TII subcells for the Sp(7,1) x SO(9,8) block of Sp16 # cell#0 , |C| = 48 special orbit = [3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [2, 1, 1, 1, 1, 1]] , dim = 48 cell rep = phi[[1],[2, 1, 1, 1, 1, 1]] TII depth = 6 TII multiplicity polynomial = 48*X TII subcells: tii[6,1] := {12} tii[6,2] := {0} tii[6,3] := {17} tii[6,4] := {23} tii[6,5] := {11} tii[6,6] := {1} tii[6,7] := {22} tii[6,8] := {28} tii[6,9] := {16} tii[6,10] := {31} tii[6,11] := {10} tii[6,12] := {3} tii[6,13] := {26} tii[6,14] := {32} tii[6,15] := {21} tii[6,16] := {35} tii[6,17] := {15} tii[6,18] := {37} tii[6,19] := {9} tii[6,20] := {4} tii[6,21] := {30} tii[6,22] := {36} tii[6,23] := {25} tii[6,24] := {38} tii[6,25] := {20} tii[6,26] := {41} tii[6,27] := {14} tii[6,28] := {43} tii[6,29] := {8} tii[6,30] := {5} tii[6,31] := {34} tii[6,32] := {39} tii[6,33] := {29} tii[6,34] := {42} tii[6,35] := {24} tii[6,36] := {44} tii[6,37] := {19} tii[6,38] := {46} tii[6,39] := {13} tii[6,40] := {47} tii[6,41] := {7} tii[6,42] := {6} tii[6,43] := {2} tii[6,44] := {18} tii[6,45] := {27} tii[6,46] := {33} tii[6,47] := {40} tii[6,48] := {45} cell#1 , |C| = 15 special orbit = [2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [1, 1, 1, 1, 1, 1, 1]] , dim = 8 cell rep = phi[[1],[1, 1, 1, 1, 1, 1, 1]]+phi[[],[2, 1, 1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 7*X^2+X TII subcells: tii[2,1] := {7} tii[2,2] := {6, 8} tii[2,3] := {5, 9} tii[2,4] := {4, 10} tii[2,5] := {3, 11} tii[2,6] := {2, 13} tii[2,7] := {1, 14} tii[2,8] := {0, 12} cell#2 , |C| = 1 special orbit = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [1, 1, 1, 1, 1, 1, 1, 1]] , dim = 1 cell rep = phi[[],[1, 1, 1, 1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = X TII subcells: tii[1,1] := {0}