TII subcells for the PSO(7,3) x Spin(6,4) block of PSO10 # cell#0 , |C| = 4 special orbit = [7, 1, 1, 1] special rep = [[], [4, 1]] , dim = 4 cell rep = phi[[],[4, 1]] TII depth = 1 TII multiplicity polynomial = 4*X TII subcells: tii[12,1] := {0} tii[12,2] := {2} tii[12,3] := {1} tii[12,4] := {3} cell#1 , |C| = 20 special orbit = [5, 3, 1, 1] special rep = [[1], [3, 1]] , dim = 15 cell rep = phi[[],[3, 2]]+phi[[1],[3, 1]] TII depth = 2 TII multiplicity polynomial = 5*X^2+10*X TII subcells: tii[10,1] := {12, 17} tii[10,2] := {8, 18} tii[10,3] := {0} tii[10,4] := {7, 13} tii[10,5] := {1} tii[10,6] := {4} tii[10,7] := {5} tii[10,8] := {3} tii[10,9] := {9} tii[10,10] := {10} tii[10,11] := {14} tii[10,12] := {15} tii[10,13] := {19} tii[10,14] := {2, 11} tii[10,15] := {6, 16} cell#2 , |C| = 6 special orbit = [5, 1, 1, 1, 1, 1] special rep = [[], [3, 1, 1]] , dim = 6 cell rep = phi[[],[3, 1, 1]] TII depth = 1 TII multiplicity polynomial = 6*X TII subcells: tii[9,1] := {3} tii[9,2] := {1} tii[9,3] := {0} tii[9,4] := {4} tii[9,5] := {2} tii[9,6] := {5} cell#3 , |C| = 10 special orbit = [3, 3, 3, 1] special rep = [[1], [2, 2]] , dim = 10 cell rep = phi[[1],[2, 2]] TII depth = 1 TII multiplicity polynomial = 10*X TII subcells: tii[7,1] := {9} tii[7,2] := {1} tii[7,3] := {4} tii[7,4] := {6} tii[7,5] := {7} tii[7,6] := {2} tii[7,7] := {3} tii[7,8] := {5} tii[7,9] := {8} tii[7,10] := {0} cell#4 , |C| = 6 special orbit = [5, 1, 1, 1, 1, 1] special rep = [[], [3, 1, 1]] , dim = 6 cell rep = phi[[],[3, 1, 1]] TII depth = 1 TII multiplicity polynomial = 6*X TII subcells: tii[9,1] := {3} tii[9,2] := {5} tii[9,3] := {2} tii[9,4] := {4} tii[9,5] := {1} tii[9,6] := {0} cell#5 , |C| = 6 special orbit = [5, 1, 1, 1, 1, 1] special rep = [[], [3, 1, 1]] , dim = 6 cell rep = phi[[],[3, 1, 1]] TII depth = 1 TII multiplicity polynomial = 6*X TII subcells: tii[9,1] := {1} tii[9,2] := {3} tii[9,3] := {0} tii[9,4] := {5} tii[9,5] := {4} tii[9,6] := {2} cell#6 , |C| = 20 special orbit = [3, 3, 1, 1, 1, 1] special rep = [[1], [2, 1, 1]] , dim = 15 cell rep = phi[[],[2, 2, 1]]+phi[[1],[2, 1, 1]] TII depth = 2 TII multiplicity polynomial = 5*X^2+10*X TII subcells: tii[5,1] := {4, 11} tii[5,2] := {7, 15} tii[5,3] := {0} tii[5,4] := {5} tii[5,5] := {6} tii[5,6] := {8} tii[5,7] := {9} tii[5,8] := {14} tii[5,9] := {12} tii[5,10] := {13} tii[5,11] := {3, 19} tii[5,12] := {16} tii[5,13] := {18} tii[5,14] := {2, 10} tii[5,15] := {1, 17} cell#7 , |C| = 4 special orbit = [3, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [2, 1, 1, 1]] , dim = 4 cell rep = phi[[],[2, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 4*X TII subcells: tii[4,1] := {3} tii[4,2] := {2} tii[4,3] := {1} tii[4,4] := {0} cell#8 , |C| = 20 special orbit = [3, 3, 1, 1, 1, 1] special rep = [[1], [2, 1, 1]] , dim = 15 cell rep = phi[[],[2, 2, 1]]+phi[[1],[2, 1, 1]] TII depth = 2 TII multiplicity polynomial = 5*X^2+10*X TII subcells: tii[5,1] := {13, 14} tii[5,2] := {7, 17} tii[5,3] := {1} tii[5,4] := {3} tii[5,5] := {5} tii[5,6] := {10} tii[5,7] := {11} tii[5,8] := {16} tii[5,9] := {4} tii[5,10] := {6} tii[5,11] := {2, 19} tii[5,12] := {12} tii[5,13] := {15} tii[5,14] := {8, 9} tii[5,15] := {0, 18} cell#9 , |C| = 4 special orbit = [3, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [2, 1, 1, 1]] , dim = 4 cell rep = phi[[],[2, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 4*X TII subcells: tii[4,1] := {1} tii[4,2] := {3} tii[4,3] := {2} tii[4,4] := {0} cell#10 , |C| = 5 special orbit = [2, 2, 1, 1, 1, 1, 1, 1] special rep = [[1], [1, 1, 1, 1]] , dim = 5 cell rep = phi[[1],[1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 5*X TII subcells: tii[2,1] := {0} tii[2,2] := {1} tii[2,3] := {2} tii[2,4] := {3} tii[2,5] := {4} cell#11 , |C| = 4 special orbit = [3, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [2, 1, 1, 1]] , dim = 4 cell rep = phi[[],[2, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 4*X TII subcells: tii[4,1] := {0} tii[4,2] := {1} tii[4,3] := {3} tii[4,4] := {2} cell#12 , |C| = 1 special orbit = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [1, 1, 1, 1, 1]] , dim = 1 cell rep = phi[[],[1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = X TII subcells: tii[1,1] := {0}