TII subcells for the Spin(6,2) x PSO(4,4) block of Spin8 # cell#0 , |C| = 3 special orbit = [5, 1, 1, 1] special rep = [[], [3, 1]] , dim = 3 cell rep = phi[[],[3, 1]] TII depth = 1 TII multiplicity polynomial = 3*X TII subcells: tii[9,1] := {0} tii[9,2] := {2} tii[9,3] := {1} cell#1 , |C| = 3 special orbit = [5, 1, 1, 1] special rep = [[], [3, 1]] , dim = 3 cell rep = phi[[],[3, 1]] TII depth = 1 TII multiplicity polynomial = 3*X TII subcells: tii[9,1] := {0} tii[9,2] := {2} tii[9,3] := {1} cell#2 , |C| = 14 special orbit = [3, 3, 1, 1] special rep = [[1], [2, 1]] , dim = 8 cell rep = phi[[1],[2, 1]]+phi[[2],[1, 1]] TII depth = 1 TII multiplicity polynomial = 6*X^2+2*X TII subcells: tii[6,1] := {11} tii[6,2] := {0, 1} tii[6,3] := {4, 5} tii[6,4] := {2, 3} tii[6,5] := {9, 10} tii[6,6] := {7, 8} tii[6,7] := {12, 13} tii[6,8] := {6} cell#3 , |C| = 3 special orbit = [3, 1, 1, 1, 1, 1] special rep = [[], [2, 1, 1]] , dim = 3 cell rep = phi[[],[2, 1, 1]] TII depth = 1 TII multiplicity polynomial = 3*X TII subcells: tii[5,1] := {2} tii[5,2] := {1} tii[5,3] := {0} cell#4 , |C| = 3 special orbit = [3, 1, 1, 1, 1, 1] special rep = [[], [2, 1, 1]] , dim = 3 cell rep = phi[[],[2, 1, 1]] TII depth = 1 TII multiplicity polynomial = 3*X TII subcells: tii[5,1] := {2} tii[5,2] := {1} tii[5,3] := {0} cell#5 , |C| = 3 special orbit = [3, 1, 1, 1, 1, 1] special rep = [[], [2, 1, 1]] , dim = 3 cell rep = phi[[],[2, 1, 1]] TII depth = 1 TII multiplicity polynomial = 3*X TII subcells: tii[5,1] := {1} tii[5,2] := {2} tii[5,3] := {0} cell#6 , |C| = 4 special orbit = [2, 2, 1, 1, 1, 1] special rep = [[1], [1, 1, 1]] , dim = 4 cell rep = phi[[1],[1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 4*X TII subcells: tii[2,1] := {1} tii[2,2] := {0} tii[2,3] := {2} tii[2,4] := {3} cell#7 , |C| = 4 special orbit = [2, 2, 1, 1, 1, 1] special rep = [[1], [1, 1, 1]] , dim = 4 cell rep = phi[[1],[1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 4*X TII subcells: tii[2,1] := {1} tii[2,2] := {0} tii[2,3] := {2} tii[2,4] := {3} cell#8 , |C| = 1 special orbit = [1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [1, 1, 1, 1]] , dim = 1 cell rep = phi[[],[1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = X TII subcells: tii[1,1] := {0}