#### Green Polynomials for D3 #### W-rep key: # x[1] = [[], [1, 1, 1]] , orbit = [1, 1, 1, 1, 1, 1] , A-rep = [] # x[2] = [[1], [1, 1]] , orbit = [2, 2, 1, 1] , A-rep = [] # x[3] = [[], [2, 1]] , orbit = [3, 1, 1, 1] , A-rep = [] # x[4] = [[1], [2]] , orbit = [3, 3] , A-rep = [] # x[5] = [[], [3]] , orbit = [5, 1] , A-rep = [] ### Green Polynomials by Orbit orbit #1 : [1, 1, 1, 1, 1, 1] dim = 0 A(O) = 1 , |A(O)_0| = 1 g_s = 15*V[0] Z_G(x)_0 = D3 # Green Polys by orbit reps #1.1 : x[1] : [1, 1, 1, 1, 1, 1],[] : [[], [3]] Qxi[D3,1,1] = (x[1])*q^6 + (x[2])*q^5 + (x[2]+x[3])*q^4 + (x[2]+x[4])*q^3 + (x[3]+x[4])*q^2 + (x[4])*q + x[5] # Green Polys by conj class in A(O) #1.1 : c = () |O_x_c^F| = 1 Qxc[D3,1,1] = (x[1])*q^6 + (x[2])*q^5 + (x[2]+x[3])*q^4 + (x[2]+x[4])*q^3 + (x[3]+x[4])*q^2 + (x[4])*q + x[5] orbit #2 : [2, 2, 1, 1] dim = 6 A(O) = 1 , |A(O)_0| = 1 g_s = 4*V[1]+V[2]+4*V[0] Z_G(x)_0 = Sp2+O2 # Green Polys by orbit reps #2.1 : x[2] : [2, 2, 1, 1],[] : [[1], [1, 1]] Qxi[D3,2,1] = (x[2])*q^3 + (x[3]+x[4])*q^2 + (x[4])*q + x[5] # Green Polys by conj class in A(O) #2.1 : c = () |O_x_c^F| = (q^2+q+1)*(q^4-1) Qxc[D3,2,1] = (x[2])*q^3 + (x[3]+x[4])*q^2 + (x[4])*q + x[5] orbit #3 : [3, 1, 1, 1] dim = 8 A(O) = 1 , |A(O)_0| = 1 g_s = 4*V[2]+3*V[0] Z_G(x)_0 = O3+O1: # Green Polys by orbit reps #3.1 : x[3] : [3, 1, 1, 1],[] : [[], [2, 1]] Qxi[D3,3,1] := (x[3])*q^2 + (x[4])*q + x[5] # Green Polys by conj class in A(O) #3.1 : c = () |O_x_c^F| = q*(q^3-1)*(q^4-1) Qxc[D3,3,1] = (x[3])*q^2 + (x[4])*q + x[5] orbit #4 : [3, 3] dim = 10 A(O) = 1 , |A(O)_0| = 1 g_s = V[4]+3*V[2]+V[0] Z_G(x)_0 := O2: # Green Polys by W-reps #4.1 : x[4] : [3, 3],[] : [[1], [2]] Qxi[D3,4,1] = (x[4])*q + x[5] # Green Polys by conj class in A(O) #4.1 : c = () |O_x_c^F| = q^2*(q+1)*(q^3-1)*(q^4-1) Qxc[D3,4,1] = (x[4])*q + x[5] orbit #5 : [5, 1] dim = 12 A(O) = 1 , |A(O)_0| = 1 g_s = V[6]+V[4]+V[2] Z_G(x)_0 = 2*O1 # Green Polys by orbit reps #5.1 : x[5] : [5, 1],[] : [[], [3]] Qxi[D3,5,1] = x[5] # Green Polys by conj class in A(O) #5.1 : c = () |O_x_c^F| = q^3*(q^2-1)*(q^3-1)*(q^4-1) Qxc[D3,5,1] = x[5]