TII subcells for the Sp(6,2) x SO(9,8) block of Sp16 # cell#0 , |C| = 280 special orbit = [5, 5, 1, 1, 1, 1, 1, 1] special rep = [[2], [3, 1, 1, 1]] , dim = 280 cell rep = phi[[2],[3, 1, 1, 1]] TII depth = 8 TII multiplicity polynomial = 280*X TII subcells: tii[24,1] := {91} tii[24,2] := {42} tii[24,3] := {0} tii[24,4] := {130} tii[24,5] := {150} tii[24,6] := {55} tii[24,7] := {195} tii[24,8] := {28} tii[24,9] := {170} tii[24,10] := {133} tii[24,11] := {43} tii[24,12] := {180} tii[24,13] := {86} tii[24,14] := {1} tii[24,15] := {75} tii[24,16] := {118} tii[24,17] := {39} tii[24,18] := {6} tii[24,19] := {169} tii[24,20] := {189} tii[24,21] := {93} tii[24,22] := {229} tii[24,23] := {61} tii[24,24] := {205} tii[24,25] := {172} tii[24,26] := {211} tii[24,27] := {54} tii[24,28] := {215} tii[24,29] := {124} tii[24,30] := {250} tii[24,31] := {24} tii[24,32] := {190} tii[24,33] := {96} tii[24,34] := {148} tii[24,35] := {139} tii[24,36] := {230} tii[24,37] := {51} tii[24,38] := {253} tii[24,39] := {25} tii[24,40] := {234} tii[24,41] := {206} tii[24,42] := {45} tii[24,43] := {245} tii[24,44] := {164} tii[24,45] := {5} tii[24,46] := {173} tii[24,47] := {76} tii[24,48] := {119} tii[24,49] := {216} tii[24,50] := {126} tii[24,51] := {40} tii[24,52] := {242} tii[24,53] := {83} tii[24,54] := {10} tii[24,55] := {115} tii[24,56] := {159} tii[24,57] := {72} tii[24,58] := {193} tii[24,59] := {36} tii[24,60] := {15} tii[24,61] := {204} tii[24,62] := {223} tii[24,63] := {131} tii[24,64] := {255} tii[24,65] := {101} tii[24,66] := {235} tii[24,67] := {207} tii[24,68] := {240} tii[24,69] := {92} tii[24,70] := {246} tii[24,71] := {163} tii[24,72] := {268} tii[24,73] := {57} tii[24,74] := {224} tii[24,75] := {136} tii[24,76] := {187} tii[24,77] := {183} tii[24,78] := {256} tii[24,79] := {87} tii[24,80] := {271} tii[24,81] := {58} tii[24,82] := {258} tii[24,83] := {261} tii[24,84] := {237} tii[24,85] := {53} tii[24,86] := {278} tii[24,87] := {265} tii[24,88] := {199} tii[24,89] := {19} tii[24,90] := {208} tii[24,91] := {239} tii[24,92] := {95} tii[24,93] := {201} tii[24,94] := {138} tii[24,95] := {247} tii[24,96] := {165} tii[24,97] := {267} tii[24,98] := {50} tii[24,99] := {262} tii[24,100] := {121} tii[24,101] := {276} tii[24,102] := {20} tii[24,103] := {225} tii[24,104] := {134} tii[24,105] := {188} tii[24,106] := {257} tii[24,107] := {181} tii[24,108] := {89} tii[24,109] := {146} tii[24,110] := {212} tii[24,111] := {272} tii[24,112] := {48} tii[24,113] := {279} tii[24,114] := {22} tii[24,115] := {273} tii[24,116] := {260} tii[24,117] := {46} tii[24,118] := {277} tii[24,119] := {232} tii[24,120] := {9} tii[24,121] := {238} tii[24,122] := {77} tii[24,123] := {120} tii[24,124] := {266} tii[24,125] := {200} tii[24,126] := {41} tii[24,127] := {275} tii[24,128] := {161} tii[24,129] := {13} tii[24,130] := {209} tii[24,131] := {116} tii[24,132] := {248} tii[24,133] := {166} tii[24,134] := {160} tii[24,135] := {73} tii[24,136] := {194} tii[24,137] := {263} tii[24,138] := {122} tii[24,139] := {37} tii[24,140] := {274} tii[24,141] := {82} tii[24,142] := {16} tii[24,143] := {153} tii[24,144] := {198} tii[24,145] := {112} tii[24,146] := {228} tii[24,147] := {69} tii[24,148] := {252} tii[24,149] := {32} tii[24,150] := {18} tii[24,151] := {44} tii[24,152] := {8} tii[24,153] := {56} tii[24,154] := {113} tii[24,155] := {33} tii[24,156] := {34} tii[24,157] := {157} tii[24,158] := {74} tii[24,159] := {4} tii[24,160] := {38} tii[24,161] := {117} tii[24,162] := {78} tii[24,163] := {94} tii[24,164] := {175} tii[24,165] := {65} tii[24,166] := {66} tii[24,167] := {218} tii[24,168] := {151} tii[24,169] := {97} tii[24,170] := {109} tii[24,171] := {30} tii[24,172] := {110} tii[24,173] := {140} tii[24,174] := {52} tii[24,175] := {196} tii[24,176] := {29} tii[24,177] := {100} tii[24,178] := {226} tii[24,179] := {114} tii[24,180] := {7} tii[24,181] := {71} tii[24,182] := {158} tii[24,183] := {79} tii[24,184] := {35} tii[24,185] := {192} tii[24,186] := {154} tii[24,187] := {132} tii[24,188] := {241} tii[24,189] := {106} tii[24,190] := {105} tii[24,191] := {269} tii[24,192] := {210} tii[24,193] := {137} tii[24,194] := {147} tii[24,195] := {63} tii[24,196] := {167} tii[24,197] := {184} tii[24,198] := {88} tii[24,199] := {249} tii[24,200] := {264} tii[24,201] := {62} tii[24,202] := {142} tii[24,203] := {191} tii[24,204] := {135} tii[24,205] := {149} tii[24,206] := {231} tii[24,207] := {168} tii[24,208] := {26} tii[24,209] := {182} tii[24,210] := {90} tii[24,211] := {108} tii[24,212] := {107} tii[24,213] := {254} tii[24,214] := {99} tii[24,215] := {213} tii[24,216] := {49} tii[24,217] := {270} tii[24,218] := {27} tii[24,219] := {179} tii[24,220] := {152} tii[24,221] := {11} tii[24,222] := {197} tii[24,223] := {111} tii[24,224] := {68} tii[24,225] := {227} tii[24,226] := {80} tii[24,227] := {31} tii[24,228] := {251} tii[24,229] := {155} tii[24,230] := {221} tii[24,231] := {171} tii[24,232] := {144} tii[24,233] := {143} tii[24,234] := {177} tii[24,235] := {186} tii[24,236] := {103} tii[24,237] := {220} tii[24,238] := {125} tii[24,239] := {185} tii[24,240] := {102} tii[24,241] := {176} tii[24,242] := {202} tii[24,243] := {59} tii[24,244] := {219} tii[24,245] := {128} tii[24,246] := {145} tii[24,247] := {141} tii[24,248] := {244} tii[24,249] := {84} tii[24,250] := {60} tii[24,251] := {214} tii[24,252] := {174} tii[24,253] := {233} tii[24,254] := {21} tii[24,255] := {217} tii[24,256] := {127} tii[24,257] := {162} tii[24,258] := {243} tii[24,259] := {85} tii[24,260] := {98} tii[24,261] := {104} tii[24,262] := {178} tii[24,263] := {259} tii[24,264] := {47} tii[24,265] := {23} tii[24,266] := {236} tii[24,267] := {14} tii[24,268] := {81} tii[24,269] := {156} tii[24,270] := {222} tii[24,271] := {2} tii[24,272] := {70} tii[24,273] := {3} tii[24,274] := {129} tii[24,275] := {67} tii[24,276] := {12} tii[24,277] := {203} tii[24,278] := {123} tii[24,279] := {64} tii[24,280] := {17} cell#1 , |C| = 252 special orbit = [3, 3, 3, 3, 1, 1, 1, 1] special rep = [[1, 1], [2, 2, 1, 1]] , dim = 252 cell rep = phi[[1, 1],[2, 2, 1, 1]] TII depth = 5 TII multiplicity polynomial = 252*X TII subcells: tii[10,1] := {55} tii[10,2] := {51} tii[10,3] := {88} tii[10,4] := {82} tii[10,5] := {118} tii[10,6] := {143} tii[10,7] := {77} tii[10,8] := {128} tii[10,9] := {123} tii[10,10] := {148} tii[10,11] := {106} tii[10,12] := {193} tii[10,13] := {112} tii[10,14] := {160} tii[10,15] := {145} tii[10,16] := {102} tii[10,17] := {191} tii[10,18] := {212} tii[10,19] := {117} tii[10,20] := {153} tii[10,21] := {180} tii[10,22] := {113} tii[10,23] := {168} tii[10,24] := {161} tii[10,25] := {185} tii[10,26] := {219} tii[10,27] := {141} tii[10,28] := {187} tii[10,29] := {205} tii[10,30] := {149} tii[10,31] := {199} tii[10,32] := {195} tii[10,33] := {226} tii[10,34] := {183} tii[10,35] := {211} tii[10,36] := {245} tii[10,37] := {138} tii[10,38] := {236} tii[10,39] := {178} tii[10,40] := {202} tii[10,41] := {217} tii[10,42] := {200} tii[10,43] := {228} tii[10,44] := {225} tii[10,45] := {244} tii[10,46] := {204} tii[10,47] := {172} tii[10,48] := {249} tii[10,49] := {186} tii[10,50] := {222} tii[10,51] := {210} tii[10,52] := {177} tii[10,53] := {235} tii[10,54] := {241} tii[10,55] := {224} tii[10,56] := {203} tii[10,57] := {243} tii[10,58] := {171} tii[10,59] := {248} tii[10,60] := {250} tii[10,61] := {32} tii[10,62] := {7} tii[10,63] := {16} tii[10,64] := {18} tii[10,65] := {38} tii[10,66] := {10} tii[10,67] := {107} tii[10,68] := {83} tii[10,69] := {13} tii[10,70] := {92} tii[10,71] := {27} tii[10,72] := {17} tii[10,73] := {30} tii[10,74] := {76} tii[10,75] := {111} tii[10,76] := {36} tii[10,77] := {61} tii[10,78] := {65} tii[10,79] := {20} tii[10,80] := {71} tii[10,81] := {158} tii[10,82] := {63} tii[10,83] := {91} tii[10,84] := {43} tii[10,85] := {75} tii[10,86] := {34} tii[10,87] := {46} tii[10,88] := {122} tii[10,89] := {154} tii[10,90] := {31} tii[10,91] := {179} tii[10,92] := {152} tii[10,93] := {24} tii[10,94] := {165} tii[10,95] := {45} tii[10,96] := {208} tii[10,97] := {28} tii[10,98] := {110} tii[10,99] := {52} tii[10,100] := {184} tii[10,101] := {233} tii[10,102] := {173} tii[10,103] := {59} tii[10,104] := {95} tii[10,105] := {97} tii[10,106] := {89} tii[10,107] := {218} tii[10,108] := {142} tii[10,109] := {35} tii[10,110] := {166} tii[10,111] := {66} tii[10,112] := {127} tii[10,113] := {207} tii[10,114] := {109} tii[10,115] := {49} tii[10,116] := {182} tii[10,117] := {130} tii[10,118] := {57} tii[10,119] := {69} tii[10,120] := {216} tii[10,121] := {232} tii[10,122] := {176} tii[10,123] := {87} tii[10,124] := {157} tii[10,125] := {137} tii[10,126] := {194} tii[10,127] := {188} tii[10,128] := {135} tii[10,129] := {240} tii[10,130] := {129} tii[10,131] := {81} tii[10,132] := {163} tii[10,133] := {53} tii[10,134] := {214} tii[10,135] := {96} tii[10,136] := {181} tii[10,137] := {84} tii[10,138] := {136} tii[10,139] := {215} tii[10,140] := {79} tii[10,141] := {100} tii[10,142] := {227} tii[10,143] := {238} tii[10,144] := {70} tii[10,145] := {42} tii[10,146] := {68} tii[10,147] := {48} tii[10,148] := {147} tii[10,149] := {78} tii[10,150] := {86} tii[10,151] := {131} tii[10,152] := {124} tii[10,153] := {133} tii[10,154] := {58} tii[10,155] := {98} tii[10,156] := {164} tii[10,157] := {209} tii[10,158] := {74} tii[10,159] := {146} tii[10,160] := {170} tii[10,161] := {85} tii[10,162] := {234} tii[10,163] := {121} tii[10,164] := {175} tii[10,165] := {103} tii[10,166] := {192} tii[10,167] := {169} tii[10,168] := {198} tii[10,169] := {115} tii[10,170] := {221} tii[10,171] := {213} tii[10,172] := {80} tii[10,173] := {132} tii[10,174] := {230} tii[10,175] := {108} tii[10,176] := {206} tii[10,177] := {201} tii[10,178] := {119} tii[10,179] := {156} tii[10,180] := {174} tii[10,181] := {231} tii[10,182] := {237} tii[10,183] := {114} tii[10,184] := {134} tii[10,185] := {239} tii[10,186] := {223} tii[10,187] := {151} tii[10,188] := {246} tii[10,189] := {140} tii[10,190] := {242} tii[10,191] := {104} tii[10,192] := {251} tii[10,193] := {155} tii[10,194] := {150} tii[10,195] := {139} tii[10,196] := {3} tii[10,197] := {8} tii[10,198] := {1} tii[10,199] := {4} tii[10,200] := {9} tii[10,201] := {50} tii[10,202] := {2} tii[10,203] := {39} tii[10,204] := {41} tii[10,205] := {21} tii[10,206] := {62} tii[10,207] := {5} tii[10,208] := {25} tii[10,209] := {26} tii[10,210] := {14} tii[10,211] := {29} tii[10,212] := {144} tii[10,213] := {94} tii[10,214] := {6} tii[10,215] := {190} tii[10,216] := {101} tii[10,217] := {60} tii[10,218] := {11} tii[10,219] := {93} tii[10,220] := {44} tii[10,221] := {159} tii[10,222] := {54} tii[10,223] := {126} tii[10,224] := {189} tii[10,225] := {64} tii[10,226] := {19} tii[10,227] := {125} tii[10,228] := {40} tii[10,229] := {73} tii[10,230] := {167} tii[10,231] := {12} tii[10,232] := {120} tii[10,233] := {220} tii[10,234] := {67} tii[10,235] := {22} tii[10,236] := {197} tii[10,237] := {116} tii[10,238] := {33} tii[10,239] := {162} tii[10,240] := {105} tii[10,241] := {229} tii[10,242] := {247} tii[10,243] := {47} tii[10,244] := {23} tii[10,245] := {99} tii[10,246] := {37} tii[10,247] := {196} tii[10,248] := {56} tii[10,249] := {72} tii[10,250] := {0} tii[10,251] := {15} tii[10,252] := {90} cell#2 , |C| = 260 special orbit = [4, 4, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[2], [2, 1, 1, 1, 1]] , dim = 140 cell rep = phi[[2],[2, 1, 1, 1, 1]]+phi[[1],[3, 1, 1, 1, 1]] TII depth = 5 TII multiplicity polynomial = 120*X^2+20*X TII subcells: tii[16,1] := {149} tii[16,2] := {92, 164} tii[16,3] := {71, 199} tii[16,4] := {176} tii[16,5] := {151} tii[16,6] := {66, 185} tii[16,7] := {115, 189} tii[16,8] := {46, 224} tii[16,9] := {95, 165} tii[16,10] := {129, 132} tii[16,11] := {63, 200} tii[16,12] := {47, 228} tii[16,13] := {206} tii[16,14] := {179} tii[16,15] := {43, 213} tii[16,16] := {142, 218} tii[16,17] := {24, 247} tii[16,18] := {152} tii[16,19] := {68, 183} tii[16,20] := {98, 146} tii[16,21] := {116, 190} tii[16,22] := {41, 222} tii[16,23] := {84, 214} tii[16,24] := {25, 241} tii[16,25] := {94, 166} tii[16,26] := {128, 133} tii[16,27] := {65, 201} tii[16,28] := {103, 157} tii[16,29] := {39, 229} tii[16,30] := {27, 249} tii[16,31] := {232} tii[16,32] := {209} tii[16,33] := {23, 237} tii[16,34] := {171, 243} tii[16,35] := {7, 258} tii[16,36] := {180} tii[16,37] := {44, 211} tii[16,38] := {69, 173} tii[16,39] := {143, 219} tii[16,40] := {22, 245} tii[16,41] := {110, 238} tii[16,42] := {8, 256} tii[16,43] := {153} tii[16,44] := {67, 182} tii[16,45] := {117, 191} tii[16,46] := {97, 145} tii[16,47] := {42, 221} tii[16,48] := {112, 125} tii[16,49] := {85, 215} tii[16,50] := {21, 240} tii[16,51] := {57, 233} tii[16,52] := {10, 254} tii[16,53] := {93, 167} tii[16,54] := {127, 134} tii[16,55] := {64, 202} tii[16,56] := {104, 156} tii[16,57] := {40, 230} tii[16,58] := {75, 177} tii[16,59] := {20, 250} tii[16,60] := {11, 259} tii[16,61] := {252} tii[16,62] := {236} tii[16,63] := {18, 212} tii[16,64] := {203, 257} tii[16,65] := {0, 246} tii[16,66] := {210} tii[16,67] := {34, 184} tii[16,68] := {56, 147} tii[16,69] := {172, 244} tii[16,70] := {17, 223} tii[16,71] := {140, 255} tii[16,72] := {1, 242} tii[16,73] := {181} tii[16,74] := {55, 155} tii[16,75] := {81, 119} tii[16,76] := {144, 220} tii[16,77] := {33, 193} tii[16,78] := {87, 108} tii[16,79] := {111, 239} tii[16,80] := {16, 217} tii[16,81] := {82, 253} tii[16,82] := {3, 235} tii[16,83] := {154} tii[16,84] := {79, 136} tii[16,85] := {118, 192} tii[16,86] := {105, 109} tii[16,87] := {54, 170} tii[16,88] := {86, 216} tii[16,89] := {76, 137} tii[16,90] := {32, 198} tii[16,91] := {51, 163} tii[16,92] := {58, 234} tii[16,93] := {15, 227} tii[16,94] := {36, 251} tii[16,95] := {4, 248} tii[16,96] := {106, 107} tii[16,97] := {77, 139} tii[16,98] := {78, 138} tii[16,99] := {52, 169} tii[16,100] := {53, 168} tii[16,101] := {30, 197} tii[16,102] := {31, 196} tii[16,103] := {13, 226} tii[16,104] := {14, 225} tii[16,105] := {6, 194} tii[16,106] := {120} tii[16,107] := {100, 101} tii[16,108] := {124} tii[16,109] := {73, 131} tii[16,110] := {88, 162} tii[16,111] := {72, 130} tii[16,112] := {123} tii[16,113] := {48, 148} tii[16,114] := {91, 161} tii[16,115] := {99, 102} tii[16,116] := {60, 188} tii[16,117] := {49, 158} tii[16,118] := {122} tii[16,119] := {26, 175} tii[16,120] := {90, 160} tii[16,121] := {70, 113} tii[16,122] := {62, 187} tii[16,123] := {74, 126} tii[16,124] := {37, 208} tii[16,125] := {28, 178} tii[16,126] := {121} tii[16,127] := {9, 205} tii[16,128] := {89, 159} tii[16,129] := {61, 186} tii[16,130] := {45, 141} tii[16,131] := {38, 207} tii[16,132] := {83, 96} tii[16,133] := {50, 150} tii[16,134] := {19, 231} tii[16,135] := {12, 204} tii[16,136] := {2, 174} tii[16,137] := {35, 114} tii[16,138] := {59, 80} tii[16,139] := {29, 135} tii[16,140] := {5, 195} cell#3 , |C| = 48 special orbit = [3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [2, 1, 1, 1, 1, 1]] , dim = 48 cell rep = phi[[1],[2, 1, 1, 1, 1, 1]] TII depth = 6 TII multiplicity polynomial = 48*X TII subcells: tii[6,1] := {38} tii[6,2] := {46} tii[6,3] := {31} tii[6,4] := {25} tii[6,5] := {40} tii[6,6] := {45} tii[6,7] := {26} tii[6,8] := {21} tii[6,9] := {33} tii[6,10] := {16} tii[6,11] := {39} tii[6,12] := {44} tii[6,13] := {22} tii[6,14] := {17} tii[6,15] := {27} tii[6,16] := {13} tii[6,17] := {32} tii[6,18] := {9} tii[6,19] := {37} tii[6,20] := {43} tii[6,21] := {18} tii[6,22] := {14} tii[6,23] := {24} tii[6,24] := {10} tii[6,25] := {29} tii[6,26] := {7} tii[6,27] := {36} tii[6,28] := {4} tii[6,29] := {42} tii[6,30] := {47} tii[6,31] := {15} tii[6,32] := {11} tii[6,33] := {19} tii[6,34] := {8} tii[6,35] := {23} tii[6,36] := {5} tii[6,37] := {28} tii[6,38] := {3} tii[6,39] := {35} tii[6,40] := {1} tii[6,41] := {41} tii[6,42] := {34} tii[6,43] := {30} tii[6,44] := {20} tii[6,45] := {12} tii[6,46] := {6} tii[6,47] := {2} tii[6,48] := {0} cell#4 , |C| = 252 special orbit = [3, 3, 2, 2, 1, 1, 1, 1, 1, 1] special rep = [[1, 1], [2, 1, 1, 1, 1]] , dim = 140 cell rep = phi[[1, 1],[2, 1, 1, 1, 1]]+phi[[1],[2, 2, 1, 1, 1]] TII depth = 4 TII multiplicity polynomial = 112*X^2+28*X TII subcells: tii[7,1] := {27} tii[7,2] := {53} tii[7,3] := {24, 81} tii[7,4] := {57, 60} tii[7,5] := {83} tii[7,6] := {45, 134} tii[7,7] := {88} tii[7,8] := {49, 122} tii[7,9] := {93, 100} tii[7,10] := {82, 160} tii[7,11] := {128} tii[7,12] := {41, 200} tii[7,13] := {80, 172} tii[7,14] := {113, 133} tii[7,15] := {101, 164} tii[7,16] := {158} tii[7,17] := {118, 198} tii[7,18] := {71, 212} tii[7,19] := {130} tii[7,20] := {84, 153} tii[7,21] := {136, 139} tii[7,22] := {162} tii[7,23] := {126, 186} tii[7,24] := {76, 223} tii[7,25] := {120, 202} tii[7,26] := {146, 170} tii[7,27] := {140, 190} tii[7,28] := {156, 207} tii[7,29] := {185} tii[7,30] := {116, 237} tii[7,31] := {179, 196} tii[7,32] := {152, 222} tii[7,33] := {68, 245} tii[7,34] := {111, 233} tii[7,35] := {143, 210} tii[7,36] := {142, 225} tii[7,37] := {206} tii[7,38] := {178, 236} tii[7,39] := {145, 244} tii[7,40] := {105, 249} tii[7,41] := {87} tii[7,42] := {121, 129} tii[7,43] := {96, 175} tii[7,44] := {127} tii[7,45] := {159, 161} tii[7,46] := {119, 199} tii[7,47] := {79, 171} tii[7,48] := {112, 201} tii[7,49] := {97, 215} tii[7,50] := {182, 184} tii[7,51] := {157} tii[7,52] := {151, 219} tii[7,53] := {117, 197} tii[7,54] := {149, 221} tii[7,55] := {110, 230} tii[7,56] := {72, 211} tii[7,57] := {106, 232} tii[7,58] := {99, 241} tii[7,59] := {155, 205} tii[7,60] := {181} tii[7,61] := {177, 195} tii[7,62] := {115, 235} tii[7,63] := {148, 218} tii[7,64] := {144, 209} tii[7,65] := {67, 243} tii[7,66] := {109, 229} tii[7,67] := {104, 189} tii[7,68] := {65, 240} tii[7,69] := {59, 248} tii[7,70] := {32, 250} tii[7,71] := {154} tii[7,72] := {114, 194} tii[7,73] := {66, 208} tii[7,74] := {36, 224} tii[7,75] := {18, 238} tii[7,76] := {2} tii[7,77] := {7} tii[7,78] := {3} tii[7,79] := {11, 48} tii[7,80] := {14} tii[7,81] := {30, 33} tii[7,82] := {5, 35} tii[7,83] := {16, 58} tii[7,84] := {10} tii[7,85] := {47, 125} tii[7,86] := {13, 62} tii[7,87] := {29} tii[7,88] := {20, 169} tii[7,89] := {75, 92} tii[7,90] := {26, 95} tii[7,91] := {61, 131} tii[7,92] := {12, 135} tii[7,93] := {34, 166} tii[7,94] := {23} tii[7,95] := {124, 183} tii[7,96] := {28, 102} tii[7,97] := {56} tii[7,98] := {74, 220} tii[7,99] := {150, 168} tii[7,100] := {25, 174} tii[7,101] := {38, 231} tii[7,102] := {52, 138} tii[7,103] := {108, 188} tii[7,104] := {43, 193} tii[7,105] := {103, 204} tii[7,106] := {21, 214} tii[7,107] := {63, 227} tii[7,108] := {46} tii[7,109] := {123, 180} tii[7,110] := {54, 141} tii[7,111] := {91} tii[7,112] := {147, 167} tii[7,113] := {73, 217} tii[7,114] := {50, 203} tii[7,115] := {107, 187} tii[7,116] := {37, 228} tii[7,117] := {86, 176} tii[7,118] := {42, 234} tii[7,119] := {64, 163} tii[7,120] := {31, 239} tii[7,121] := {78, 216} tii[7,122] := {15, 246} tii[7,123] := {70, 242} tii[7,124] := {39, 132} tii[7,125] := {6, 251} tii[7,126] := {22} tii[7,127] := {90, 98} tii[7,128] := {55} tii[7,129] := {85, 173} tii[7,130] := {51, 137} tii[7,131] := {77, 213} tii[7,132] := {44, 192} tii[7,133] := {69, 165} tii[7,134] := {40, 226} tii[7,135] := {8, 247} tii[7,136] := {0} tii[7,137] := {1, 17} tii[7,138] := {4, 94} tii[7,139] := {9, 191} tii[7,140] := {19, 89} cell#5 , |C| = 48 special orbit = [3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [2, 1, 1, 1, 1, 1]] , dim = 48 cell rep = phi[[1],[2, 1, 1, 1, 1, 1]] TII depth = 6 TII multiplicity polynomial = 48*X TII subcells: tii[6,1] := {18} tii[6,2] := {8} tii[6,3] := {24} tii[6,4] := {31} tii[6,5] := {16} tii[6,6] := {9} tii[6,7] := {29} tii[6,8] := {38} tii[6,9] := {21} tii[6,10] := {42} tii[6,11] := {14} tii[6,12] := {11} tii[6,13] := {34} tii[6,14] := {43} tii[6,15] := {26} tii[6,16] := {46} tii[6,17] := {19} tii[6,18] := {47} tii[6,19] := {13} tii[6,20] := {12} tii[6,21] := {28} tii[6,22] := {37} tii[6,23] := {20} tii[6,24] := {41} tii[6,25] := {15} tii[6,26] := {44} tii[6,27] := {6} tii[6,28] := {40} tii[6,29] := {5} tii[6,30] := {3} tii[6,31] := {23} tii[6,32] := {30} tii[6,33] := {17} tii[6,34] := {35} tii[6,35] := {7} tii[6,36] := {39} tii[6,37] := {4} tii[6,38] := {32} tii[6,39] := {2} tii[6,40] := {27} tii[6,41] := {1} tii[6,42] := {0} tii[6,43] := {10} tii[6,44] := {25} tii[6,45] := {36} tii[6,46] := {45} tii[6,47] := {33} tii[6,48] := {22} cell#6 , |C| = 48 special orbit = [2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1, 1], [1, 1, 1, 1, 1, 1]] , dim = 28 cell rep = phi[[1, 1],[1, 1, 1, 1, 1, 1]]+phi[[],[2, 2, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 20*X^2+8*X TII subcells: tii[3,1] := {14} tii[3,2] := {19} tii[3,3] := {13, 25} tii[3,4] := {24} tii[3,5] := {18, 30} tii[3,6] := {12, 32} tii[3,7] := {28} tii[3,8] := {23, 34} tii[3,9] := {17, 37} tii[3,10] := {11, 40} tii[3,11] := {31} tii[3,12] := {26, 38} tii[3,13] := {21, 41} tii[3,14] := {15, 44} tii[3,15] := {9, 46} tii[3,16] := {27} tii[3,17] := {22, 33} tii[3,18] := {16, 36} tii[3,19] := {10, 39} tii[3,20] := {3, 42} tii[3,21] := {1, 45} tii[3,22] := {2} tii[3,23] := {8} tii[3,24] := {7, 20} tii[3,25] := {6, 29} tii[3,26] := {5, 35} tii[3,27] := {4, 43} tii[3,28] := {0, 47} cell#7 , |C| = 15 special orbit = [2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [1, 1, 1, 1, 1, 1, 1]] , dim = 8 cell rep = phi[[1],[1, 1, 1, 1, 1, 1, 1]]+phi[[],[2, 1, 1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 7*X^2+X TII subcells: tii[2,1] := {7} tii[2,2] := {6, 9} tii[2,3] := {5, 11} tii[2,4] := {4, 13} tii[2,5] := {3, 14} tii[2,6] := {2, 12} tii[2,7] := {1, 10} tii[2,8] := {0, 8} cell#8 , |C| = 1 special orbit = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [1, 1, 1, 1, 1, 1, 1, 1]] , dim = 1 cell rep = phi[[],[1, 1, 1, 1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = X TII subcells: tii[1,1] := {0}