TII subcells for the PSO(5,5) x Spin(6,4) block of PSO10 # cell#0 , |C| = 1 special orbit = [9, 1] special rep = [[], [5]] , dim = 1 cell rep = phi[[],[5]] TII depth = 1 TII multiplicity polynomial = X TII subcells: tii[14,1] := {0} cell#1 , |C| = 5 special orbit = [7, 3] special rep = [[1], [4]] , dim = 5 cell rep = phi[[1],[4]] TII depth = 1 TII multiplicity polynomial = 5*X TII subcells: tii[13,1] := {1} tii[13,2] := {0} tii[13,3] := {2} tii[13,4] := {3} tii[13,5] := {4} cell#2 , |C| = 4 special orbit = [7, 1, 1, 1] special rep = [[], [4, 1]] , dim = 4 cell rep = phi[[],[4, 1]] TII depth = 1 TII multiplicity polynomial = 4*X TII subcells: tii[12,1] := {3} tii[12,2] := {2} tii[12,3] := {1} tii[12,4] := {0} cell#3 , |C| = 10 special orbit = [5, 5] special rep = [[2], [3]] , dim = 10 cell rep = phi[[2],[3]] TII depth = 2 TII multiplicity polynomial = 10*X TII subcells: tii[11,1] := {1} tii[11,2] := {6} tii[11,3] := {7} tii[11,4] := {8} tii[11,5] := {9} tii[11,6] := {0} tii[11,7] := {2} tii[11,8] := {3} tii[11,9] := {4} tii[11,10] := {5} cell#4 , |C| = 10 special orbit = [5, 5] special rep = [[2], [3]] , dim = 10 cell rep = phi[[2],[3]] TII depth = 2 TII multiplicity polynomial = 10*X TII subcells: tii[11,1] := {1} tii[11,2] := {6} tii[11,3] := {7} tii[11,4] := {8} tii[11,5] := {9} tii[11,6] := {0} tii[11,7] := {2} tii[11,8] := {3} tii[11,9] := {4} tii[11,10] := {5} cell#5 , |C| = 4 special orbit = [7, 1, 1, 1] special rep = [[], [4, 1]] , dim = 4 cell rep = phi[[],[4, 1]] TII depth = 1 TII multiplicity polynomial = 4*X TII subcells: tii[12,1] := {3} tii[12,2] := {2} tii[12,3] := {1} tii[12,4] := {0} cell#6 , |C| = 20 special orbit = [5, 3, 1, 1] special rep = [[1], [3, 1]] , dim = 15 cell rep = phi[[],[3, 2]]+phi[[1],[3, 1]] TII depth = 2 TII multiplicity polynomial = 5*X^2+10*X TII subcells: tii[10,1] := {1, 19} tii[10,2] := {7, 15} tii[10,3] := {3} tii[10,4] := {0, 18} tii[10,5] := {6} tii[10,6] := {10} tii[10,7] := {12} tii[10,8] := {4} tii[10,9] := {8} tii[10,10] := {9} tii[10,11] := {11} tii[10,12] := {13} tii[10,13] := {17} tii[10,14] := {2, 16} tii[10,15] := {5, 14} cell#7 , |C| = 20 special orbit = [5, 3, 1, 1] special rep = [[1], [3, 1]] , dim = 15 cell rep = phi[[],[3, 2]]+phi[[1],[3, 1]] TII depth = 2 TII multiplicity polynomial = 5*X^2+10*X TII subcells: tii[10,1] := {8, 19} tii[10,2] := {2, 16} tii[10,3] := {13} tii[10,4] := {3, 18} tii[10,5] := {11} tii[10,6] := {14} tii[10,7] := {15} tii[10,8] := {6} tii[10,9] := {9} tii[10,10] := {10} tii[10,11] := {4} tii[10,12] := {5} tii[10,13] := {7} tii[10,14] := {1, 17} tii[10,15] := {0, 12} cell#8 , |C| = 20 special orbit = [4, 4, 1, 1] special rep = [[2], [2, 1]] , dim = 20 cell rep = phi[[2],[2, 1]] TII depth = 3 TII multiplicity polynomial = 20*X TII subcells: tii[8,1] := {10} tii[8,2] := {11} tii[8,3] := {12} tii[8,4] := {17} tii[8,5] := {18} tii[8,6] := {6} tii[8,7] := {7} tii[8,8] := {3} tii[8,9] := {13} tii[8,10] := {4} tii[8,11] := {14} tii[8,12] := {15} tii[8,13] := {16} tii[8,14] := {19} tii[8,15] := {8} tii[8,16] := {9} tii[8,17] := {0} tii[8,18] := {1} tii[8,19] := {2} tii[8,20] := {5} cell#9 , |C| = 20 special orbit = [4, 4, 1, 1] special rep = [[2], [2, 1]] , dim = 20 cell rep = phi[[2],[2, 1]] TII depth = 3 TII multiplicity polynomial = 20*X TII subcells: tii[8,1] := {10} tii[8,2] := {11} tii[8,3] := {12} tii[8,4] := {17} tii[8,5] := {18} tii[8,6] := {6} tii[8,7] := {7} tii[8,8] := {3} tii[8,9] := {13} tii[8,10] := {4} tii[8,11] := {14} tii[8,12] := {15} tii[8,13] := {16} tii[8,14] := {19} tii[8,15] := {8} tii[8,16] := {9} tii[8,17] := {0} tii[8,18] := {1} tii[8,19] := {2} tii[8,20] := {5} cell#10 , |C| = 10 special orbit = [3, 3, 3, 1] special rep = [[1], [2, 2]] , dim = 10 cell rep = phi[[1],[2, 2]] TII depth = 1 TII multiplicity polynomial = 10*X TII subcells: tii[7,1] := {9} tii[7,2] := {1} tii[7,3] := {2} tii[7,4] := {5} tii[7,5] := {6} tii[7,6] := {3} tii[7,7] := {4} tii[7,8] := {7} tii[7,9] := {8} tii[7,10] := {0} cell#11 , |C| = 6 special orbit = [5, 1, 1, 1, 1, 1] special rep = [[], [3, 1, 1]] , dim = 6 cell rep = phi[[],[3, 1, 1]] TII depth = 1 TII multiplicity polynomial = 6*X TII subcells: tii[9,1] := {5} tii[9,2] := {4} tii[9,3] := {2} tii[9,4] := {3} tii[9,5] := {1} tii[9,6] := {0} cell#12 , |C| = 10 special orbit = [3, 3, 3, 1] special rep = [[1], [2, 2]] , dim = 10 cell rep = phi[[1],[2, 2]] TII depth = 1 TII multiplicity polynomial = 10*X TII subcells: tii[7,1] := {9} tii[7,2] := {1} tii[7,3] := {2} tii[7,4] := {5} tii[7,5] := {6} tii[7,6] := {3} tii[7,7] := {4} tii[7,8] := {7} tii[7,9] := {8} tii[7,10] := {0} cell#13 , |C| = 10 special orbit = [3, 3, 3, 1] special rep = [[1], [2, 2]] , dim = 10 cell rep = phi[[1],[2, 2]] TII depth = 1 TII multiplicity polynomial = 10*X TII subcells: tii[7,1] := {9} tii[7,2] := {1} tii[7,3] := {2} tii[7,4] := {5} tii[7,5] := {6} tii[7,6] := {3} tii[7,7] := {4} tii[7,8] := {7} tii[7,9] := {8} tii[7,10] := {0} cell#14 , |C| = 20 special orbit = [3, 3, 1, 1, 1, 1] special rep = [[1], [2, 1, 1]] , dim = 15 cell rep = phi[[],[2, 2, 1]]+phi[[1],[2, 1, 1]] TII depth = 2 TII multiplicity polynomial = 5*X^2+10*X TII subcells: tii[5,1] := {4, 18} tii[5,2] := {2, 19} tii[5,3] := {7} tii[5,4] := {12} tii[5,5] := {13} tii[5,6] := {8} tii[5,7] := {9} tii[5,8] := {14} tii[5,9] := {5} tii[5,10] := {6} tii[5,11] := {1, 17} tii[5,12] := {10} tii[5,13] := {11} tii[5,14] := {3, 16} tii[5,15] := {0, 15} cell#15 , |C| = 20 special orbit = [5, 3, 1, 1] special rep = [[1], [3, 1]] , dim = 15 cell rep = phi[[],[3, 2]]+phi[[1],[3, 1]] TII depth = 2 TII multiplicity polynomial = 5*X^2+10*X TII subcells: tii[10,1] := {3, 19} tii[10,2] := {4, 17} tii[10,3] := {6} tii[10,4] := {1, 18} tii[10,5] := {9} tii[10,6] := {13} tii[10,7] := {14} tii[10,8] := {5} tii[10,9] := {10} tii[10,10] := {11} tii[10,11] := {7} tii[10,12] := {8} tii[10,13] := {12} tii[10,14] := {0, 16} tii[10,15] := {2, 15} cell#16 , |C| = 20 special orbit = [3, 3, 2, 2] special rep = [[1, 1], [2, 1]] , dim = 20 cell rep = phi[[1, 1],[2, 1]] TII depth = 3 TII multiplicity polynomial = 20*X TII subcells: tii[6,1] := {6} tii[6,2] := {11} tii[6,3] := {16} tii[6,4] := {18} tii[6,5] := {17} tii[6,6] := {19} tii[6,7] := {0} tii[6,8] := {1} tii[6,9] := {2} tii[6,10] := {12} tii[6,11] := {3} tii[6,12] := {13} tii[6,13] := {4} tii[6,14] := {9} tii[6,15] := {10} tii[6,16] := {7} tii[6,17] := {8} tii[6,18] := {14} tii[6,19] := {15} tii[6,20] := {5} cell#17 , |C| = 20 special orbit = [5, 3, 1, 1] special rep = [[1], [3, 1]] , dim = 15 cell rep = phi[[],[3, 2]]+phi[[1],[3, 1]] TII depth = 2 TII multiplicity polynomial = 5*X^2+10*X TII subcells: tii[10,1] := {3, 19} tii[10,2] := {4, 17} tii[10,3] := {6} tii[10,4] := {1, 18} tii[10,5] := {9} tii[10,6] := {13} tii[10,7] := {14} tii[10,8] := {5} tii[10,9] := {10} tii[10,10] := {11} tii[10,11] := {7} tii[10,12] := {8} tii[10,13] := {12} tii[10,14] := {0, 16} tii[10,15] := {2, 15} cell#18 , |C| = 20 special orbit = [3, 3, 2, 2] special rep = [[1, 1], [2, 1]] , dim = 20 cell rep = phi[[1, 1],[2, 1]] TII depth = 3 TII multiplicity polynomial = 20*X TII subcells: tii[6,1] := {6} tii[6,2] := {11} tii[6,3] := {16} tii[6,4] := {18} tii[6,5] := {17} tii[6,6] := {19} tii[6,7] := {0} tii[6,8] := {1} tii[6,9] := {2} tii[6,10] := {12} tii[6,11] := {3} tii[6,12] := {13} tii[6,13] := {4} tii[6,14] := {9} tii[6,15] := {10} tii[6,16] := {7} tii[6,17] := {8} tii[6,18] := {14} tii[6,19] := {15} tii[6,20] := {5} cell#19 , |C| = 20 special orbit = [3, 3, 1, 1, 1, 1] special rep = [[1], [2, 1, 1]] , dim = 15 cell rep = phi[[],[2, 2, 1]]+phi[[1],[2, 1, 1]] TII depth = 2 TII multiplicity polynomial = 5*X^2+10*X TII subcells: tii[5,1] := {4, 19} tii[5,2] := {2, 18} tii[5,3] := {7} tii[5,4] := {12} tii[5,5] := {13} tii[5,6] := {8} tii[5,7] := {9} tii[5,8] := {14} tii[5,9] := {5} tii[5,10] := {6} tii[5,11] := {1, 16} tii[5,12] := {10} tii[5,13] := {15} tii[5,14] := {3, 17} tii[5,15] := {0, 11} cell#20 , |C| = 20 special orbit = [3, 3, 1, 1, 1, 1] special rep = [[1], [2, 1, 1]] , dim = 15 cell rep = phi[[],[2, 2, 1]]+phi[[1],[2, 1, 1]] TII depth = 2 TII multiplicity polynomial = 5*X^2+10*X TII subcells: tii[5,1] := {4, 19} tii[5,2] := {2, 18} tii[5,3] := {7} tii[5,4] := {12} tii[5,5] := {13} tii[5,6] := {8} tii[5,7] := {9} tii[5,8] := {14} tii[5,9] := {5} tii[5,10] := {6} tii[5,11] := {1, 16} tii[5,12] := {10} tii[5,13] := {15} tii[5,14] := {3, 17} tii[5,15] := {0, 11} cell#21 , |C| = 6 special orbit = [5, 1, 1, 1, 1, 1] special rep = [[], [3, 1, 1]] , dim = 6 cell rep = phi[[],[3, 1, 1]] TII depth = 1 TII multiplicity polynomial = 6*X TII subcells: tii[9,1] := {4} tii[9,2] := {2} tii[9,3] := {0} tii[9,4] := {5} tii[9,5] := {3} tii[9,6] := {1} cell#22 , |C| = 25 special orbit = [3, 3, 1, 1, 1, 1] special rep = [[1], [2, 1, 1]] , dim = 15 cell rep = phi[[1],[2, 1, 1]]+phi[[2],[1, 1, 1]] TII depth = 2 TII multiplicity polynomial = 10*X^2+5*X TII subcells: tii[5,1] := {12} tii[5,2] := {5} tii[5,3] := {2, 3} tii[5,4] := {6, 7} tii[5,5] := {8, 9} tii[5,6] := {17, 18} tii[5,7] := {19, 20} tii[5,8] := {23, 24} tii[5,9] := {13, 14} tii[5,10] := {15, 16} tii[5,11] := {1} tii[5,12] := {21, 22} tii[5,13] := {10, 11} tii[5,14] := {4} tii[5,15] := {0} cell#23 , |C| = 4 special orbit = [3, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [2, 1, 1, 1]] , dim = 4 cell rep = phi[[],[2, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 4*X TII subcells: tii[4,1] := {3} tii[4,2] := {2} tii[4,3] := {1} tii[4,4] := {0} cell#24 , |C| = 10 special orbit = [2, 2, 2, 2, 1, 1] special rep = [[1, 1], [1, 1, 1]] , dim = 10 cell rep = phi[[1, 1],[1, 1, 1]] TII depth = 2 TII multiplicity polynomial = 10*X TII subcells: tii[3,1] := {4} tii[3,2] := {5} tii[3,3] := {6} tii[3,4] := {7} tii[3,5] := {9} tii[3,6] := {0} tii[3,7] := {1} tii[3,8] := {2} tii[3,9] := {3} tii[3,10] := {8} cell#25 , |C| = 10 special orbit = [2, 2, 2, 2, 1, 1] special rep = [[1, 1], [1, 1, 1]] , dim = 10 cell rep = phi[[1, 1],[1, 1, 1]] TII depth = 2 TII multiplicity polynomial = 10*X TII subcells: tii[3,1] := {4} tii[3,2] := {5} tii[3,3] := {6} tii[3,4] := {7} tii[3,5] := {9} tii[3,6] := {0} tii[3,7] := {1} tii[3,8] := {2} tii[3,9] := {3} tii[3,10] := {8} cell#26 , |C| = 5 special orbit = [2, 2, 1, 1, 1, 1, 1, 1] special rep = [[1], [1, 1, 1, 1]] , dim = 5 cell rep = phi[[1],[1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 5*X TII subcells: tii[2,1] := {0} tii[2,2] := {1} tii[2,3] := {3} tii[2,4] := {2} tii[2,5] := {4} cell#27 , |C| = 5 special orbit = [2, 2, 1, 1, 1, 1, 1, 1] special rep = [[1], [1, 1, 1, 1]] , dim = 5 cell rep = phi[[1],[1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 5*X TII subcells: tii[2,1] := {0} tii[2,2] := {1} tii[2,3] := {3} tii[2,4] := {2} tii[2,5] := {4} cell#28 , |C| = 4 special orbit = [3, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [2, 1, 1, 1]] , dim = 4 cell rep = phi[[],[2, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 4*X TII subcells: tii[4,1] := {3} tii[4,2] := {0} tii[4,3] := {2} tii[4,4] := {1} cell#29 , |C| = 4 special orbit = [3, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [2, 1, 1, 1]] , dim = 4 cell rep = phi[[],[2, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 4*X TII subcells: tii[4,1] := {3} tii[4,2] := {0} tii[4,3] := {2} tii[4,4] := {1} cell#30 , |C| = 1 special orbit = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [1, 1, 1, 1, 1]] , dim = 1 cell rep = phi[[],[1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = X TII subcells: tii[1,1] := {0} cell#31 , |C| = 1 special orbit = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [1, 1, 1, 1, 1]] , dim = 1 cell rep = phi[[],[1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = X TII subcells: tii[1,1] := {0}