TII subcells for the PSO(6,6) x Spin(10,2) block of PSO12 # cell#0 , |C| = 1 special orbit = [11, 1] special rep = [[], [6]] , dim = 1 cell rep = phi[[],[6]] TII depth = 1 TII multiplicity polynomial = X TII subcells: tii[27,1] := {0} cell#1 , |C| = 6 special orbit = [9, 3] special rep = [[1], [5]] , dim = 6 cell rep = phi[[1],[5]] TII depth = 1 TII multiplicity polynomial = 6*X TII subcells: tii[26,1] := {0} tii[26,2] := {1} tii[26,3] := {2} tii[26,4] := {3} tii[26,5] := {4} tii[26,6] := {5} cell#2 , |C| = 6 special orbit = [9, 3] special rep = [[1], [5]] , dim = 6 cell rep = phi[[1],[5]] TII depth = 1 TII multiplicity polynomial = 6*X TII subcells: tii[26,1] := {0} tii[26,2] := {1} tii[26,3] := {2} tii[26,4] := {3} tii[26,5] := {4} tii[26,6] := {5} cell#3 , |C| = 5 special orbit = [9, 1, 1, 1] special rep = [[], [5, 1]] , dim = 5 cell rep = phi[[],[5, 1]] TII depth = 1 TII multiplicity polynomial = 5*X TII subcells: tii[25,1] := {2} tii[25,2] := {0} tii[25,3] := {1} tii[25,4] := {3} tii[25,5] := {4} cell#4 , |C| = 39 special orbit = [7, 3, 1, 1] special rep = [[1], [4, 1]] , dim = 24 cell rep = phi[[1],[4, 1]]+phi[[1, 1],[4]] TII depth = 2 TII multiplicity polynomial = 15*X^2+9*X TII subcells: tii[23,1] := {6} tii[23,2] := {19} tii[23,3] := {32} tii[23,4] := {0, 1} tii[23,5] := {2} tii[23,6] := {3, 4} tii[23,7] := {5} tii[23,8] := {7, 8} tii[23,9] := {15, 16} tii[23,10] := {17, 18} tii[23,11] := {9, 10} tii[23,12] := {11} tii[23,13] := {13, 14} tii[23,14] := {23, 24} tii[23,15] := {25, 26} tii[23,16] := {21, 22} tii[23,17] := {28, 29} tii[23,18] := {30, 31} tii[23,19] := {33, 34} tii[23,20] := {35, 36} tii[23,21] := {37, 38} tii[23,22] := {12} tii[23,23] := {20} tii[23,24] := {27} cell#5 , |C| = 5 special orbit = [9, 1, 1, 1] special rep = [[], [5, 1]] , dim = 5 cell rep = phi[[],[5, 1]] TII depth = 1 TII multiplicity polynomial = 5*X TII subcells: tii[25,1] := {4} tii[25,2] := {3} tii[25,3] := {2} tii[25,4] := {1} tii[25,5] := {0} cell#6 , |C| = 5 special orbit = [9, 1, 1, 1] special rep = [[], [5, 1]] , dim = 5 cell rep = phi[[],[5, 1]] TII depth = 1 TII multiplicity polynomial = 5*X TII subcells: tii[25,1] := {4} tii[25,2] := {3} tii[25,3] := {2} tii[25,4] := {1} tii[25,5] := {0} cell#7 , |C| = 10 special orbit = [7, 1, 1, 1, 1, 1] special rep = [[], [4, 1, 1]] , dim = 10 cell rep = phi[[],[4, 1, 1]] TII depth = 1 TII multiplicity polynomial = 10*X TII subcells: tii[22,1] := {9} tii[22,2] := {5} tii[22,3] := {2} tii[22,4] := {8} tii[22,5] := {4} tii[22,6] := {7} tii[22,7] := {0} tii[22,8] := {1} tii[22,9] := {3} tii[22,10] := {6} cell#8 , |C| = 10 special orbit = [7, 1, 1, 1, 1, 1] special rep = [[], [4, 1, 1]] , dim = 10 cell rep = phi[[],[4, 1, 1]] TII depth = 1 TII multiplicity polynomial = 10*X TII subcells: tii[22,1] := {9} tii[22,2] := {5} tii[22,3] := {2} tii[22,4] := {8} tii[22,5] := {4} tii[22,6] := {7} tii[22,7] := {0} tii[22,8] := {1} tii[22,9] := {3} tii[22,10] := {6}