TII subcells for the PSO(6,6) x Spin(8,4) block of PSO12 # cell#0 , |C| = 1 special orbit = [11, 1] special rep = [[], [6]] , dim = 1 cell rep = phi[[],[6]] TII depth = 1 TII multiplicity polynomial = X TII subcells: tii[27,1] := {0} cell#1 , |C| = 6 special orbit = [9, 3] special rep = [[1], [5]] , dim = 6 cell rep = phi[[1],[5]] TII depth = 1 TII multiplicity polynomial = 6*X TII subcells: tii[26,1] := {1} tii[26,2] := {0} tii[26,3] := {2} tii[26,4] := {3} tii[26,5] := {4} tii[26,6] := {5} cell#2 , |C| = 5 special orbit = [9, 1, 1, 1] special rep = [[], [5, 1]] , dim = 5 cell rep = phi[[],[5, 1]] TII depth = 1 TII multiplicity polynomial = 5*X TII subcells: tii[25,1] := {4} tii[25,2] := {3} tii[25,3] := {1} tii[25,4] := {0} tii[25,5] := {2} cell#3 , |C| = 15 special orbit = [7, 5] special rep = [[2], [4]] , dim = 15 cell rep = phi[[2],[4]] TII depth = 2 TII multiplicity polynomial = 15*X TII subcells: tii[24,1] := {2} tii[24,2] := {6} tii[24,3] := {11} tii[24,4] := {12} tii[24,5] := {13} tii[24,6] := {14} tii[24,7] := {0} tii[24,8] := {1} tii[24,9] := {4} tii[24,10] := {5} tii[24,11] := {3} tii[24,12] := {7} tii[24,13] := {8} tii[24,14] := {9} tii[24,15] := {10} cell#4 , |C| = 15 special orbit = [7, 5] special rep = [[2], [4]] , dim = 15 cell rep = phi[[2],[4]] TII depth = 2 TII multiplicity polynomial = 15*X TII subcells: tii[24,1] := {2} tii[24,2] := {6} tii[24,3] := {11} tii[24,4] := {12} tii[24,5] := {13} tii[24,6] := {14} tii[24,7] := {0} tii[24,8] := {1} tii[24,9] := {4} tii[24,10] := {5} tii[24,11] := {3} tii[24,12] := {7} tii[24,13] := {8} tii[24,14] := {9} tii[24,15] := {10} cell#5 , |C| = 5 special orbit = [9, 1, 1, 1] special rep = [[], [5, 1]] , dim = 5 cell rep = phi[[],[5, 1]] TII depth = 1 TII multiplicity polynomial = 5*X TII subcells: tii[25,1] := {4} tii[25,2] := {3} tii[25,3] := {2} tii[25,4] := {1} tii[25,5] := {0} cell#6 , |C| = 33 special orbit = [7, 3, 1, 1] special rep = [[1], [4, 1]] , dim = 24 cell rep = phi[[],[4, 2]]+phi[[1],[4, 1]] TII depth = 2 TII multiplicity polynomial = 9*X^2+15*X TII subcells: tii[23,1] := {1, 32} tii[23,2] := {7, 28} tii[23,3] := {16, 27} tii[23,4] := {4} tii[23,5] := {0, 31} tii[23,6] := {9} tii[23,7] := {2, 30} tii[23,8] := {12} tii[23,9] := {18} tii[23,10] := {20} tii[23,11] := {5} tii[23,12] := {3, 26} tii[23,13] := {8} tii[23,14] := {13} tii[23,15] := {14} tii[23,16] := {11} tii[23,17] := {17} tii[23,18] := {19} tii[23,19] := {22} tii[23,20] := {23} tii[23,21] := {29} tii[23,22] := {6, 25} tii[23,23] := {10, 21} tii[23,24] := {15, 24} cell#7 , |C| = 33 special orbit = [7, 3, 1, 1] special rep = [[1], [4, 1]] , dim = 24 cell rep = phi[[],[4, 2]]+phi[[1],[4, 1]] TII depth = 2 TII multiplicity polynomial = 9*X^2+15*X TII subcells: tii[23,1] := {10, 32} tii[23,2] := {2, 29} tii[23,3] := {15, 16} tii[23,4] := {18} tii[23,5] := {4, 31} tii[23,6] := {14} tii[23,7] := {1, 30} tii[23,8] := {19} tii[23,9] := {27} tii[23,10] := {28} tii[23,11] := {7} tii[23,12] := {0, 24} tii[23,13] := {11} tii[23,14] := {20} tii[23,15] := {22} tii[23,16] := {5} tii[23,17] := {12} tii[23,18] := {13} tii[23,19] := {21} tii[23,20] := {23} tii[23,21] := {26} tii[23,22] := {6, 25} tii[23,23] := {3, 17} tii[23,24] := {8, 9} cell#8 , |C| = 85 special orbit = [5, 5, 1, 1] special rep = [[2], [3, 1]] , dim = 45 cell rep = phi[[2],[3, 1]]+phi[[3],[2, 1]] TII depth = 3 TII multiplicity polynomial = 40*X^2+5*X TII subcells: tii[19,1] := {40} tii[19,2] := {69, 70} tii[19,3] := {26, 27} tii[19,4] := {9} tii[19,5] := {57, 58} tii[19,6] := {61, 62} tii[19,7] := {71, 72} tii[19,8] := {75, 76} tii[19,9] := {11, 12} tii[19,10] := {23} tii[19,11] := {43, 44} tii[19,12] := {45, 46} tii[19,13] := {3, 4} tii[19,14] := {15, 16} tii[19,15] := {65, 66} tii[19,16] := {19, 20} tii[19,17] := {67, 68} tii[19,18] := {59, 60} tii[19,19] := {63, 64} tii[19,20] := {49, 50} tii[19,21] := {73, 74} tii[19,22] := {53, 54} tii[19,23] := {77, 78} tii[19,24] := {79, 80} tii[19,25] := {81, 82} tii[19,26] := {83, 84} tii[19,27] := {13, 14} tii[19,28] := {30, 31} tii[19,29] := {36, 37} tii[19,30] := {0, 1} tii[19,31] := {47, 48} tii[19,32] := {5, 6} tii[19,33] := {51, 52} tii[19,34] := {7, 8} tii[19,35] := {17, 18} tii[19,36] := {21, 22} tii[19,37] := {24, 25} tii[19,38] := {28, 29} tii[19,39] := {34, 35} tii[19,40] := {32, 33} tii[19,41] := {38, 39} tii[19,42] := {10} tii[19,43] := {41, 42} tii[19,44] := {55, 56} tii[19,45] := {2} cell#9 , |C| = 30 special orbit = [5, 3, 3, 1] special rep = [[1], [3, 2]] , dim = 30 cell rep = phi[[1],[3, 2]] TII depth = 2 TII multiplicity polynomial = 30*X TII subcells: tii[18,1] := {27} tii[18,2] := {29} tii[18,3] := {1} tii[18,4] := {7} tii[18,5] := {18} tii[18,6] := {3} tii[18,7] := {23} tii[18,8] := {11} tii[18,9] := {6} tii[18,10] := {12} tii[18,11] := {14} tii[18,12] := {17} tii[18,13] := {24} tii[18,14] := {25} tii[18,15] := {0} tii[18,16] := {4} tii[18,17] := {8} tii[18,18] := {9} tii[18,19] := {13} tii[18,20] := {15} tii[18,21] := {22} tii[18,22] := {19} tii[18,23] := {20} tii[18,24] := {21} tii[18,25] := {26} tii[18,26] := {28} tii[18,27] := {2} tii[18,28] := {16} tii[18,29] := {5} tii[18,30] := {10} cell#10 , |C| = 30 special orbit = [5, 3, 3, 1] special rep = [[1], [3, 2]] , dim = 30 cell rep = phi[[1],[3, 2]] TII depth = 2 TII multiplicity polynomial = 30*X TII subcells: tii[18,1] := {29} tii[18,2] := {21} tii[18,3] := {17} tii[18,4] := {7} tii[18,5] := {26} tii[18,6] := {23} tii[18,7] := {28} tii[18,8] := {1} tii[18,9] := {20} tii[18,10] := {24} tii[18,11] := {25} tii[18,12] := {6} tii[18,13] := {10} tii[18,14] := {12} tii[18,15] := {9} tii[18,16] := {14} tii[18,17] := {18} tii[18,18] := {19} tii[18,19] := {11} tii[18,20] := {13} tii[18,21] := {16} tii[18,22] := {3} tii[18,23] := {4} tii[18,24] := {27} tii[18,25] := {8} tii[18,26] := {15} tii[18,27] := {5} tii[18,28] := {22} tii[18,29] := {2} tii[18,30] := {0} cell#11 , |C| = 10 special orbit = [7, 1, 1, 1, 1, 1] special rep = [[], [4, 1, 1]] , dim = 10 cell rep = phi[[],[4, 1, 1]] TII depth = 1 TII multiplicity polynomial = 10*X TII subcells: tii[22,1] := {9} tii[22,2] := {8} tii[22,3] := {7} tii[22,4] := {6} tii[22,5] := {4} tii[22,6] := {2} tii[22,7] := {5} tii[22,8] := {3} tii[22,9] := {0} tii[22,10] := {1} cell#12 , |C| = 52 special orbit = [5, 3, 1, 1, 1, 1] special rep = [[1], [3, 1, 1]] , dim = 36 cell rep = phi[[],[3, 2, 1]]+phi[[1],[3, 1, 1]] TII depth = 2 TII multiplicity polynomial = 16*X^2+20*X TII subcells: tii[16,1] := {7, 50} tii[16,2] := {22, 41} tii[16,3] := {3, 51} tii[16,4] := {14, 30} tii[16,5] := {1, 49} tii[16,6] := {21, 39} tii[16,7] := {12} tii[16,8] := {4, 48} tii[16,9] := {20} tii[16,10] := {31} tii[16,11] := {34} tii[16,12] := {0, 45} tii[16,13] := {13} tii[16,14] := {23} tii[16,15] := {25} tii[16,16] := {33} tii[16,17] := {36} tii[16,18] := {43} tii[16,19] := {8} tii[16,20] := {15} tii[16,21] := {16} tii[16,22] := {24} tii[16,23] := {26} tii[16,24] := {6, 46} tii[16,25] := {38} tii[16,26] := {32} tii[16,27] := {35} tii[16,28] := {18, 28} tii[16,29] := {44} tii[16,30] := {47} tii[16,31] := {11, 42} tii[16,32] := {2, 40} tii[16,33] := {17, 37} tii[16,34] := {5, 29} tii[16,35] := {9, 27} tii[16,36] := {10, 19} cell#13 , |C| = 33 special orbit = [7, 3, 1, 1] special rep = [[1], [4, 1]] , dim = 24 cell rep = phi[[],[4, 2]]+phi[[1],[4, 1]] TII depth = 2 TII multiplicity polynomial = 9*X^2+15*X TII subcells: tii[23,1] := {6, 32} tii[23,2] := {8, 30} tii[23,3] := {7, 26} tii[23,4] := {10} tii[23,5] := {3, 31} tii[23,6] := {15} tii[23,7] := {2, 29} tii[23,8] := {19} tii[23,9] := {23} tii[23,10] := {24} tii[23,11] := {9} tii[23,12] := {5, 28} tii[23,13] := {14} tii[23,14] := {20} tii[23,15] := {21} tii[23,16] := {11} tii[23,17] := {16} tii[23,18] := {17} tii[23,19] := {12} tii[23,20] := {13} tii[23,21] := {18} tii[23,22] := {0, 27} tii[23,23] := {1, 25} tii[23,24] := {4, 22} cell#14 , |C| = 45 special orbit = [5, 3, 2, 2] special rep = [[1, 1], [3, 1]] , dim = 45 cell rep = phi[[1, 1],[3, 1]] TII depth = 4 TII multiplicity polynomial = 45*X TII subcells: tii[17,1] := {18} tii[17,2] := {15} tii[17,3] := {28} tii[17,4] := {23} tii[17,5] := {32} tii[17,6] := {40} tii[17,7] := {43} tii[17,8] := {31} tii[17,9] := {39} tii[17,10] := {42} tii[17,11] := {41} tii[17,12] := {44} tii[17,13] := {0} tii[17,14] := {14} tii[17,15] := {1} tii[17,16] := {3} tii[17,17] := {4} tii[17,18] := {22} tii[17,19] := {2} tii[17,20] := {33} tii[17,21] := {6} tii[17,22] := {35} tii[17,23] := {7} tii[17,24] := {25} tii[17,25] := {10} tii[17,26] := {27} tii[17,27] := {12} tii[17,28] := {20} tii[17,29] := {21} tii[17,30] := {5} tii[17,31] := {9} tii[17,32] := {11} tii[17,33] := {16} tii[17,34] := {34} tii[17,35] := {17} tii[17,36] := {36} tii[17,37] := {29} tii[17,38] := {30} tii[17,39] := {24} tii[17,40] := {26} tii[17,41] := {37} tii[17,42] := {38} tii[17,43] := {8} tii[17,44] := {13} tii[17,45] := {19} cell#15 , |C| = 33 special orbit = [7, 3, 1, 1] special rep = [[1], [4, 1]] , dim = 24 cell rep = phi[[],[4, 2]]+phi[[1],[4, 1]] TII depth = 2 TII multiplicity polynomial = 9*X^2+15*X TII subcells: tii[23,1] := {6, 32} tii[23,2] := {8, 30} tii[23,3] := {7, 26} tii[23,4] := {10} tii[23,5] := {3, 31} tii[23,6] := {15} tii[23,7] := {2, 29} tii[23,8] := {19} tii[23,9] := {23} tii[23,10] := {24} tii[23,11] := {9} tii[23,12] := {5, 28} tii[23,13] := {14} tii[23,14] := {20} tii[23,15] := {21} tii[23,16] := {11} tii[23,17] := {16} tii[23,18] := {17} tii[23,19] := {12} tii[23,20] := {13} tii[23,21] := {18} tii[23,22] := {0, 27} tii[23,23] := {1, 25} tii[23,24] := {4, 22} cell#16 , |C| = 45 special orbit = [5, 3, 2, 2] special rep = [[1, 1], [3, 1]] , dim = 45 cell rep = phi[[1, 1],[3, 1]] TII depth = 4 TII multiplicity polynomial = 45*X TII subcells: tii[17,1] := {18} tii[17,2] := {15} tii[17,3] := {28} tii[17,4] := {23} tii[17,5] := {32} tii[17,6] := {40} tii[17,7] := {43} tii[17,8] := {31} tii[17,9] := {39} tii[17,10] := {42} tii[17,11] := {41} tii[17,12] := {44} tii[17,13] := {0} tii[17,14] := {14} tii[17,15] := {1} tii[17,16] := {3} tii[17,17] := {4} tii[17,18] := {22} tii[17,19] := {2} tii[17,20] := {33} tii[17,21] := {6} tii[17,22] := {35} tii[17,23] := {7} tii[17,24] := {25} tii[17,25] := {10} tii[17,26] := {27} tii[17,27] := {12} tii[17,28] := {20} tii[17,29] := {21} tii[17,30] := {5} tii[17,31] := {9} tii[17,32] := {11} tii[17,33] := {16} tii[17,34] := {34} tii[17,35] := {17} tii[17,36] := {36} tii[17,37] := {29} tii[17,38] := {30} tii[17,39] := {24} tii[17,40] := {26} tii[17,41] := {37} tii[17,42] := {38} tii[17,43] := {8} tii[17,44] := {13} tii[17,45] := {19} cell#17 , |C| = 52 special orbit = [5, 3, 1, 1, 1, 1] special rep = [[1], [3, 1, 1]] , dim = 36 cell rep = phi[[],[3, 2, 1]]+phi[[1],[3, 1, 1]] TII depth = 2 TII multiplicity polynomial = 16*X^2+20*X TII subcells: tii[16,1] := {15, 51} tii[16,2] := {16, 46} tii[16,3] := {9, 50} tii[16,4] := {11, 41} tii[16,5] := {5, 48} tii[16,6] := {13, 47} tii[16,7] := {24} tii[16,8] := {10, 49} tii[16,9] := {29} tii[16,10] := {37} tii[16,11] := {38} tii[16,12] := {2, 44} tii[16,13] := {19} tii[16,14] := {30} tii[16,15] := {31} tii[16,16] := {25} tii[16,17] := {26} tii[16,18] := {34} tii[16,19] := {14} tii[16,20] := {21} tii[16,21] := {23} tii[16,22] := {17} tii[16,23] := {18} tii[16,24] := {3, 42} tii[16,25] := {27} tii[16,26] := {20} tii[16,27] := {22} tii[16,28] := {8, 43} tii[16,29] := {32} tii[16,30] := {40} tii[16,31] := {7, 45} tii[16,32] := {0, 35} tii[16,33] := {12, 39} tii[16,34] := {1, 28} tii[16,35] := {6, 33} tii[16,36] := {4, 36} cell#18 , |C| = 52 special orbit = [5, 3, 1, 1, 1, 1] special rep = [[1], [3, 1, 1]] , dim = 36 cell rep = phi[[],[3, 2, 1]]+phi[[1],[3, 1, 1]] TII depth = 2 TII multiplicity polynomial = 16*X^2+20*X TII subcells: tii[16,1] := {15, 51} tii[16,2] := {16, 46} tii[16,3] := {9, 50} tii[16,4] := {11, 41} tii[16,5] := {5, 48} tii[16,6] := {13, 47} tii[16,7] := {24} tii[16,8] := {10, 49} tii[16,9] := {29} tii[16,10] := {37} tii[16,11] := {38} tii[16,12] := {2, 44} tii[16,13] := {19} tii[16,14] := {30} tii[16,15] := {31} tii[16,16] := {25} tii[16,17] := {26} tii[16,18] := {34} tii[16,19] := {14} tii[16,20] := {21} tii[16,21] := {23} tii[16,22] := {17} tii[16,23] := {18} tii[16,24] := {3, 42} tii[16,25] := {27} tii[16,26] := {20} tii[16,27] := {22} tii[16,28] := {8, 43} tii[16,29] := {32} tii[16,30] := {40} tii[16,31] := {7, 45} tii[16,32] := {0, 35} tii[16,33] := {12, 39} tii[16,34] := {1, 28} tii[16,35] := {6, 33} tii[16,36] := {4, 36} cell#19 , |C| = 30 special orbit = [4, 4, 3, 1] special rep = [[2], [2, 2]] , dim = 30 cell rep = phi[[2],[2, 2]] TII depth = 3 TII multiplicity polynomial = 30*X TII subcells: tii[14,1] := {29} tii[14,2] := {10} tii[14,3] := {16} tii[14,4] := {12} tii[14,5] := {13} tii[14,6] := {19} tii[14,7] := {20} tii[14,8] := {21} tii[14,9] := {25} tii[14,10] := {26} tii[14,11] := {6} tii[14,12] := {7} tii[14,13] := {14} tii[14,14] := {3} tii[14,15] := {15} tii[14,16] := {4} tii[14,17] := {17} tii[14,18] := {18} tii[14,19] := {24} tii[14,20] := {8} tii[14,21] := {9} tii[14,22] := {22} tii[14,23] := {23} tii[14,24] := {27} tii[14,25] := {28} tii[14,26] := {0} tii[14,27] := {1} tii[14,28] := {2} tii[14,29] := {5} tii[14,30] := {11} cell#20 , |C| = 30 special orbit = [4, 4, 3, 1] special rep = [[2], [2, 2]] , dim = 30 cell rep = phi[[2],[2, 2]] TII depth = 3 TII multiplicity polynomial = 30*X TII subcells: tii[14,1] := {29} tii[14,2] := {10} tii[14,3] := {16} tii[14,4] := {12} tii[14,5] := {13} tii[14,6] := {19} tii[14,7] := {20} tii[14,8] := {21} tii[14,9] := {25} tii[14,10] := {26} tii[14,11] := {6} tii[14,12] := {7} tii[14,13] := {14} tii[14,14] := {3} tii[14,15] := {15} tii[14,16] := {4} tii[14,17] := {17} tii[14,18] := {18} tii[14,19] := {24} tii[14,20] := {8} tii[14,21] := {9} tii[14,22] := {22} tii[14,23] := {23} tii[14,24] := {27} tii[14,25] := {28} tii[14,26] := {0} tii[14,27] := {1} tii[14,28] := {2} tii[14,29] := {5} tii[14,30] := {11} cell#21 , |C| = 30 special orbit = [3, 3, 3, 1, 1, 1] special rep = [[1], [2, 2, 1]] , dim = 30 cell rep = phi[[1],[2, 2, 1]] TII depth = 2 TII multiplicity polynomial = 30*X TII subcells: tii[9,1] := {25} tii[9,2] := {6} tii[9,3] := {28} tii[9,4] := {29} tii[9,5] := {4} tii[9,6] := {3} tii[9,7] := {7} tii[9,8] := {13} tii[9,9] := {15} tii[9,10] := {12} tii[9,11] := {20} tii[9,12] := {21} tii[9,13] := {14} tii[9,14] := {16} tii[9,15] := {23} tii[9,16] := {27} tii[9,17] := {9} tii[9,18] := {11} tii[9,19] := {17} tii[9,20] := {8} tii[9,21] := {10} tii[9,22] := {22} tii[9,23] := {2} tii[9,24] := {18} tii[9,25] := {19} tii[9,26] := {5} tii[9,27] := {26} tii[9,28] := {24} tii[9,29] := {1} tii[9,30] := {0} cell#22 , |C| = 50 special orbit = [3, 3, 2, 2, 1, 1] special rep = [[1, 1], [2, 1, 1]] , dim = 45 cell rep = phi[[],[2, 2, 2]]+phi[[1, 1],[2, 1, 1]] TII depth = 3 TII multiplicity polynomial = 5*X^2+40*X TII subcells: tii[8,1] := {15, 49} tii[8,2] := {10} tii[8,3] := {8, 47} tii[8,4] := {18} tii[8,5] := {29} tii[8,6] := {31} tii[8,7] := {30} tii[8,8] := {32} tii[8,9] := {25} tii[8,10] := {36} tii[8,11] := {37} tii[8,12] := {40} tii[8,13] := {26} tii[8,14] := {41} tii[8,15] := {27} tii[8,16] := {38} tii[8,17] := {43} tii[8,18] := {44} tii[8,19] := {48} tii[8,20] := {0} tii[8,21] := {2} tii[8,22] := {3} tii[8,23] := {20} tii[8,24] := {5} tii[8,25] := {22} tii[8,26] := {6} tii[8,27] := {13} tii[8,28] := {14} tii[8,29] := {11} tii[8,30] := {16} tii[8,31] := {12} tii[8,32] := {17} tii[8,33] := {4, 42} tii[8,34] := {23} tii[8,35] := {24} tii[8,36] := {28} tii[8,37] := {39} tii[8,38] := {19} tii[8,39] := {21} tii[8,40] := {9, 45} tii[8,41] := {33} tii[8,42] := {34} tii[8,43] := {46} tii[8,44] := {7} tii[8,45] := {1, 35} cell#23 , |C| = 50 special orbit = [3, 3, 2, 2, 1, 1] special rep = [[1, 1], [2, 1, 1]] , dim = 45 cell rep = phi[[],[2, 2, 2]]+phi[[1, 1],[2, 1, 1]] TII depth = 3 TII multiplicity polynomial = 5*X^2+40*X TII subcells: tii[8,1] := {15, 49} tii[8,2] := {10} tii[8,3] := {8, 47} tii[8,4] := {18} tii[8,5] := {29} tii[8,6] := {31} tii[8,7] := {30} tii[8,8] := {32} tii[8,9] := {25} tii[8,10] := {36} tii[8,11] := {37} tii[8,12] := {40} tii[8,13] := {26} tii[8,14] := {41} tii[8,15] := {27} tii[8,16] := {38} tii[8,17] := {43} tii[8,18] := {44} tii[8,19] := {48} tii[8,20] := {0} tii[8,21] := {2} tii[8,22] := {3} tii[8,23] := {20} tii[8,24] := {5} tii[8,25] := {22} tii[8,26] := {6} tii[8,27] := {13} tii[8,28] := {14} tii[8,29] := {11} tii[8,30] := {16} tii[8,31] := {12} tii[8,32] := {17} tii[8,33] := {4, 42} tii[8,34] := {23} tii[8,35] := {24} tii[8,36] := {28} tii[8,37] := {39} tii[8,38] := {19} tii[8,39] := {21} tii[8,40] := {9, 45} tii[8,41] := {33} tii[8,42] := {34} tii[8,43] := {46} tii[8,44] := {7} tii[8,45] := {1, 35} cell#24 , |C| = 10 special orbit = [7, 1, 1, 1, 1, 1] special rep = [[], [4, 1, 1]] , dim = 10 cell rep = phi[[],[4, 1, 1]] TII depth = 1 TII multiplicity polynomial = 10*X TII subcells: tii[22,1] := {7} tii[22,2] := {4} tii[22,3] := {6} tii[22,4] := {0} tii[22,5] := {3} tii[22,6] := {1} tii[22,7] := {9} tii[22,8] := {8} tii[22,9] := {5} tii[22,10] := {2} cell#25 , |C| = 56 special orbit = [5, 3, 1, 1, 1, 1] special rep = [[1], [3, 1, 1]] , dim = 36 cell rep = phi[[1],[3, 1, 1]]+phi[[3],[1, 1, 1]] TII depth = 2 TII multiplicity polynomial = 20*X^2+16*X TII subcells: tii[16,1] := {13} tii[16,2] := {43} tii[16,3] := {8} tii[16,4] := {36} tii[16,5] := {2} tii[16,6] := {17} tii[16,7] := {5, 6} tii[16,8] := {7} tii[16,9] := {11, 12} tii[16,10] := {21, 22} tii[16,11] := {23, 24} tii[16,12] := {0} tii[16,13] := {19, 20} tii[16,14] := {37, 38} tii[16,15] := {39, 40} tii[16,16] := {48, 49} tii[16,17] := {50, 51} tii[16,18] := {54, 55} tii[16,19] := {14, 15} tii[16,20] := {27, 28} tii[16,21] := {31, 32} tii[16,22] := {44, 45} tii[16,23] := {46, 47} tii[16,24] := {10} tii[16,25] := {52, 53} tii[16,26] := {29, 30} tii[16,27] := {33, 34} tii[16,28] := {9} tii[16,29] := {41, 42} tii[16,30] := {25, 26} tii[16,31] := {16} tii[16,32] := {4} tii[16,33] := {35} tii[16,34] := {1} tii[16,35] := {18} tii[16,36] := {3} cell#26 , |C| = 10 special orbit = [5, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [3, 1, 1, 1]] , dim = 10 cell rep = phi[[],[3, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 10*X TII subcells: tii[15,1] := {8} tii[15,2] := {6} tii[15,3] := {2} tii[15,4] := {0} tii[15,5] := {9} tii[15,6] := {7} tii[15,7] := {5} tii[15,8] := {4} tii[15,9] := {1} tii[15,10] := {3} cell#27 , |C| = 39 special orbit = [3, 3, 1, 1, 1, 1, 1, 1] special rep = [[1], [2, 1, 1, 1]] , dim = 24 cell rep = phi[[1],[2, 1, 1, 1]]+phi[[2],[1, 1, 1, 1]] TII depth = 2 TII multiplicity polynomial = 15*X^2+9*X TII subcells: tii[7,1] := {16} tii[7,2] := {8} tii[7,3] := {15} tii[7,4] := {4, 5} tii[7,5] := {9, 10} tii[7,6] := {11, 12} tii[7,7] := {22, 24} tii[7,8] := {26, 28} tii[7,9] := {35, 36} tii[7,10] := {17, 18} tii[7,11] := {19, 20} tii[7,12] := {3} tii[7,13] := {31, 32} tii[7,14] := {13, 14} tii[7,15] := {21, 23} tii[7,16] := {25, 27} tii[7,17] := {6} tii[7,18] := {33, 34} tii[7,19] := {2} tii[7,20] := {29, 30} tii[7,21] := {37, 38} tii[7,22] := {7} tii[7,23] := {1} tii[7,24] := {0} cell#28 , |C| = 10 special orbit = [5, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [3, 1, 1, 1]] , dim = 10 cell rep = phi[[],[3, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 10*X TII subcells: tii[15,1] := {9} tii[15,2] := {4} tii[15,3] := {8} tii[15,4] := {6} tii[15,5] := {0} tii[15,6] := {3} tii[15,7] := {7} tii[15,8] := {2} tii[15,9] := {5} tii[15,10] := {1} cell#29 , |C| = 10 special orbit = [5, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [3, 1, 1, 1]] , dim = 10 cell rep = phi[[],[3, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 10*X TII subcells: tii[15,1] := {9} tii[15,2] := {4} tii[15,3] := {8} tii[15,4] := {6} tii[15,5] := {0} tii[15,6] := {3} tii[15,7] := {7} tii[15,8] := {2} tii[15,9] := {5} tii[15,10] := {1} cell#30 , |C| = 5 special orbit = [3, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [2, 1, 1, 1, 1]] , dim = 5 cell rep = phi[[],[2, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 5*X TII subcells: tii[6,1] := {4} tii[6,2] := {0} tii[6,3] := {3} tii[6,4] := {1} tii[6,5] := {2} cell#31 , |C| = 5 special orbit = [3, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [2, 1, 1, 1, 1]] , dim = 5 cell rep = phi[[],[2, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 5*X TII subcells: tii[6,1] := {4} tii[6,2] := {0} tii[6,3] := {3} tii[6,4] := {1} tii[6,5] := {2}