TII subcells for the PSO(7,5) x Spin(9,3) block of PSO12 # cell#0 , |C| = 1 special orbit = [11, 1] special rep = [[], [6]] , dim = 1 cell rep = phi[[],[6]] TII depth = 1 TII multiplicity polynomial = X TII subcells: tii[27,1] := {0} cell#1 , |C| = 5 special orbit = [9, 1, 1, 1] special rep = [[], [5, 1]] , dim = 5 cell rep = phi[[],[5, 1]] TII depth = 1 TII multiplicity polynomial = 5*X TII subcells: tii[25,1] := {1} tii[25,2] := {0} tii[25,3] := {2} tii[25,4] := {3} tii[25,5] := {4} cell#2 , |C| = 6 special orbit = [9, 3] special rep = [[1], [5]] , dim = 6 cell rep = phi[[1],[5]] TII depth = 1 TII multiplicity polynomial = 6*X TII subcells: tii[26,1] := {0} tii[26,2] := {1} tii[26,3] := {2} tii[26,4] := {3} tii[26,5] := {4} tii[26,6] := {5} cell#3 , |C| = 5 special orbit = [9, 1, 1, 1] special rep = [[], [5, 1]] , dim = 5 cell rep = phi[[],[5, 1]] TII depth = 1 TII multiplicity polynomial = 5*X TII subcells: tii[25,1] := {3} tii[25,2] := {2} tii[25,3] := {0} tii[25,4] := {1} tii[25,5] := {4} cell#4 , |C| = 33 special orbit = [7, 3, 1, 1] special rep = [[1], [4, 1]] , dim = 24 cell rep = phi[[],[4, 2]]+phi[[1],[4, 1]] TII depth = 2 TII multiplicity polynomial = 9*X^2+15*X TII subcells: tii[23,1] := {2, 27} tii[23,2] := {10, 11} tii[23,3] := {28, 29} tii[23,4] := {6} tii[23,5] := {0, 19} tii[23,6] := {9} tii[23,7] := {1, 12} tii[23,8] := {16} tii[23,9] := {24} tii[23,10] := {26} tii[23,11] := {3} tii[23,12] := {4, 5} tii[23,13] := {8} tii[23,14] := {17} tii[23,15] := {18} tii[23,16] := {15} tii[23,17] := {23} tii[23,18] := {25} tii[23,19] := {30} tii[23,20] := {31} tii[23,21] := {32} tii[23,22] := {7, 22} tii[23,23] := {13, 14} tii[23,24] := {20, 21} cell#5 , |C| = 5 special orbit = [9, 1, 1, 1] special rep = [[], [5, 1]] , dim = 5 cell rep = phi[[],[5, 1]] TII depth = 1 TII multiplicity polynomial = 5*X TII subcells: tii[25,1] := {4} tii[25,2] := {3} tii[25,3] := {2} tii[25,4] := {1} tii[25,5] := {0} cell#6 , |C| = 33 special orbit = [7, 3, 1, 1] special rep = [[1], [4, 1]] , dim = 24 cell rep = phi[[],[4, 2]]+phi[[1],[4, 1]] TII depth = 2 TII multiplicity polynomial = 9*X^2+15*X TII subcells: tii[23,1] := {3, 32} tii[23,2] := {9, 30} tii[23,3] := {19, 29} tii[23,4] := {1} tii[23,5] := {0, 28} tii[23,6] := {4} tii[23,7] := {2, 23} tii[23,8] := {5} tii[23,9] := {11} tii[23,10] := {12} tii[23,11] := {7} tii[23,12] := {6, 27} tii[23,13] := {10} tii[23,14] := {15} tii[23,15] := {16} tii[23,16] := {14} tii[23,17] := {20} tii[23,18] := {21} tii[23,19] := {24} tii[23,20] := {25} tii[23,21] := {31} tii[23,22] := {8, 18} tii[23,23] := {13, 22} tii[23,24] := {17, 26} cell#7 , |C| = 10 special orbit = [7, 1, 1, 1, 1, 1] special rep = [[], [4, 1, 1]] , dim = 10 cell rep = phi[[],[4, 1, 1]] TII depth = 1 TII multiplicity polynomial = 10*X TII subcells: tii[22,1] := {3} tii[22,2] := {2} tii[22,3] := {5} tii[22,4] := {0} tii[22,5] := {1} tii[22,6] := {4} tii[22,7] := {8} tii[22,8] := {6} tii[22,9] := {7} tii[22,10] := {9} cell#8 , |C| = 30 special orbit = [5, 3, 3, 1] special rep = [[1], [3, 2]] , dim = 30 cell rep = phi[[1],[3, 2]] TII depth = 2 TII multiplicity polynomial = 30*X TII subcells: tii[18,1] := {23} tii[18,2] := {29} tii[18,3] := {1} tii[18,4] := {11} tii[18,5] := {10} tii[18,6] := {4} tii[18,7] := {18} tii[18,8] := {19} tii[18,9] := {7} tii[18,10] := {14} tii[18,11] := {16} tii[18,12] := {24} tii[18,13] := {26} tii[18,14] := {27} tii[18,15] := {0} tii[18,16] := {3} tii[18,17] := {8} tii[18,18] := {9} tii[18,19] := {15} tii[18,20] := {17} tii[18,21] := {20} tii[18,22] := {21} tii[18,23] := {22} tii[18,24] := {12} tii[18,25] := {25} tii[18,26] := {28} tii[18,27] := {2} tii[18,28] := {5} tii[18,29] := {6} tii[18,30] := {13} cell#9 , |C| = 10 special orbit = [7, 1, 1, 1, 1, 1] special rep = [[], [4, 1, 1]] , dim = 10 cell rep = phi[[],[4, 1, 1]] TII depth = 1 TII multiplicity polynomial = 10*X TII subcells: tii[22,1] := {9} tii[22,2] := {8} tii[22,3] := {7} tii[22,4] := {6} tii[22,5] := {3} tii[22,6] := {5} tii[22,7] := {1} tii[22,8] := {0} tii[22,9] := {2} tii[22,10] := {4} cell#10 , |C| = 52 special orbit = [5, 3, 1, 1, 1, 1] special rep = [[1], [3, 1, 1]] , dim = 36 cell rep = phi[[],[3, 2, 1]]+phi[[1],[3, 1, 1]] TII depth = 2 TII multiplicity polynomial = 16*X^2+20*X TII subcells: tii[16,1] := {3, 40} tii[16,2] := {16, 37} tii[16,3] := {8, 44} tii[16,4] := {25, 45} tii[16,5] := {6, 35} tii[16,6] := {36, 49} tii[16,7] := {1} tii[16,8] := {0, 32} tii[16,9] := {4} tii[16,10] := {10} tii[16,11] := {11} tii[16,12] := {2, 24} tii[16,13] := {9} tii[16,14] := {17} tii[16,15] := {18} tii[16,16] := {27} tii[16,17] := {29} tii[16,18] := {42} tii[16,19] := {15} tii[16,20] := {26} tii[16,21] := {28} tii[16,22] := {38} tii[16,23] := {39} tii[16,24] := {14, 31} tii[16,25] := {48} tii[16,26] := {46} tii[16,27] := {47} tii[16,28] := {33, 43} tii[16,29] := {50} tii[16,30] := {51} tii[16,31] := {5, 20} tii[16,32] := {7, 21} tii[16,33] := {12, 30} tii[16,34] := {13, 23} tii[16,35] := {19, 41} tii[16,36] := {22, 34} cell#11 , |C| = 10 special orbit = [7, 1, 1, 1, 1, 1] special rep = [[], [4, 1, 1]] , dim = 10 cell rep = phi[[],[4, 1, 1]] TII depth = 1 TII multiplicity polynomial = 10*X TII subcells: tii[22,1] := {0} tii[22,2] := {4} tii[22,3] := {7} tii[22,4] := {2} tii[22,5] := {5} tii[22,6] := {1} tii[22,7] := {9} tii[22,8] := {8} tii[22,9] := {6} tii[22,10] := {3} cell#12 , |C| = 10 special orbit = [5, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [3, 1, 1, 1]] , dim = 10 cell rep = phi[[],[3, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 10*X TII subcells: tii[15,1] := {0} tii[15,2] := {4} tii[15,3] := {1} tii[15,4] := {3} tii[15,5] := {9} tii[15,6] := {6} tii[15,7] := {2} tii[15,8] := {8} tii[15,9] := {5} tii[15,10] := {7}