii[47,151] := {160} tii[47,152] := {209} tii[47,153] := {90} tii[47,154] := {181} tii[47,155] := {109} tii[47,156] := {225} tii[47,157] := {180} tii[47,158] := {98} tii[47,159] := {222} tii[47,160] := {140} tii[47,161] := {236} tii[47,162] := {122} tii[47,163] := {104} tii[47,164] := {165} tii[47,165] := {201} tii[47,166] := {135} tii[47,167] := {137} tii[47,168] := {157} tii[47,169] := {195} tii[47,170] := {194} tii[47,171] := {219} tii[47,172] := {186} tii[47,173] := {218} tii[47,174] := {185} tii[47,175] := {146} tii[47,176] := {147} tii[47,177] := {223} tii[47,178] := {202} tii[47,179] := {203} tii[47,180] := {171} tii[47,181] := {235} tii[47,182] := {164} tii[47,183] := {233} tii[47,184] := {191} tii[47,185] := {242} tii[47,186] := {182} tii[47,187] := {231} tii[47,188] := {205} tii[47,189] := {221} tii[47,190] := {240} tii[47,191] := {224} tii[47,192] := {247} tii[47,193] := {0} tii[47,194] := {1} tii[47,195] := {2} tii[47,196] := {5} tii[47,197] := {6} tii[47,198] := {15} tii[47,199] := {7} tii[47,200] := {16} tii[47,201] := {17} tii[47,202] := {31} tii[47,203] := {33} tii[47,204] := {56} tii[47,205] := {12} tii[47,206] := {13} tii[47,207] := {25} tii[47,208] := {26} tii[47,209] := {47} tii[47,210] := {20} tii[47,211] := {21} tii[47,212] := {37} tii[47,213] := {48} tii[47,214] := {49} tii[47,215] := {36} tii[47,216] := {38} tii[47,217] := {35} tii[47,218] := {57} tii[47,219] := {58} tii[47,220] := {75} tii[47,221] := {62} tii[47,222] := {61} tii[47,223] := {107} tii[47,224] := {86} tii[47,225] := {87} tii[47,226] := {79} tii[47,227] := {80} tii[47,228] := {108} tii[47,229] := {94} tii[47,230] := {93} tii[47,231] := {139} tii[47,232] := {121} tii[47,233] := {120} tii[47,234] := {168} tii[47,235] := {44} tii[47,236] := {69} tii[47,237] := {71} tii[47,238] := {91} tii[47,239] := {97} tii[47,240] := {123} tii[47,241] := {115} tii[47,242] := {114} tii[47,243] := {141} tii[47,244] := {131} tii[47,245] := {132} tii[47,246] := {169} tii[47,247] := {155} tii[47,248] := {154} tii[47,249] := {190} tii[47,250] := {163} tii[47,251] := {183} tii[47,252] := {211} cell#35 , |C| = 280 special orbit = [8, 2, 2, 2, 2] special rep = [[4, 1, 1], [1, 1]] , dim = 280 cell rep = phi[[4, 1, 1],[1, 1]] TII depth = 5 TII multiplicity polynomial = 280*X TII subcells: tii[44,1] := {208} tii[44,2] := {225} tii[44,3] := {218} tii[44,4] := {215} tii[44,5] := {255} tii[44,6] := {261} tii[44,7] := {259} tii[44,8] := {274} tii[44,9] := {276} tii[44,10] := {279} tii[44,11] := {5} tii[44,12] := {19} tii[44,13] := {48} tii[44,14] := {85} tii[44,15] := {173} tii[44,16] := {12} tii[44,17] := {195} tii[44,18] := {35} tii[44,19] := {141} tii[44,20] := {15} tii[44,21] := {188} tii[44,22] := {72} tii[44,23] := {131} tii[44,24] := {27} tii[44,25] := {184} tii[44,26] := {117} tii[44,27] := {96} tii[44,28] := {40} tii[44,29] := {68} tii[44,30] := {204} tii[44,31] := {54} tii[44,32] := {219} tii[44,33] := {99} tii[44,34] := {172} tii[44,35] := {62} tii[44,36] := {214} tii[44,37] := {148} tii[44,38] := {161} tii[44,39] := {82} tii[44,40] := {123} tii[44,41] := {231} tii[44,42] := {132} tii[44,43] := {243} tii[44,44] := {183} tii[44,45] := {203} tii[44,46] := {142} tii[44,47] := {191} tii[44,48] := {250} tii[44,49] := {209} tii[44,50] := {230} tii[44,51] := {23} tii[44,52] := {56} tii[44,53] := {177} tii[44,54] := {28} tii[44,55] := {101} tii[44,56] := {165} tii[44,57] := {43} tii[44,58] := {149} tii[44,59] := {129} tii[44,60] := {61} tii[44,61] := {92} tii[44,62] := {45} tii[44,63] := {234} tii[44,64] := {78} tii[44,65] := {134} tii[44,66] := {86} tii[44,67] := {207} tii[44,68] := {65} tii[44,69] := {199} tii[44,70] := {245} tii[44,71] := {185} tii[44,72] := {198} tii[44,73] := {116} tii[44,74] := {84} tii[44,75] := {162} tii[44,76] := {242} tii[44,77] := {156} tii[44,78] := {125} tii[44,79] := {88} tii[44,80] := {252} tii[44,81] := {166} tii[44,82] := {213} tii[44,83] := {260} tii[44,84] := {233} tii[44,85] := {178} tii[44,86] := {115} tii[44,87] := {197} tii[44,88] := {222} tii[44,89] := {155} tii[44,90] := {144} tii[44,91] := {264} tii[44,92] := {238} tii[44,93] := {251} tii[44,94] := {190} tii[44,95] := {105} tii[44,96] := {168} tii[44,97] := {237} tii[44,98] := {118} tii[44,99] := {216} tii[44,100] := {227} tii[44,101] := {147} tii[44,102] := {193} tii[44,103] := {151} tii[44,104] := {266} tii[44,105] := {200} tii[44,106] := {241} tii[44,107] := {210} tii[44,108] := {254} tii[44,109] := {182} tii[44,110] := {249} tii[44,111] := {270} tii[44,112] := {248} tii[44,113] := {223} tii[44,114] := {212} tii[44,115] := {272} tii[44,116] := {256} tii[44,117] := {265} tii[44,118] := {247} tii[44,119] := {228} tii[44,120] := {258} tii[44,121] := {268} tii[44,122] := {239} tii[44,123] := {263} tii[44,124] := {257} tii[44,125] := {277} tii[44,126] := {269} tii[44,127] := {273} tii[44,128] := {271} tii[44,129] := {275} tii[44,130] := {278} tii[44,131] := {0} tii[44,132] := {1} tii[44,133] := {2} tii[44,134] := {3} tii[44,135] := {4} tii[44,136] := {8} tii[44,137] := {9} tii[44,138] := {16} tii[44,139] := {6} tii[44,140] := {110} tii[44,141] := {7} tii[44,142] := {11} tii[44,143] := {10} tii[44,144] := {98} tii[44,145] := {14} tii[44,146] := {18} tii[44,147] := {17} tii[44,148] := {70} tii[44,149] := {25} tii[44,150] := {30} tii[44,151] := {44} tii[44,152] := {20} tii[44,153] := {109} tii[44,154] := {26} tii[44,155] := {32} tii[44,156] := {31} tii[44,157] := {97} tii[44,158] := {39} tii[44,159] := {46} tii[44,160] := {67} tii[44,161] := {49} tii[44,162] := {108} tii[44,163] := {58} tii[44,164] := {66} tii[44,165] := {93} tii[44,166] := {107} tii[44,167] := {29} tii[44,168] := {13} tii[44,169] := {164} tii[44,170] := {21} tii[44,171] := {42} tii[44,172] := {22} tii[44,173] := {128} tii[44,174] := {60} tii[44,175] := {33} tii[44,176] := {34} tii[44,177] := {91} tii[44,178] := {47} tii[44,179] := {63} tii[44,180] := {36} tii[44,181] := {140} tii[44,182] := {41} tii[44,183] := {81} tii[44,184] := {51} tii[44,185] := {160} tii[44,186] := {50} tii[44,187] := {130} tii[44,188] := {59} tii[44,189] := {122} tii[44,190] := {69} tii[44,191] := {90} tii[44,192] := {111} tii[44,193] := {73} tii[44,194] := {139} tii[44,195] := {80} tii[44,196] := {126} tii[44,197] := {153} tii[44,198] := {89} tii[44,199] := {138} tii[44,200] := {87} tii[44,201] := {55} tii[44,202] := {196} tii[44,203] := {74} tii[44,204] := {114} tii[44,205] := {75} tii[44,206] := {154} tii[44,207] := {94} tii[44,208] := {143} tii[44,209] := {100} tii[44,210] := {171} tii[44,211] := {112} tii[44,212] := {189} tii[44,213] := {120} tii[44,214] := {157} tii[44,215] := {170} tii[44,216] := {179} tii[44,217] := {133} tii[44,218] := {220} tii[44,219] := {150} tii[44,220] := {202} tii[44,221] := {24} tii[44,222] := {37} tii[44,223] := {38} tii[44,224] := {52} tii[44,225] := {53} tii[44,226] := {71} tii[44,227] := {57} tii[44,228] := {64} tii[44,229] := {176} tii[44,230] := {77} tii[44,231] := {76} tii[44,232] := {83} tii[44,233] := {163} tii[44,234] := {95} tii[44,235] := {124} tii[44,236] := {102} tii[44,237] := {175} tii[44,238] := {113} tii[44,239] := {121} tii[44,240] := {158} tii[44,241] := {174} tii[44,242] := {119} tii[44,243] := {79} tii[44,244] := {226} tii[44,245] := {103} tii[44,246] := {146} tii[44,247] := {104} tii[44,248] := {192} tii[44,249] := {127} tii[44,250] := {135} tii[44,251] := {180} tii[44,252] := {145} tii[44,253] := {206} tii[44,254] := {152} tii[44,255] := {194} tii[44,256] := {221} tii[44,257] := {205} tii[44,258] := {211} tii[44,259] := {167} tii[44,260] := {246} tii[44,261] := {186} tii[44,262] := {232} tii[44,263] := {106} tii[44,264] := {136} tii[44,265] := {137} tii[44,266] := {159} tii[44,267] := {169} tii[44,268] := {181} tii[44,269] := {236} tii[44,270] := {187} tii[44,271] := {224} tii[44,272] := {235} tii[44,273] := {240} tii[44,274] := {201} tii[44,275] := {262} tii[44,276] := {217} tii[44,277] := {253} tii[44,278] := {229} tii[44,279] := {244} tii[44,280] := {267} cell#36 , |C| = 252 special orbit = [8, 4, 4] special rep = [[4, 2], [2]] , dim = 252 cell rep = phi[[4, 2],[2]] TII depth = 6 TII multiplicity polynomial = 252*X TII subcells: tii[47,1] := {204} tii[47,2] := {243} tii[47,3] := {251} tii[47,4] := {43} tii[47,5] := {129} tii[47,6] := {126} tii[47,7] := {197} tii[47,8] := {196} tii[47,9] := {232} tii[47,10] := {14} tii[47,11] := {74} tii[47,12] := {54} tii[47,13] := {55} tii[47,14] := {161} tii[47,15] := {158} tii[47,16] := {112} tii[47,17] := {113} tii[47,18] := {96} tii[47,19] := {217} tii[47,20] := {216} tii[47,21] := {150} tii[47,22] := {239} tii[47,23] := {167} tii[47,24] := {193} tii[47,25] := {106} tii[47,26] := {184} tii[47,27] := {118} tii[47,28] := {187} tii[47,29] := {119} tii[47,30] := {174} tii[47,31] := {175} tii[47,32] := {229} tii[47,33] := {228} tii[47,34] := {162} tii[47,35] := {105} tii[47,36] := {200} tii[47,37] := {245} tii[47,38] := {134} tii[47,39] := {136} tii[47,40] := {210} tii[47,41] := {156} tii[47,42] := {226} tii[47,43] := {207} tii[47,44] := {237} tii[47,45] := {238} tii[47,46] := {215} tii[47,47] := {214} tii[47,48] := {248} tii[47,49] := {230} tii[47,50] := {206} tii[47,51] := {234} tii[47,52] := {241} tii[47,53] := {220} tii[47,54] := {244} tii[47,55] := {250} tii[47,56] := {246} tii[47,57] := {249} tii[47,58] := {8} tii[47,59] := {34} tii[47,60] := {83} tii[47,61] := {4} tii[47,62] := {22} tii[47,63] := {3} tii[47,64] := {27} tii[47,65] := {28} tii[47,66] := {77} tii[47,67] := {78} tii[47,68] := {10} tii[47,69] := {9} tii[47,70] := {60} tii[47,71] := {63} tii[47,72] := {116} tii[47,73] := {117} tii[47,74] := {19} tii[47,75] := {18} tii[47,76] := {138} tii[47,77] := {32} tii[47,78] := {170} tii[47,79] := {52} tii[47,80] := {53} tii[47,81] := {95} tii[47,82] := {41} tii[47,83] := {92} tii[47,84] := {110} tii[47,85] := {111} tii[47,86] := {42} tii[47,87] := {65} tii[47,88] := {67} tii[47,89] := {148} tii[47,90] := {149} tii[47,91] := {66} tii[47,92] := {166} tii[47,93] := {64} tii[47,94] := {89} tii[47,95] := {88} tii[47,96] := {192} tii[47,97] := {142} tii[47,98] := {143} tii[47,99] := {177} tii[47,100] := {176} tii[47,101] := {127} tii[47,102] := {128} tii[47,103] := {188} tii[47,104] := {153} tii[47,105] := {152} tii[47,106] := {212} tii[47,107] := {208} tii[47,108] := {227} tii[47,109] := {11} tii[47,110] := {46} tii[47,111] := {99} tii[47,112] := {23} tii[47,113] := {24} tii[47,114] := {151} tii[47,115] := {39} tii[47,116] := {40} tii[47,117] := {59} tii[47,118] := {84} tii[47,119] := {85} tii[47,120] := {133} tii[47,121] := {73} tii[47,122] := {130} tii[47,123] := {72} tii[47,124] := {29} tii[47,125] := {30} tii[47,126] := {145} tii[47,127] := {144} tii[47,128] := {102} tii[47,129] := {100} tii[47,130] := {101} tii[47,131] := {50} tii[47,132] := {51} tii[47,133] := {103} tii[47,134] := {178} tii[47,135] := {179} tii[47,136] := {189} tii[47,137] := {124} tii[47,138] := {125} tii[47,139] := {76} tii[47,140] := {213} tii[47,141] := {45} tii[47,142] := {172} tii[47,143] := {173} tii[47,144] := {199} tii[47,145] := {159} tii[47,146] := {70} tii[47,147] := {68} tii[47,148] := {81} tii[47,149] := {82} tii[47,150] := {198} tii[47,151] := {160} tii[47,152] := {209} tii[47,153] := {90} tii[47,154] := {181} tii[47,155] := {109} tii[47,156] := {225} tii[47,157] := {180} tii[47,158] := {98} tii[47,159] := {222} tii[47,160] := {140} tii[47,161] := {236} tii[47,162] := {122} tii[47,163] := {104} tii[47,164] := {165} tii[47,165] := {201} tii[47,166] := {135} tii[47,167] := {137} tii[47,168] := {157} tii[47,169] := {195} tii[47,170] := {194} tii[47,171] := {219} tii[47,172] := {186} tii[47,173] := {218} tii[47,174] := {185} tii[47,175] := {146} tii[47,176] := {147} tii[47,177] := {223} tii[47,178] := {202} tii[47,179] := {203} tii[47,180] := {171} tii[47,181] := {235} tii[47,182] := {164} tii[47,183] := {233} tii[47,184] := {191} tii[47,185] := {242} tii[47,186] := {182} tii[47,187] := {231} tii[47,188] := {205} tii[47,189] := {221} tii[47,190] := {240} tii[47,191] := {224} tii[47,192] := {247} tii[47,193] := {0} tii[47,194] := {1} tii[47,195] := {2} tii[47,196] := {5} tii[47,197] := {6} tii[47,198] := {15} tii[47,199] := {7} tii[47,200] := {16} tii[47,201] := {17} tii[47,202] := {31} tii[47,203] := {33} tii[47,204] := {56} tii[47,205] := {12} tii[47,206] := {13} tii[47,207] := {25} tii[47,208] := {26} tii[47,209] := {47} tii[47,210] := {20} tii[47,211] := {21} tii[47,212] := {37} tii[47,213] := {48} tii[47,214] := {49} tii[47,215] := {36} tii[47,216] := {38} tii[47,217] := {35} tii[47,218] := {57} tii[47,219] := {58} tii[47,220] := {75} tii[47,221] := {62} tii[47,222] := {61} tii[47,223] := {107} tii[47,224] := {86} tii[47,225] := {87} tii[47,226] := {79} tii[47,227] := {80} tii[47,228] := {108} tii[47,229] := {94} tii[47,230] := {93} tii[47,231] := {139} tii[47,232] := {121} tii[47,233] := {120} tii[47,234] := {168} tii[47,235] := {44} tii[47,236] := {69} tii[47,237] := {71} tii[47,238] := {91} tii[47,239] := {97} tii[47,240] := {123} tii[47,241] := {115} tii[47,242] := {114} tii[47,243] := {141} tii[47,244] := {131} tii[47,245] := {132} tii[47,246] := {169} tii[47,247] := {155} tii[47,248] := {154} tii[47,249] := {190} tii[47,250] := {163} tii[47,251] := {183} tii[47,252] := {211} cell#37 , |C| = 280 special orbit = [8, 2, 2, 2, 2] special rep = [[4, 1, 1], [1, 1]] , dim = 280 cell rep = phi[[4, 1, 1],[1, 1]] TII depth = 5 TII multiplicity polynomial = 280*X TII subcells: tii[44,1] := {208} tii[44,2] := {225} tii[44,3] := {218} tii[44,4] := {215} tii[44,5] := {255} tii[44,6] := {261} tii[44,7] := {259} tii[44,8] := {274} tii[44,9] := {276} tii[44,10] := {279} tii[44,11] := {5} tii[44,12] := {19} tii[44,13] := {48} tii[44,14] := {85} tii[44,15] := {173} tii[44,16] := {12} tii[44,17] := {195} tii[44,18] := {35} tii[44,19] := {141} tii[44,20] := {15} tii[44,21] := {188} tii[44,22] := {72} tii[44,23] := {131} tii[44,24] := {27} tii[44,25] := {184} tii[44,26] := {117} tii[44,27] := {96} tii[44,28] := {40} tii[44,29] := {68} tii[44,30] := {204} tii[44,31] := {54} tii[44,32] := {219} tii[44,33] := {99} tii[44,34] := {172} tii[44,35] := {62} tii[44,36] := {214} tii[44,37] := {148} tii[44,38] := {161} tii[44,39] := {82} tii[44,40] := {123} tii[44,41] := {231} tii[44,42] := {132} tii[44,43] := {243} tii[44,44] := {183} tii[44,45] := {203} tii[44,46] := {142} tii[44,47] := {191} tii[44,48] := {250} tii[44,49] := {209} tii[44,50] := {230} tii[44,51] := {23} tii[44,52] := {56} tii[44,53] := {177} tii[44,54] := {28} tii[44,55] := {101} tii[44,56] := {165} tii[44,57] := {43} tii[44,58] := {149} tii[44,59] := {129} tii[44,60] := {61} tii[44,61] := {92} tii[44,62] := {45} tii[44,63] := {234} tii[44,64] := {78} tii[44,65] := {134} tii[44,66] := {86} tii[44,67] := {207} tii[44,68] := {65} tii[44,69] := {199} tii[44,70] := {245} tii[44,71] := {185} tii[44,72] := {198} tii[44,73] := {116} tii[44,74] := {84} tii[44,75] := {162} tii[44,76] := {242} tii[44,77] := {156} tii[44,78] := {125} tii[44,79] := {88} tii[44,80] := {252} tii[44,81] := {166} tii[44,82] := {213} tii[44,83] := {260} tii[44,84] := {233} tii[44,85] := {178} tii[44,86] := {115} tii[44,87] := {197} tii[44,88] := {222} tii[44,89] := {155} tii[44,90] := {144} tii[44,91] := {264} tii[44,92] := {238} tii[44,93] := {251} tii[44,94] := {190} tii[44,95] := {105} tii[44,96] := {168} tii[44,97] := {237} tii[44,98] := {118} tii[44,99] := {216} tii[44,100] := {227} tii[44,101] := {147} tii[44,102] := {193} tii[44,103] := {151} tii[44,104] := {266} tii[44,105] := {200} tii[44,106] := {241} tii[44,107] := {210} tii[44,108] := {254} tii[44,109] := {182} tii[44,110] := {249} tii[44,111] := {270} tii[44,112] := {248} tii[44,113] := {223} tii[44,114] := {212} tii[44,115] := {272} tii[44,116] := {256} tii[44,117] := {265} tii[44,118] := {247} tii[44,119] := {228} tii[44,120] := {258} tii[44,121] := {268} tii[44,122] := {239} tii[44,123] := {263} tii[44,124] := {257} tii[44,125] := {277} tii[44,126] := {269} tii[44,127] := {273} tii[44,128] := {271} tii[44,129] := {275} tii[44,130] := {278} tii[44,131] := {0} tii[44,132] := {1} tii[44,133] := {2} tii[44,134] := {3} tii[44,135] := {4} tii[44,136] := {8} tii[44,137] := {9} tii[44,138] := {16} tii[44,139] := {6} tii[44,140] := {110} tii[44,141] := {7} tii[44,142] := {11} tii[44,143] := {10} tii[44,144] := {98} tii[44,145] := {14} tii[44,146] := {18} tii[44,147] := {17} tii[44,148] := {70} tii[44,149] := {25} tii[44,150] := {30} tii[44,151] := {44} tii[44,152] := {20} tii[44,153] := {109} tii[44,154] := {26} tii[44,155] := {32} tii[44,156] := {31} tii[44,157] := {97} tii[44,158] := {39} tii[44,159] := {46} tii[44,160] := {67} tii[44,161] := {49} tii[44,162] := {108} tii[44,163] := {58} tii[44,164] := {66} tii[44,165] := {93} tii[44,166] := {107} tii[44,167] := {29} tii[44,168] := {13} tii[44,169] := {164} tii[44,170] := {21} tii[44,171] := {42} tii[44,172] := {22} tii[44,173] := {128} tii[44,174] := {60} tii[44,175] := {33} tii[44,176] := {34} tii[44,177] := {91} tii[44,178] := {47} tii[44,179] := {63} tii[44,180] := {36} tii[44,181] := {140} tii[44,182] := {41} tii[44,183] := {81} tii[44,184] := {51} tii[44,185] := {160} tii[44,186] := {50} tii[44,187] := {130} tii[44,188] := {59} tii[44,189] := {122} tii[44,190] := {69} tii[44,191] := {90} tii[44,192] := {111} tii[44,193] := {73} tii[44,194] := {139} tii[44,195] := {80} tii[44,196] := {126} tii[44,197] := {153} tii[44,198] := {89} tii[44,199] := {138} tii[44,200] := {87} tii[44,201] := {55} tii[44,202] := {196} tii[44,203] := {74} tii[44,204] := {114} tii[44,205] := {75} tii[44,206] := {154} tii[44,207] := {94} tii[44,208] := {143} tii[44,209] := {100} tii[44,210] := {171} tii[44,211] := {112} tii[44,212] := {189} tii[44,213] := {120} tii[44,214] := {157} tii[44,215] := {170} tii[44,216] := {179} tii[44,217] := {133} tii[44,218] := {220} tii[44,219] := {150} tii[44,220] := {202} tii[44,221] := {24} tii[44,222] := {37} tii[44,223] := {38} tii[44,224] := {52} tii[44,225] := {53} tii[44,226] := {71} tii[44,227] := {57} tii[44,228] := {64} tii[44,229] := {176} tii[44,230] := {77} tii[44,231] := {76} tii[44,232] := {83} tii[44,233] := {163} tii[44,234] := {95} tii[44,235] := {124} tii[44,236] := {102} tii[44,237] := {175} tii[44,238] := {113} tii[44,239] := {121} tii[44,240] := {158} tii[44,241] := {174} tii[44,242] := {119} tii[44,243] := {79} tii[44,244] := {226} tii[44,245] := {103} tii[44,246] := {146} tii[44,247] := {104} tii[44,248] := {192} tii[44,249] := {127} tii[44,250] := {135} tii[44,251] := {180} tii[44,252] := {145} tii[44,253] := {206} tii[44,254] := {152} tii[44,255] := {194} tii[44,256] := {221} tii[44,257] := {205} tii[44,258] := {211} tii[44,259] := {167} tii[44,260] := {246} tii[44,261] := {186} tii[44,262] := {232} tii[44,263] := {106} tii[44,264] := {136} tii[44,265] := {137} tii[44,266] := {159} tii[44,267] := {169} tii[44,268] := {181} tii[44,269] := {236} tii[44,270] := {187} tii[44,271] := {224} tii[44,272] := {235} tii[44,273] := {240} tii[44,274] := {201} tii[44,275] := {262} tii[44,276] := {217} tii[44,277] := {253} tii[44,278] := {229} tii[44,279] := {244} tii[44,280] := {267} cell#38 , |C| = 1260 special orbit = [8, 4, 2, 2] special rep = [[4, 1], [2, 1]] , dim = 448 cell rep = phi[[4, 2, 1],[1]]+phi[[4, 1, 1],[2]]+phi[[4, 2],[1, 1]]+phi[[4, 1],[2, 1]] TII depth = 4 TII multiplicity polynomial = 224*X^4+140*X^2+84*X TII subcells: tii[46,1] := {181, 182, 1004, 1005} tii[46,2] := {510, 511, 1081, 1082} tii[46,3] := {906, 907, 1143, 1144} tii[46,4] := {1174, 1175} tii[46,5] := {148, 903} tii[46,6] := {290, 291, 1095, 1096} tii[46,7] := {348, 942} tii[46,8] := {138, 139, 881, 882} tii[46,9] := {667, 668, 1153, 1154} tii[46,10] := {328, 329, 859, 860} tii[46,11] := {617, 927} tii[46,12] := {1021, 1022, 1191, 1192} tii[46,13] := {554, 555, 851, 852} tii[46,14] := {1211, 1212} tii[46,15] := {912} tii[46,16] := {1051} tii[46,17] := {413, 414, 1137, 1140} tii[46,18] := {628, 1104} tii[46,19] := {819, 820, 1197, 1198} tii[46,20] := {336, 337, 1057, 1060} tii[46,21] := {905, 1121} tii[46,22] := {608, 609, 1085, 1086} tii[46,23] := {1106, 1107, 1224, 1225} tii[46,24] := {421, 422, 952, 955} tii[46,25] := {853, 854, 1077, 1078} tii[46,26] := {1236, 1237} tii[46,27] := {542, 543, 889, 890} tii[46,28] := {1112} tii[46,29] := {735, 736} tii[46,30] := {1187} tii[46,31] := {956, 957, 1216, 1218} tii[46,32] := {1105, 1203} tii[46,33] := {1167, 1168, 1241, 1242} tii[46,34] := {893, 894, 1180, 1182} tii[46,35] := {1071, 1072, 1195, 1196} tii[46,36] := {1248, 1249} tii[46,37] := {966, 967, 1136, 1139} tii[46,38] := {1210} tii[46,39] := {1093, 1094} tii[46,40] := {1240} tii[46,41] := {1206, 1207, 1246, 1247} tii[46,42] := {1254, 1255} tii[46,43] := {1189, 1190, 1234, 1235} tii[46,44] := {1243} tii[46,45] := {1215, 1217} tii[46,46] := {1252} tii[46,47] := {1256, 1257} tii[46,48] := {1259} tii[46,49] := {19, 20, 21, 22} tii[46,50] := {94, 95, 96, 97} tii[46,51] := {39, 40, 739, 740} tii[46,52] := {252, 253, 254, 255} tii[46,53] := {155, 156, 719, 720} tii[46,54] := {345, 346, 707, 708} tii[46,55] := {477, 478} tii[46,56] := {641, 642} tii[46,57] := {53, 54, 55, 56} tii[46,58] := {76, 764} tii[46,59] := {98, 99, 879, 880} tii[46,60] := {235, 804} tii[46,61] := {17, 18, 120, 121} tii[46,62] := {65, 66, 741, 742} tii[46,63] := {185, 186, 187, 188} tii[46,64] := {30, 615} tii[46,65] := {471, 791} tii[46,66] := {215, 216, 717, 718} tii[46,67] := {369, 370, 371, 372} tii[46,68] := {43, 44, 753, 754} tii[46,69] := {45, 46, 201, 202} tii[46,70] := {256, 257, 857, 858} tii[46,71] := {75, 503} tii[46,72] := {411, 412, 705, 706} tii[46,73] := {479, 480, 849, 850} tii[46,74] := {86, 87, 594, 595} tii[46,75] := {88, 89, 270, 271} tii[46,76] := {774} tii[46,77] := {143, 364} tii[46,78] := {622, 623} tii[46,79] := {151, 152, 441, 442} tii[46,80] := {935} tii[46,81] := {242} tii[46,82] := {797, 798} tii[46,83] := {294, 295, 296, 297} tii[46,84] := {347, 899} tii[46,85] := {134, 135, 807, 810} tii[46,86] := {373, 374, 986, 987} tii[46,87] := {616, 928} tii[46,88] := {183, 184, 423, 424} tii[46,89] := {236, 763} tii[46,90] := {324, 325, 861, 862} tii[46,91] := {514, 515, 516, 517} tii[46,92] := {193, 194, 656, 659} tii[46,93] := {552, 553, 847, 848} tii[46,94] := {276, 277, 536, 537} tii[46,95] := {342, 651} tii[46,96] := {274, 275, 883, 884} tii[46,97] := {624, 625, 976, 977} tii[46,98] := {266, 267, 592, 593} tii[46,99] := {911} tii[46,100] := {775, 776} tii[46,101] := {358, 359, 729, 730} tii[46,102] := {490} tii[46,103] := {437, 438} tii[46,104] := {1050} tii[46,105] := {936, 937} tii[46,106] := {671, 672, 673, 674} tii[46,107] := {455, 456, 930, 932} tii[46,108] := {769, 1013} tii[46,109] := {779, 780, 1073, 1074} tii[46,110] := {512, 513, 835, 836} tii[46,111] := {526, 527, 806, 809} tii[46,112] := {618, 898} tii[46,113] := {703, 704, 982, 983} tii[46,114] := {1029} tii[46,115] := {909, 910} tii[46,116] := {795} tii[46,117] := {727, 728} tii[46,118] := {629, 630, 992, 993} tii[46,119] := {1048, 1049} tii[46,120] := {1132} tii[46,121] := {1024, 1025} tii[46,122] := {831, 832, 1034, 1035} tii[46,123] := {1099} tii[46,124] := {929, 931} tii[46,125] := {1012} tii[46,126] := {1126, 1127} tii[46,127] := {1164} tii[46,128] := {1205} tii[46,129] := {116, 117, 118, 119} tii[46,130] := {77, 768} tii[46,131] := {189, 190, 1006, 1007} tii[46,132] := {298, 299, 300, 301} tii[46,133] := {51, 52, 209, 210} tii[46,134] := {146, 660} tii[46,135] := {377, 378, 988, 989} tii[46,136] := {518, 519, 520, 521} tii[46,137] := {108, 109, 891, 892} tii[46,138] := {110, 111, 310, 311} tii[46,139] := {234, 501} tii[46,140] := {626, 627, 980, 981} tii[46,141] := {173, 174, 751, 752} tii[46,142] := {175, 176, 397, 398} tii[46,143] := {777, 778} tii[46,144] := {356} tii[46,145] := {248, 249, 580, 581} tii[46,146] := {938, 939} tii[46,147] := {227, 228, 945, 948} tii[46,148] := {27, 28, 122, 123} tii[46,149] := {417, 418, 419, 420} tii[46,150] := {481, 1016} tii[46,151] := {522, 523, 1083, 1084} tii[46,152] := {302, 303, 815, 818} tii[46,153] := {292, 293, 562, 563} tii[46,154] := {71, 72, 203, 204} tii[46,155] := {238, 812} tii[46,156] := {69, 70, 755, 756} tii[46,157] := {770, 1042} tii[46,158] := {459, 460, 990, 991} tii[46,159] := {675, 676, 677, 678} tii[46,160] := {349, 902} tii[46,161] := {395, 396, 749, 750} tii[46,162] := {401, 402, 695, 696} tii[46,163] := {344, 650} tii[46,164] := {132, 133, 272, 273} tii[46,165] := {130, 131, 596, 597} tii[46,166] := {399, 400, 1008, 1009} tii[46,167] := {709, 710, 978, 979} tii[46,168] := {781, 782, 1075, 1076} tii[46,169] := {476, 811} tii[46,170] := {913, 914} tii[46,171] := {1028} tii[46,172] := {578, 579} tii[46,173] := {494, 495, 873, 874} tii[46,174] := {492} tii[46,175] := {213, 214, 443, 444} tii[46,176] := {640} tii[46,177] := {1052, 1053} tii[46,178] := {1131} tii[46,179] := {199, 200, 663, 666} tii[46,180] := {140, 141, 308, 309} tii[46,181] := {823, 824, 825, 826} tii[46,182] := {904, 1101} tii[46,183] := {604, 605, 1044, 1046} tii[46,184] := {915, 916, 1147, 1148} tii[46,185] := {669, 670, 968, 969} tii[46,186] := {268, 269, 598, 599} tii[46,187] := {225, 226, 393, 394} tii[46,188] := {223, 224, 747, 748} tii[46,189] := {475, 802} tii[46,190] := {771, 1015} tii[46,191] := {845, 846, 1079, 1080} tii[46,192] := {683, 684, 944, 947} tii[46,193] := {1113} tii[46,194] := {1026, 1027} tii[46,195] := {934} tii[46,196] := {439, 440} tii[46,197] := {322, 323, 576, 577} tii[46,198] := {783, 784, 1087, 1088} tii[46,199] := {639} tii[46,200] := {871, 872} tii[46,201] := {1129, 1130} tii[46,202] := {1188} tii[46,203] := {387, 388, 662, 665} tii[46,204] := {330, 331, 532, 533} tii[46,205] := {1108, 1109} tii[46,206] := {964, 965, 1116, 1117} tii[46,207] := {1161} tii[46,208] := {788} tii[46,209] := {1043, 1045} tii[46,210] := {584, 585} tii[46,211] := {1100} tii[46,212] := {1183, 1184} tii[46,213] := {1204} tii[46,214] := {431, 432, 725, 726} tii[46,215] := {661, 664} tii[46,216] := {1231} tii[46,217] := {556, 557, 558, 559} tii[46,218] := {482, 1019} tii[46,219] := {679, 680, 1155, 1156} tii[46,220] := {827, 828, 829, 830} tii[46,221] := {415, 416, 713, 714} tii[46,222] := {917, 918, 1149, 1150} tii[46,223] := {621, 949} tii[46,224] := {546, 547, 843, 844} tii[46,225] := {544, 545, 1097, 1098} tii[46,226] := {1030, 1031} tii[46,227] := {796} tii[46,228] := {645, 646, 1002, 1003} tii[46,229] := {1133, 1134} tii[46,230] := {757, 758, 1123, 1125} tii[46,231] := {338, 339, 564, 565} tii[46,232] := {960, 961, 962, 963} tii[46,233] := {1020, 1163} tii[46,234] := {1032, 1033, 1193, 1194} tii[46,235] := {833, 834, 1056, 1059} tii[46,236] := {821, 822, 1067, 1068} tii[46,237] := {773, 1054} tii[46,238] := {463, 464, 1010, 1011} tii[46,239] := {974, 975, 1151, 1152} tii[46,240] := {465, 466, 697, 698} tii[46,241] := {908, 1103} tii[46,242] := {1173} tii[46,243] := {1110, 1111} tii[46,244] := {1000, 1001} tii[46,245] := {919, 920, 1157, 1158} tii[46,246] := {933} tii[46,247] := {586, 587, 875, 876} tii[46,248] := {1047} tii[46,249] := {1185, 1186} tii[46,250] := {1223} tii[46,251] := {693, 694, 951, 954} tii[46,252] := {610, 611, 841, 842} tii[46,253] := {1169, 1170} tii[46,254] := {1201} tii[46,255] := {1065, 1066, 1176, 1177} tii[46,256] := {1040} tii[46,257] := {1162} tii[46,258] := {1219, 1220} tii[46,259] := {877, 878} tii[46,260] := {1122, 1124} tii[46,261] := {1230} tii[46,262] := {715, 716, 998, 999} tii[46,263] := {950, 953} tii[46,264] := {1245} tii[46,265] := {1061, 1062, 1063, 1064} tii[46,266] := {1023, 1166} tii[46,267] := {1114, 1115, 1226, 1227} tii[46,268] := {958, 959, 1145, 1146} tii[46,269] := {1171, 1172} tii[46,270] := {1128} tii[46,271] := {1036, 1037, 1199, 1200} tii[46,272] := {1221, 1222} tii[46,273] := {1141, 1142, 1213, 1214} tii[46,274] := {895, 896, 1069, 1070} tii[46,275] := {1208, 1209} tii[46,276] := {1228} tii[46,277] := {1178} tii[46,278] := {1179, 1181} tii[46,279] := {1238, 1239} tii[46,280] := {984, 985, 1159, 1160} tii[46,281] := {1202} tii[46,282] := {1244} tii[46,283] := {1135, 1138} tii[46,284] := {1253} tii[46,285] := {1232, 1233} tii[46,286] := {1229} tii[46,287] := {1250, 1251} tii[46,288] := {1258} tii[46,289] := {2, 3, 4, 5} tii[46,290] := {13, 14, 15, 16} tii[46,291] := {35, 36, 37, 38} tii[46,292] := {80, 81} tii[46,293] := {0, 1, 59, 60} tii[46,294] := {8, 470} tii[46,295] := {11, 12, 106, 107} tii[46,296] := {29, 368} tii[46,297] := {9, 10, 602, 603} tii[46,298] := {47, 48, 49, 50} tii[46,299] := {33, 34, 163, 164} tii[46,300] := {31, 32, 451, 452} tii[46,301] := {73, 247} tii[46,302] := {90, 91, 92, 93} tii[46,303] := {78, 79, 318, 319} tii[46,304] := {147} tii[46,305] := {153, 154} tii[46,306] := {41, 42, 197, 198} tii[46,307] := {74, 469} tii[46,308] := {84, 85, 264, 265} tii[46,309] := {142, 365} tii[46,310] := {82, 83, 590, 591} tii[46,311] := {165, 166, 167, 168} tii[46,312] := {241} tii[46,313] := {149, 150, 435, 436} tii[46,314] := {243, 244} tii[46,315] := {157, 158, 383, 384} tii[46,316] := {231, 468} tii[46,317] := {350, 351} tii[46,318] := {357} tii[46,319] := {239, 240, 570, 571} tii[46,320] := {467} tii[46,321] := {6, 7, 57, 58} tii[46,322] := {145, 653} tii[46,323] := {112, 113, 114, 115} tii[46,324] := {25, 26, 104, 105} tii[46,325] := {23, 24, 600, 601} tii[46,326] := {233, 500} tii[46,327] := {177, 178, 179, 180} tii[46,328] := {63, 64, 161, 162} tii[46,329] := {61, 62, 449, 450} tii[46,330] := {355} tii[46,331] := {250, 251} tii[46,332] := {124, 125, 316, 317} tii[46,333] := {100, 101, 306, 307} tii[46,334] := {67, 68, 195, 196} tii[46,335] := {144, 614} tii[46,336] := {102, 103, 506, 509} tii[46,337] := {128, 129, 262, 263} tii[46,338] := {159, 160, 453, 454} tii[46,339] := {126, 127, 588, 589} tii[46,340] := {341, 649} tii[46,341] := {278, 279, 280, 281} tii[46,342] := {171, 172, 391, 392} tii[46,343] := {232, 502} tii[46,344] := {169, 170, 745, 746} tii[46,345] := {211, 212, 433, 434} tii[46,346] := {314, 315} tii[46,347] := {354} tii[46,348] := {245, 246, 574, 575} tii[46,349] := {489} tii[46,350] := {360, 361} tii[46,351] := {260, 261, 505, 508} tii[46,352] := {217, 218, 381, 382} tii[46,353] := {258, 259, 530, 531} tii[46,354] := {340, 613} tii[46,355] := {631} tii[46,356] := {483, 484} tii[46,357] := {445, 446} tii[46,358] := {493} tii[46,359] := {312, 313, 568, 569} tii[46,360] := {352, 353, 723, 724} tii[46,361] := {504, 507} tii[46,362] := {612} tii[46,363] := {136, 137, 304, 305} tii[46,364] := {474, 803} tii[46,365] := {221, 222, 389, 390} tii[46,366] := {403, 404, 405, 406} tii[46,367] := {219, 220, 743, 744} tii[46,368] := {638} tii[46,369] := {496, 497} tii[46,370] := {320, 321, 572, 573} tii[46,371] := {385, 386, 655, 658} tii[46,372] := {375, 376, 687, 688} tii[46,373] := {326, 327, 528, 529} tii[46,374] := {472, 762} tii[46,375] := {787} tii[46,376] := {632, 633} tii[46,377] := {582, 583} tii[46,378] := {643} tii[46,379] := {429, 430, 721, 722} tii[46,380] := {485, 486, 865, 866} tii[46,381] := {654, 657} tii[46,382] := {761} tii[46,383] := {457, 458, 685, 686} tii[46,384] := {924} tii[46,385] := {785, 786} tii[46,386] := {560, 561, 863, 864} tii[46,387] := {897} tii[46,388] := {805, 808} tii[46,389] := {205, 206, 207, 208} tii[46,390] := {286, 287, 288, 289} tii[46,391] := {366, 367} tii[46,392] := {191, 192, 427, 428} tii[46,393] := {237, 767} tii[46,394] := {284, 285, 540, 541} tii[46,395] := {282, 283, 887, 888} tii[46,396] := {343, 652} tii[46,397] := {407, 408, 409, 410} tii[46,398] := {362, 363, 733, 734} tii[46,399] := {491} tii[46,400] := {498, 499} tii[46,401] := {379, 380, 691, 692} tii[46,402] := {473, 766} tii[46,403] := {634, 635} tii[46,404] := {644} tii[46,405] := {487, 488, 869, 870} tii[46,406] := {765} tii[46,407] := {229, 230, 425, 426} tii[46,408] := {620, 941} tii[46,409] := {548, 549, 550, 551} tii[46,410] := {334, 335, 538, 539} tii[46,411] := {332, 333, 885, 886} tii[46,412] := {794} tii[46,413] := {647, 648} tii[46,414] := {447, 448, 731, 732} tii[46,415] := {524, 525, 839, 840} tii[46,416] := {619, 901} tii[46,417] := {534, 535, 814, 817} tii[46,418] := {461, 462, 689, 690} tii[46,419] := {789, 790} tii[46,420] := {923} tii[46,421] := {799} tii[46,422] := {737, 738} tii[46,423] := {636, 637, 996, 997} tii[46,424] := {566, 567, 867, 868} tii[46,425] := {813, 816} tii[46,426] := {900} tii[46,427] := {606, 607, 837, 838} tii[46,428] := {1041} tii[46,429] := {921, 922} tii[46,430] := {711, 712, 994, 995} tii[46,431] := {1014} tii[46,432] := {943, 946} tii[46,433] := {699, 700, 701, 702} tii[46,434] := {800, 801} tii[46,435] := {681, 682, 972, 973} tii[46,436] := {772, 1018} tii[46,437] := {925, 926} tii[46,438] := {792, 793, 1091, 1092} tii[46,439] := {940} tii[46,440] := {1017} tii[46,441] := {759, 760, 970, 971} tii[46,442] := {1120} tii[46,443] := {1038, 1039} tii[46,444] := {855, 856, 1089, 1090} tii[46,445] := {1102} tii[46,446] := {1055, 1058} tii[46,447] := {1118, 1119} tii[46,448] := {1165} cell#39 , |C| = 280 special orbit = [8, 2, 2, 2, 2] special rep = [[4, 1, 1], [1, 1]] , dim = 280 cell rep = phi[[4, 1, 1],[1, 1]] TII depth = 5 TII multiplicity polynomial = 280*X TII subcells: tii[44,1] := {279} tii[44,2] := {262} tii[44,3] := {229} tii[44,4] := {164} tii[44,5] := {278} tii[44,6] := {259} tii[44,7] := {223} tii[44,8] := {277} tii[44,9] := {256} tii[44,10] := {276} tii[44,11] := {50} tii[44,12] := {47} tii[44,13] := {43} tii[44,14] := {41} tii[44,15] := {275} tii[44,16] := {70} tii[44,17] := {242} tii[44,18] := {66} tii[44,19] := {267} tii[44,20] := {96} tii[44,21] := {201} tii[44,22] := {61} tii[44,23] := {250} tii[44,24] := {117} tii[44,25] := {131} tii[44,26] := {58} tii[44,27] := {225} tii[44,28] := {147} tii[44,29] := {189} tii[44,30] := {263} tii[44,31] := {95} tii[44,32] := {213} tii[44,33] := {88} tii[44,34] := {251} tii[44,35] := {116} tii[44,36] := {165} tii[44,37] := {83} tii[44,38] := {224} tii[44,39] := {145} tii[44,40] := {187} tii[44,41] := {241} tii[44,42] := {115} tii[44,43] := {176} tii[44,44] := {113} tii[44,45] := {227} tii[44,46] := {144} tii[44,47] := {186} tii[44,48] := {212} tii[44,49] := {143} tii[44,50] := {192} tii[44,51] := {75} tii[44,52] := {97} tii[44,53] := {273} tii[44,54] := {105} tii[44,55] := {89} tii[44,56] := {260} tii[44,57] := {137} tii[44,58] := {84} tii[44,59] := {237} tii[44,60] := {171} tii[44,61] := {208} tii[44,62] := {74} tii[44,63] := {274} tii[44,64] := {127} tii[44,65] := {119} tii[44,66] := {153} tii[44,67] := {266} tii[44,68] := {104} tii[44,69] := {240} tii[44,70] := {239} tii[44,71] := {114} tii[44,72] := {247} tii[44,73] := {181} tii[44,74] := {135} tii[44,75] := {211} tii[44,76] := {195} tii[44,77] := {219} tii[44,78] := {175} tii[44,79] := {85} tii[44,80] := {261} tii[44,81] := {152} tii[44,82] := {150} tii[44,83] := {209} tii[44,84] := {248} tii[44,85] := {180} tii[44,86] := {108} tii[44,87] := {196} tii[44,88] := {218} tii[44,89] := {157} tii[44,90] := {78} tii[44,91] := {238} tii[44,92] := {179} tii[44,93] := {221} tii[44,94] := {122} tii[44,95] := {141} tii[44,96] := {154} tii[44,97] := {271} tii[44,98] := {172} tii[44,99] := {151} tii[44,100] := {257} tii[44,101] := {204} tii[44,102] := {234} tii[44,103] := {136} tii[44,104] := {272} tii[44,105] := {184} tii[44,106] := {183} tii[44,107] := {216} tii[44,108] := {265} tii[44,109] := {170} tii[44,110] := {236} tii[44,111] := {235} tii[44,112] := {244} tii[44,113] := {207} tii[44,114] := {146} tii[44,115] := {258} tii[44,116] := {215} tii[44,117] := {245} tii[44,118] := {188} tii[44,119] := {205} tii[44,120] := {217} tii[44,121] := {269} tii[44,122] := {232} tii[44,123] := {255} tii[44,124] := {203} tii[44,125] := {270} tii[44,126] := {243} tii[44,127] := {264} tii[44,128] := {233} tii[44,129] := {254} tii[44,130] := {268} tii[44,131] := {0} tii[44,132] := {37} tii[44,133] := {1} tii[44,134] := {26} tii[44,135] := {2} tii[44,136] := {17} tii[44,137] := {4} tii[44,138] := {10} tii[44,139] := {3} tii[44,140] := {253} tii[44,141] := {65} tii[44,142] := {5} tii[44,143] := {36} tii[44,144] := {230} tii[44,145] := {86} tii[44,146] := {7} tii[44,147] := {25} tii[44,148] := {197} tii[44,149] := {109} tii[44,150] := {16} tii[44,151] := {158} tii[44,152] := {8} tii[44,153] := {202} tii[44,154] := {60} tii[44,155] := {12} tii[44,156] := {34} tii[44,157] := {167} tii[44,158] := {81} tii[44,159] := {23} tii[44,160] := {125} tii[44,161] := {18} tii[44,162] := {132} tii[44,163] := {57} tii[44,164] := {31} tii[44,165] := {94} tii[44,166] := {69} tii[44,167] := {52} tii[44,168] := {6} tii[44,169] := {214} tii[44,170] := {51} tii[44,171] := {73} tii[44,172] := {9} tii[44,173] := {178} tii[44,174] := {102} tii[44,175] := {35} tii[44,176] := {13} tii[44,177] := {140} tii[44,178] := {24} tii[44,179] := {59} tii[44,180] := {14} tii[44,181] := {231} tii[44,182] := {87} tii[44,183] := {80} tii[44,184] := {19} tii[44,185] := {166} tii[44,186] := {48} tii[44,187] := {198} tii[44,188] := {110} tii[44,189] := {124} tii[44,190] := {32} tii[44,191] := {159} tii[44,192] := {56} tii[44,193] := {27} tii[44,194] := {168} tii[44,195] := {82} tii[44,196] := {126} tii[44,197] := {93} tii[44,198] := {44} tii[44,199] := {99} tii[44,200] := {72} tii[44,201] := {21} tii[44,202] := {177} tii[44,203] := {67} tii[44,204] := {101} tii[44,205] := {28} tii[44,206] := {139} tii[44,207] := {45} tii[44,208] := {79} tii[44,209] := {38} tii[44,210] := {200} tii[44,211] := {111} tii[44,212] := {123} tii[44,213] := {62} tii[44,214] := {160} tii[44,215] := {129} tii[44,216] := {100} tii[44,217] := {53} tii[44,218] := {138} tii[44,219] := {90} tii[44,220] := {163} tii[44,221] := {11} tii[44,222] := {71} tii[44,223] := {15} tii[44,224] := {49} tii[44,225] := {20} tii[44,226] := {33} tii[44,227] := {22} tii[44,228] := {118} tii[44,229] := {252} tii[44,230] := {29} tii[44,231] := {68} tii[44,232] := {148} tii[44,233] := {226} tii[44,234] := {46} tii[44,235] := {190} tii[44,236] := {39} tii[44,237] := {199} tii[44,238] := {112} tii[44,239] := {63} tii[44,240] := {161} tii[44,241] := {130} tii[44,242] := {103} tii[44,243] := {30} tii[44,244] := {210} tii[44,245] := {98} tii[44,246] := {134} tii[44,247] := {40} tii[44,248] := {174} tii[44,249] := {64} tii[44,250] := {54} tii[44,251] := {107} tii[44,252] := {149} tii[44,253] := {228} tii[44,254] := {91} tii[44,255] := {191} tii[44,256] := {156} tii[44,257] := {162} tii[44,258] := {133} tii[44,259] := {76} tii[44,260] := {173} tii[44,261] := {120} tii[44,262] := {194} tii[44,263] := {42} tii[44,264] := {128} tii[44,265] := {55} tii[44,266] := {92} tii[44,267] := {77} tii[44,268] := {182} tii[44,269] := {249} tii[44,270] := {121} tii[44,271] := {220} tii[44,272] := {193} tii[44,273] := {169} tii[44,274] := {106} tii[44,275] := {206} tii[44,276] := {155} tii[44,277] := {222} tii[44,278] := {142} tii[44,279] := {185} tii[44,280] := {246} cell#40 , |C| = 91 special orbit = [10, 2, 1, 1, 1, 1] special rep = [[5], [1, 1, 1]] , dim = 56 cell rep = phi[[5, 1, 1, 1],[]]+phi[[5],[1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 35*X^2+21*X TII subcells: tii[51,1] := {18, 70} tii[51,2] := {42, 43} tii[51,3] := {67, 68} tii[51,4] := {84, 85} tii[51,5] := {88, 89} tii[51,6] := {90} tii[51,7] := {15, 16} tii[51,8] := {39, 40} tii[51,9] := {65, 66} tii[51,10] := {82, 83} tii[51,11] := {87} tii[51,12] := {31, 32} tii[51,13] := {55, 56} tii[51,14] := {75, 76} tii[51,15] := {86} tii[51,16] := {25, 26} tii[51,17] := {49, 50} tii[51,18] := {72} tii[51,19] := {21, 22} tii[51,20] := {45} tii[51,21] := {14} tii[51,22] := {1, 2} tii[51,23] := {10, 12} tii[51,24] := {35, 38} tii[51,25] := {60, 64} tii[51,26] := {81} tii[51,27] := {7, 8} tii[51,28] := {29, 30} tii[51,29] := {53, 54} tii[51,30] := {74} tii[51,31] := {5, 6} tii[51,32] := {23, 24} tii[51,33] := {46} tii[51,34] := {3, 4} tii[51,35] := {17} tii[51,36] := {0} tii[51,37] := {9, 11} tii[51,38] := {34, 37} tii[51,39] := {59, 63} tii[51,40] := {80} tii[51,41] := {27, 28} tii[51,42] := {51, 52} tii[51,43] := {73} tii[51,44] := {19, 20} tii[51,45] := {44} tii[51,46] := {13} tii[51,47] := {33, 36} tii[51,48] := {58, 62} tii[51,49] := {79} tii[51,50] := {47, 48} tii[51,51] := {71} tii[51,52] := {41} tii[51,53] := {57, 61} tii[51,54] := {78} tii[51,55] := {69} tii[51,56] := {77} cell#41 , |C| = 384 special orbit = [8, 2, 2, 2, 1, 1] special rep = [[4, 1], [1, 1, 1]] , dim = 224 cell rep = phi[[4, 1, 1, 1],[1]]+phi[[4, 1],[1, 1, 1]] TII depth = 4 TII multiplicity polynomial = 160*X^2+64*X TII subcells: tii[43,1] := {50, 191} tii[43,2] := {47, 294} tii[43,3] := {43, 357} tii[43,4] := {41, 383} tii[43,5] := {77, 171} tii[43,6] := {72, 275} tii[43,7] := {118, 119} tii[43,8] := {64, 347} tii[43,9] := {164, 165} tii[43,10] := {59, 378} tii[43,11] := {217, 218} tii[43,12] := {256} tii[43,13] := {117, 222} tii[43,14] := {106, 311} tii[43,15] := {161, 162} tii[43,16] := {94, 365} tii[43,17] := {211, 212} tii[43,18] := {253} tii[43,19] := {160, 259} tii[43,20] := {146, 334} tii[43,21] := {207, 208} tii[43,22] := {249} tii[43,23] := {205, 291} tii[43,24] := {248} tii[43,25] := {88, 190} tii[43,26] := {120, 293} tii[43,27] := {132, 134} tii[43,28] := {107, 356} tii[43,29] := {185, 188} tii[43,30] := {95, 382} tii[43,31] := {236, 240} tii[43,32] := {281} tii[43,33] := {83, 84} tii[43,34] := {170, 273} tii[43,35] := {163, 345} tii[43,36] := {224, 225} tii[43,37] := {129, 131} tii[43,38] := {147, 377} tii[43,39] := {266, 267} tii[43,40] := {180, 183} tii[43,41] := {305} tii[43,42] := {233} tii[43,43] := {110, 111} tii[43,44] := {221, 309} tii[43,45] := {209, 364} tii[43,46] := {261, 262} tii[43,47] := {156, 157} tii[43,48] := {301} tii[43,49] := {203} tii[43,50] := {98, 99} tii[43,51] := {258, 333} tii[43,52] := {299} tii[43,53] := {141} tii[43,54] := {87} tii[43,55] := {192, 292} tii[43,56] := {228, 355} tii[43,57] := {242, 245} tii[43,58] := {210, 381} tii[43,59] := {284, 288} tii[43,60] := {322} tii[43,61] := {184, 187} tii[43,62] := {272, 343} tii[43,63] := {265, 376} tii[43,64] := {313, 314} tii[43,65] := {235, 239} tii[43,66] := {338} tii[43,67] := {280} tii[43,68] := {215, 216} tii[43,69] := {308, 363} tii[43,70] := {335} tii[43,71] := {255} tii[43,72] := {197} tii[43,73] := {295, 354} tii[43,74] := {319, 380} tii[43,75] := {325, 329} tii[43,76] := {350} tii[43,77] := {283, 287} tii[43,78] := {342, 375} tii[43,79] := {366} tii[43,80] := {321} tii[43,81] := {304} tii[43,82] := {358, 379} tii[43,83] := {370} tii[43,84] := {349} tii[43,85] := {0, 89} tii[43,86] := {37, 133} tii[43,87] := {1, 135} tii[43,88] := {26, 186} tii[43,89] := {2, 189} tii[43,90] := {17, 237} tii[43,91] := {4, 241} tii[43,92] := {10, 282} tii[43,93] := {3, 194} tii[43,94] := {73, 74} tii[43,95] := {5, 247} tii[43,96] := {36, 244} tii[43,97] := {112, 113} tii[43,98] := {7, 290} tii[43,99] := {25, 286} tii[43,100] := {158, 159} tii[43,101] := {16, 324} tii[43,102] := {204} tii[43,103] := {8, 298} tii[43,104] := {65, 66} tii[43,105] := {12, 332} tii[43,106] := {34, 328} tii[43,107] := {102, 103} tii[43,108] := {23, 353} tii[43,109] := {143} tii[43,110] := {18, 362} tii[43,111] := {62, 63} tii[43,112] := {31, 374} tii[43,113] := {91} tii[43,114] := {55} tii[43,115] := {52, 53} tii[43,116] := {6, 172} tii[43,117] := {51, 226} tii[43,118] := {80, 82} tii[43,119] := {9, 227} tii[43,120] := {124, 127} tii[43,121] := {35, 268} tii[43,122] := {13, 269} tii[43,123] := {177} tii[43,124] := {24, 306} tii[43,125] := {67, 68} tii[43,126] := {14, 276} tii[43,127] := {108, 109} tii[43,128] := {104, 105} tii[43,129] := {19, 318} tii[43,130] := {48, 317} tii[43,131] := {154, 155} tii[43,132] := {144} tii[43,133] := {32, 340} tii[43,134] := {202} tii[43,135] := {60, 61} tii[43,136] := {27, 348} tii[43,137] := {96, 97} tii[43,138] := {90} tii[43,139] := {140} tii[43,140] := {44, 369} tii[43,141] := {54} tii[43,142] := {86} tii[43,143] := {79, 81} tii[43,144] := {21, 223} tii[43,145] := {75, 263} tii[43,146] := {123, 126} tii[43,147] := {28, 264} tii[43,148] := {176} tii[43,149] := {45, 302} tii[43,150] := {38, 312} tii[43,151] := {100, 101} tii[43,152] := {148, 149} tii[43,153] := {142} tii[43,154] := {69, 337} tii[43,155] := {199} tii[43,156] := {85} tii[43,157] := {136} tii[43,158] := {56, 260} tii[43,159] := {122, 125} tii[43,160] := {175} tii[43,161] := {114, 300} tii[43,162] := {139} tii[43,163] := {195} tii[43,164] := {174} tii[43,165] := {11, 193} tii[43,166] := {78, 243} tii[43,167] := {15, 246} tii[43,168] := {49, 285} tii[43,169] := {20, 289} tii[43,170] := {33, 323} tii[43,171] := {22, 297} tii[43,172] := {166, 167} tii[43,173] := {29, 331} tii[43,174] := {76, 327} tii[43,175] := {219, 220} tii[43,176] := {46, 352} tii[43,177] := {257} tii[43,178] := {39, 361} tii[43,179] := {150, 151} tii[43,180] := {70, 373} tii[43,181] := {200} tii[43,182] := {138} tii[43,183] := {128, 130} tii[43,184] := {30, 274} tii[43,185] := {121, 315} tii[43,186] := {179, 182} tii[43,187] := {40, 316} tii[43,188] := {232} tii[43,189] := {71, 339} tii[43,190] := {57, 346} tii[43,191] := {152, 153} tii[43,192] := {213, 214} tii[43,193] := {115, 368} tii[43,194] := {254} tii[43,195] := {201} tii[43,196] := {196} tii[43,197] := {137} tii[43,198] := {92, 310} tii[43,199] := {178, 181} tii[43,200] := {231} tii[43,201] := {168, 336} tii[43,202] := {198} tii[43,203] := {250} tii[43,204] := {230} tii[43,205] := {42, 296} tii[43,206] := {173, 326} tii[43,207] := {58, 330} tii[43,208] := {116, 351} tii[43,209] := {93, 360} tii[43,210] := {270, 271} tii[43,211] := {169, 372} tii[43,212] := {307} tii[43,213] := {251} tii[43,214] := {234, 238} tii[43,215] := {145, 344} tii[43,216] := {279} tii[43,217] := {229, 367} tii[43,218] := {303} tii[43,219] := {252} tii[43,220] := {278} tii[43,221] := {206, 359} tii[43,222] := {277, 371} tii[43,223] := {341} tii[43,224] := {320} cell#42 , |C| = 91 special orbit = [10, 2, 1, 1, 1, 1] special rep = [[5], [1, 1, 1]] , dim = 56 cell rep = phi[[5, 1, 1, 1],[]]+phi[[5],[1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 35*X^2+21*X TII subcells: tii[51,1] := {18, 70} tii[51,2] := {42, 43} tii[51,3] := {67, 68} tii[51,4] := {84, 85} tii[51,5] := {88, 89} tii[51,6] := {90} tii[51,7] := {15, 16} tii[51,8] := {39, 40} tii[51,9] := {65, 66} tii[51,10] := {82, 83} tii[51,11] := {87} tii[51,12] := {31, 32} tii[51,13] := {55, 56} tii[51,14] := {75, 76} tii[51,15] := {86} tii[51,16] := {25, 26} tii[51,17] := {49, 50} tii[51,18] := {72} tii[51,19] := {21, 22} tii[51,20] := {45} tii[51,21] := {14} tii[51,22] := {1, 2} tii[51,23] := {10, 12} tii[51,24] := {35, 38} tii[51,25] := {60, 64} tii[51,26] := {81} tii[51,27] := {7, 8} tii[51,28] := {29, 30} tii[51,29] := {53, 54} tii[51,30] := {74} tii[51,31] := {5, 6} tii[51,32] := {23, 24} tii[51,33] := {46} tii[51,34] := {3, 4} tii[51,35] := {17} tii[51,36] := {0} tii[51,37] := {9, 11} tii[51,38] := {34, 37} tii[51,39] := {59, 63} tii[51,40] := {80} tii[51,41] := {27, 28} tii[51,42] := {51, 52} tii[51,43] := {73} tii[51,44] := {19, 20} tii[51,45] := {44} tii[51,46] := {13} tii[51,47] := {33, 36} tii[51,48] := {58, 62} tii[51,49] := {79} tii[51,50] := {47, 48} tii[51,51] := {71} tii[51,52] := {41} tii[51,53] := {57, 61} tii[51,54] := {78} tii[51,55] := {69} tii[51,56] := {77} cell#43 , |C| = 384 special orbit = [8, 2, 2, 2, 1, 1] special rep = [[4, 1], [1, 1, 1]] , dim = 224 cell rep = phi[[4, 1, 1, 1],[1]]+phi[[4, 1],[1, 1, 1]] TII depth = 4 TII multiplicity polynomial = 160*X^2+64*X TII subcells: tii[43,1] := {50, 191} tii[43,2] := {47, 294} tii[43,3] := {43, 357} tii[43,4] := {41, 383} tii[43,5] := {77, 171} tii[43,6] := {72, 275} tii[43,7] := {118, 119} tii[43,8] := {64, 347} tii[43,9] := {164, 165} tii[43,10] := {59, 378} tii[43,11] := {217, 218} tii[43,12] := {256} tii[43,13] := {117, 222} tii[43,14] := {106, 311} tii[43,15] := {161, 162} tii[43,16] := {94, 365} tii[43,17] := {211, 212} tii[43,18] := {253} tii[43,19] := {160, 259} tii[43,20] := {146, 334} tii[43,21] := {207, 208} tii[43,22] := {249} tii[43,23] := {205, 291} tii[43,24] := {248} tii[43,25] := {88, 190} tii[43,26] := {120, 293} tii[43,27] := {132, 134} tii[43,28] := {107, 356} tii[43,29] := {185, 188} tii[43,30] := {95, 382} tii[43,31] := {236, 240} tii[43,32] := {281} tii[43,33] := {83, 84} tii[43,34] := {170, 273} tii[43,35] := {163, 345} tii[43,36] := {224, 225} tii[43,37] := {129, 131} tii[43,38] := {147, 377} tii[43,39] := {266, 267} tii[43,40] := {180, 183} tii[43,41] := {305} tii[43,42] := {233} tii[43,43] := {110, 111} tii[43,44] := {221, 309} tii[43,45] := {209, 364} tii[43,46] := {261, 262} tii[43,47] := {156, 157} tii[43,48] := {301} tii[43,49] := {203} tii[43,50] := {98, 99} tii[43,51] := {258, 333} tii[43,52] := {299} tii[43,53] := {141} tii[43,54] := {87} tii[43,55] := {192, 292} tii[43,56] := {228, 355} tii[43,57] := {242, 245} tii[43,58] := {210, 381} tii[43,59] := {284, 288} tii[43,60] := {322} tii[43,61] := {184, 187} tii[43,62] := {272, 343} tii[43,63] := {265, 376} tii[43,64] := {313, 314} tii[43,65] := {235, 239} tii[43,66] := {338} tii[43,67] := {280} tii[43,68] := {215, 216} tii[43,69] := {308, 363} tii[43,70] := {335} tii[43,71] := {255} tii[43,72] := {197} tii[43,73] := {295, 354} tii[43,74] := {319, 380} tii[43,75] := {325, 329} tii[43,76] := {350} tii[43,77] := {283, 287} tii[43,78] := {342, 375} tii[43,79] := {366} tii[43,80] := {321} tii[43,81] := {304} tii[43,82] := {358, 379} tii[43,83] := {370} tii[43,84] := {349} tii[43,85] := {0, 89} tii[43,86] := {37, 133} tii[43,87] := {1, 135} tii[43,88] := {26, 186} tii[43,89] := {2, 189} tii[43,90] := {17, 237} tii[43,91] := {4, 241} tii[43,92] := {10, 282} tii[43,93] := {3, 194} tii[43,94] := {73, 74} tii[43,95] := {5, 247} tii[43,96] := {36, 244} tii[43,97] := {112, 113} tii[43,98] := {7, 290} tii[43,99] := {25, 286} tii[43,100] := {158, 159} tii[43,101] := {16, 324} tii[43,102] := {204} tii[43,103] := {8, 298} tii[43,104] := {65, 66} tii[43,105] := {12, 332} tii[43,106] := {34, 328} tii[43,107] := {102, 103} tii[43,108] := {23, 353} tii[43,109] := {143} tii[43,110] := {18, 362} tii[43,111] := {62, 63} tii[43,112] := {31, 374} tii[43,113] := {91} tii[43,114] := {55} tii[43,115] := {52, 53} tii[43,116] := {6, 172} tii[43,117] := {51, 226} tii[43,118] := {80, 82} tii[43,119] := {9, 227} tii[43,120] := {124, 127} tii[43,121] := {35, 268} tii[43,122] := {13, 269} tii[43,123] := {177} tii[43,124] := {24, 306} tii[43,125] := {67, 68} tii[43,126] := {14, 276} tii[43,127] := {108, 109} tii[43,128] := {104, 105} tii[43,129] := {19, 318} tii[43,130] := {48, 317} tii[43,131] := {154, 155} tii[43,132] := {144} tii[43,133] := {32, 340} tii[43,134] := {202} tii[43,135] := {60, 61} tii[43,136] := {27, 348} tii[43,137] := {96, 97} tii[43,138] := {90} tii[43,139] := {140} tii[43,140] := {44, 369} tii[43,141] := {54} tii[43,142] := {86} tii[43,143] := {79, 81} tii[43,144] := {21, 223} tii[43,145] := {75, 263} tii[43,146] := {123, 126} tii[43,147] := {28, 264} tii[43,148] := {176} tii[43,149] := {45, 302} tii[43,150] := {38, 312} tii[43,151] := {100, 101} tii[43,152] := {148, 149} tii[43,153] := {142} tii[43,154] := {69, 337} tii[43,155] := {199} tii[43,156] := {85} tii[43,157] := {136} tii[43,158] := {56, 260} tii[43,159] := {122, 125} tii[43,160] := {175} tii[43,161] := {114, 300} tii[43,162] := {139} tii[43,163] := {195} tii[43,164] := {174} tii[43,165] := {11, 193} tii[43,166] := {78, 243} tii[43,167] := {15, 246} tii[43,168] := {49, 285} tii[43,169] := {20, 289} tii[43,170] := {33, 323} tii[43,171] := {22, 297} tii[43,172] := {166, 167} tii[43,173] := {29, 331} tii[43,174] := {76, 327} tii[43,175] := {219, 220} tii[43,176] := {46, 352} tii[43,177] := {257} tii[43,178] := {39, 361} tii[43,179] := {150, 151} tii[43,180] := {70, 373} tii[43,181] := {200} tii[43,182] := {138} tii[43,183] := {128, 130} tii[43,184] := {30, 274} tii[43,185] := {121, 315} tii[43,186] := {179, 182} tii[43,187] := {40, 316} tii[43,188] := {232} tii[43,189] := {71, 339} tii[43,190] := {57, 346} tii[43,191] := {152, 153} tii[43,192] := {213, 214} tii[43,193] := {115, 368} tii[43,194] := {254} tii[43,195] := {201} tii[43,196] := {196} tii[43,197] := {137} tii[43,198] := {92, 310} tii[43,199] := {178, 181} tii[43,200] := {231} tii[43,201] := {168, 336} tii[43,202] := {198} tii[43,203] := {250} tii[43,204] := {230} tii[43,205] := {42, 296} tii[43,206] := {173, 326} tii[43,207] := {58, 330} tii[43,208] := {116, 351} tii[43,209] := {93, 360} tii[43,210] := {270, 271} tii[43,211] := {169, 372} tii[43,212] := {307} tii[43,213] := {251} tii[43,214] := {234, 238} tii[43,215] := {145, 344} tii[43,216] := {279} tii[43,217] := {229, 367} tii[43,218] := {303} tii[43,219] := {252} tii[43,220] := {278} tii[43,221] := {206, 359} tii[43,222] := {277, 371} tii[43,223] := {341} tii[43,224] := {320} cell#44 , |C| = 91 special orbit = [10, 2, 1, 1, 1, 1] special rep = [[5], [1, 1, 1]] , dim = 56 cell rep = phi[[5, 1, 1, 1],[]]+phi[[5],[1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 35*X^2+21*X TII subcells: tii[51,1] := {0, 90} tii[51,2] := {1, 79} tii[51,3] := {3, 66} tii[51,4] := {7, 51} tii[51,5] := {13, 37} tii[51,6] := {24} tii[51,7] := {4, 89} tii[51,8] := {8, 78} tii[51,9] := {14, 65} tii[51,10] := {22, 50} tii[51,11] := {36} tii[51,12] := {15, 88} tii[51,13] := {23, 77} tii[51,14] := {34, 64} tii[51,15] := {49} tii[51,16] := {35, 87} tii[51,17] := {48, 76} tii[51,18] := {63} tii[51,19] := {62, 86} tii[51,20] := {75} tii[51,21] := {85} tii[51,22] := {2, 84} tii[51,23] := {6, 74} tii[51,24] := {11, 60} tii[51,25] := {19, 46} tii[51,26] := {32} tii[51,27] := {12, 83} tii[51,28] := {21, 73} tii[51,29] := {28, 58} tii[51,30] := {43} tii[51,31] := {29, 82} tii[51,32] := {41, 72} tii[51,33] := {56} tii[51,34] := {55, 81} tii[51,35] := {71} tii[51,36] := {80} tii[51,37] := {5, 70} tii[51,38] := {10, 61} tii[51,39] := {18, 45} tii[51,40] := {31} tii[51,41] := {20, 69} tii[51,42] := {27, 59} tii[51,43] := {42} tii[51,44] := {40, 68} tii[51,45] := {57} tii[51,46] := {67} tii[51,47] := {9, 54} tii[51,48] := {17, 47} tii[51,49] := {30} tii[51,50] := {26, 53} tii[51,51] := {44} tii[51,52] := {52} tii[51,53] := {16, 39} tii[51,54] := {33} tii[51,55] := {38} tii[51,56] := {25} cell#45 , |C| = 105 special orbit = [8, 2, 1, 1, 1, 1, 1, 1] special rep = [[4], [1, 1, 1, 1]] , dim = 70 cell rep = phi[[4, 1, 1, 1, 1],[]]+phi[[4],[1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 35*X^2+35*X TII subcells: tii[42,1] := {0, 104} tii[42,2] := {1, 82} tii[42,3] := {3, 58} tii[42,4] := {8, 35} tii[42,5] := {21} tii[42,6] := {5, 103} tii[42,7] := {10, 79} tii[42,8] := {17, 56} tii[42,9] := {34} tii[42,10] := {20, 101} tii[42,11] := {32, 76} tii[42,12] := {54} tii[42,13] := {51, 99} tii[42,14] := {73} tii[42,15] := {96} tii[42,16] := {2, 89} tii[42,17] := {7, 69} tii[42,18] := {13, 46} tii[42,19] := {28} tii[42,20] := {15, 88} tii[42,21] := {26, 68} tii[42,22] := {43} tii[42,23] := {41, 87} tii[42,24] := {66} tii[42,25] := {86} tii[42,26] := {6, 63} tii[42,27] := {12, 47} tii[42,28] := {27} tii[42,29] := {24, 62} tii[42,30] := {45} tii[42,31] := {61} tii[42,32] := {11, 38} tii[42,33] := {29} tii[42,34] := {37} tii[42,35] := {22} tii[42,36] := {4, 102} tii[42,37] := {9, 78} tii[42,38] := {16, 55} tii[42,39] := {33} tii[42,40] := {19, 100} tii[42,41] := {31, 75} tii[42,42] := {53} tii[42,43] := {50, 97} tii[42,44] := {72} tii[42,45] := {94} tii[42,46] := {14, 85} tii[42,47] := {25, 67} tii[42,48] := {42} tii[42,49] := {40, 84} tii[42,50] := {65} tii[42,51] := {83} tii[42,52] := {23, 60} tii[42,53] := {44} tii[42,54] := {59} tii[42,55] := {36} tii[42,56] := {18, 98} tii[42,57] := {30, 74} tii[42,58] := {52} tii[42,59] := {49, 95} tii[42,60] := {71} tii[42,61] := {92} tii[42,62] := {39, 81} tii[42,63] := {64} tii[42,64] := {80} tii[42,65] := {57} tii[42,66] := {48, 93} tii[42,67] := {70} tii[42,68] := {91} tii[42,69] := {77} tii[42,70] := {90}