TII subcells for the PSO(6,6) x Spin(6,6) block of PSO12 # cell#0 , |C| = 1 special orbit = [11, 1] special rep = [[], [6]] , dim = 1 cell rep = phi[[],[6]] TII depth = 1 TII multiplicity polynomial = X TII subcells: tii[27,1] := {0} cell#1 , |C| = 6 special orbit = [9, 3] special rep = [[1], [5]] , dim = 6 cell rep = phi[[1],[5]] TII depth = 1 TII multiplicity polynomial = 6*X TII subcells: tii[26,1] := {2} tii[26,2] := {0} tii[26,3] := {3} tii[26,4] := {1} tii[26,5] := {4} tii[26,6] := {5} cell#2 , |C| = 15 special orbit = [7, 5] special rep = [[2], [4]] , dim = 15 cell rep = phi[[2],[4]] TII depth = 2 TII multiplicity polynomial = 15*X TII subcells: tii[24,1] := {10} tii[24,2] := {2} tii[24,3] := {11} tii[24,4] := {12} tii[24,5] := {13} tii[24,6] := {14} tii[24,7] := {5} tii[24,8] := {1} tii[24,9] := {6} tii[24,10] := {8} tii[24,11] := {0} tii[24,12] := {3} tii[24,13] := {4} tii[24,14] := {7} tii[24,15] := {9} cell#3 , |C| = 5 special orbit = [9, 1, 1, 1] special rep = [[], [5, 1]] , dim = 5 cell rep = phi[[],[5, 1]] TII depth = 1 TII multiplicity polynomial = 5*X TII subcells: tii[25,1] := {4} tii[25,2] := {3} tii[25,3] := {2} tii[25,4] := {1} tii[25,5] := {0} cell#4 , |C| = 5 special orbit = [9, 1, 1, 1] special rep = [[], [5, 1]] , dim = 5 cell rep = phi[[],[5, 1]] TII depth = 1 TII multiplicity polynomial = 5*X TII subcells: tii[25,1] := {4} tii[25,2] := {3} tii[25,3] := {2} tii[25,4] := {1} tii[25,5] := {0} cell#5 , |C| = 33 special orbit = [7, 3, 1, 1] special rep = [[1], [4, 1]] , dim = 24 cell rep = phi[[],[4, 2]]+phi[[1],[4, 1]] TII depth = 2 TII multiplicity polynomial = 9*X^2+15*X TII subcells: tii[23,1] := {3, 32} tii[23,2] := {13, 29} tii[23,3] := {5, 23} tii[23,4] := {8} tii[23,5] := {0, 31} tii[23,6] := {14} tii[23,7] := {6, 30} tii[23,8] := {19} tii[23,9] := {24} tii[23,10] := {25} tii[23,11] := {9} tii[23,12] := {7, 27} tii[23,13] := {15} tii[23,14] := {20} tii[23,15] := {21} tii[23,16] := {10} tii[23,17] := {16} tii[23,18] := {17} tii[23,19] := {11} tii[23,20] := {12} tii[23,21] := {18} tii[23,22] := {2, 28} tii[23,23] := {4, 26} tii[23,24] := {1, 22} cell#6 , |C| = 33 special orbit = [7, 3, 1, 1] special rep = [[1], [4, 1]] , dim = 24 cell rep = phi[[],[4, 2]]+phi[[1],[4, 1]] TII depth = 2 TII multiplicity polynomial = 9*X^2+15*X TII subcells: tii[23,1] := {12, 32} tii[23,2] := {6, 29} tii[23,3] := {4, 23} tii[23,4] := {18} tii[23,5] := {7, 31} tii[23,6] := {17} tii[23,7] := {5, 30} tii[23,8] := {19} tii[23,9] := {24} tii[23,10] := {25} tii[23,11] := {11} tii[23,12] := {3, 27} tii[23,13] := {13} tii[23,14] := {20} tii[23,15] := {21} tii[23,16] := {8} tii[23,17] := {14} tii[23,18] := {15} tii[23,19] := {9} tii[23,20] := {10} tii[23,21] := {16} tii[23,22] := {1, 28} tii[23,23] := {0, 26} tii[23,24] := {2, 22} cell#7 , |C| = 33 special orbit = [7, 3, 1, 1] special rep = [[1], [4, 1]] , dim = 24 cell rep = phi[[],[4, 2]]+phi[[1],[4, 1]] TII depth = 2 TII multiplicity polynomial = 9*X^2+15*X TII subcells: tii[23,1] := {12, 32} tii[23,2] := {6, 29} tii[23,3] := {4, 23} tii[23,4] := {18} tii[23,5] := {7, 31} tii[23,6] := {17} tii[23,7] := {5, 30} tii[23,8] := {19} tii[23,9] := {24} tii[23,10] := {25} tii[23,11] := {11} tii[23,12] := {3, 27} tii[23,13] := {13} tii[23,14] := {20} tii[23,15] := {21} tii[23,16] := {8} tii[23,17] := {14} tii[23,18] := {15} tii[23,19] := {9} tii[23,20] := {10} tii[23,21] := {16} tii[23,22] := {1, 28} tii[23,23] := {0, 26} tii[23,24] := {2, 22} cell#8 , |C| = 10 special orbit = [6, 6] special rep = [[3], [3], 1] , dim = 10 cell rep = phi[[3],[3],1] TII depth = 1 TII multiplicity polynomial = 10*X TII subcells: tii[20,1] := {5} tii[20,2] := {8} tii[20,3] := {9} tii[20,4] := {1} tii[20,5] := {4} tii[20,6] := {3} tii[20,7] := {2} tii[20,8] := {6} tii[20,9] := {7} tii[20,10] := {0} cell#9 , |C| = 10 special orbit = [6, 6] special rep = [[3], [3], 1] , dim = 10 cell rep = phi[[3],[3],1] TII depth = 1 TII multiplicity polynomial = 10*X TII subcells: tii[20,1] := {5} tii[20,2] := {8} tii[20,3] := {9} tii[20,4] := {1} tii[20,5] := {4} tii[20,6] := {3} tii[20,7] := {2} tii[20,8] := {6} tii[20,9] := {7} tii[20,10] := {0} cell#10 , |C| = 10 special orbit = [6, 6, 0] special rep = [[3], [3], 2] , dim = 10 cell rep = phi[[3],[3],2] TII depth = 1 TII multiplicity polynomial = 10*X TII subcells: tii[21,1] := {5} tii[21,2] := {8} tii[21,3] := {9} tii[21,4] := {1} tii[21,5] := {4} tii[21,6] := {3} tii[21,7] := {6} tii[21,8] := {2} tii[21,9] := {7} tii[21,10] := {0} cell#11 , |C| = 10 special orbit = [6, 6, 0] special rep = [[3], [3], 2] , dim = 10 cell rep = phi[[3],[3],2] TII depth = 1 TII multiplicity polynomial = 10*X TII subcells: tii[21,1] := {5} tii[21,2] := {8} tii[21,3] := {9} tii[21,4] := {1} tii[21,5] := {4} tii[21,6] := {3} tii[21,7] := {6} tii[21,8] := {2} tii[21,9] := {7} tii[21,10] := {0} cell#12 , |C| = 50 special orbit = [5, 5, 1, 1] special rep = [[2], [3, 1]] , dim = 45 cell rep = phi[[],[3, 3]]+phi[[2],[3, 1]] TII depth = 3 TII multiplicity polynomial = 5*X^2+40*X TII subcells: tii[19,1] := {7, 40} tii[19,2] := {35} tii[19,3] := {23} tii[19,4] := {1, 22} tii[19,5] := {41} tii[19,6] := {42} tii[19,7] := {47} tii[19,8] := {48} tii[19,9] := {14} tii[19,10] := {4, 32} tii[19,11] := {33} tii[19,12] := {34} tii[19,13] := {8} tii[19,14] := {17} tii[19,15] := {43} tii[19,16] := {19} tii[19,17] := {45} tii[19,18] := {24} tii[19,19] := {25} tii[19,20] := {16} tii[19,21] := {37} tii[19,22] := {18} tii[19,23] := {39} tii[19,24] := {44} tii[19,25] := {46} tii[19,26] := {49} tii[19,27] := {15} tii[19,28] := {27} tii[19,29] := {29} tii[19,30] := {3} tii[19,31] := {36} tii[19,32] := {9} tii[19,33] := {38} tii[19,34] := {11} tii[19,35] := {5} tii[19,36] := {6} tii[19,37] := {13} tii[19,38] := {26} tii[19,39] := {28} tii[19,40] := {10} tii[19,41] := {12} tii[19,42] := {2, 31} tii[19,43] := {20} tii[19,44] := {30} tii[19,45] := {0, 21} cell#13 , |C| = 50 special orbit = [5, 5, 1, 1] special rep = [[2], [3, 1]] , dim = 45 cell rep = phi[[],[3, 3]]+phi[[2],[3, 1]] TII depth = 3 TII multiplicity polynomial = 5*X^2+40*X TII subcells: tii[19,1] := {7, 40} tii[19,2] := {35} tii[19,3] := {23} tii[19,4] := {1, 22} tii[19,5] := {41} tii[19,6] := {42} tii[19,7] := {47} tii[19,8] := {48} tii[19,9] := {14} tii[19,10] := {4, 32} tii[19,11] := {33} tii[19,12] := {34} tii[19,13] := {8} tii[19,14] := {17} tii[19,15] := {43} tii[19,16] := {19} tii[19,17] := {45} tii[19,18] := {24} tii[19,19] := {25} tii[19,20] := {16} tii[19,21] := {37} tii[19,22] := {18} tii[19,23] := {39} tii[19,24] := {44} tii[19,25] := {46} tii[19,26] := {49} tii[19,27] := {15} tii[19,28] := {27} tii[19,29] := {29} tii[19,30] := {3} tii[19,31] := {36} tii[19,32] := {9} tii[19,33] := {38} tii[19,34] := {11} tii[19,35] := {5} tii[19,36] := {6} tii[19,37] := {13} tii[19,38] := {26} tii[19,39] := {28} tii[19,40] := {10} tii[19,41] := {12} tii[19,42] := {2, 31} tii[19,43] := {20} tii[19,44] := {30} tii[19,45] := {0, 21} cell#14 , |C| = 50 special orbit = [5, 5, 1, 1] special rep = [[2], [3, 1]] , dim = 45 cell rep = phi[[],[3, 3]]+phi[[2],[3, 1]] TII depth = 3 TII multiplicity polynomial = 5*X^2+40*X TII subcells: tii[19,1] := {7, 40} tii[19,2] := {35} tii[19,3] := {23} tii[19,4] := {1, 22} tii[19,5] := {41} tii[19,6] := {42} tii[19,7] := {47} tii[19,8] := {48} tii[19,9] := {14} tii[19,10] := {4, 32} tii[19,11] := {33} tii[19,12] := {34} tii[19,13] := {8} tii[19,14] := {17} tii[19,15] := {43} tii[19,16] := {19} tii[19,17] := {45} tii[19,18] := {24} tii[19,19] := {25} tii[19,20] := {16} tii[19,21] := {37} tii[19,22] := {18} tii[19,23] := {39} tii[19,24] := {44} tii[19,25] := {46} tii[19,26] := {49} tii[19,27] := {15} tii[19,28] := {27} tii[19,29] := {29} tii[19,30] := {3} tii[19,31] := {36} tii[19,32] := {9} tii[19,33] := {38} tii[19,34] := {11} tii[19,35] := {5} tii[19,36] := {6} tii[19,37] := {13} tii[19,38] := {26} tii[19,39] := {28} tii[19,40] := {10} tii[19,41] := {12} tii[19,42] := {2, 31} tii[19,43] := {20} tii[19,44] := {30} tii[19,45] := {0, 21} cell#15 , |C| = 50 special orbit = [5, 5, 1, 1] special rep = [[2], [3, 1]] , dim = 45 cell rep = phi[[],[3, 3]]+phi[[2],[3, 1]] TII depth = 3 TII multiplicity polynomial = 5*X^2+40*X TII subcells: tii[19,1] := {7, 40} tii[19,2] := {35} tii[19,3] := {23} tii[19,4] := {1, 22} tii[19,5] := {41} tii[19,6] := {42} tii[19,7] := {47} tii[19,8] := {48} tii[19,9] := {14} tii[19,10] := {4, 32} tii[19,11] := {33} tii[19,12] := {34} tii[19,13] := {8} tii[19,14] := {17} tii[19,15] := {43} tii[19,16] := {19} tii[19,17] := {45} tii[19,18] := {24} tii[19,19] := {25} tii[19,20] := {16} tii[19,21] := {37} tii[19,22] := {18} tii[19,23] := {39} tii[19,24] := {44} tii[19,25] := {46} tii[19,26] := {49} tii[19,27] := {15} tii[19,28] := {27} tii[19,29] := {29} tii[19,30] := {3} tii[19,31] := {36} tii[19,32] := {9} tii[19,33] := {38} tii[19,34] := {11} tii[19,35] := {5} tii[19,36] := {6} tii[19,37] := {13} tii[19,38] := {26} tii[19,39] := {28} tii[19,40] := {10} tii[19,41] := {12} tii[19,42] := {2, 31} tii[19,43] := {20} tii[19,44] := {30} tii[19,45] := {0, 21} cell#16 , |C| = 30 special orbit = [5, 3, 3, 1] special rep = [[1], [3, 2]] , dim = 30 cell rep = phi[[1],[3, 2]] TII depth = 2 TII multiplicity polynomial = 30*X TII subcells: tii[18,1] := {29} tii[18,2] := {25} tii[18,3] := {15} tii[18,4] := {3} tii[18,5] := {26} tii[18,6] := {21} tii[18,7] := {28} tii[18,8] := {2} tii[18,9] := {16} tii[18,10] := {22} tii[18,11] := {23} tii[18,12] := {5} tii[18,13] := {12} tii[18,14] := {13} tii[18,15] := {8} tii[18,16] := {9} tii[18,17] := {17} tii[18,18] := {18} tii[18,19] := {10} tii[18,20] := {11} tii[18,21] := {19} tii[18,22] := {6} tii[18,23] := {7} tii[18,24] := {27} tii[18,25] := {14} tii[18,26] := {20} tii[18,27] := {4} tii[18,28] := {24} tii[18,29] := {1} tii[18,30] := {0} cell#17 , |C| = 50 special orbit = [5, 5, 1, 1] special rep = [[2], [3, 1]] , dim = 45 cell rep = phi[[],[3, 3]]+phi[[2],[3, 1]] TII depth = 3 TII multiplicity polynomial = 5*X^2+40*X TII subcells: tii[19,1] := {33, 34} tii[19,2] := {42} tii[19,3] := {22} tii[19,4] := {14, 15} tii[19,5] := {35} tii[19,6] := {37} tii[19,7] := {43} tii[19,8] := {45} tii[19,9] := {9} tii[19,10] := {24, 25} tii[19,11] := {26} tii[19,12] := {27} tii[19,13] := {1} tii[19,14] := {4} tii[19,15] := {39} tii[19,16] := {5} tii[19,17] := {40} tii[19,18] := {36} tii[19,19] := {38} tii[19,20] := {29} tii[19,21] := {44} tii[19,22] := {31} tii[19,23] := {46} tii[19,24] := {47} tii[19,25] := {48} tii[19,26] := {49} tii[19,27] := {8} tii[19,28] := {16} tii[19,29] := {19} tii[19,30] := {0} tii[19,31] := {28} tii[19,32] := {2} tii[19,33] := {30} tii[19,34] := {3} tii[19,35] := {10} tii[19,36] := {11} tii[19,37] := {23} tii[19,38] := {17} tii[19,39] := {20} tii[19,40] := {18} tii[19,41] := {21} tii[19,42] := {12, 13} tii[19,43] := {32} tii[19,44] := {41} tii[19,45] := {6, 7} cell#18 , |C| = 30 special orbit = [5, 3, 3, 1] special rep = [[1], [3, 2]] , dim = 30 cell rep = phi[[1],[3, 2]] TII depth = 2 TII multiplicity polynomial = 30*X TII subcells: tii[18,1] := {29} tii[18,2] := {22} tii[18,3] := {5} tii[18,4] := {7} tii[18,5] := {26} tii[18,6] := {10} tii[18,7] := {28} tii[18,8] := {2} tii[18,9] := {17} tii[18,10] := {23} tii[18,11] := {24} tii[18,12] := {6} tii[18,13] := {12} tii[18,14] := {14} tii[18,15] := {3} tii[18,16] := {11} tii[18,17] := {18} tii[18,18] := {19} tii[18,19] := {13} tii[18,20] := {15} tii[18,21] := {21} tii[18,22] := {8} tii[18,23] := {9} tii[18,24] := {27} tii[18,25] := {16} tii[18,26] := {20} tii[18,27] := {0} tii[18,28] := {25} tii[18,29] := {4} tii[18,30] := {1} cell#19 , |C| = 10 special orbit = [7, 1, 1, 1, 1, 1] special rep = [[], [4, 1, 1]] , dim = 10 cell rep = phi[[],[4, 1, 1]] TII depth = 1 TII multiplicity polynomial = 10*X TII subcells: tii[22,1] := {9} tii[22,2] := {8} tii[22,3] := {7} tii[22,4] := {6} tii[22,5] := {4} tii[22,6] := {2} tii[22,7] := {5} tii[22,8] := {3} tii[22,9] := {1} tii[22,10] := {0} cell#20 , |C| = 30 special orbit = [5, 3, 3, 1] special rep = [[1], [3, 2]] , dim = 30 cell rep = phi[[1],[3, 2]] TII depth = 2 TII multiplicity polynomial = 30*X TII subcells: tii[18,1] := {29} tii[18,2] := {25} tii[18,3] := {6} tii[18,4] := {7} tii[18,5] := {27} tii[18,6] := {13} tii[18,7] := {28} tii[18,8] := {3} tii[18,9] := {17} tii[18,10] := {22} tii[18,11] := {23} tii[18,12] := {5} tii[18,13] := {11} tii[18,14] := {12} tii[18,15] := {2} tii[18,16] := {10} tii[18,17] := {18} tii[18,18] := {19} tii[18,19] := {14} tii[18,20] := {15} tii[18,21] := {21} tii[18,22] := {8} tii[18,23] := {9} tii[18,24] := {26} tii[18,25] := {16} tii[18,26] := {20} tii[18,27] := {1} tii[18,28] := {24} tii[18,29] := {4} tii[18,30] := {0} cell#21 , |C| = 30 special orbit = [5, 3, 3, 1] special rep = [[1], [3, 2]] , dim = 30 cell rep = phi[[1],[3, 2]] TII depth = 2 TII multiplicity polynomial = 30*X TII subcells: tii[18,1] := {29} tii[18,2] := {25} tii[18,3] := {6} tii[18,4] := {7} tii[18,5] := {27} tii[18,6] := {13} tii[18,7] := {28} tii[18,8] := {3} tii[18,9] := {17} tii[18,10] := {22} tii[18,11] := {23} tii[18,12] := {5} tii[18,13] := {11} tii[18,14] := {12} tii[18,15] := {2} tii[18,16] := {10} tii[18,17] := {18} tii[18,18] := {19} tii[18,19] := {14} tii[18,20] := {15} tii[18,21] := {21} tii[18,22] := {8} tii[18,23] := {9} tii[18,24] := {26} tii[18,25] := {16} tii[18,26] := {20} tii[18,27] := {1} tii[18,28] := {24} tii[18,29] := {4} tii[18,30] := {0} cell#22 , |C| = 52 special orbit = [5, 3, 1, 1, 1, 1] special rep = [[1], [3, 1, 1]] , dim = 36 cell rep = phi[[],[3, 2, 1]]+phi[[1],[3, 1, 1]] TII depth = 2 TII multiplicity polynomial = 16*X^2+20*X TII subcells: tii[16,1] := {9, 49} tii[16,2] := {23, 39} tii[16,3] := {5, 50} tii[16,4] := {16, 30} tii[16,5] := {3, 47} tii[16,6] := {11, 38} tii[16,7] := {14} tii[16,8] := {7, 45} tii[16,9] := {22} tii[16,10] := {31} tii[16,11] := {33} tii[16,12] := {0, 43} tii[16,13] := {15} tii[16,14] := {24} tii[16,15] := {26} tii[16,16] := {32} tii[16,17] := {34} tii[16,18] := {41} tii[16,19] := {10} tii[16,20] := {17} tii[16,21] := {19} tii[16,22] := {25} tii[16,23] := {27} tii[16,24] := {8, 51} tii[16,25] := {36} tii[16,26] := {18} tii[16,27] := {20} tii[16,28] := {6, 44} tii[16,29] := {29} tii[16,30] := {37} tii[16,31] := {13, 40} tii[16,32] := {4, 48} tii[16,33] := {21, 35} tii[16,34] := {1, 46} tii[16,35] := {12, 28} tii[16,36] := {2, 42} cell#23 , |C| = 30 special orbit = [5, 3, 3, 1] special rep = [[1], [3, 2]] , dim = 30 cell rep = phi[[1],[3, 2]] TII depth = 2 TII multiplicity polynomial = 30*X TII subcells: tii[18,1] := {29} tii[18,2] := {22} tii[18,3] := {5} tii[18,4] := {7} tii[18,5] := {26} tii[18,6] := {10} tii[18,7] := {28} tii[18,8] := {2} tii[18,9] := {17} tii[18,10] := {23} tii[18,11] := {24} tii[18,12] := {6} tii[18,13] := {12} tii[18,14] := {14} tii[18,15] := {3} tii[18,16] := {11} tii[18,17] := {18} tii[18,18] := {19} tii[18,19] := {13} tii[18,20] := {15} tii[18,21] := {21} tii[18,22] := {8} tii[18,23] := {9} tii[18,24] := {27} tii[18,25] := {16} tii[18,26] := {20} tii[18,27] := {0} tii[18,28] := {25} tii[18,29] := {4} tii[18,30] := {1} cell#24 , |C| = 10 special orbit = [7, 1, 1, 1, 1, 1] special rep = [[], [4, 1, 1]] , dim = 10 cell rep = phi[[],[4, 1, 1]] TII depth = 1 TII multiplicity polynomial = 10*X TII subcells: tii[22,1] := {9} tii[22,2] := {8} tii[22,3] := {7} tii[22,4] := {6} tii[22,5] := {4} tii[22,6] := {2} tii[22,7] := {5} tii[22,8] := {3} tii[22,9] := {1} tii[22,10] := {0} cell#25 , |C| = 30 special orbit = [5, 3, 3, 1] special rep = [[1], [3, 2]] , dim = 30 cell rep = phi[[1],[3, 2]] TII depth = 2 TII multiplicity polynomial = 30*X TII subcells: tii[18,1] := {29} tii[18,2] := {25} tii[18,3] := {6} tii[18,4] := {7} tii[18,5] := {27} tii[18,6] := {13} tii[18,7] := {28} tii[18,8] := {3} tii[18,9] := {17} tii[18,10] := {22} tii[18,11] := {23} tii[18,12] := {5} tii[18,13] := {11} tii[18,14] := {12} tii[18,15] := {2} tii[18,16] := {10} tii[18,17] := {18} tii[18,18] := {19} tii[18,19] := {14} tii[18,20] := {15} tii[18,21] := {21} tii[18,22] := {8} tii[18,23] := {9} tii[18,24] := {26} tii[18,25] := {16} tii[18,26] := {20} tii[18,27] := {1} tii[18,28] := {24} tii[18,29] := {4} tii[18,30] := {0} cell#26 , |C| = 30 special orbit = [5, 3, 3, 1] special rep = [[1], [3, 2]] , dim = 30 cell rep = phi[[1],[3, 2]] TII depth = 2 TII multiplicity polynomial = 30*X TII subcells: tii[18,1] := {29} tii[18,2] := {25} tii[18,3] := {6} tii[18,4] := {7} tii[18,5] := {27} tii[18,6] := {13} tii[18,7] := {28} tii[18,8] := {3} tii[18,9] := {17} tii[18,10] := {22} tii[18,11] := {23} tii[18,12] := {5} tii[18,13] := {11} tii[18,14] := {12} tii[18,15] := {2} tii[18,16] := {10} tii[18,17] := {18} tii[18,18] := {19} tii[18,19] := {14} tii[18,20] := {15} tii[18,21] := {21} tii[18,22] := {8} tii[18,23] := {9} tii[18,24] := {26} tii[18,25] := {16} tii[18,26] := {20} tii[18,27] := {1} tii[18,28] := {24} tii[18,29] := {4} tii[18,30] := {0} cell#27 , |C| = 52 special orbit = [5, 3, 1, 1, 1, 1] special rep = [[1], [3, 1, 1]] , dim = 36 cell rep = phi[[],[3, 2, 1]]+phi[[1],[3, 1, 1]] TII depth = 2 TII multiplicity polynomial = 16*X^2+20*X TII subcells: tii[16,1] := {9, 49} tii[16,2] := {23, 39} tii[16,3] := {5, 50} tii[16,4] := {16, 30} tii[16,5] := {3, 47} tii[16,6] := {11, 38} tii[16,7] := {14} tii[16,8] := {7, 45} tii[16,9] := {22} tii[16,10] := {31} tii[16,11] := {33} tii[16,12] := {0, 43} tii[16,13] := {15} tii[16,14] := {24} tii[16,15] := {26} tii[16,16] := {32} tii[16,17] := {34} tii[16,18] := {41} tii[16,19] := {10} tii[16,20] := {17} tii[16,21] := {19} tii[16,22] := {25} tii[16,23] := {27} tii[16,24] := {8, 51} tii[16,25] := {36} tii[16,26] := {18} tii[16,27] := {20} tii[16,28] := {6, 44} tii[16,29] := {29} tii[16,30] := {37} tii[16,31] := {13, 40} tii[16,32] := {4, 48} tii[16,33] := {21, 35} tii[16,34] := {1, 46} tii[16,35] := {12, 28} tii[16,36] := {2, 42} cell#28 , |C| = 30 special orbit = [4, 4, 3, 1] special rep = [[2], [2, 2]] , dim = 30 cell rep = phi[[2],[2, 2]] TII depth = 3 TII multiplicity polynomial = 30*X TII subcells: tii[14,1] := {29} tii[14,2] := {12} tii[14,3] := {16} tii[14,4] := {10} tii[14,5] := {11} tii[14,6] := {17} tii[14,7] := {19} tii[14,8] := {21} tii[14,9] := {25} tii[14,10] := {26} tii[14,11] := {5} tii[14,12] := {6} tii[14,13] := {13} tii[14,14] := {2} tii[14,15] := {14} tii[14,16] := {3} tii[14,17] := {18} tii[14,18] := {20} tii[14,19] := {24} tii[14,20] := {7} tii[14,21] := {8} tii[14,22] := {22} tii[14,23] := {23} tii[14,24] := {27} tii[14,25] := {28} tii[14,26] := {0} tii[14,27] := {1} tii[14,28] := {4} tii[14,29] := {9} tii[14,30] := {15} cell#29 , |C| = 30 special orbit = [3, 3, 3, 1, 1, 1] special rep = [[1], [2, 2, 1]] , dim = 30 cell rep = phi[[1],[2, 2, 1]] TII depth = 2 TII multiplicity polynomial = 30*X TII subcells: tii[9,1] := {29} tii[9,2] := {5} tii[9,3] := {25} tii[9,4] := {28} tii[9,5] := {9} tii[9,6] := {3} tii[9,7] := {13} tii[9,8] := {20} tii[9,9] := {21} tii[9,10] := {8} tii[9,11] := {14} tii[9,12] := {15} tii[9,13] := {10} tii[9,14] := {11} tii[9,15] := {19} tii[9,16] := {27} tii[9,17] := {17} tii[9,18] := {18} tii[9,19] := {24} tii[9,20] := {6} tii[9,21] := {7} tii[9,22] := {26} tii[9,23] := {1} tii[9,24] := {12} tii[9,25] := {16} tii[9,26] := {2} tii[9,27] := {22} tii[9,28] := {23} tii[9,29] := {4} tii[9,30] := {0} cell#30 , |C| = 45 special orbit = [5, 3, 2, 2] special rep = [[1, 1], [3, 1]] , dim = 45 cell rep = phi[[1, 1],[3, 1]] TII depth = 4 TII multiplicity polynomial = 45*X TII subcells: tii[17,1] := {38} tii[17,2] := {31} tii[17,3] := {42} tii[17,4] := {23} tii[17,5] := {41} tii[17,6] := {43} tii[17,7] := {44} tii[17,8] := {30} tii[17,9] := {33} tii[17,10] := {35} tii[17,11] := {17} tii[17,12] := {20} tii[17,13] := {1} tii[17,14] := {32} tii[17,15] := {7} tii[17,16] := {15} tii[17,17] := {18} tii[17,18] := {37} tii[17,19] := {4} tii[17,20] := {39} tii[17,21] := {12} tii[17,22] := {40} tii[17,23] := {13} tii[17,24] := {34} tii[17,25] := {16} tii[17,26] := {36} tii[17,27] := {19} tii[17,28] := {28} tii[17,29] := {29} tii[17,30] := {0} tii[17,31] := {5} tii[17,32] := {6} tii[17,33] := {8} tii[17,34] := {25} tii[17,35] := {9} tii[17,36] := {26} tii[17,37] := {21} tii[17,38] := {22} tii[17,39] := {2} tii[17,40] := {3} tii[17,41] := {10} tii[17,42] := {11} tii[17,43] := {27} tii[17,44] := {24} tii[17,45] := {14} cell#31 , |C| = 52 special orbit = [5, 3, 1, 1, 1, 1] special rep = [[1], [3, 1, 1]] , dim = 36 cell rep = phi[[],[3, 2, 1]]+phi[[1],[3, 1, 1]] TII depth = 2 TII multiplicity polynomial = 16*X^2+20*X TII subcells: tii[16,1] := {33, 51} tii[16,2] := {20, 46} tii[16,3] := {22, 50} tii[16,4] := {11, 39} tii[16,5] := {14, 48} tii[16,6] := {4, 34} tii[16,7] := {41} tii[16,8] := {23, 49} tii[16,9] := {38} tii[16,10] := {43} tii[16,11] := {44} tii[16,12] := {6, 42} tii[16,13] := {30} tii[16,14] := {35} tii[16,15] := {36} tii[16,16] := {25} tii[16,17] := {27} tii[16,18] := {32} tii[16,19] := {19} tii[16,20] := {24} tii[16,21] := {26} tii[16,22] := {15} tii[16,23] := {16} tii[16,24] := {9, 45} tii[16,25] := {21} tii[16,26] := {7} tii[16,27] := {8} tii[16,28] := {2, 28} tii[16,29] := {13} tii[16,30] := {10} tii[16,31] := {17, 47} tii[16,32] := {3, 37} tii[16,33] := {12, 40} tii[16,34] := {1, 29} tii[16,35] := {5, 31} tii[16,36] := {0, 18} cell#32 , |C| = 52 special orbit = [5, 3, 1, 1, 1, 1] special rep = [[1], [3, 1, 1]] , dim = 36 cell rep = phi[[],[3, 2, 1]]+phi[[1],[3, 1, 1]] TII depth = 2 TII multiplicity polynomial = 16*X^2+20*X TII subcells: tii[16,1] := {33, 51} tii[16,2] := {20, 46} tii[16,3] := {22, 50} tii[16,4] := {11, 39} tii[16,5] := {14, 48} tii[16,6] := {4, 34} tii[16,7] := {41} tii[16,8] := {23, 49} tii[16,9] := {38} tii[16,10] := {43} tii[16,11] := {44} tii[16,12] := {6, 42} tii[16,13] := {30} tii[16,14] := {35} tii[16,15] := {36} tii[16,16] := {25} tii[16,17] := {27} tii[16,18] := {32} tii[16,19] := {19} tii[16,20] := {24} tii[16,21] := {26} tii[16,22] := {15} tii[16,23] := {16} tii[16,24] := {9, 45} tii[16,25] := {21} tii[16,26] := {7} tii[16,27] := {8} tii[16,28] := {2, 28} tii[16,29] := {13} tii[16,30] := {10} tii[16,31] := {17, 47} tii[16,32] := {3, 37} tii[16,33] := {12, 40} tii[16,34] := {1, 29} tii[16,35] := {5, 31} tii[16,36] := {0, 18} cell#33 , |C| = 40 special orbit = [4, 4, 2, 2] special rep = [[2, 1], [2, 1], 1] , dim = 40 cell rep = phi[[2, 1],[2, 1],1] TII depth = 2 TII multiplicity polynomial = 40*X TII subcells: tii[12,1] := {24} tii[12,2] := {17} tii[12,3] := {35} tii[12,4] := {38} tii[12,5] := {23} tii[12,6] := {30} tii[12,7] := {18} tii[12,8] := {39} tii[12,9] := {2} tii[12,10] := {8} tii[12,11] := {29} tii[12,12] := {5} tii[12,13] := {12} tii[12,14] := {36} tii[12,15] := {26} tii[12,16] := {13} tii[12,17] := {31} tii[12,18] := {9} tii[12,19] := {19} tii[12,20] := {28} tii[12,21] := {11} tii[12,22] := {6} tii[12,23] := {32} tii[12,24] := {20} tii[12,25] := {3} tii[12,26] := {25} tii[12,27] := {14} tii[12,28] := {27} tii[12,29] := {10} tii[12,30] := {34} tii[12,31] := {33} tii[12,32] := {37} tii[12,33] := {0} tii[12,34] := {7} tii[12,35] := {21} tii[12,36] := {16} tii[12,37] := {1} tii[12,38] := {4} tii[12,39] := {22} tii[12,40] := {15} cell#34 , |C| = 40 special orbit = [4, 4, 2, 2] special rep = [[2, 1], [2, 1], 1] , dim = 40 cell rep = phi[[2, 1],[2, 1],1] TII depth = 2 TII multiplicity polynomial = 40*X TII subcells: tii[12,1] := {24} tii[12,2] := {17} tii[12,3] := {35} tii[12,4] := {38} tii[12,5] := {23} tii[12,6] := {30} tii[12,7] := {18} tii[12,8] := {39} tii[12,9] := {2} tii[12,10] := {8} tii[12,11] := {29} tii[12,12] := {5} tii[12,13] := {12} tii[12,14] := {36} tii[12,15] := {26} tii[12,16] := {13} tii[12,17] := {31} tii[12,18] := {9} tii[12,19] := {19} tii[12,20] := {28} tii[12,21] := {11} tii[12,22] := {6} tii[12,23] := {32} tii[12,24] := {20} tii[12,25] := {3} tii[12,26] := {25} tii[12,27] := {14} tii[12,28] := {27} tii[12,29] := {10} tii[12,30] := {34} tii[12,31] := {33} tii[12,32] := {37} tii[12,33] := {0} tii[12,34] := {7} tii[12,35] := {21} tii[12,36] := {16} tii[12,37] := {1} tii[12,38] := {4} tii[12,39] := {22} tii[12,40] := {15} cell#35 , |C| = 40 special orbit = [4, 4, 2, 2, 0] special rep = [[2, 1], [2, 1], 2] , dim = 40 cell rep = phi[[2, 1],[2, 1],2] TII depth = 2 TII multiplicity polynomial = 40*X TII subcells: tii[13,1] := {24} tii[13,2] := {17} tii[13,3] := {35} tii[13,4] := {38} tii[13,5] := {23} tii[13,6] := {18} tii[13,7] := {32} tii[13,8] := {39} tii[13,9] := {2} tii[13,10] := {6} tii[13,11] := {29} tii[13,12] := {5} tii[13,13] := {25} tii[13,14] := {12} tii[13,15] := {14} tii[13,16] := {36} tii[13,17] := {7} tii[13,18] := {20} tii[13,19] := {33} tii[13,20] := {28} tii[13,21] := {11} tii[13,22] := {30} tii[13,23] := {19} tii[13,24] := {8} tii[13,25] := {13} tii[13,26] := {26} tii[13,27] := {3} tii[13,28] := {27} tii[13,29] := {10} tii[13,30] := {34} tii[13,31] := {31} tii[13,32] := {37} tii[13,33] := {0} tii[13,34] := {21} tii[13,35] := {9} tii[13,36] := {16} tii[13,37] := {1} tii[13,38] := {4} tii[13,39] := {22} tii[13,40] := {15} cell#36 , |C| = 40 special orbit = [4, 4, 2, 2, 0] special rep = [[2, 1], [2, 1], 2] , dim = 40 cell rep = phi[[2, 1],[2, 1],2] TII depth = 2 TII multiplicity polynomial = 40*X TII subcells: tii[13,1] := {24} tii[13,2] := {17} tii[13,3] := {35} tii[13,4] := {38} tii[13,5] := {23} tii[13,6] := {18} tii[13,7] := {32} tii[13,8] := {39} tii[13,9] := {2} tii[13,10] := {6} tii[13,11] := {29} tii[13,12] := {5} tii[13,13] := {25} tii[13,14] := {12} tii[13,15] := {14} tii[13,16] := {36} tii[13,17] := {7} tii[13,18] := {20} tii[13,19] := {33} tii[13,20] := {28} tii[13,21] := {11} tii[13,22] := {30} tii[13,23] := {19} tii[13,24] := {8} tii[13,25] := {13} tii[13,26] := {26} tii[13,27] := {3} tii[13,28] := {27} tii[13,29] := {10} tii[13,30] := {34} tii[13,31] := {31} tii[13,32] := {37} tii[13,33] := {0} tii[13,34] := {21} tii[13,35] := {9} tii[13,36] := {16} tii[13,37] := {1} tii[13,38] := {4} tii[13,39] := {22} tii[13,40] := {15} cell#37 , |C| = 30 special orbit = [3, 3, 3, 3] special rep = [[1, 1], [2, 2]] , dim = 30 cell rep = phi[[1, 1],[2, 2]] TII depth = 3 TII multiplicity polynomial = 30*X TII subcells: tii[10,1] := {14} tii[10,2] := {20} tii[10,3] := {25} tii[10,4] := {28} tii[10,5] := {29} tii[10,6] := {1} tii[10,7] := {2} tii[10,8] := {6} tii[10,9] := {7} tii[10,10] := {21} tii[10,11] := {22} tii[10,12] := {5} tii[10,13] := {9} tii[10,14] := {11} tii[10,15] := {26} tii[10,16] := {15} tii[10,17] := {27} tii[10,18] := {16} tii[10,19] := {23} tii[10,20] := {24} tii[10,21] := {3} tii[10,22] := {4} tii[10,23] := {8} tii[10,24] := {10} tii[10,25] := {12} tii[10,26] := {18} tii[10,27] := {19} tii[10,28] := {13} tii[10,29] := {17} tii[10,30] := {0} cell#38 , |C| = 30 special orbit = [3, 3, 3, 3] special rep = [[1, 1], [2, 2]] , dim = 30 cell rep = phi[[1, 1],[2, 2]] TII depth = 3 TII multiplicity polynomial = 30*X TII subcells: tii[10,1] := {14} tii[10,2] := {20} tii[10,3] := {25} tii[10,4] := {28} tii[10,5] := {29} tii[10,6] := {1} tii[10,7] := {2} tii[10,8] := {6} tii[10,9] := {7} tii[10,10] := {21} tii[10,11] := {22} tii[10,12] := {5} tii[10,13] := {9} tii[10,14] := {11} tii[10,15] := {26} tii[10,16] := {15} tii[10,17] := {27} tii[10,18] := {16} tii[10,19] := {23} tii[10,20] := {24} tii[10,21] := {3} tii[10,22] := {4} tii[10,23] := {8} tii[10,24] := {10} tii[10,25] := {12} tii[10,26] := {18} tii[10,27] := {19} tii[10,28] := {13} tii[10,29] := {17} tii[10,30] := {0} cell#39 , |C| = 30 special orbit = [3, 3, 3, 3] special rep = [[1, 1], [2, 2]] , dim = 30 cell rep = phi[[1, 1],[2, 2]] TII depth = 3 TII multiplicity polynomial = 30*X TII subcells: tii[10,1] := {14} tii[10,2] := {20} tii[10,3] := {25} tii[10,4] := {28} tii[10,5] := {29} tii[10,6] := {1} tii[10,7] := {2} tii[10,8] := {6} tii[10,9] := {7} tii[10,10] := {21} tii[10,11] := {22} tii[10,12] := {5} tii[10,13] := {9} tii[10,14] := {11} tii[10,15] := {26} tii[10,16] := {15} tii[10,17] := {27} tii[10,18] := {16} tii[10,19] := {23} tii[10,20] := {24} tii[10,21] := {3} tii[10,22] := {4} tii[10,23] := {8} tii[10,24] := {10} tii[10,25] := {12} tii[10,26] := {18} tii[10,27] := {19} tii[10,28] := {13} tii[10,29] := {17} tii[10,30] := {0} cell#40 , |C| = 30 special orbit = [3, 3, 3, 3] special rep = [[1, 1], [2, 2]] , dim = 30 cell rep = phi[[1, 1],[2, 2]] TII depth = 3 TII multiplicity polynomial = 30*X TII subcells: tii[10,1] := {14} tii[10,2] := {20} tii[10,3] := {25} tii[10,4] := {28} tii[10,5] := {29} tii[10,6] := {1} tii[10,7] := {2} tii[10,8] := {6} tii[10,9] := {7} tii[10,10] := {21} tii[10,11] := {22} tii[10,12] := {5} tii[10,13] := {9} tii[10,14] := {11} tii[10,15] := {26} tii[10,16] := {15} tii[10,17] := {27} tii[10,18] := {16} tii[10,19] := {23} tii[10,20] := {24} tii[10,21] := {3} tii[10,22] := {4} tii[10,23] := {8} tii[10,24] := {10} tii[10,25] := {12} tii[10,26] := {18} tii[10,27] := {19} tii[10,28] := {13} tii[10,29] := {17} tii[10,30] := {0} cell#41 , |C| = 45 special orbit = [4, 4, 1, 1, 1, 1] special rep = [[2], [2, 1, 1]] , dim = 45 cell rep = phi[[2],[2, 1, 1]] TII depth = 4 TII multiplicity polynomial = 45*X TII subcells: tii[11,1] := {30} tii[11,2] := {20} tii[11,3] := {17} tii[11,4] := {33} tii[11,5] := {34} tii[11,6] := {41} tii[11,7] := {42} tii[11,8] := {22} tii[11,9] := {23} tii[11,10] := {18} tii[11,11] := {35} tii[11,12] := {19} tii[11,13] := {36} tii[11,14] := {38} tii[11,15] := {39} tii[11,16] := {44} tii[11,17] := {15} tii[11,18] := {16} tii[11,19] := {8} tii[11,20] := {25} tii[11,21] := {10} tii[11,22] := {28} tii[11,23] := {4} tii[11,24] := {31} tii[11,25] := {5} tii[11,26] := {32} tii[11,27] := {7} tii[11,28] := {40} tii[11,29] := {26} tii[11,30] := {29} tii[11,31] := {12} tii[11,32] := {37} tii[11,33] := {43} tii[11,34] := {24} tii[11,35] := {27} tii[11,36] := {9} tii[11,37] := {11} tii[11,38] := {14} tii[11,39] := {0} tii[11,40] := {1} tii[11,41] := {3} tii[11,42] := {21} tii[11,43] := {2} tii[11,44] := {13} tii[11,45] := {6} cell#42 , |C| = 45 special orbit = [4, 4, 1, 1, 1, 1] special rep = [[2], [2, 1, 1]] , dim = 45 cell rep = phi[[2],[2, 1, 1]] TII depth = 4 TII multiplicity polynomial = 45*X TII subcells: tii[11,1] := {30} tii[11,2] := {20} tii[11,3] := {17} tii[11,4] := {33} tii[11,5] := {34} tii[11,6] := {41} tii[11,7] := {42} tii[11,8] := {22} tii[11,9] := {23} tii[11,10] := {18} tii[11,11] := {35} tii[11,12] := {19} tii[11,13] := {36} tii[11,14] := {38} tii[11,15] := {39} tii[11,16] := {44} tii[11,17] := {15} tii[11,18] := {16} tii[11,19] := {8} tii[11,20] := {25} tii[11,21] := {10} tii[11,22] := {28} tii[11,23] := {4} tii[11,24] := {31} tii[11,25] := {5} tii[11,26] := {32} tii[11,27] := {7} tii[11,28] := {40} tii[11,29] := {26} tii[11,30] := {29} tii[11,31] := {12} tii[11,32] := {37} tii[11,33] := {43} tii[11,34] := {24} tii[11,35] := {27} tii[11,36] := {9} tii[11,37] := {11} tii[11,38] := {14} tii[11,39] := {0} tii[11,40] := {1} tii[11,41] := {3} tii[11,42] := {21} tii[11,43] := {2} tii[11,44] := {13} tii[11,45] := {6} cell#43 , |C| = 30 special orbit = [3, 3, 3, 1, 1, 1] special rep = [[1], [2, 2, 1]] , dim = 30 cell rep = phi[[1],[2, 2, 1]] TII depth = 2 TII multiplicity polynomial = 30*X TII subcells: tii[9,1] := {28} tii[9,2] := {4} tii[9,3] := {25} tii[9,4] := {29} tii[9,5] := {9} tii[9,6] := {2} tii[9,7] := {13} tii[9,8] := {20} tii[9,9] := {21} tii[9,10] := {8} tii[9,11] := {14} tii[9,12] := {16} tii[9,13] := {10} tii[9,14] := {11} tii[9,15] := {18} tii[9,16] := {26} tii[9,17] := {15} tii[9,18] := {17} tii[9,19] := {23} tii[9,20] := {5} tii[9,21] := {6} tii[9,22] := {27} tii[9,23] := {1} tii[9,24] := {12} tii[9,25] := {19} tii[9,26] := {3} tii[9,27] := {22} tii[9,28] := {24} tii[9,29] := {7} tii[9,30] := {0} cell#44 , |C| = 45 special orbit = [4, 4, 1, 1, 1, 1] special rep = [[2], [2, 1, 1]] , dim = 45 cell rep = phi[[2],[2, 1, 1]] TII depth = 4 TII multiplicity polynomial = 45*X TII subcells: tii[11,1] := {30} tii[11,2] := {20} tii[11,3] := {17} tii[11,4] := {33} tii[11,5] := {34} tii[11,6] := {41} tii[11,7] := {42} tii[11,8] := {22} tii[11,9] := {23} tii[11,10] := {18} tii[11,11] := {35} tii[11,12] := {19} tii[11,13] := {36} tii[11,14] := {38} tii[11,15] := {39} tii[11,16] := {44} tii[11,17] := {15} tii[11,18] := {16} tii[11,19] := {8} tii[11,20] := {25} tii[11,21] := {10} tii[11,22] := {28} tii[11,23] := {4} tii[11,24] := {31} tii[11,25] := {5} tii[11,26] := {32} tii[11,27] := {7} tii[11,28] := {40} tii[11,29] := {26} tii[11,30] := {29} tii[11,31] := {12} tii[11,32] := {37} tii[11,33] := {43} tii[11,34] := {24} tii[11,35] := {27} tii[11,36] := {9} tii[11,37] := {11} tii[11,38] := {14} tii[11,39] := {0} tii[11,40] := {1} tii[11,41] := {3} tii[11,42] := {21} tii[11,43] := {2} tii[11,44] := {13} tii[11,45] := {6} cell#45 , |C| = 45 special orbit = [4, 4, 1, 1, 1, 1] special rep = [[2], [2, 1, 1]] , dim = 45 cell rep = phi[[2],[2, 1, 1]] TII depth = 4 TII multiplicity polynomial = 45*X TII subcells: tii[11,1] := {30} tii[11,2] := {20} tii[11,3] := {17} tii[11,4] := {33} tii[11,5] := {34} tii[11,6] := {41} tii[11,7] := {42} tii[11,8] := {22} tii[11,9] := {23} tii[11,10] := {18} tii[11,11] := {35} tii[11,12] := {19} tii[11,13] := {36} tii[11,14] := {38} tii[11,15] := {39} tii[11,16] := {44} tii[11,17] := {15} tii[11,18] := {16} tii[11,19] := {8} tii[11,20] := {25} tii[11,21] := {10} tii[11,22] := {28} tii[11,23] := {4} tii[11,24] := {31} tii[11,25] := {5} tii[11,26] := {32} tii[11,27] := {7} tii[11,28] := {40} tii[11,29] := {26} tii[11,30] := {29} tii[11,31] := {12} tii[11,32] := {37} tii[11,33] := {43} tii[11,34] := {24} tii[11,35] := {27} tii[11,36] := {9} tii[11,37] := {11} tii[11,38] := {14} tii[11,39] := {0} tii[11,40] := {1} tii[11,41] := {3} tii[11,42] := {21} tii[11,43] := {2} tii[11,44] := {13} tii[11,45] := {6} cell#46 , |C| = 30 special orbit = [3, 3, 3, 1, 1, 1] special rep = [[1], [2, 2, 1]] , dim = 30 cell rep = phi[[1],[2, 2, 1]] TII depth = 2 TII multiplicity polynomial = 30*X TII subcells: tii[9,1] := {28} tii[9,2] := {4} tii[9,3] := {25} tii[9,4] := {29} tii[9,5] := {9} tii[9,6] := {2} tii[9,7] := {13} tii[9,8] := {20} tii[9,9] := {21} tii[9,10] := {8} tii[9,11] := {14} tii[9,12] := {16} tii[9,13] := {10} tii[9,14] := {11} tii[9,15] := {18} tii[9,16] := {26} tii[9,17] := {15} tii[9,18] := {17} tii[9,19] := {23} tii[9,20] := {5} tii[9,21] := {6} tii[9,22] := {27} tii[9,23] := {1} tii[9,24] := {12} tii[9,25] := {19} tii[9,26] := {3} tii[9,27] := {22} tii[9,28] := {24} tii[9,29] := {7} tii[9,30] := {0} cell#47 , |C| = 30 special orbit = [3, 3, 3, 1, 1, 1] special rep = [[1], [2, 2, 1]] , dim = 30 cell rep = phi[[1],[2, 2, 1]] TII depth = 2 TII multiplicity polynomial = 30*X TII subcells: tii[9,1] := {29} tii[9,2] := {5} tii[9,3] := {28} tii[9,4] := {25} tii[9,5] := {9} tii[9,6] := {2} tii[9,7] := {15} tii[9,8] := {22} tii[9,9] := {23} tii[9,10] := {10} tii[9,11] := {18} tii[9,12] := {19} tii[9,13] := {11} tii[9,14] := {12} tii[9,15] := {20} tii[9,16] := {21} tii[9,17] := {16} tii[9,18] := {17} tii[9,19] := {24} tii[9,20] := {6} tii[9,21] := {7} tii[9,22] := {27} tii[9,23] := {1} tii[9,24] := {13} tii[9,25] := {8} tii[9,26] := {3} tii[9,27] := {26} tii[9,28] := {14} tii[9,29] := {4} tii[9,30] := {0} cell#48 , |C| = 30 special orbit = [3, 3, 3, 1, 1, 1] special rep = [[1], [2, 2, 1]] , dim = 30 cell rep = phi[[1],[2, 2, 1]] TII depth = 2 TII multiplicity polynomial = 30*X TII subcells: tii[9,1] := {29} tii[9,2] := {5} tii[9,3] := {28} tii[9,4] := {25} tii[9,5] := {9} tii[9,6] := {2} tii[9,7] := {15} tii[9,8] := {22} tii[9,9] := {23} tii[9,10] := {10} tii[9,11] := {18} tii[9,12] := {19} tii[9,13] := {11} tii[9,14] := {12} tii[9,15] := {20} tii[9,16] := {21} tii[9,17] := {16} tii[9,18] := {17} tii[9,19] := {24} tii[9,20] := {6} tii[9,21] := {7} tii[9,22] := {27} tii[9,23] := {1} tii[9,24] := {13} tii[9,25] := {8} tii[9,26] := {3} tii[9,27] := {26} tii[9,28] := {14} tii[9,29] := {4} tii[9,30] := {0} cell#49 , |C| = 30 special orbit = [3, 3, 3, 1, 1, 1] special rep = [[1], [2, 2, 1]] , dim = 30 cell rep = phi[[1],[2, 2, 1]] TII depth = 2 TII multiplicity polynomial = 30*X TII subcells: tii[9,1] := {29} tii[9,2] := {5} tii[9,3] := {28} tii[9,4] := {25} tii[9,5] := {9} tii[9,6] := {2} tii[9,7] := {15} tii[9,8] := {22} tii[9,9] := {23} tii[9,10] := {10} tii[9,11] := {18} tii[9,12] := {19} tii[9,13] := {11} tii[9,14] := {12} tii[9,15] := {20} tii[9,16] := {21} tii[9,17] := {16} tii[9,18] := {17} tii[9,19] := {24} tii[9,20] := {6} tii[9,21] := {7} tii[9,22] := {27} tii[9,23] := {1} tii[9,24] := {13} tii[9,25] := {8} tii[9,26] := {3} tii[9,27] := {26} tii[9,28] := {14} tii[9,29] := {4} tii[9,30] := {0} cell#50 , |C| = 30 special orbit = [3, 3, 3, 1, 1, 1] special rep = [[1], [2, 2, 1]] , dim = 30 cell rep = phi[[1],[2, 2, 1]] TII depth = 2 TII multiplicity polynomial = 30*X TII subcells: tii[9,1] := {29} tii[9,2] := {5} tii[9,3] := {28} tii[9,4] := {25} tii[9,5] := {9} tii[9,6] := {2} tii[9,7] := {15} tii[9,8] := {22} tii[9,9] := {23} tii[9,10] := {10} tii[9,11] := {18} tii[9,12] := {19} tii[9,13] := {11} tii[9,14] := {12} tii[9,15] := {20} tii[9,16] := {21} tii[9,17] := {16} tii[9,18] := {17} tii[9,19] := {24} tii[9,20] := {6} tii[9,21] := {7} tii[9,22] := {27} tii[9,23] := {1} tii[9,24] := {13} tii[9,25] := {8} tii[9,26] := {3} tii[9,27] := {26} tii[9,28] := {14} tii[9,29] := {4} tii[9,30] := {0} cell#51 , |C| = 50 special orbit = [3, 3, 2, 2, 1, 1] special rep = [[1, 1], [2, 1, 1]] , dim = 45 cell rep = phi[[],[2, 2, 2]]+phi[[1, 1],[2, 1, 1]] TII depth = 3 TII multiplicity polynomial = 5*X^2+40*X TII subcells: tii[8,1] := {28, 49} tii[8,2] := {19} tii[8,3] := {18, 47} tii[8,4] := {29} tii[8,5] := {37} tii[8,6] := {39} tii[8,7] := {21} tii[8,8] := {23} tii[8,9] := {36} tii[8,10] := {43} tii[8,11] := {44} tii[8,12] := {11} tii[8,13] := {38} tii[8,14] := {13} tii[8,15] := {40} tii[8,16] := {46} tii[8,17] := {20} tii[8,18] := {22} tii[8,19] := {34} tii[8,20] := {0} tii[8,21] := {3} tii[8,22] := {5} tii[8,23] := {31} tii[8,24] := {10} tii[8,25] := {33} tii[8,26] := {12} tii[8,27] := {24} tii[8,28] := {25} tii[8,29] := {4} tii[8,30] := {30} tii[8,31] := {6} tii[8,32] := {32} tii[8,33] := {17, 45} tii[8,34] := {15} tii[8,35] := {16} tii[8,36] := {41} tii[8,37] := {35} tii[8,38] := {1} tii[8,39] := {2} tii[8,40] := {27, 48} tii[8,41] := {7} tii[8,42] := {8} tii[8,43] := {26} tii[8,44] := {14} tii[8,45] := {9, 42} cell#52 , |C| = 10 special orbit = [5, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [3, 1, 1, 1]] , dim = 10 cell rep = phi[[],[3, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 10*X TII subcells: tii[15,1] := {9} tii[15,2] := {8} tii[15,3] := {6} tii[15,4] := {4} tii[15,5] := {7} tii[15,6] := {5} tii[15,7] := {3} tii[15,8] := {2} tii[15,9] := {1} tii[15,10] := {0} cell#53 , |C| = 33 special orbit = [3, 3, 1, 1, 1, 1, 1, 1] special rep = [[1], [2, 1, 1, 1]] , dim = 24 cell rep = phi[[],[2, 2, 1, 1]]+phi[[1],[2, 1, 1, 1]] TII depth = 2 TII multiplicity polynomial = 9*X^2+15*X TII subcells: tii[7,1] := {10, 30} tii[7,2] := {6, 32} tii[7,3] := {4, 31} tii[7,4] := {16} tii[7,5] := {22} tii[7,6] := {23} tii[7,7] := {17} tii[7,8] := {18} tii[7,9] := {24} tii[7,10] := {11} tii[7,11] := {12} tii[7,12] := {5, 29} tii[7,13] := {19} tii[7,14] := {21} tii[7,15] := {7} tii[7,16] := {8} tii[7,17] := {2, 27} tii[7,18] := {13} tii[7,19] := {1, 25} tii[7,20] := {15} tii[7,21] := {14} tii[7,22] := {9, 28} tii[7,23] := {3, 26} tii[7,24] := {0, 20} cell#54 , |C| = 10 special orbit = [5, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [3, 1, 1, 1]] , dim = 10 cell rep = phi[[],[3, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 10*X TII subcells: tii[15,1] := {9} tii[15,2] := {8} tii[15,3] := {6} tii[15,4] := {4} tii[15,5] := {7} tii[15,6] := {5} tii[15,7] := {3} tii[15,8] := {2} tii[15,9] := {1} tii[15,10] := {0} cell#55 , |C| = 33 special orbit = [3, 3, 1, 1, 1, 1, 1, 1] special rep = [[1], [2, 1, 1, 1]] , dim = 24 cell rep = phi[[],[2, 2, 1, 1]]+phi[[1],[2, 1, 1, 1]] TII depth = 2 TII multiplicity polynomial = 9*X^2+15*X TII subcells: tii[7,1] := {10, 30} tii[7,2] := {6, 32} tii[7,3] := {4, 31} tii[7,4] := {16} tii[7,5] := {22} tii[7,6] := {23} tii[7,7] := {17} tii[7,8] := {18} tii[7,9] := {24} tii[7,10] := {11} tii[7,11] := {12} tii[7,12] := {5, 29} tii[7,13] := {19} tii[7,14] := {21} tii[7,15] := {7} tii[7,16] := {8} tii[7,17] := {2, 27} tii[7,18] := {13} tii[7,19] := {1, 25} tii[7,20] := {15} tii[7,21] := {14} tii[7,22] := {9, 28} tii[7,23] := {3, 26} tii[7,24] := {0, 20} cell#56 , |C| = 85 special orbit = [3, 3, 2, 2, 1, 1] special rep = [[1, 1], [2, 1, 1]] , dim = 45 cell rep = phi[[1, 1],[2, 1, 1]]+phi[[2, 1],[1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 40*X^2+5*X TII subcells: tii[8,1] := {72} tii[8,2] := {16, 17} tii[8,3] := {63} tii[8,4] := {31, 32} tii[8,5] := {50, 51} tii[8,6] := {56, 57} tii[8,7] := {52, 53} tii[8,8] := {58, 59} tii[8,9] := {46, 47} tii[8,10] := {64, 65} tii[8,11] := {66, 67} tii[8,12] := {35, 36} tii[8,13] := {77, 78} tii[8,14] := {39, 40} tii[8,15] := {79, 80} tii[8,16] := {83, 84} tii[8,17] := {54, 55} tii[8,18] := {60, 61} tii[8,19] := {70, 71} tii[8,20] := {0, 1} tii[8,21] := {2, 3} tii[8,22] := {4, 5} tii[8,23] := {33, 34} tii[8,24] := {6, 7} tii[8,25] := {37, 38} tii[8,26] := {10, 11} tii[8,27] := {22, 23} tii[8,28] := {26, 27} tii[8,29] := {18, 19} tii[8,30] := {73, 74} tii[8,31] := {20, 21} tii[8,32] := {75, 76} tii[8,33] := {45} tii[8,34] := {41, 42} tii[8,35] := {43, 44} tii[8,36] := {81, 82} tii[8,37] := {68, 69} tii[8,38] := {8, 9} tii[8,39] := {12, 13} tii[8,40] := {62} tii[8,41] := {24, 25} tii[8,42] := {28, 29} tii[8,43] := {48, 49} tii[8,44] := {14, 15} tii[8,45] := {30} cell#57 , |C| = 33 special orbit = [3, 3, 1, 1, 1, 1, 1, 1] special rep = [[1], [2, 1, 1, 1]] , dim = 24 cell rep = phi[[],[2, 2, 1, 1]]+phi[[1],[2, 1, 1, 1]] TII depth = 2 TII multiplicity polynomial = 9*X^2+15*X TII subcells: tii[7,1] := {10, 31} tii[7,2] := {6, 29} tii[7,3] := {4, 32} tii[7,4] := {14} tii[7,5] := {20} tii[7,6] := {21} tii[7,7] := {15} tii[7,8] := {16} tii[7,9] := {22} tii[7,10] := {11} tii[7,11] := {12} tii[7,12] := {5, 25} tii[7,13] := {17} tii[7,14] := {23} tii[7,15] := {7} tii[7,16] := {8} tii[7,17] := {2, 27} tii[7,18] := {13} tii[7,19] := {1, 30} tii[7,20] := {18} tii[7,21] := {24} tii[7,22] := {9, 26} tii[7,23] := {3, 19} tii[7,24] := {0, 28} cell#58 , |C| = 33 special orbit = [3, 3, 1, 1, 1, 1, 1, 1] special rep = [[1], [2, 1, 1, 1]] , dim = 24 cell rep = phi[[],[2, 2, 1, 1]]+phi[[1],[2, 1, 1, 1]] TII depth = 2 TII multiplicity polynomial = 9*X^2+15*X TII subcells: tii[7,1] := {10, 31} tii[7,2] := {6, 29} tii[7,3] := {4, 32} tii[7,4] := {14} tii[7,5] := {20} tii[7,6] := {21} tii[7,7] := {15} tii[7,8] := {16} tii[7,9] := {22} tii[7,10] := {11} tii[7,11] := {12} tii[7,12] := {5, 25} tii[7,13] := {17} tii[7,14] := {23} tii[7,15] := {7} tii[7,16] := {8} tii[7,17] := {2, 27} tii[7,18] := {13} tii[7,19] := {1, 30} tii[7,20] := {18} tii[7,21] := {24} tii[7,22] := {9, 26} tii[7,23] := {3, 19} tii[7,24] := {0, 28} cell#59 , |C| = 85 special orbit = [3, 3, 2, 2, 1, 1] special rep = [[1, 1], [2, 1, 1]] , dim = 45 cell rep = phi[[1, 1],[2, 1, 1]]+phi[[2, 1],[1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 40*X^2+5*X TII subcells: tii[8,1] := {72} tii[8,2] := {16, 17} tii[8,3] := {63} tii[8,4] := {31, 32} tii[8,5] := {50, 51} tii[8,6] := {56, 57} tii[8,7] := {52, 53} tii[8,8] := {58, 59} tii[8,9] := {46, 47} tii[8,10] := {64, 65} tii[8,11] := {66, 67} tii[8,12] := {35, 36} tii[8,13] := {77, 78} tii[8,14] := {39, 40} tii[8,15] := {79, 80} tii[8,16] := {83, 84} tii[8,17] := {54, 55} tii[8,18] := {60, 61} tii[8,19] := {70, 71} tii[8,20] := {0, 1} tii[8,21] := {2, 3} tii[8,22] := {4, 5} tii[8,23] := {33, 34} tii[8,24] := {6, 7} tii[8,25] := {37, 38} tii[8,26] := {10, 11} tii[8,27] := {22, 23} tii[8,28] := {26, 27} tii[8,29] := {18, 19} tii[8,30] := {73, 74} tii[8,31] := {20, 21} tii[8,32] := {75, 76} tii[8,33] := {45} tii[8,34] := {41, 42} tii[8,35] := {43, 44} tii[8,36] := {81, 82} tii[8,37] := {68, 69} tii[8,38] := {8, 9} tii[8,39] := {12, 13} tii[8,40] := {62} tii[8,41] := {24, 25} tii[8,42] := {28, 29} tii[8,43] := {48, 49} tii[8,44] := {14, 15} tii[8,45] := {30} cell#60 , |C| = 33 special orbit = [3, 3, 1, 1, 1, 1, 1, 1] special rep = [[1], [2, 1, 1, 1]] , dim = 24 cell rep = phi[[],[2, 2, 1, 1]]+phi[[1],[2, 1, 1, 1]] TII depth = 2 TII multiplicity polynomial = 9*X^2+15*X TII subcells: tii[7,1] := {10, 31} tii[7,2] := {6, 29} tii[7,3] := {4, 32} tii[7,4] := {14} tii[7,5] := {20} tii[7,6] := {21} tii[7,7] := {15} tii[7,8] := {16} tii[7,9] := {22} tii[7,10] := {11} tii[7,11] := {12} tii[7,12] := {5, 25} tii[7,13] := {17} tii[7,14] := {23} tii[7,15] := {7} tii[7,16] := {8} tii[7,17] := {2, 27} tii[7,18] := {13} tii[7,19] := {1, 30} tii[7,20] := {18} tii[7,21] := {24} tii[7,22] := {9, 26} tii[7,23] := {3, 19} tii[7,24] := {0, 28} cell#61 , |C| = 33 special orbit = [3, 3, 1, 1, 1, 1, 1, 1] special rep = [[1], [2, 1, 1, 1]] , dim = 24 cell rep = phi[[],[2, 2, 1, 1]]+phi[[1],[2, 1, 1, 1]] TII depth = 2 TII multiplicity polynomial = 9*X^2+15*X TII subcells: tii[7,1] := {10, 31} tii[7,2] := {6, 29} tii[7,3] := {4, 32} tii[7,4] := {14} tii[7,5] := {20} tii[7,6] := {21} tii[7,7] := {15} tii[7,8] := {16} tii[7,9] := {22} tii[7,10] := {11} tii[7,11] := {12} tii[7,12] := {5, 25} tii[7,13] := {17} tii[7,14] := {23} tii[7,15] := {7} tii[7,16] := {8} tii[7,17] := {2, 27} tii[7,18] := {13} tii[7,19] := {1, 30} tii[7,20] := {18} tii[7,21] := {24} tii[7,22] := {9, 26} tii[7,23] := {3, 19} tii[7,24] := {0, 28} cell#62 , |C| = 10 special orbit = [2, 2, 2, 2, 2, 2] special rep = [[1, 1, 1], [1, 1, 1], 1] , dim = 10 cell rep = phi[[1, 1, 1],[1, 1, 1],1] TII depth = 1 TII multiplicity polynomial = 10*X TII subcells: tii[4,1] := {9} tii[4,2] := {2} tii[4,3] := {7} tii[4,4] := {3} tii[4,5] := {6} tii[4,6] := {5} tii[4,7] := {8} tii[4,8] := {0} tii[4,9] := {1} tii[4,10] := {4} cell#63 , |C| = 10 special orbit = [2, 2, 2, 2, 2, 2] special rep = [[1, 1, 1], [1, 1, 1], 1] , dim = 10 cell rep = phi[[1, 1, 1],[1, 1, 1],1] TII depth = 1 TII multiplicity polynomial = 10*X TII subcells: tii[4,1] := {9} tii[4,2] := {2} tii[4,3] := {7} tii[4,4] := {3} tii[4,5] := {6} tii[4,6] := {5} tii[4,7] := {8} tii[4,8] := {0} tii[4,9] := {1} tii[4,10] := {4} cell#64 , |C| = 10 special orbit = [2, 2, 2, 2, 2, 2, 0] special rep = [[1, 1, 1], [1, 1, 1], 2] , dim = 10 cell rep = phi[[1, 1, 1],[1, 1, 1],2] TII depth = 1 TII multiplicity polynomial = 10*X TII subcells: tii[5,1] := {9} tii[5,2] := {2} tii[5,3] := {3} tii[5,4] := {7} tii[5,5] := {6} tii[5,6] := {5} tii[5,7] := {8} tii[5,8] := {0} tii[5,9] := {1} tii[5,10] := {4} cell#65 , |C| = 10 special orbit = [2, 2, 2, 2, 2, 2, 0] special rep = [[1, 1, 1], [1, 1, 1], 2] , dim = 10 cell rep = phi[[1, 1, 1],[1, 1, 1],2] TII depth = 1 TII multiplicity polynomial = 10*X TII subcells: tii[5,1] := {9} tii[5,2] := {2} tii[5,3] := {3} tii[5,4] := {7} tii[5,5] := {6} tii[5,6] := {5} tii[5,7] := {8} tii[5,8] := {0} tii[5,9] := {1} tii[5,10] := {4} cell#66 , |C| = 5 special orbit = [3, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [2, 1, 1, 1, 1]] , dim = 5 cell rep = phi[[],[2, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 5*X TII subcells: tii[6,1] := {4} tii[6,2] := {3} tii[6,3] := {2} tii[6,4] := {1} tii[6,5] := {0} cell#67 , |C| = 5 special orbit = [3, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [2, 1, 1, 1, 1]] , dim = 5 cell rep = phi[[],[2, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 5*X TII subcells: tii[6,1] := {4} tii[6,2] := {3} tii[6,3] := {2} tii[6,4] := {1} tii[6,5] := {0} cell#68 , |C| = 15 special orbit = [2, 2, 2, 2, 1, 1, 1, 1] special rep = [[1, 1], [1, 1, 1, 1]] , dim = 15 cell rep = phi[[1, 1],[1, 1, 1, 1]] TII depth = 2 TII multiplicity polynomial = 15*X TII subcells: tii[3,1] := {5} tii[3,2] := {7} tii[3,3] := {10} tii[3,4] := {11} tii[3,5] := {14} tii[3,6] := {6} tii[3,7] := {8} tii[3,8] := {13} tii[3,9] := {9} tii[3,10] := {0} tii[3,11] := {1} tii[3,12] := {2} tii[3,13] := {3} tii[3,14] := {12} tii[3,15] := {4} cell#69 , |C| = 15 special orbit = [2, 2, 2, 2, 1, 1, 1, 1] special rep = [[1, 1], [1, 1, 1, 1]] , dim = 15 cell rep = phi[[1, 1],[1, 1, 1, 1]] TII depth = 2 TII multiplicity polynomial = 15*X TII subcells: tii[3,1] := {5} tii[3,2] := {7} tii[3,3] := {10} tii[3,4] := {11} tii[3,5] := {14} tii[3,6] := {6} tii[3,7] := {8} tii[3,8] := {13} tii[3,9] := {9} tii[3,10] := {0} tii[3,11] := {1} tii[3,12] := {2} tii[3,13] := {3} tii[3,14] := {12} tii[3,15] := {4} cell#70 , |C| = 15 special orbit = [2, 2, 2, 2, 1, 1, 1, 1] special rep = [[1, 1], [1, 1, 1, 1]] , dim = 15 cell rep = phi[[1, 1],[1, 1, 1, 1]] TII depth = 2 TII multiplicity polynomial = 15*X TII subcells: tii[3,1] := {5} tii[3,2] := {7} tii[3,3] := {10} tii[3,4] := {11} tii[3,5] := {14} tii[3,6] := {6} tii[3,7] := {8} tii[3,8] := {13} tii[3,9] := {9} tii[3,10] := {0} tii[3,11] := {1} tii[3,12] := {2} tii[3,13] := {3} tii[3,14] := {12} tii[3,15] := {4} cell#71 , |C| = 15 special orbit = [2, 2, 2, 2, 1, 1, 1, 1] special rep = [[1, 1], [1, 1, 1, 1]] , dim = 15 cell rep = phi[[1, 1],[1, 1, 1, 1]] TII depth = 2 TII multiplicity polynomial = 15*X TII subcells: tii[3,1] := {5} tii[3,2] := {7} tii[3,3] := {10} tii[3,4] := {11} tii[3,5] := {14} tii[3,6] := {6} tii[3,7] := {8} tii[3,8] := {13} tii[3,9] := {9} tii[3,10] := {0} tii[3,11] := {1} tii[3,12] := {2} tii[3,13] := {3} tii[3,14] := {12} tii[3,15] := {4} cell#72 , |C| = 6 special orbit = [2, 2, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [1, 1, 1, 1, 1]] , dim = 6 cell rep = phi[[1],[1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 6*X TII subcells: tii[2,1] := {0} tii[2,2] := {1} tii[2,3] := {4} tii[2,4] := {2} tii[2,5] := {5} tii[2,6] := {3} cell#73 , |C| = 6 special orbit = [2, 2, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [1, 1, 1, 1, 1]] , dim = 6 cell rep = phi[[1],[1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 6*X TII subcells: tii[2,1] := {0} tii[2,2] := {1} tii[2,3] := {4} tii[2,4] := {2} tii[2,5] := {5} tii[2,6] := {3} cell#74 , |C| = 6 special orbit = [2, 2, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [1, 1, 1, 1, 1]] , dim = 6 cell rep = phi[[1],[1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 6*X TII subcells: tii[2,1] := {0} tii[2,2] := {1} tii[2,3] := {5} tii[2,4] := {2} tii[2,5] := {4} tii[2,6] := {3} cell#75 , |C| = 6 special orbit = [2, 2, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [1, 1, 1, 1, 1]] , dim = 6 cell rep = phi[[1],[1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 6*X TII subcells: tii[2,1] := {0} tii[2,2] := {1} tii[2,3] := {5} tii[2,4] := {2} tii[2,5] := {4} tii[2,6] := {3} cell#76 , |C| = 1 special orbit = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [1, 1, 1, 1, 1, 1]] , dim = 1 cell rep = phi[[],[1, 1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = X TII subcells: tii[1,1] := {0} cell#77 , |C| = 1 special orbit = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [1, 1, 1, 1, 1, 1]] , dim = 1 cell rep = phi[[],[1, 1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = X TII subcells: tii[1,1] := {0} cell#78 , |C| = 1 special orbit = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [1, 1, 1, 1, 1, 1]] , dim = 1 cell rep = phi[[],[1, 1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = X TII subcells: tii[1,1] := {0} cell#79 , |C| = 1 special orbit = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [1, 1, 1, 1, 1, 1]] , dim = 1 cell rep = phi[[],[1, 1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = X TII subcells: tii[1,1] := {0}