Full list of non-zero Kazhdan-Lusztig-Vogan polynomials: 0: 0: 1 1: 1: 1 2: 2: 1 3: 3: 1 4: 4: 1 5: 5: 1 6: 6: 1 7: 7: 1 8: 8: 1 9: 9: 1 10: 4: 1 6: 1 10: 1 11: 8: 1 9: 1 11: 1 12: 1: 1 4: 1 12: 1 13: 7: 1 8: 1 13: 1 14: 0: 1 1: 1 14: 1 15: 5: 1 7: 1 15: 1 16: 0: 1 2: 1 16: 1 17: 3: 1 5: 1 17: 1 18: 0: 1 3: 1 18: 1 19: 2: 1 5: 1 19: 1 20: 0: 1 2: 1 3: 1 5: 1 16: 1 17: 1 18: 1 19: 1 20: 1 21: 1: 1 4: 1 6: 1 10: 1 12: 1 21: 1 22: 7: 1 8: 1 9: 1 11: 1 13: 1 22: 1 23: 0: 1 1: 1 4: 1 12: 1 14: 1 23: 1 24: 5: 1 7: 1 8: 1 13: 1 15: 1 24: 1 25: 0: 1 1: 1 2: 1 14: 1 16: 1 25: 1 26: 3: 1 5: 1 7: 1 15: 1 17: 1 26: 1 27: 0: 1 1: 1 3: 1 14: 1 18: 1 27: 1 28: 2: 1 5: 1 7: 1 15: 1 19: 1 28: 1 29: 0: 1 1: 1 2: q+1 3: q+1 5: 1 7: 1 14: 1 15: 1 16: 1 17: 1 18: 1 19: 1 20: 1 25: 1 26: 1 27: 1 28: 1 29: 1 30: 0: 1 1: 1 4: 1 6: 1 10: 1 12: 1 14: 1 21: 1 23: 1 30: 1 31: 5: 1 7: 1 8: 1 9: 1 11: 1 13: 1 15: 1 22: 1 24: 1 31: 1 32: 0: 1 1: 1 2: 1 4: 1 12: 1 14: 1 16: 1 23: 1 25: 1 32: 1 33: 3: 1 5: 1 7: 1 8: 1 13: 1 15: 1 17: 1 24: 1 26: 1 33: 1 34: 0: 1 1: 1 3: 1 4: 1 12: 1 14: 1 18: 1 23: 1 27: 1 34: 1 35: 2: 1 5: 1 7: 1 8: 1 13: 1 15: 1 19: 1 24: 1 28: 1 35: 1 36: 0: 1 1: q+1 2: 1 3: 1 5: 1 14: 1 16: 1 17: 1 18: 1 19: 1 20: 1 25: 1 27: 1 36: 1 37: 0: 1 2: 1 3: 1 5: 1 7: q+1 15: 1 16: 1 17: 1 18: 1 19: 1 20: 1 26: 1 28: 1 37: 1 38: 0: 1 1: 1 2: q+1 3: q+1 4: 1 5: 1 7: 1 8: 1 12: 1 13: 1 14: 1 15: 1 16: 1 17: 1 18: 1 19: 1 20: 1 23: 1 24: 1 25: 1 26: 1 27: 1 28: 1 29: 1 32: 1 33: 1 34: 1 35: 1 38: 1 39: 0: 1 1: 1 2: 1 3: 1 5: 1 7: 1 14: 1 15: 1 16: 1 17: 1 18: 1 19: 1 20: 1 25: 1 26: 1 27: 1 28: 1 29: 1 36: 1 37: 1 39: 1 40: 0: 1 1: 1 2: 1 4: 1 6: 1 10: 1 12: 1 14: 1 16: 1 21: 1 23: 1 25: 1 30: 1 32: 1 40: 1 41: 3: 1 5: 1 7: 1 8: 1 9: 1 11: 1 13: 1 15: 1 17: 1 22: 1 24: 1 26: 1 31: 1 33: 1 41: 1 42: 0: 1 1: 1 3: 1 4: 1 6: 1 10: 1 12: 1 14: 1 18: 1 21: 1 23: 1 27: 1 30: 1 34: 1 42: 1 43: 2: 1 5: 1 7: 1 8: 1 9: 1 11: 1 13: 1 15: 1 19: 1 22: 1 24: 1 28: 1 31: 1 35: 1 43: 1 44: 0: 1 1: q+1 2: 1 3: 1 4: q+1 5: 1 12: q+1 14: 1 16: 1 17: 1 18: 1 19: 1 20: 1 23: 1 25: 1 27: 1 32: 1 34: 1 36: 1 44: 1 45: 0: 1 2: 1 3: 1 5: 1 7: q+1 8: q+1 13: q+1 15: 1 16: 1 17: 1 18: 1 19: 1 20: 1 24: 1 26: 1 28: 1 33: 1 35: 1 37: 1 45: 1 46: 0: 1 1: 1 2: q+1 3: q+1 4: 1 5: 1 6: 1 7: 1 8: 1 9: 1 10: 1 11: 1 12: 1 13: 1 14: 1 15: 1 16: 1 17: 1 18: 1 19: 1 20: 1 21: 1 22: 1 23: 1 24: 1 25: 1 26: 1 27: 1 28: 1 29: 1 30: 1 31: 1 32: 1 33: 1 34: 1 35: 1 38: 1 40: 1 41: 1 42: 1 43: 1 46: 1 47: 0: q+1 1: 1 2: q+1 3: q+1 4: 1 5: q+1 7: 1 8: 1 12: 1 13: 1 14: 1 15: 1 16: q+1 17: q+1 18: q+1 19: q+1 20: q+1 23: 1 24: 1 25: 1 26: 1 27: 1 28: 1 29: 1 32: 1 33: 1 34: 1 35: 1 36: 1 37: 1 38: 1 39: 1 44: 1 45: 1 47: 1 48: 0: 1 1: 1 2: 1 3: 1 4: q^2+1 5: 1 7: 1 12: 1 14: 1 15: 1 16: 1 17: 1 18: 1 19: 1 20: 1 23: 1 25: 1 26: 1 27: 1 28: 1 29: 1 32: 1 34: 1 36: 1 37: 1 39: 1 44: 1 48: 1 49: 0: 1 1: 1 2: 1 3: 1 5: 1 7: 1 8: q^2+1 13: 1 14: 1 15: 1 16: 1 17: 1 18: 1 19: 1 20: 1 24: 1 25: 1 26: 1 27: 1 28: 1 29: 1 33: 1 35: 1 36: 1 37: 1 39: 1 45: 1 49: 1 50: 0: 1 1: q+1 2: 1 3: 1 4: q+1 5: 1 6: q+1 10: q+1 12: q+1 14: 1 16: 1 17: 1 18: 1 19: 1 20: 1 21: q+1 23: 1 25: 1 27: 1 30: 1 32: 1 34: 1 36: 1 40: 1 42: 1 44: 1 50: 1 51: 0: 1 2: 1 3: 1 5: 1 7: q+1 8: q+1 9: q+1 11: q+1 13: q+1 15: 1 16: 1 17: 1 18: 1 19: 1 20: 1 22: q+1 24: 1 26: 1 28: 1 31: 1 33: 1 35: 1 37: 1 41: 1 43: 1 45: 1 51: 1 52: 0: 1 1: 1 2: 1 3: 1 4: 1 5: 1 7: 1 8: 1 12: 1 13: 1 14: 1 15: 1 16: 1 17: 1 18: 1 19: 1 20: 1 23: 1 24: 1 25: 1 26: 1 27: 1 28: 1 29: 1 32: 1 33: 1 34: 1 35: 1 36: 1 37: 1 38: 1 39: 1 44: 1 45: 1 47: 1 48: 1 49: 1 52: 1 53: 0: q+1 1: 1 2: q+1 3: q+1 4: 1 5: q+1 6: 1 7: 1 8: 1 9: 1 10: 1 11: 1 12: 1 13: 1 14: 1 15: 1 16: q+1 17: q+1 18: q+1 19: q+1 20: q+1 21: 1 22: 1 23: 1 24: 1 25: 1 26: 1 27: 1 28: 1 29: 1 30: 1 31: 1 32: 1 33: 1 34: 1 35: 1 36: 1 37: 1 38: 1 39: 1 40: 1 41: 1 42: 1 43: 1 44: 1 45: 1 46: 1 47: 1 50: 1 51: 1 53: 1 54: 0: 1 1: 1 2: 1 3: 1 4: q^2+1 5: 1 6: q^2+1 7: 1 10: q^2+1 12: 1 14: 1 15: 1 16: 1 17: 1 18: 1 19: 1 20: 1 21: 1 23: 1 25: 1 26: 1 27: 1 28: 1 29: 1 30: 1 32: 1 34: 1 36: 1 37: 1 39: 1 40: 1 42: 1 44: 1 48: 1 50: 1 54: 1 55: 0: 1 1: 1 2: 1 3: 1 5: 1 7: 1 8: q^2+1 9: q^2+1 11: q^2+1 13: 1 14: 1 15: 1 16: 1 17: 1 18: 1 19: 1 20: 1 22: 1 24: 1 25: 1 26: 1 27: 1 28: 1 29: 1 31: 1 33: 1 35: 1 36: 1 37: 1 39: 1 41: 1 43: 1 45: 1 49: 1 51: 1 55: 1 56: 0: q+1 1: q+1 2: q+1 3: q+1 4: 1 5: q+1 6: 1 7: q+1 8: 1 9: 1 10: 1 11: 1 12: 1 13: 1 14: q+1 15: q+1 16: q+1 17: q+1 18: q+1 19: q+1 20: q+1 21: 1 22: 1 23: 1 24: 1 25: q+1 26: q+1 27: q+1 28: q+1 29: q+1 30: 1 31: 1 32: 1 33: 1 34: 1 35: 1 36: q+1 37: q+1 38: 1 39: q+1 40: 1 41: 1 42: 1 43: 1 44: 1 45: 1 46: 1 47: 1 48: 1 49: 1 50: 1 51: 1 52: 1 53: 1 54: 1 55: 1 56: 1 57: 0: 1 1: 1 2: 1 3: 1 4: 1 5: 1 6: q^3+1 7: 1 8: 1 10: 1 12: 1 13: 1 14: 1 15: 1 16: 1 17: 1 18: 1 19: 1 20: 1 21: 1 23: 1 24: 1 25: 1 26: 1 27: 1 28: 1 29: 1 30: 1 32: 1 33: 1 34: 1 35: 1 36: 1 37: 1 38: 1 39: 1 40: 1 42: 1 44: 1 45: 1 47: 1 48: 1 49: 1 50: 1 52: 1 54: 1 57: 1 58: 0: 1 1: 1 2: 1 3: 1 4: 1 5: 1 7: 1 8: 1 9: q^3+1 11: 1 12: 1 13: 1 14: 1 15: 1 16: 1 17: 1 18: 1 19: 1 20: 1 22: 1 23: 1 24: 1 25: 1 26: 1 27: 1 28: 1 29: 1 31: 1 32: 1 33: 1 34: 1 35: 1 36: 1 37: 1 38: 1 39: 1 41: 1 43: 1 44: 1 45: 1 47: 1 48: 1 49: 1 51: 1 52: 1 55: 1 58: 1 59: 0: 1 1: 1 2: 1 3: 1 4: 1 5: 1 6: 1 7: 1 8: 1 9: 1 10: 1 11: 1 12: 1 13: 1 14: 1 15: 1 16: 1 17: 1 18: 1 19: 1 20: 1 21: 1 22: 1 23: 1 24: 1 25: 1 26: 1 27: 1 28: 1 29: 1 30: 1 31: 1 32: 1 33: 1 34: 1 35: 1 36: 1 37: 1 38: 1 39: 1 40: 1 41: 1 42: 1 43: 1 44: 1 45: 1 46: 1 47: 1 48: 1 49: 1 50: 1 51: 1 52: 1 53: 1 54: 1 55: 1 56: 1 57: 1 58: 1 59: 1 912 nonzero polynomials, and 0 zero polynomials, at 912 Bruhat-comparable pairs.