### D5 : Left Cell Data ## cell #0 : |C| = 1 W-rep = phi[[],[5]] special rep = phi[[],[5]] , dim = 1 orbit = [9, 1] depth of tau_infinity partitioning = 1 number of tau_infinity subcells = 1 1 tau_infinity subcells with 1 member(s) subcells = [ [0] ] cell #1 : |C| = 5 W-rep = phi[[1],[4]] special rep = phi[[1],[4]] , dim = 5 orbit = [7, 3] depth of tau_infinity partitioning = 1 number of tau_infinity subcells = 5 5 tau_infinity subcells with 1 member(s) subcells = [ [1],[7],[26],[77],[90] ] cell #2 : |C| = 5 W-rep = phi[[1],[4]] special rep = phi[[1],[4]] , dim = 5 orbit = [7, 3] depth of tau_infinity partitioning = 1 number of tau_infinity subcells = 5 5 tau_infinity subcells with 1 member(s) subcells = [ [2],[6],[10],[37],[44] ] cell #3 : |C| = 5 W-rep = phi[[1],[4]] special rep = phi[[1],[4]] , dim = 5 orbit = [7, 3] depth of tau_infinity partitioning = 1 number of tau_infinity subcells = 5 5 tau_infinity subcells with 1 member(s) subcells = [ [3],[8],[15],[18],[20] ] cell #4 : |C| = 5 W-rep = phi[[1],[4]] special rep = phi[[1],[4]] , dim = 5 orbit = [7, 3] depth of tau_infinity partitioning = 1 number of tau_infinity subcells = 5 5 tau_infinity subcells with 1 member(s) subcells = [ [4],[12],[24],[46],[51] ] cell #5 : |C| = 5 W-rep = phi[[1],[4]] special rep = phi[[1],[4]] , dim = 5 orbit = [7, 3] depth of tau_infinity partitioning = 1 number of tau_infinity subcells = 5 5 tau_infinity subcells with 1 member(s) subcells = [ [5],[11],[23],[38],[50] ] cell #6 : |C| = 10 W-rep = phi[[2],[3]] special rep = phi[[2],[3]] , dim = 10 orbit = [5, 5] depth of tau_infinity partitioning = 2 number of tau_infinity subcells = 10 10 tau_infinity subcells with 1 member(s) subcells = [ [9],[22],[36],[43],[73],[86],[121],[126],[245],[280] ] cell #7 : |C| = 10 W-rep = phi[[2],[3]] special rep = phi[[2],[3]] , dim = 10 orbit = [5, 5] depth of tau_infinity partitioning = 2 number of tau_infinity subcells = 10 10 tau_infinity subcells with 1 member(s) subcells = [ [13],[30],[34],[55],[66],[94],[160],[171],[211],[378] ] cell #8 : |C| = 10 W-rep = phi[[2],[3]] special rep = phi[[2],[3]] , dim = 10 orbit = [5, 5] depth of tau_infinity partitioning = 2 number of tau_infinity subcells = 10 10 tau_infinity subcells with 1 member(s) subcells = [ [14],[31],[33],[65],[95],[109],[170],[263],[333],[540] ] cell #9 : |C| = 10 W-rep = phi[[2],[3]] special rep = phi[[2],[3]] , dim = 10 orbit = [5, 5] depth of tau_infinity partitioning = 2 number of tau_infinity subcells = 10 10 tau_infinity subcells with 1 member(s) subcells = [ [16],[28],[41],[54],[63],[79],[138],[147],[217],[423] ] cell #10 : |C| = 10 W-rep = phi[[2],[3]] special rep = phi[[2],[3]] , dim = 10 orbit = [5, 5] depth of tau_infinity partitioning = 2 number of tau_infinity subcells = 10 10 tau_infinity subcells with 1 member(s) subcells = [ [17],[29],[40],[62],[80],[108],[146],[232],[340],[594] ] cell #11 : |C| = 4 W-rep = phi[[],[4, 1]] special rep = phi[[],[4, 1]] , dim = 4 orbit = [7, 1, 1, 1] depth of tau_infinity partitioning = 1 number of tau_infinity subcells = 4 4 tau_infinity subcells with 1 member(s) subcells = [ [19],[32],[56],[104] ] cell #12 : |C| = 10 W-rep = phi[[2],[3]] special rep = phi[[2],[3]] , dim = 10 orbit = [5, 5] depth of tau_infinity partitioning = 2 number of tau_infinity subcells = 10 10 tau_infinity subcells with 1 member(s) subcells = [ [25],[53],[76],[89],[137],[158],[209],[216],[376],[422] ] cell #13 : |C| = 4 W-rep = phi[[],[4, 1]] special rep = phi[[],[4, 1]] , dim = 4 orbit = [7, 1, 1, 1] depth of tau_infinity partitioning = 1 number of tau_infinity subcells = 4 4 tau_infinity subcells with 1 member(s) subcells = [ [182],[226],[318],[464] ] cell #14 : |C| = 25 W-rep = phi[[1],[3, 1]]+phi[[1, 1],[3]] special rep = phi[[1],[3, 1]] , dim = 15 orbit = [5, 3, 1, 1] depth of tau_infinity partitioning = 2 number of tau_infinity subcells = 15 5 tau_infinity subcells with 1 member(s) 10 tau_infinity subcells with 2 member(s) subcells = [ [296],[352],[445],[472],[512], [21,649],[58,861],[115,665],[142,1120],[163,1172],[239,922],[269,976],[383,751],[415,803],[630,637] ] cell #15 : |C| = 10 W-rep = phi[[2],[3]] special rep = phi[[2],[3]] , dim = 10 orbit = [5, 5] depth of tau_infinity partitioning = 2 number of tau_infinity subcells = 10 10 tau_infinity subcells with 1 member(s) subcells = [ [42],[64],[84],[119],[148],[193],[243],[360],[496],[787] ] cell #16 : |C| = 10 W-rep = phi[[2],[3]] special rep = phi[[2],[3]] , dim = 10 orbit = [5, 5] depth of tau_infinity partitioning = 2 number of tau_infinity subcells = 10 10 tau_infinity subcells with 1 member(s) subcells = [ [35],[67],[71],[124],[172],[194],[278],[400],[488],[727] ] cell #17 : |C| = 4 W-rep = phi[[],[4, 1]] special rep = phi[[],[4, 1]] , dim = 4 orbit = [7, 1, 1, 1] depth of tau_infinity partitioning = 1 number of tau_infinity subcells = 4 4 tau_infinity subcells with 1 member(s) subcells = [ [101],[133],[197],[309] ] cell #18 : |C| = 25 W-rep = phi[[1],[3, 1]]+phi[[1, 1],[3]] special rep = phi[[1],[3, 1]] , dim = 15 orbit = [5, 3, 1, 1] depth of tau_infinity partitioning = 2 number of tau_infinity subcells = 15 5 tau_infinity subcells with 1 member(s) 10 tau_infinity subcells with 2 member(s) subcells = [ [183],[227],[295],[351],[471], [27,327],[57,473],[78,534],[91,581],[107,650],[141,712],[151,394],[162,764],[169,433],[302,305] ] cell #19 : |C| = 4 W-rep = phi[[],[4, 1]] special rep = phi[[],[4, 1]] , dim = 4 orbit = [7, 1, 1, 1] depth of tau_infinity partitioning = 1 number of tau_infinity subcells = 4 4 tau_infinity subcells with 1 member(s) subcells = [ [49],[70],[111],[189] ] cell #20 : |C| = 10 W-rep = phi[[2],[3]] special rep = phi[[2],[3]] , dim = 10 orbit = [5, 5] depth of tau_infinity partitioning = 2 number of tau_infinity subcells = 10 10 tau_infinity subcells with 1 member(s) subcells = [ [88],[123],[156],[207],[247],[313],[374],[520],[680],[991] ] cell #21 : |C| = 25 W-rep = phi[[1],[3, 1]]+phi[[1, 1],[3]] special rep = phi[[1],[3, 1]] , dim = 15 orbit = [5, 3, 1, 1] depth of tau_infinity partitioning = 2 number of tau_infinity subcells = 15 5 tau_infinity subcells with 1 member(s) 10 tau_infinity subcells with 2 member(s) subcells = [ [180],[224],[289],[345],[470], [39,391],[75,542],[103,645],[128,335],[135,722],[175,430],[214,483],[265,282],[315,651],[395,420] ] cell #22 : |C| = 10 W-rep = phi[[2],[3]] special rep = phi[[2],[3]] , dim = 10 orbit = [5, 5] depth of tau_infinity partitioning = 2 number of tau_infinity subcells = 10 10 tau_infinity subcells with 1 member(s) subcells = [ [74],[127],[134],[213],[281],[314],[419],[568],[671],[928] ] cell #23 : |C| = 25 W-rep = phi[[1],[3, 1]]+phi[[1, 1],[3]] special rep = phi[[1],[3, 1]] , dim = 15 orbit = [5, 3, 1, 1] depth of tau_infinity partitioning = 2 number of tau_infinity subcells = 15 5 tau_infinity subcells with 1 member(s) 10 tau_infinity subcells with 2 member(s) subcells = [ [179],[223],[288],[344],[469], [45,429],[87,597],[102,644],[122,343],[154,390],[155,783],[206,492],[235,246],[312,652],[356,373] ] cell #24 : |C| = 20 W-rep = phi[[],[3, 2]]+phi[[1],[3, 1]] special rep = phi[[1],[3, 1]] , dim = 15 orbit = [5, 3, 1, 1] depth of tau_infinity partitioning = 2 number of tau_infinity subcells = 15 10 tau_infinity subcells with 1 member(s) 5 tau_infinity subcells with 2 member(s) subcells = [ [190],[204],[254],[284],[320],[371],[410],[460],[527],[574], [47,818],[68,898],[98,625],[110,1070],[130,701] ] cell #25 : |C| = 20 W-rep = phi[[],[3, 2]]+phi[[1],[3, 1]] special rep = phi[[1],[3, 1]] , dim = 15 orbit = [5, 3, 1, 1] depth of tau_infinity partitioning = 2 number of tau_infinity subcells = 15 10 tau_infinity subcells with 1 member(s) 5 tau_infinity subcells with 2 member(s) subcells = [ [118],[153],[174],[198],[242],[272],[307],[311],[365],[404], [48,448],[69,515],[97,619],[129,695],[195,858] ] cell #26 : |C| = 25 W-rep = phi[[1],[3, 1]]+phi[[1, 1],[3]] special rep = phi[[1],[3, 1]] , dim = 15 orbit = [5, 3, 1, 1] depth of tau_infinity partitioning = 2 number of tau_infinity subcells = 15 5 tau_infinity subcells with 1 member(s) 10 tau_infinity subcells with 2 member(s) subcells = [ [297],[353],[444],[511],[656], [52,854],[59,482],[114,657],[143,721],[164,773],[238,914],[250,560],[268,968],[275,607],[451,456] ] cell #27 : |C| = 25 W-rep = phi[[1],[3, 1]]+phi[[1, 1],[3]] special rep = phi[[1],[3, 1]] , dim = 15 orbit = [5, 3, 1, 1] depth of tau_infinity partitioning = 2 number of tau_infinity subcells = 15 5 tau_infinity subcells with 1 member(s) 10 tau_infinity subcells with 2 member(s) subcells = [ [298],[354],[442],[509],[654], [60,500],[93,608],[112,676],[144,364],[165,791],[185,457],[191,856],[236,516],[251,257],[266,987] ] cell #28 : |C| = 25 W-rep = phi[[1],[3, 1]]+phi[[1, 1],[3]] special rep = phi[[1],[3, 1]] , dim = 15 orbit = [5, 3, 1, 1] depth of tau_infinity partitioning = 2 number of tau_infinity subcells = 15 5 tau_infinity subcells with 1 member(s) 10 tau_infinity subcells with 2 member(s) subcells = [ [299],[355],[443],[510],[655], [61,491],[82,562],[113,666],[145,730],[166,403],[187,453],[192,855],[237,923],[267,563],[277,287] ] cell #29 : |C| = 25 W-rep = phi[[1],[3, 1]]+phi[[1, 1],[3]] special rep = phi[[1],[3, 1]] , dim = 15 orbit = [5, 3, 1, 1] depth of tau_infinity partitioning = 2 number of tau_infinity subcells = 15 5 tau_infinity subcells with 1 member(s) 10 tau_infinity subcells with 2 member(s) subcells = [ [447],[514],[621],[697],[860], [106,1066],[117,675],[150,753],[200,869],[241,932],[271,572],[304,632],[367,1128],[406,755],[417,432] ] cell #30 : |C| = 20 W-rep = phi[[2],[2, 1]] special rep = phi[[2],[2, 1]] , dim = 20 orbit = [4, 4, 1, 1] depth of tau_infinity partitioning = 3 number of tau_infinity subcells = 20 20 tau_infinity subcells with 1 member(s) subcells = [ [72],[125],[203],[249],[279],[370],[409],[455],[587],[606],[624],[700],[763],[831],[877],[957],[960],[1078],[1136],[1322] ] cell #31 : |C| = 20 W-rep = phi[[],[3, 2]]+phi[[1],[3, 1]] special rep = phi[[1],[3, 1]] , dim = 15 orbit = [5, 3, 1, 1] depth of tau_infinity partitioning = 2 number of tau_infinity subcells = 15 10 tau_infinity subcells with 1 member(s) 5 tau_infinity subcells with 2 member(s) subcells = [ [310],[326],[389],[428],[474],[533],[580],[643],[713],[765], [100,1024],[132,1104],[178,824],[196,1273],[222,904] ] cell #32 : |C| = 20 W-rep = phi[[2],[2, 1]] special rep = phi[[2],[2, 1]] , dim = 20 orbit = [4, 4, 1, 1] depth of tau_infinity partitioning = 3 number of tau_infinity subcells = 20 20 tau_infinity subcells with 1 member(s) subcells = [ [81],[139],[186],[218],[230],[286],[293],[338],[349],[402],[424],[490],[556],[564],[592],[603],[667],[729],[847],[924] ] cell #33 : |C| = 25 W-rep = phi[[1],[3, 1]]+phi[[1, 1],[3]] special rep = phi[[1],[3, 1]] , dim = 15 orbit = [5, 3, 1, 1] depth of tau_infinity partitioning = 2 number of tau_infinity subcells = 15 5 tau_infinity subcells with 1 member(s) 10 tau_infinity subcells with 2 member(s) subcells = [ [294],[350],[434],[501],[653], [83,557],[96,604],[140,379],[161,425],[188,848],[212,219],[228,535],[258,590],[328,336],[467,468] ] cell #34 : |C| = 25 W-rep = phi[[1],[3, 1]]+phi[[1, 1],[3]] special rep = phi[[1],[3, 1]] , dim = 15 orbit = [5, 3, 1, 1] depth of tau_infinity partitioning = 2 number of tau_infinity subcells = 15 5 tau_infinity subcells with 1 member(s) 10 tau_infinity subcells with 2 member(s) subcells = [ [446],[513],[620],[696],[859], [105,1067],[116,685],[168,804],[199,878],[240,525],[270,996],[301,638],[366,703],[384,393],[405,1189] ] cell #35 : |C| = 20 W-rep = phi[[2],[2, 1]] special rep = phi[[2],[2, 1]] , dim = 20 orbit = [4, 4, 1, 1] depth of tau_infinity partitioning = 3 number of tau_infinity subcells = 20 20 tau_infinity subcells with 1 member(s) subcells = [ [85],[120],[202],[244],[274],[369],[408],[450],[547],[559],[623],[699],[711],[838],[886],[906],[1010],[1086],[1197],[1377] ] cell #36 : |C| = 20 W-rep = phi[[2],[2, 1]] special rep = phi[[2],[2, 1]] , dim = 20 orbit = [4, 4, 1, 1] depth of tau_infinity partitioning = 3 number of tau_infinity subcells = 20 20 tau_infinity subcells with 1 member(s) subcells = [ [92],[159],[184],[210],[256],[259],[292],[329],[348],[363],[377],[499],[517],[536],[555],[602],[677],[790],[846],[988] ] cell #37 : |C| = 20 W-rep = phi[[],[3, 2]]+phi[[1],[3, 1]] special rep = phi[[1],[3, 1]] , dim = 15 orbit = [5, 3, 1, 1] depth of tau_infinity partitioning = 2 number of tau_infinity subcells = 15 10 tau_infinity subcells with 1 member(s) 5 tau_infinity subcells with 2 member(s) subcells = [ [205],[255],[285],[319],[372],[411],[461],[466],[526],[573], [99,626],[131,702],[176,817],[220,897],[316,1069] ] cell #38 : |C| = 20 W-rep = phi[[2],[2, 1]] special rep = phi[[2],[2, 1]] , dim = 20 orbit = [4, 4, 1, 1] depth of tau_infinity partitioning = 3 number of tau_infinity subcells = 20 20 tau_infinity subcells with 1 member(s) subcells = [ [136],[215],[324],[382],[421],[531],[578],[636],[779],[802],[822],[902],[967],[1038],[1085],[1161],[1165],[1279],[1329],[1494] ] cell #39 : |C| = 20 W-rep = phi[[],[3, 2]]+phi[[1],[3, 1]] special rep = phi[[1],[3, 1]] , dim = 15 orbit = [5, 3, 1, 1] depth of tau_infinity partitioning = 2 number of tau_infinity subcells = 15 10 tau_infinity subcells with 1 member(s) 5 tau_infinity subcells with 2 member(s) subcells = [ [465],[481],[554],[601],[658],[720],[772],[845],[915],[969], [181,1226],[225,1302],[291,1031],[317,1457],[347,1111] ] cell #40 : |C| = 20 W-rep = phi[[2],[2, 1]] special rep = phi[[2],[2, 1]] , dim = 20 orbit = [4, 4, 1, 1] depth of tau_infinity partitioning = 3 number of tau_infinity subcells = 20 20 tau_infinity subcells with 1 member(s) subcells = [ [149],[233],[303],[341],[359],[431],[439],[495],[506],[571],[595],[674],[745],[756],[786],[797],[870],[931],[1056],[1129] ] cell #41 : |C| = 20 W-rep = phi[[2],[2, 1]] special rep = phi[[2],[2, 1]] , dim = 20 orbit = [4, 4, 1, 1] depth of tau_infinity partitioning = 3 number of tau_infinity subcells = 20 20 tau_infinity subcells with 1 member(s) subcells = [ [152],[173],[234],[264],[306],[334],[342],[357],[396],[440],[484],[493],[507],[541],[596],[723],[746],[784],[798],[1057] ] cell #42 : |C| = 20 W-rep = phi[[2],[2, 1]] special rep = phi[[2],[2, 1]] , dim = 20 orbit = [4, 4, 1, 1] depth of tau_infinity partitioning = 3 number of tau_infinity subcells = 20 20 tau_infinity subcells with 1 member(s) subcells = [ [157],[208],[323],[375],[414],[530],[577],[629],[735],[750],[821],[901],[913],[1046],[1093],[1113],[1212],[1286],[1384],[1540] ] cell #43 : |C| = 20 W-rep = phi[[2],[2, 1]] special rep = phi[[2],[2, 1]] , dim = 20 orbit = [4, 4, 1, 1] depth of tau_infinity partitioning = 3 number of tau_infinity subcells = 20 20 tau_infinity subcells with 1 member(s) subcells = [ [167],[262],[300],[332],[392],[397],[438],[485],[505],[524],[539],[684],[704],[724],[744],[796],[879],[995],[1055],[1190] ] cell #44 : |C| = 20 W-rep = phi[[2],[2, 1]] special rep = phi[[2],[2, 1]] , dim = 20 orbit = [4, 4, 1, 1] depth of tau_infinity partitioning = 3 number of tau_infinity subcells = 20 20 tau_infinity subcells with 1 member(s) subcells = [ [260],[330],[477],[537],[584],[716],[768],[828],[937],[954],[1027],[1107],[1119],[1248],[1292],[1310],[1398],[1466],[1546],[1672] ] cell #45 : |C| = 20 W-rep = phi[[2],[2, 1]] special rep = phi[[2],[2, 1]] , dim = 20 orbit = [4, 4, 1, 1] depth of tau_infinity partitioning = 3 number of tau_infinity subcells = 20 20 tau_infinity subcells with 1 member(s) subcells = [ [229],[337],[478],[544],[591],[717],[769],[835],[982],[1007],[1028],[1108],[1170],[1239],[1284],[1352],[1358],[1462],[1499],[1638] ] cell #46 : |C| = 20 W-rep = phi[[2],[2, 1]] special rep = phi[[2],[2, 1]] , dim = 20 orbit = [4, 4, 1, 1] depth of tau_infinity partitioning = 3 number of tau_infinity subcells = 20 20 tau_infinity subcells with 1 member(s) subcells = [ [253],[283],[362],[401],[459],[489],[498],[518],[565],[616],[668],[678],[692],[728],[789],[925],[949],[989],[1003],[1260] ] cell #47 : |C| = 10 W-rep = phi[[1],[2, 2]] special rep = phi[[1],[2, 2]] , dim = 10 orbit = [3, 3, 3, 1] depth of tau_infinity partitioning = 1 number of tau_infinity subcells = 10 10 tau_infinity subcells with 1 member(s) subcells = [ [177],[221],[325],[388],[427],[532],[579],[642],[823],[903] ] cell #48 : |C| = 20 W-rep = phi[[2],[2, 1]] special rep = phi[[2],[2, 1]] , dim = 20 orbit = [4, 4, 1, 1] depth of tau_infinity partitioning = 3 number of tau_infinity subcells = 20 20 tau_infinity subcells with 1 member(s) subcells = [ [261],[273],[331],[399],[449],[487],[538],[558],[614],[690],[710],[726],[885],[907],[947],[1001],[1087],[1196],[1258],[1378] ] cell #49 : |C| = 20 W-rep = phi[[2],[2, 1]] special rep = phi[[2],[2, 1]] , dim = 20 orbit = [4, 4, 1, 1] depth of tau_infinity partitioning = 3 number of tau_infinity subcells = 20 20 tau_infinity subcells with 1 member(s) subcells = [ [231],[248],[339],[361],[454],[497],[593],[605],[615],[691],[762],[788],[876],[948],[961],[1002],[1079],[1135],[1259],[1323] ] cell #50 : |C| = 10 W-rep = phi[[1],[2, 2]] special rep = phi[[1],[2, 2]] , dim = 10 orbit = [3, 3, 3, 1] depth of tau_infinity partitioning = 1 number of tau_infinity subcells = 10 10 tau_infinity subcells with 1 member(s) subcells = [ [437],[504],[664],[743],[795],[921],[975],[1054],[1232],[1308] ] cell #51 : |C| = 20 W-rep = phi[[1, 1],[2, 1]] special rep = phi[[1, 1],[2, 1]] , dim = 20 orbit = [3, 3, 2, 2] depth of tau_infinity partitioning = 3 number of tau_infinity subcells = 20 20 tau_infinity subcells with 1 member(s) subcells = [ [201],[368],[407],[546],[585],[622],[698],[736],[778],[829],[837],[868],[955],[1009],[1037],[1047],[1127],[1160],[1179],[1213] ] cell #52 : |C| = 20 W-rep = phi[[2],[2, 1]] special rep = phi[[2],[2, 1]] , dim = 20 orbit = [4, 4, 1, 1] depth of tau_infinity partitioning = 3 number of tau_infinity subcells = 20 20 tau_infinity subcells with 1 member(s) subcells = [ [398],[413],[486],[567],[628],[670],[725],[749],[811],[891],[912],[927],[1092],[1114],[1150],[1202],[1287],[1383],[1441],[1541] ] cell #53 : |C| = 10 W-rep = phi[[1],[2, 2]] special rep = phi[[1],[2, 2]] , dim = 10 orbit = [3, 3, 3, 1] depth of tau_infinity partitioning = 1 number of tau_infinity subcells = 10 10 tau_infinity subcells with 1 member(s) subcells = [ [613],[689],[867],[946],[1000],[1126],[1178],[1257],[1417],[1484] ] cell #54 : |C| = 20 W-rep = phi[[2],[2, 1]] special rep = phi[[2],[2, 1]] , dim = 20 orbit = [4, 4, 1, 1] depth of tau_infinity partitioning = 3 number of tau_infinity subcells = 20 20 tau_infinity subcells with 1 member(s) subcells = [ [387],[426],[523],[570],[641],[673],[683],[705],[757],[814],[871],[880],[894],[930],[994],[1130],[1153],[1191],[1205],[1444] ] cell #55 : |C| = 20 W-rep = phi[[2],[2, 1]] special rep = phi[[2],[2, 1]] , dim = 20 orbit = [4, 4, 1, 1] depth of tau_infinity partitioning = 3 number of tau_infinity subcells = 20 20 tau_infinity subcells with 1 member(s) subcells = [ [552],[569],[599],[672],[709],[761],[843],[875],[884],[908],[929],[1020],[1088],[1100],[1134],[1195],[1344],[1379],[1391],[1598] ] cell #56 : |C| = 10 W-rep = phi[[1],[2, 2]] special rep = phi[[1],[2, 2]] , dim = 10 orbit = [3, 3, 3, 1] depth of tau_infinity partitioning = 1 number of tau_infinity subcells = 10 10 tau_infinity subcells with 1 member(s) subcells = [ [1016],[1096],[1277],[1340],[1387],[1492],[1531],[1594],[1698],[1742] ] cell #57 : |C| = 20 W-rep = phi[[1, 1],[2, 1]] special rep = phi[[1, 1],[2, 1]] , dim = 20 orbit = [3, 3, 2, 2] depth of tau_infinity partitioning = 3 number of tau_infinity subcells = 20 20 tau_infinity subcells with 1 member(s) subcells = [ [252],[381],[458],[522],[609],[635],[682],[801],[813],[893],[966],[993],[1084],[1152],[1204],[1328],[1375],[1443],[1582],[1660] ] cell #58 : |C| = 20 W-rep = phi[[2],[2, 1]] special rep = phi[[2],[2, 1]] , dim = 20 orbit = [4, 4, 1, 1] depth of tau_infinity partitioning = 3 number of tau_infinity subcells = 20 20 tau_infinity subcells with 1 member(s) subcells = [ [358],[380],[494],[521],[634],[681],[785],[800],[812],[892],[965],[992],[1083],[1151],[1167],[1203],[1281],[1327],[1442],[1496] ] cell #59 : |C| = 10 W-rep = phi[[1],[2, 2]] special rep = phi[[1],[2, 2]] , dim = 10 orbit = [3, 3, 3, 1] depth of tau_infinity partitioning = 1 number of tau_infinity subcells = 10 10 tau_infinity subcells with 1 member(s) subcells = [ [612],[688],[866],[945],[999],[1125],[1177],[1256],[1416],[1483] ] cell #60 : |C| = 20 W-rep = phi[[2],[2, 1]] special rep = phi[[2],[2, 1]] , dim = 20 orbit = [4, 4, 1, 1] depth of tau_infinity partitioning = 3 number of tau_infinity subcells = 20 20 tau_infinity subcells with 1 member(s) subcells = [ [519],[551],[598],[679],[708],[760],[842],[874],[883],[963],[990],[1019],[1081],[1099],[1133],[1194],[1325],[1343],[1390],[1597] ] cell #61 : |C| = 20 W-rep = phi[[1, 1],[2, 1]] special rep = phi[[1, 1],[2, 1]] , dim = 20 orbit = [3, 3, 2, 2] depth of tau_infinity partitioning = 3 number of tau_infinity subcells = 20 20 tau_infinity subcells with 1 member(s) subcells = [ [276],[412],[452],[561],[566],[627],[669],[748],[810],[890],[911],[926],[1091],[1149],[1201],[1335],[1382],[1440],[1589],[1689] ] cell #62 : |C| = 10 W-rep = phi[[1],[2, 2]] special rep = phi[[1],[2, 2]] , dim = 10 orbit = [3, 3, 3, 1] depth of tau_infinity partitioning = 1 number of tau_infinity subcells = 10 10 tau_infinity subcells with 1 member(s) subcells = [ [290],[346],[480],[553],[600],[719],[771],[844],[1030],[1110] ] cell #63 : |C| = 6 W-rep = phi[[],[3, 1, 1]] special rep = phi[[],[3, 1, 1]] , dim = 6 orbit = [5, 1, 1, 1, 1, 1] depth of tau_infinity partitioning = 1 number of tau_infinity subcells = 6 6 tau_infinity subcells with 1 member(s) subcells = [ [308],[441],[508],[610],[686],[857] ] cell #64 : |C| = 20 W-rep = phi[[1, 1],[2, 1]] special rep = phi[[1, 1],[2, 1]] , dim = 20 orbit = [3, 3, 2, 2] depth of tau_infinity partitioning = 3 number of tau_infinity subcells = 20 20 tau_infinity subcells with 1 member(s) subcells = [ [321],[528],[575],[586],[733],[776],[819],[830],[899],[938],[956],[1035],[1044],[1076],[1158],[1210],[1249],[1320],[1367],[1399] ] cell #65 : |C| = 20 W-rep = phi[[1, 1],[2, 1]] special rep = phi[[1, 1],[2, 1]] , dim = 20 orbit = [3, 3, 2, 2] depth of tau_infinity partitioning = 3 number of tau_infinity subcells = 20 20 tau_infinity subcells with 1 member(s) subcells = [ [322],[529],[548],[576],[734],[777],[820],[839],[900],[981],[1011],[1036],[1045],[1077],[1159],[1211],[1238],[1321],[1351],[1368] ] cell #66 : |C| = 10 W-rep = phi[[1],[2, 2]] special rep = phi[[1],[2, 2]] , dim = 10 orbit = [3, 3, 3, 1] depth of tau_infinity partitioning = 1 number of tau_infinity subcells = 10 10 tau_infinity subcells with 1 member(s) subcells = [ [436],[503],[663],[742],[794],[920],[974],[1053],[1231],[1307] ] cell #67 : |C| = 20 W-rep = phi[[1, 1],[2, 1]] special rep = phi[[1, 1],[2, 1]] , dim = 20 orbit = [3, 3, 2, 2] depth of tau_infinity partitioning = 3 number of tau_infinity subcells = 20 20 tau_infinity subcells with 1 member(s) subcells = [ [385],[479],[545],[639],[718],[770],[805],[836],[983],[1008],[1029],[1109],[1171],[1186],[1240],[1285],[1353],[1425],[1500],[1522] ] cell #68 : |C| = 10 W-rep = phi[[1],[2, 2]] special rep = phi[[1],[2, 2]] , dim = 10 orbit = [3, 3, 3, 1] depth of tau_infinity partitioning = 1 number of tau_infinity subcells = 10 10 tau_infinity subcells with 1 member(s) subcells = [ [809],[889],[1075],[1148],[1200],[1319],[1366],[1439],[1573],[1629] ] cell #69 : |C| = 20 W-rep = phi[[2],[2, 1]] special rep = phi[[2],[2, 1]] , dim = 20 orbit = [4, 4, 1, 1] depth of tau_infinity partitioning = 3 number of tau_infinity subcells = 20 20 tau_infinity subcells with 1 member(s) subcells = [ [706],[740],[759],[792],[873],[881],[910],[964],[1051],[1082],[1090],[1132],[1192],[1221],[1297],[1326],[1381],[1512],[1551],[1718] ] cell #70 : |C| = 20 W-rep = phi[[1, 1],[2, 1]] special rep = phi[[1, 1],[2, 1]] , dim = 20 orbit = [3, 3, 2, 2] depth of tau_infinity partitioning = 3 number of tau_infinity subcells = 20 20 tau_infinity subcells with 1 member(s) subcells = [ [386],[543],[640],[707],[806],[834],[882],[1006],[1018],[1098],[1169],[1193],[1283],[1342],[1389],[1498],[1537],[1596],[1704],[1762] ] cell #71 : |C| = 10 W-rep = phi[[1],[2, 2]] special rep = phi[[1],[2, 2]] , dim = 10 orbit = [3, 3, 3, 1] depth of tau_infinity partitioning = 1 number of tau_infinity subcells = 10 10 tau_infinity subcells with 1 member(s) subcells = [ [435],[502],[662],[741],[793],[919],[973],[1052],[1230],[1306] ] cell #72 : |C| = 20 W-rep = phi[[1, 1],[2, 1]] special rep = phi[[1, 1],[2, 1]] , dim = 20 orbit = [3, 3, 2, 2] depth of tau_infinity partitioning = 3 number of tau_infinity subcells = 20 20 tau_infinity subcells with 1 member(s) subcells = [ [416],[476],[583],[631],[715],[752],[767],[827],[936],[953],[1026],[1106],[1118],[1142],[1247],[1291],[1397],[1433],[1545],[1560] ] cell #73 : |C| = 20 W-rep = phi[[1, 1],[2, 1]] special rep = phi[[1, 1],[2, 1]] , dim = 20 orbit = [3, 3, 2, 2] depth of tau_infinity partitioning = 3 number of tau_infinity subcells = 20 20 tau_infinity subcells with 1 member(s) subcells = [ [418],[582],[633],[754],[758],[826],[872],[952],[1017],[1097],[1117],[1131],[1290],[1341],[1388],[1505],[1544],[1595],[1711],[1783] ] cell #74 : |C| = 6 W-rep = phi[[],[3, 1, 1]] special rep = phi[[],[3, 1, 1]] , dim = 6 orbit = [5, 1, 1, 1, 1, 1] depth of tau_infinity partitioning = 1 number of tau_infinity subcells = 6 6 tau_infinity subcells with 1 member(s) subcells = [ [647],[816],[896],[1014],[1094],[1271] ] cell #75 : |C| = 10 W-rep = phi[[1],[2, 2]] special rep = phi[[1],[2, 2]] , dim = 10 orbit = [3, 3, 3, 1] depth of tau_infinity partitioning = 1 number of tau_infinity subcells = 10 10 tau_infinity subcells with 1 member(s) subcells = [ [611],[687],[865],[944],[998],[1124],[1176],[1255],[1415],[1482] ] cell #76 : |C| = 20 W-rep = phi[[1, 1],[2, 1]] special rep = phi[[1, 1],[2, 1]] , dim = 20 orbit = [3, 3, 2, 2] depth of tau_infinity partitioning = 3 number of tau_infinity subcells = 20 20 tau_infinity subcells with 1 member(s) subcells = [ [738],[864],[934],[1049],[1123],[1175],[1185],[1215],[1245],[1372],[1395],[1414],[1424],[1481],[1521],[1527],[1579],[1616],[1657],[1749] ] cell #77 : |C| = 20 W-rep = phi[[1, 1],[2, 1]] special rep = phi[[1, 1],[2, 1]] , dim = 20 orbit = [3, 3, 2, 2] depth of tau_infinity partitioning = 3 number of tau_infinity subcells = 20 20 tau_infinity subcells with 1 member(s) subcells = [ [781],[863],[978],[1040],[1122],[1143],[1163],[1174],[1235],[1332],[1348],[1413],[1434],[1480],[1488],[1561],[1586],[1619],[1686],[1773] ] cell #78 : |C| = 20 W-rep = phi[[],[2, 2, 1]]+phi[[1],[2, 1, 1]] special rep = phi[[1],[2, 1, 1]] , dim = 15 orbit = [3, 3, 1, 1, 1, 1] depth of tau_infinity partitioning = 2 number of tau_infinity subcells = 15 10 tau_infinity subcells with 1 member(s) 5 tau_infinity subcells with 2 member(s) subcells = [ [950],[1004],[1074],[1147],[1199],[1261],[1318],[1365],[1438],[1454], [462,1602],[617,1694],[693,1738],[808,1572],[888,1628] ] cell #79 : |C| = 6 W-rep = phi[[],[3, 1, 1]] special rep = phi[[],[3, 1, 1]] , dim = 6 orbit = [5, 1, 1, 1, 1, 1] depth of tau_infinity partitioning = 1 number of tau_infinity subcells = 6 6 tau_infinity subcells with 1 member(s) subcells = [ [463],[618],[694],[807],[887],[1068] ] cell #80 : |C| = 20 W-rep = phi[[1, 1],[2, 1]] special rep = phi[[1, 1],[2, 1]] , dim = 20 orbit = [3, 3, 2, 2] depth of tau_infinity partitioning = 3 number of tau_infinity subcells = 20 20 tau_infinity subcells with 1 member(s) subcells = [ [475],[714],[737],[766],[780],[935],[979],[1025],[1039],[1048],[1105],[1162],[1214],[1236],[1246],[1278],[1349],[1396],[1493],[1532] ] cell #81 : |C| = 20 W-rep = phi[[1, 1],[2, 1]] special rep = phi[[1, 1],[2, 1]] , dim = 20 orbit = [3, 3, 2, 2] depth of tau_infinity partitioning = 3 number of tau_infinity subcells = 20 20 tau_infinity subcells with 1 member(s) subcells = [ [549],[661],[732],[840],[918],[972],[1012],[1043],[1184],[1209],[1229],[1305],[1361],[1373],[1423],[1465],[1520],[1580],[1641],[1658] ] cell #82 : |C| = 20 W-rep = phi[[1, 1],[2, 1]] special rep = phi[[1, 1],[2, 1]] , dim = 20 orbit = [3, 3, 2, 2] depth of tau_infinity partitioning = 3 number of tau_infinity subcells = 20 20 tau_infinity subcells with 1 member(s) subcells = [ [550],[731],[841],[909],[1013],[1042],[1089],[1208],[1220],[1296],[1360],[1380],[1464],[1511],[1550],[1640],[1670],[1717],[1794],[1834] ] cell #83 : |C| = 20 W-rep = phi[[1, 1],[2, 1]] special rep = phi[[1, 1],[2, 1]] , dim = 20 orbit = [3, 3, 2, 2] depth of tau_infinity partitioning = 3 number of tau_infinity subcells = 20 20 tau_infinity subcells with 1 member(s) subcells = [ [588],[660],[775],[832],[917],[958],[971],[1034],[1140],[1157],[1228],[1304],[1314],[1334],[1431],[1470],[1558],[1588],[1676],[1688] ] cell #84 : |C| = 20 W-rep = phi[[1, 1],[2, 1]] special rep = phi[[1, 1],[2, 1]] , dim = 20 orbit = [3, 3, 2, 2] depth of tau_infinity partitioning = 3 number of tau_infinity subcells = 20 20 tau_infinity subcells with 1 member(s) subcells = [ [589],[774],[833],[959],[962],[1033],[1080],[1156],[1219],[1295],[1313],[1324],[1469],[1510],[1549],[1645],[1675],[1716],[1799],[1847] ] cell #85 : |C| = 20 W-rep = phi[[1, 1],[2, 1]] special rep = phi[[1, 1],[2, 1]] , dim = 20 orbit = [3, 3, 2, 2] depth of tau_infinity partitioning = 3 number of tau_infinity subcells = 20 20 tau_infinity subcells with 1 member(s) subcells = [ [941],[1073],[1138],[1252],[1317],[1364],[1374],[1402],[1429],[1535],[1556],[1571],[1581],[1627],[1659],[1663],[1702],[1733],[1760],[1825] ] cell #86 : |C| = 20 W-rep = phi[[1, 1],[2, 1]] special rep = phi[[1, 1],[2, 1]] , dim = 20 orbit = [3, 3, 2, 2] depth of tau_infinity partitioning = 3 number of tau_infinity subcells = 20 20 tau_infinity subcells with 1 member(s) subcells = [ [985],[1072],[1181],[1242],[1316],[1336],[1355],[1363],[1420],[1502],[1517],[1570],[1590],[1626],[1633],[1690],[1708],[1735],[1780],[1840] ] cell #87 : |C| = 20 W-rep = phi[[],[2, 2, 1]]+phi[[1],[2, 1, 1]] special rep = phi[[1],[2, 1, 1]] , dim = 15 orbit = [3, 3, 1, 1, 1, 1] depth of tau_infinity partitioning = 2 number of tau_infinity subcells = 15 10 tau_infinity subcells with 1 member(s) 5 tau_infinity subcells with 2 member(s) subcells = [ [1154],[1206],[1276],[1339],[1386],[1445],[1491],[1530],[1593],[1609], [646,1723],[815,1787],[895,1819],[1015,1697],[1095,1741] ] cell #88 : |C| = 6 W-rep = phi[[],[3, 1, 1]] special rep = phi[[],[3, 1, 1]] , dim = 6 orbit = [5, 1, 1, 1, 1, 1] depth of tau_infinity partitioning = 1 number of tau_infinity subcells = 6 6 tau_infinity subcells with 1 member(s) subcells = [ [648],[825],[905],[1023],[1103],[1272] ] cell #89 : |C| = 20 W-rep = phi[[1, 1],[2, 1]] special rep = phi[[1, 1],[2, 1]] , dim = 20 orbit = [3, 3, 2, 2] depth of tau_infinity partitioning = 3 number of tau_infinity subcells = 20 20 tau_infinity subcells with 1 member(s) subcells = [ [659],[916],[940],[970],[984],[1139],[1182],[1227],[1241],[1251],[1303],[1354],[1401],[1421],[1430],[1460],[1518],[1557],[1636],[1666] ] cell #90 : |C| = 25 W-rep = phi[[1],[2, 1, 1]]+phi[[2],[1, 1, 1]] special rep = phi[[1],[2, 1, 1]] , dim = 15 orbit = [3, 3, 1, 1, 1, 1] depth of tau_infinity partitioning = 2 number of tau_infinity subcells = 15 5 tau_infinity subcells with 1 member(s) 10 tau_infinity subcells with 2 member(s) subcells = [ [1059],[1222],[1298],[1406],[1473], [739,1513],[852,1813],[933,1649],[1050,1719],[1115,1748],[1216,1552],[1244,1803],[1288,1615],[1394,1679],[1526,1542] ] cell #91 : |C| = 25 W-rep = phi[[1],[2, 1, 1]]+phi[[2],[1, 1, 1]] special rep = phi[[1],[2, 1, 1]] , dim = 15 orbit = [3, 3, 1, 1, 1, 1] depth of tau_infinity partitioning = 2 number of tau_infinity subcells = 15 5 tau_infinity subcells with 1 member(s) 10 tau_infinity subcells with 2 member(s) subcells = [ [1407],[1447],[1474],[1567],[1623], [747,1756],[799,1777],[943,1650],[997,1680],[1058,1861],[1116,1497],[1168,1543],[1254,1804],[1270,1898],[1282,1289] ] cell #92 : |C| = 25 W-rep = phi[[1],[2, 1, 1]]+phi[[2],[1, 1, 1]] special rep = phi[[1],[2, 1, 1]] , dim = 15 orbit = [3, 3, 1, 1, 1, 1] depth of tau_infinity partitioning = 2 number of tau_infinity subcells = 15 5 tau_infinity subcells with 1 member(s) 10 tau_infinity subcells with 2 member(s) subcells = [ [1060],[1223],[1299],[1405],[1472], [782,1553],[853,1814],[977,1678],[1041,1720],[1164,1514],[1166,1772],[1234,1802],[1280,1618],[1347,1648],[1487,1495] ] cell #93 : |C| = 20 W-rep = phi[[1, 1],[2, 1]] special rep = phi[[1, 1],[2, 1]] , dim = 20 orbit = [3, 3, 2, 2] depth of tau_infinity partitioning = 3 number of tau_infinity subcells = 20 20 tau_infinity subcells with 1 member(s) subcells = [ [862],[1121],[1144],[1173],[1187],[1331],[1370],[1412],[1426],[1435],[1479],[1523],[1562],[1577],[1585],[1613],[1655],[1685],[1746],[1767] ] cell #94 : |C| = 20 W-rep = phi[[],[2, 2, 1]]+phi[[1],[2, 1, 1]] special rep = phi[[1],[2, 1, 1]] , dim = 15 orbit = [3, 3, 1, 1, 1, 1] depth of tau_infinity partitioning = 2 number of tau_infinity subcells = 15 10 tau_infinity subcells with 1 member(s) 5 tau_infinity subcells with 2 member(s) subcells = [ [1345],[1392],[1459],[1509],[1548],[1599],[1635],[1665],[1715],[1729], [849,1809],[1021,1851],[1101,1872],[1218,1789],[1294,1821] ] cell #95 : |C| = 6 W-rep = phi[[],[3, 1, 1]] special rep = phi[[],[3, 1, 1]] , dim = 6 orbit = [5, 1, 1, 1, 1, 1] depth of tau_infinity partitioning = 1 number of tau_infinity subcells = 6 6 tau_infinity subcells with 1 member(s) subcells = [ [1062],[1233],[1309],[1411],[1478],[1611] ] cell #96 : |C| = 20 W-rep = phi[[],[2, 2, 1]]+phi[[1],[2, 1, 1]] special rep = phi[[1],[2, 1, 1]] , dim = 15 orbit = [3, 3, 1, 1, 1, 1] depth of tau_infinity partitioning = 2 number of tau_infinity subcells = 15 10 tau_infinity subcells with 1 member(s) 5 tau_infinity subcells with 2 member(s) subcells = [ [1346],[1393],[1453],[1458],[1508],[1547],[1600],[1634],[1664],[1714], [850,1603],[1022,1699],[1102,1743],[1217,1788],[1293,1820] ] cell #97 : |C| = 6 W-rep = phi[[],[3, 1, 1]] special rep = phi[[],[3, 1, 1]] , dim = 6 orbit = [5, 1, 1, 1, 1, 1] depth of tau_infinity partitioning = 1 number of tau_infinity subcells = 6 6 tau_infinity subcells with 1 member(s) subcells = [ [851],[1032],[1112],[1225],[1301],[1456] ] cell #98 : |C| = 25 W-rep = phi[[1],[2, 1, 1]]+phi[[2],[1, 1, 1]] special rep = phi[[1],[2, 1, 1]] , dim = 15 orbit = [3, 3, 1, 1, 1, 1] depth of tau_infinity partitioning = 2 number of tau_infinity subcells = 15 5 tau_infinity subcells with 1 member(s) 10 tau_infinity subcells with 2 member(s) subcells = [ [1266],[1418],[1485],[1569],[1625], [1071,1731],[1315,1823],[1337,1661],[1362,1836],[1376,1691],[1451,1452],[1501,1758],[1533,1779],[1583,1591],[1700,1707] ] cell #99 : |C| = 25 W-rep = phi[[1],[2, 1, 1]]+phi[[2],[1, 1, 1]] special rep = phi[[1],[2, 1, 1]] , dim = 15 orbit = [3, 3, 1, 1, 1, 1] depth of tau_infinity partitioning = 2 number of tau_infinity subcells = 15 5 tau_infinity subcells with 1 member(s) 10 tau_infinity subcells with 2 member(s) subcells = [ [1450],[1575],[1631],[1695],[1739], [1188,1785],[1268,1605],[1274,1817],[1369,1844],[1427,1713],[1489,1744],[1507,1524],[1528,1881],[1576,1796],[1642,1654] ] cell #100 : |C| = 25 W-rep = phi[[1],[2, 1, 1]]+phi[[2],[1, 1, 1]] special rep = phi[[1],[2, 1, 1]] , dim = 15 orbit = [3, 3, 1, 1, 1, 1] depth of tau_infinity partitioning = 2 number of tau_infinity subcells = 15 5 tau_infinity subcells with 1 member(s) 10 tau_infinity subcells with 2 member(s) subcells = [ [1265],[1410],[1477],[1564],[1620], [986,1683],[1064,1728],[1180,1774],[1243,1807],[1356,1653],[1357,1839],[1419,1858],[1461,1734],[1516,1753],[1632,1637] ] cell #101 : |C| = 20 W-rep = phi[[],[2, 2, 1]]+phi[[1],[2, 1, 1]] special rep = phi[[1],[2, 1, 1]] , dim = 15 orbit = [3, 3, 1, 1, 1, 1] depth of tau_infinity partitioning = 2 number of tau_infinity subcells = 15 10 tau_infinity subcells with 1 member(s) 5 tau_infinity subcells with 2 member(s) subcells = [ [1515],[1554],[1608],[1612],[1647],[1677],[1721],[1745],[1766],[1801], [1061,1724],[1224,1790],[1300,1822],[1404,1850],[1471,1871] ] cell #102 : |C| = 10 W-rep = phi[[1, 1],[1, 1, 1]] special rep = phi[[1, 1],[1, 1, 1]] , dim = 10 orbit = [2, 2, 2, 2, 1, 1] depth of tau_infinity partitioning = 2 number of tau_infinity subcells = 10 10 tau_infinity subcells with 1 member(s) subcells = [ [939],[1250],[1400],[1539],[1607],[1667],[1706],[1764],[1791],[1831] ] cell #103 : |C| = 25 W-rep = phi[[1],[2, 1, 1]]+phi[[2],[1, 1, 1]] special rep = phi[[1],[2, 1, 1]] , dim = 15 orbit = [3, 3, 1, 1, 1, 1] depth of tau_infinity partitioning = 2 number of tau_infinity subcells = 15 5 tau_infinity subcells with 1 member(s) 10 tau_infinity subcells with 2 member(s) subcells = [ [1264],[1409],[1476],[1565],[1621], [942,1652],[1063,1727],[1137,1754],[1253,1806],[1311,1824],[1403,1682],[1428,1859],[1467,1732],[1555,1775],[1662,1673] ] cell #104 : |C| = 25 W-rep = phi[[1],[2, 1, 1]]+phi[[2],[1, 1, 1]] special rep = phi[[1],[2, 1, 1]] , dim = 15 orbit = [3, 3, 1, 1, 1, 1] depth of tau_infinity partitioning = 2 number of tau_infinity subcells = 15 5 tau_infinity subcells with 1 member(s) 10 tau_infinity subcells with 2 member(s) subcells = [ [1263],[1408],[1475],[1566],[1622], [951,1651],[1005,1681],[1065,1867],[1146,1755],[1198,1776],[1262,1805],[1312,1639],[1359,1674],[1437,1860],[1463,1468] ] cell #105 : |C| = 25 W-rep = phi[[1],[2, 1, 1]]+phi[[2],[1, 1, 1]] special rep = phi[[1],[2, 1, 1]] , dim = 15 orbit = [3, 3, 1, 1, 1, 1] depth of tau_infinity partitioning = 2 number of tau_infinity subcells = 15 5 tau_infinity subcells with 1 member(s) 10 tau_infinity subcells with 2 member(s) subcells = [ [1449],[1574],[1630],[1696],[1740], [1145,1763],[1267,1606],[1275,1816],[1330,1832],[1436,1705],[1490,1873],[1529,1765],[1538,1563],[1584,1792],[1668,1684] ] cell #106 : |C| = 10 W-rep = phi[[1, 1],[1, 1, 1]] special rep = phi[[1, 1],[1, 1, 1]] , dim = 10 orbit = [2, 2, 2, 2, 1, 1] depth of tau_infinity partitioning = 2 number of tau_infinity subcells = 10 10 tau_infinity subcells with 1 member(s) subcells = [ [980],[1237],[1350],[1506],[1604],[1643],[1712],[1784],[1797],[1845] ] cell #107 : |C| = 25 W-rep = phi[[1],[2, 1, 1]]+phi[[2],[1, 1, 1]] special rep = phi[[1],[2, 1, 1]] , dim = 15 orbit = [3, 3, 1, 1, 1, 1] depth of tau_infinity partitioning = 2 number of tau_infinity subcells = 15 5 tau_infinity subcells with 1 member(s) 10 tau_infinity subcells with 2 member(s) subcells = [ [1448],[1568],[1624],[1692],[1736], [1155,1757],[1207,1778],[1269,1812],[1338,1828],[1385,1841],[1446,1862],[1486,1747],[1525,1771],[1592,1892],[1614,1617] ] cell #108 : |C| = 10 W-rep = phi[[1, 1],[1, 1, 1]] special rep = phi[[1, 1],[1, 1, 1]] , dim = 10 orbit = [2, 2, 2, 2, 1, 1] depth of tau_infinity partitioning = 2 number of tau_infinity subcells = 10 10 tau_infinity subcells with 1 member(s) subcells = [ [1141],[1432],[1559],[1671],[1726],[1768],[1795],[1835],[1852],[1877] ] cell #109 : |C| = 10 W-rep = phi[[1, 1],[1, 1, 1]] special rep = phi[[1, 1],[1, 1, 1]] , dim = 10 orbit = [2, 2, 2, 2, 1, 1] depth of tau_infinity partitioning = 2 number of tau_infinity subcells = 10 10 tau_infinity subcells with 1 member(s) subcells = [ [1183],[1422],[1519],[1646],[1725],[1750],[1800],[1848],[1855],[1884] ] cell #110 : |C| = 10 W-rep = phi[[1, 1],[1, 1, 1]] special rep = phi[[1, 1],[1, 1, 1]] , dim = 10 orbit = [2, 2, 2, 2, 1, 1] depth of tau_infinity partitioning = 2 number of tau_infinity subcells = 10 10 tau_infinity subcells with 1 member(s) subcells = [ [1333],[1587],[1687],[1770],[1811],[1837],[1854],[1879],[1888],[1902] ] cell #111 : |C| = 10 W-rep = phi[[1, 1],[1, 1, 1]] special rep = phi[[1, 1],[1, 1, 1]] , dim = 10 orbit = [2, 2, 2, 2, 1, 1] depth of tau_infinity partitioning = 2 number of tau_infinity subcells = 10 10 tau_infinity subcells with 1 member(s) subcells = [ [1371],[1578],[1656],[1752],[1810],[1826],[1857],[1886],[1890],[1905] ] cell #112 : |C| = 4 W-rep = phi[[],[2, 1, 1, 1]] special rep = phi[[],[2, 1, 1, 1]] , dim = 4 orbit = [3, 1, 1, 1, 1, 1, 1, 1] depth of tau_infinity partitioning = 1 number of tau_infinity subcells = 4 4 tau_infinity subcells with 1 member(s) subcells = [ [1455],[1601],[1693],[1737] ] cell #113 : |C| = 10 W-rep = phi[[1, 1],[1, 1, 1]] special rep = phi[[1, 1],[1, 1, 1]] , dim = 10 orbit = [2, 2, 2, 2, 1, 1] depth of tau_infinity partitioning = 2 number of tau_infinity subcells = 10 10 tau_infinity subcells with 1 member(s) subcells = [ [1503],[1709],[1769],[1781],[1838],[1853],[1865],[1878],[1889],[1903] ] cell #114 : |C| = 10 W-rep = phi[[1, 1],[1, 1, 1]] special rep = phi[[1, 1],[1, 1, 1]] , dim = 10 orbit = [2, 2, 2, 2, 1, 1] depth of tau_infinity partitioning = 2 number of tau_infinity subcells = 10 10 tau_infinity subcells with 1 member(s) subcells = [ [1504],[1536],[1703],[1710],[1761],[1782],[1830],[1843],[1866],[1894] ] cell #115 : |C| = 10 W-rep = phi[[1, 1],[1, 1, 1]] special rep = phi[[1, 1],[1, 1, 1]] , dim = 10 orbit = [2, 2, 2, 2, 1, 1] depth of tau_infinity partitioning = 2 number of tau_infinity subcells = 10 10 tau_infinity subcells with 1 member(s) subcells = [ [1534],[1701],[1751],[1759],[1827],[1856],[1864],[1885],[1891],[1906] ] cell #116 : |C| = 4 W-rep = phi[[],[2, 1, 1, 1]] special rep = phi[[],[2, 1, 1, 1]] , dim = 4 orbit = [3, 1, 1, 1, 1, 1, 1, 1] depth of tau_infinity partitioning = 1 number of tau_infinity subcells = 4 4 tau_infinity subcells with 1 member(s) subcells = [ [1610],[1722],[1786],[1818] ] cell #117 : |C| = 10 W-rep = phi[[1, 1],[1, 1, 1]] special rep = phi[[1, 1],[1, 1, 1]] , dim = 10 orbit = [2, 2, 2, 2, 1, 1] depth of tau_infinity partitioning = 2 number of tau_infinity subcells = 10 10 tau_infinity subcells with 1 member(s) subcells = [ [1644],[1669],[1793],[1798],[1833],[1846],[1876],[1883],[1897],[1910] ] cell #118 : |C| = 4 W-rep = phi[[],[2, 1, 1, 1]] special rep = phi[[],[2, 1, 1, 1]] , dim = 4 orbit = [3, 1, 1, 1, 1, 1, 1, 1] depth of tau_infinity partitioning = 1 number of tau_infinity subcells = 4 4 tau_infinity subcells with 1 member(s) subcells = [ [1730],[1808],[1849],[1870] ] cell #119 : |C| = 4 W-rep = phi[[],[2, 1, 1, 1]] special rep = phi[[],[2, 1, 1, 1]] , dim = 4 orbit = [3, 1, 1, 1, 1, 1, 1, 1] depth of tau_infinity partitioning = 1 number of tau_infinity subcells = 4 4 tau_infinity subcells with 1 member(s) subcells = [ [1815],[1863],[1887],[1900] ] cell #120 : |C| = 5 W-rep = phi[[1],[1, 1, 1, 1]] special rep = phi[[1],[1, 1, 1, 1]] , dim = 5 orbit = [2, 2, 1, 1, 1, 1, 1, 1] depth of tau_infinity partitioning = 1 number of tau_infinity subcells = 5 5 tau_infinity subcells with 1 member(s) subcells = [ [1829],[1842],[1893],[1912],[1918] ] cell #121 : |C| = 5 W-rep = phi[[1],[1, 1, 1, 1]] special rep = phi[[1],[1, 1, 1, 1]] , dim = 5 orbit = [2, 2, 1, 1, 1, 1, 1, 1] depth of tau_infinity partitioning = 1 number of tau_infinity subcells = 5 5 tau_infinity subcells with 1 member(s) subcells = [ [1868],[1880],[1896],[1907],[1914] ] cell #122 : |C| = 5 W-rep = phi[[1],[1, 1, 1, 1]] special rep = phi[[1],[1, 1, 1, 1]] , dim = 5 orbit = [2, 2, 1, 1, 1, 1, 1, 1] depth of tau_infinity partitioning = 1 number of tau_infinity subcells = 5 5 tau_infinity subcells with 1 member(s) subcells = [ [1869],[1874],[1895],[1908],[1915] ] cell #123 : |C| = 5 W-rep = phi[[1],[1, 1, 1, 1]] special rep = phi[[1],[1, 1, 1, 1]] , dim = 5 orbit = [2, 2, 1, 1, 1, 1, 1, 1] depth of tau_infinity partitioning = 1 number of tau_infinity subcells = 5 5 tau_infinity subcells with 1 member(s) subcells = [ [1875],[1882],[1909],[1913],[1917] ] cell #124 : |C| = 5 W-rep = phi[[1],[1, 1, 1, 1]] special rep = phi[[1],[1, 1, 1, 1]] , dim = 5 orbit = [2, 2, 1, 1, 1, 1, 1, 1] depth of tau_infinity partitioning = 1 number of tau_infinity subcells = 5 5 tau_infinity subcells with 1 member(s) subcells = [ [1899],[1901],[1904],[1911],[1916] ] cell #125 : |C| = 1 W-rep = phi[[],[1, 1, 1, 1, 1]] special rep = phi[[],[1, 1, 1, 1, 1]] , dim = 1 orbit = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1] depth of tau_infinity partitioning = 1 number of tau_infinity subcells = 1 1 tau_infinity subcells with 1 member(s) subcells = [ [1919] ]