TII subcells for the SO(4,4) x SO(6,2) block of SO8 # cell#0 , |C| = 1 special orbit = [7, 1] special rep = [[], [4]] , dim = 1 cell rep = phi[[],[4]] TII depth = 1 TII multiplicity polynomial = X TII subcells: tii[11,1] := {0} cell#1 , |C| = 1 special orbit = [7, 1] special rep = [[], [4]] , dim = 1 cell rep = phi[[],[4]] TII depth = 1 TII multiplicity polynomial = X TII subcells: tii[11,1] := {0} cell#2 , |C| = 4 special orbit = [5, 3] special rep = [[1], [3]] , dim = 4 cell rep = phi[[1],[3]] TII depth = 1 TII multiplicity polynomial = 4*X TII subcells: tii[10,1] := {0} tii[10,2] := {1} tii[10,3] := {3} tii[10,4] := {2} cell#3 , |C| = 3 special orbit = [5, 1, 1, 1] special rep = [[], [3, 1]] , dim = 3 cell rep = phi[[],[3, 1]] TII depth = 1 TII multiplicity polynomial = 3*X TII subcells: tii[9,1] := {2} tii[9,2] := {0} tii[9,3] := {1} cell#4 , |C| = 3 special orbit = [5, 1, 1, 1] special rep = [[], [3, 1]] , dim = 3 cell rep = phi[[],[3, 1]] TII depth = 1 TII multiplicity polynomial = 3*X TII subcells: tii[9,1] := {2} tii[9,2] := {0} tii[9,3] := {1} cell#5 , |C| = 10 special orbit = [3, 3, 1, 1] special rep = [[1], [2, 1]] , dim = 8 cell rep = phi[[],[2, 2]]+phi[[1],[2, 1]] TII depth = 1 TII multiplicity polynomial = 6*X+2*X^2 TII subcells: tii[6,1] := {5, 6} tii[6,2] := {0} tii[6,3] := {4} tii[6,4] := {3} tii[6,5] := {8} tii[6,6] := {7} tii[6,7] := {9} tii[6,8] := {1, 2} cell#6 , |C| = 3 special orbit = [5, 1, 1, 1] special rep = [[], [3, 1]] , dim = 3 cell rep = phi[[],[3, 1]] TII depth = 1 TII multiplicity polynomial = 3*X TII subcells: tii[9,1] := {2} tii[9,2] := {1} tii[9,3] := {0} cell#7 , |C| = 3 special orbit = [3, 1, 1, 1, 1, 1] special rep = [[], [2, 1, 1]] , dim = 3 cell rep = phi[[],[2, 1, 1]] TII depth = 1 TII multiplicity polynomial = 3*X TII subcells: tii[5,1] := {2} tii[5,2] := {0} tii[5,3] := {1}