TII subcells for the PSO(8,4) x Spin(6,6) block of PSO12 # cell#0 , |C| = 5 special orbit = [9, 1, 1, 1] special rep = [[], [5, 1]] , dim = 5 cell rep = phi[[],[5, 1]] TII depth = 1 TII multiplicity polynomial = 5*X TII subcells: tii[25,1] := {0} tii[25,2] := {3} tii[25,3] := {1} tii[25,4] := {4} tii[25,5] := {2} cell#1 , |C| = 33 special orbit = [7, 3, 1, 1] special rep = [[1], [4, 1]] , dim = 24 cell rep = phi[[],[4, 2]]+phi[[1],[4, 1]] TII depth = 2 TII multiplicity polynomial = 9*X^2+15*X TII subcells: tii[23,1] := {31, 32} tii[23,2] := {29, 30} tii[23,3] := {22, 23} tii[23,4] := {2} tii[23,5] := {27, 28} tii[23,6] := {4} tii[23,7] := {20, 21} tii[23,8] := {0} tii[23,9] := {5} tii[23,10] := {7} tii[23,11] := {15} tii[23,12] := {25, 26} tii[23,13] := {3} tii[23,14] := {9} tii[23,15] := {10} tii[23,16] := {1} tii[23,17] := {6} tii[23,18] := {8} tii[23,19] := {16} tii[23,20] := {17} tii[23,21] := {24} tii[23,22] := {11, 12} tii[23,23] := {18, 19} tii[23,24] := {13, 14} cell#2 , |C| = 50 special orbit = [5, 5, 1, 1] special rep = [[2], [3, 1]] , dim = 45 cell rep = phi[[],[3, 3]]+phi[[2],[3, 1]] TII depth = 3 TII multiplicity polynomial = 5*X^2+40*X TII subcells: tii[19,1] := {14, 48} tii[19,2] := {42} tii[19,3] := {3} tii[19,4] := {4, 40} tii[19,5] := {15} tii[19,6] := {16} tii[19,7] := {28} tii[19,8] := {30} tii[19,9] := {10} tii[19,10] := {7, 45} tii[19,11] := {25} tii[19,12] := {26} tii[19,13] := {21} tii[19,14] := {32} tii[19,15] := {37} tii[19,16] := {33} tii[19,17] := {38} tii[19,18] := {35} tii[19,19] := {36} tii[19,20] := {27} tii[19,21] := {43} tii[19,22] := {29} tii[19,23] := {44} tii[19,24] := {46} tii[19,25] := {47} tii[19,26] := {49} tii[19,27] := {0} tii[19,28] := {5} tii[19,29] := {6} tii[19,30] := {11} tii[19,31] := {8} tii[19,32] := {22} tii[19,33] := {9} tii[19,34] := {23} tii[19,35] := {12} tii[19,36] := {13} tii[19,37] := {24} tii[19,38] := {17} tii[19,39] := {19} tii[19,40] := {18} tii[19,41] := {20} tii[19,42] := {2, 41} tii[19,43] := {31} tii[19,44] := {39} tii[19,45] := {1, 34} cell#3 , |C| = 10 special orbit = [7, 1, 1, 1, 1, 1] special rep = [[], [4, 1, 1]] , dim = 10 cell rep = phi[[],[4, 1, 1]] TII depth = 1 TII multiplicity polynomial = 10*X TII subcells: tii[22,1] := {8} tii[22,2] := {3} tii[22,3] := {7} tii[22,4] := {0} tii[22,5] := {6} tii[22,6] := {9} tii[22,7] := {4} tii[22,8] := {1} tii[22,9] := {5} tii[22,10] := {2} cell#4 , |C| = 10 special orbit = [7, 1, 1, 1, 1, 1] special rep = [[], [4, 1, 1]] , dim = 10 cell rep = phi[[],[4, 1, 1]] TII depth = 1 TII multiplicity polynomial = 10*X TII subcells: tii[22,1] := {5} tii[22,2] := {8} tii[22,3] := {6} tii[22,4] := {4} tii[22,5] := {2} tii[22,6] := {0} tii[22,7] := {9} tii[22,8] := {7} tii[22,9] := {3} tii[22,10] := {1} cell#5 , |C| = 10 special orbit = [7, 1, 1, 1, 1, 1] special rep = [[], [4, 1, 1]] , dim = 10 cell rep = phi[[],[4, 1, 1]] TII depth = 1 TII multiplicity polynomial = 10*X TII subcells: tii[22,1] := {5} tii[22,2] := {8} tii[22,3] := {6} tii[22,4] := {4} tii[22,5] := {2} tii[22,6] := {0} tii[22,7] := {9} tii[22,8] := {7} tii[22,9] := {3} tii[22,10] := {1} cell#6 , |C| = 52 special orbit = [5, 3, 1, 1, 1, 1] special rep = [[1], [3, 1, 1]] , dim = 36 cell rep = phi[[],[3, 2, 1]]+phi[[1],[3, 1, 1]] TII depth = 2 TII multiplicity polynomial = 16*X^2+20*X TII subcells: tii[16,1] := {44, 45} tii[16,2] := {23, 24} tii[16,3] := {48, 49} tii[16,4] := {13, 14} tii[16,5] := {42, 43} tii[16,6] := {27, 28} tii[16,7] := {19} tii[16,8] := {35, 36} tii[16,9] := {8} tii[16,10] := {15} tii[16,11] := {17} tii[16,12] := {33, 34} tii[16,13] := {1} tii[16,14] := {4} tii[16,15] := {5} tii[16,16] := {16} tii[16,17] := {18} tii[16,18] := {29} tii[16,19] := {0} tii[16,20] := {2} tii[16,21] := {3} tii[16,22] := {9} tii[16,23] := {10} tii[16,24] := {50, 51} tii[16,25] := {22} tii[16,26] := {20} tii[16,27] := {21} tii[16,28] := {39, 40} tii[16,29] := {32} tii[16,30] := {41} tii[16,31] := {25, 26} tii[16,32] := {46, 47} tii[16,33] := {11, 12} tii[16,34] := {37, 38} tii[16,35] := {6, 7} tii[16,36] := {30, 31} cell#7 , |C| = 52 special orbit = [5, 3, 1, 1, 1, 1] special rep = [[1], [3, 1, 1]] , dim = 36 cell rep = phi[[],[3, 2, 1]]+phi[[1],[3, 1, 1]] TII depth = 2 TII multiplicity polynomial = 16*X^2+20*X TII subcells: tii[16,1] := {15, 46} tii[16,2] := {19, 45} tii[16,3] := {23, 49} tii[16,4] := {12, 39} tii[16,5] := {16, 51} tii[16,6] := {6, 44} tii[16,7] := {10} tii[16,8] := {8, 42} tii[16,9] := {18} tii[16,10] := {28} tii[16,11] := {30} tii[16,12] := {9, 48} tii[16,13] := {24} tii[16,14] := {33} tii[16,15] := {34} tii[16,16] := {29} tii[16,17] := {31} tii[16,18] := {38} tii[16,19] := {17} tii[16,20] := {25} tii[16,21] := {26} tii[16,22] := {20} tii[16,23] := {21} tii[16,24] := {7, 50} tii[16,25] := {32} tii[16,26] := {13} tii[16,27] := {14} tii[16,28] := {2, 41} tii[16,29] := {22} tii[16,30] := {27} tii[16,31] := {4, 37} tii[16,32] := {3, 47} tii[16,33] := {11, 40} tii[16,34] := {1, 43} tii[16,35] := {5, 35} tii[16,36] := {0, 36} cell#8 , |C| = 30 special orbit = [5, 3, 3, 1] special rep = [[1], [3, 2]] , dim = 30 cell rep = phi[[1],[3, 2]] TII depth = 2 TII multiplicity polynomial = 30*X TII subcells: tii[18,1] := {29} tii[18,2] := {28} tii[18,3] := {5} tii[18,4] := {3} tii[18,5] := {24} tii[18,6] := {10} tii[18,7] := {27} tii[18,8] := {7} tii[18,9] := {11} tii[18,10] := {19} tii[18,11] := {21} tii[18,12] := {12} tii[18,13] := {18} tii[18,14] := {20} tii[18,15] := {2} tii[18,16] := {6} tii[18,17] := {13} tii[18,18] := {15} tii[18,19] := {8} tii[18,20] := {9} tii[18,21] := {17} tii[18,22] := {14} tii[18,23] := {16} tii[18,24] := {26} tii[18,25] := {22} tii[18,26] := {25} tii[18,27] := {0} tii[18,28] := {23} tii[18,29] := {1} tii[18,30] := {4} cell#9 , |C| = 30 special orbit = [5, 3, 3, 1] special rep = [[1], [3, 2]] , dim = 30 cell rep = phi[[1],[3, 2]] TII depth = 2 TII multiplicity polynomial = 30*X TII subcells: tii[18,1] := {29} tii[18,2] := {28} tii[18,3] := {5} tii[18,4] := {3} tii[18,5] := {24} tii[18,6] := {10} tii[18,7] := {27} tii[18,8] := {7} tii[18,9] := {11} tii[18,10] := {19} tii[18,11] := {21} tii[18,12] := {12} tii[18,13] := {18} tii[18,14] := {20} tii[18,15] := {2} tii[18,16] := {6} tii[18,17] := {13} tii[18,18] := {15} tii[18,19] := {8} tii[18,20] := {9} tii[18,21] := {17} tii[18,22] := {14} tii[18,23] := {16} tii[18,24] := {26} tii[18,25] := {22} tii[18,26] := {25} tii[18,27] := {0} tii[18,28] := {23} tii[18,29] := {1} tii[18,30] := {4} cell#10 , |C| = 30 special orbit = [3, 3, 3, 3] special rep = [[1, 1], [2, 2]] , dim = 30 cell rep = phi[[1, 1],[2, 2]] TII depth = 3 TII multiplicity polynomial = 30*X TII subcells: tii[10,1] := {18} tii[10,2] := {24} tii[10,3] := {27} tii[10,4] := {28} tii[10,5] := {29} tii[10,6] := {1} tii[10,7] := {2} tii[10,8] := {6} tii[10,9] := {7} tii[10,10] := {20} tii[10,11] := {21} tii[10,12] := {5} tii[10,13] := {11} tii[10,14] := {12} tii[10,15] := {25} tii[10,16] := {14} tii[10,17] := {26} tii[10,18] := {15} tii[10,19] := {22} tii[10,20] := {23} tii[10,21] := {3} tii[10,22] := {4} tii[10,23] := {8} tii[10,24] := {9} tii[10,25] := {10} tii[10,26] := {16} tii[10,27] := {17} tii[10,28] := {13} tii[10,29] := {19} tii[10,30] := {0} cell#11 , |C| = 45 special orbit = [4, 4, 1, 1, 1, 1] special rep = [[2], [2, 1, 1]] , dim = 45 cell rep = phi[[2],[2, 1, 1]] TII depth = 4 TII multiplicity polynomial = 45*X TII subcells: tii[11,1] := {25} tii[11,2] := {31} tii[11,3] := {36} tii[11,4] := {6} tii[11,5] := {7} tii[11,6] := {18} tii[11,7] := {20} tii[11,8] := {14} tii[11,9] := {15} tii[11,10] := {8} tii[11,11] := {27} tii[11,12] := {10} tii[11,13] := {28} tii[11,14] := {33} tii[11,15] := {35} tii[11,16] := {39} tii[11,17] := {23} tii[11,18] := {24} tii[11,19] := {17} tii[11,20] := {32} tii[11,21] := {19} tii[11,22] := {34} tii[11,23] := {9} tii[11,24] := {37} tii[11,25] := {11} tii[11,26] := {38} tii[11,27] := {22} tii[11,28] := {42} tii[11,29] := {40} tii[11,30] := {41} tii[11,31] := {30} tii[11,32] := {43} tii[11,33] := {44} tii[11,34] := {0} tii[11,35] := {3} tii[11,36] := {2} tii[11,37] := {5} tii[11,38] := {13} tii[11,39] := {1} tii[11,40] := {4} tii[11,41] := {12} tii[11,42] := {21} tii[11,43] := {16} tii[11,44] := {29} tii[11,45] := {26} cell#12 , |C| = 10 special orbit = [5, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [3, 1, 1, 1]] , dim = 10 cell rep = phi[[],[3, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 10*X TII subcells: tii[15,1] := {7} tii[15,2] := {4} tii[15,3] := {1} tii[15,4] := {0} tii[15,5] := {8} tii[15,6] := {6} tii[15,7] := {9} tii[15,8] := {3} tii[15,9] := {5} tii[15,10] := {2} cell#13 , |C| = 10 special orbit = [5, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [3, 1, 1, 1]] , dim = 10 cell rep = phi[[],[3, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 10*X TII subcells: tii[15,1] := {7} tii[15,2] := {4} tii[15,3] := {1} tii[15,4] := {0} tii[15,5] := {8} tii[15,6] := {6} tii[15,7] := {9} tii[15,8] := {3} tii[15,9] := {5} tii[15,10] := {2} cell#14 , |C| = 33 special orbit = [3, 3, 1, 1, 1, 1, 1, 1] special rep = [[1], [2, 1, 1, 1]] , dim = 24 cell rep = phi[[],[2, 2, 1, 1]]+phi[[1],[2, 1, 1, 1]] TII depth = 2 TII multiplicity polynomial = 9*X^2+15*X TII subcells: tii[7,1] := {10, 28} tii[7,2] := {7, 31} tii[7,3] := {5, 32} tii[7,4] := {14} tii[7,5] := {19} tii[7,6] := {20} tii[7,7] := {15} tii[7,8] := {16} tii[7,9] := {21} tii[7,10] := {11} tii[7,11] := {12} tii[7,12] := {4, 27} tii[7,13] := {18} tii[7,14] := {23} tii[7,15] := {8} tii[7,16] := {9} tii[7,17] := {3, 30} tii[7,18] := {13} tii[7,19] := {1, 29} tii[7,20] := {17} tii[7,21] := {22} tii[7,22] := {6, 25} tii[7,23] := {2, 24} tii[7,24] := {0, 26} cell#15 , |C| = 52 special orbit = [5, 3, 1, 1, 1, 1] special rep = [[1], [3, 1, 1]] , dim = 36 cell rep = phi[[],[3, 2, 1]]+phi[[1],[3, 1, 1]] TII depth = 2 TII multiplicity polynomial = 16*X^2+20*X TII subcells: tii[16,1] := {32, 41} tii[16,2] := {24, 42} tii[16,3] := {22, 46} tii[16,4] := {14, 34} tii[16,5] := {11, 49} tii[16,6] := {9, 40} tii[16,7] := {4} tii[16,8] := {23, 33} tii[16,9] := {7} tii[16,10] := {16} tii[16,11] := {19} tii[16,12] := {5, 45} tii[16,13] := {13} tii[16,14] := {25} tii[16,15] := {27} tii[16,16] := {35} tii[16,17] := {36} tii[16,18] := {43} tii[16,19] := {8} tii[16,20] := {15} tii[16,21] := {18} tii[16,22] := {26} tii[16,23] := {28} tii[16,24] := {6, 51} tii[16,25] := {38} tii[16,26] := {17} tii[16,27] := {20} tii[16,28] := {3, 47} tii[16,29] := {31} tii[16,30] := {39} tii[16,31] := {12, 30} tii[16,32] := {2, 50} tii[16,33] := {21, 37} tii[16,34] := {0, 48} tii[16,35] := {10, 29} tii[16,36] := {1, 44} cell#16 , |C| = 52 special orbit = [5, 3, 1, 1, 1, 1] special rep = [[1], [3, 1, 1]] , dim = 36 cell rep = phi[[],[3, 2, 1]]+phi[[1],[3, 1, 1]] TII depth = 2 TII multiplicity polynomial = 16*X^2+20*X TII subcells: tii[16,1] := {32, 41} tii[16,2] := {24, 42} tii[16,3] := {22, 46} tii[16,4] := {14, 34} tii[16,5] := {11, 49} tii[16,6] := {9, 40} tii[16,7] := {4} tii[16,8] := {23, 33} tii[16,9] := {7} tii[16,10] := {16} tii[16,11] := {19} tii[16,12] := {5, 45} tii[16,13] := {13} tii[16,14] := {25} tii[16,15] := {27} tii[16,16] := {35} tii[16,17] := {36} tii[16,18] := {43} tii[16,19] := {8} tii[16,20] := {15} tii[16,21] := {18} tii[16,22] := {26} tii[16,23] := {28} tii[16,24] := {6, 51} tii[16,25] := {38} tii[16,26] := {17} tii[16,27] := {20} tii[16,28] := {3, 47} tii[16,29] := {31} tii[16,30] := {39} tii[16,31] := {12, 30} tii[16,32] := {2, 50} tii[16,33] := {21, 37} tii[16,34] := {0, 48} tii[16,35] := {10, 29} tii[16,36] := {1, 44} cell#17 , |C| = 30 special orbit = [3, 3, 3, 1, 1, 1] special rep = [[1], [2, 2, 1]] , dim = 30 cell rep = phi[[1],[2, 2, 1]] TII depth = 2 TII multiplicity polynomial = 30*X TII subcells: tii[9,1] := {29} tii[9,2] := {7} tii[9,3] := {27} tii[9,4] := {24} tii[9,5] := {14} tii[9,6] := {2} tii[9,7] := {21} tii[9,8] := {25} tii[9,9] := {26} tii[9,10] := {13} tii[9,11] := {16} tii[9,12] := {18} tii[9,13] := {10} tii[9,14] := {11} tii[9,15] := {15} tii[9,16] := {20} tii[9,17] := {17} tii[9,18] := {19} tii[9,19] := {23} tii[9,20] := {4} tii[9,21] := {5} tii[9,22] := {28} tii[9,23] := {1} tii[9,24] := {9} tii[9,25] := {6} tii[9,26] := {3} tii[9,27] := {22} tii[9,28] := {12} tii[9,29] := {8} tii[9,30] := {0} cell#18 , |C| = 30 special orbit = [3, 3, 3, 1, 1, 1] special rep = [[1], [2, 2, 1]] , dim = 30 cell rep = phi[[1],[2, 2, 1]] TII depth = 2 TII multiplicity polynomial = 30*X TII subcells: tii[9,1] := {29} tii[9,2] := {7} tii[9,3] := {27} tii[9,4] := {24} tii[9,5] := {14} tii[9,6] := {2} tii[9,7] := {21} tii[9,8] := {25} tii[9,9] := {26} tii[9,10] := {13} tii[9,11] := {16} tii[9,12] := {18} tii[9,13] := {10} tii[9,14] := {11} tii[9,15] := {15} tii[9,16] := {20} tii[9,17] := {17} tii[9,18] := {19} tii[9,19] := {23} tii[9,20] := {4} tii[9,21] := {5} tii[9,22] := {28} tii[9,23] := {1} tii[9,24] := {9} tii[9,25] := {6} tii[9,26] := {3} tii[9,27] := {22} tii[9,28] := {12} tii[9,29] := {8} tii[9,30] := {0} cell#19 , |C| = 30 special orbit = [3, 3, 3, 1, 1, 1] special rep = [[1], [2, 2, 1]] , dim = 30 cell rep = phi[[1],[2, 2, 1]] TII depth = 2 TII multiplicity polynomial = 30*X TII subcells: tii[9,1] := {19} tii[9,2] := {13} tii[9,3] := {24} tii[9,4] := {27} tii[9,5] := {1} tii[9,6] := {8} tii[9,7] := {3} tii[9,8] := {9} tii[9,9] := {10} tii[9,10] := {7} tii[9,11] := {14} tii[9,12] := {16} tii[9,13] := {20} tii[9,14] := {21} tii[9,15] := {25} tii[9,16] := {29} tii[9,17] := {4} tii[9,18] := {5} tii[9,19] := {12} tii[9,20] := {15} tii[9,21] := {17} tii[9,22] := {18} tii[9,23] := {6} tii[9,24] := {23} tii[9,25] := {26} tii[9,26] := {11} tii[9,27] := {22} tii[9,28] := {28} tii[9,29] := {0} tii[9,30] := {2} cell#20 , |C| = 30 special orbit = [3, 3, 3, 1, 1, 1] special rep = [[1], [2, 2, 1]] , dim = 30 cell rep = phi[[1],[2, 2, 1]] TII depth = 2 TII multiplicity polynomial = 30*X TII subcells: tii[9,1] := {19} tii[9,2] := {13} tii[9,3] := {24} tii[9,4] := {27} tii[9,5] := {1} tii[9,6] := {8} tii[9,7] := {3} tii[9,8] := {9} tii[9,9] := {10} tii[9,10] := {7} tii[9,11] := {14} tii[9,12] := {16} tii[9,13] := {20} tii[9,14] := {21} tii[9,15] := {25} tii[9,16] := {29} tii[9,17] := {4} tii[9,18] := {5} tii[9,19] := {12} tii[9,20] := {15} tii[9,21] := {17} tii[9,22] := {18} tii[9,23] := {6} tii[9,24] := {23} tii[9,25] := {26} tii[9,26] := {11} tii[9,27] := {22} tii[9,28] := {28} tii[9,29] := {0} tii[9,30] := {2} cell#21 , |C| = 50 special orbit = [3, 3, 2, 2, 1, 1] special rep = [[1, 1], [2, 1, 1]] , dim = 45 cell rep = phi[[],[2, 2, 2]]+phi[[1, 1],[2, 1, 1]] TII depth = 3 TII multiplicity polynomial = 5*X^2+40*X TII subcells: tii[8,1] := {47, 48} tii[8,2] := {14} tii[8,3] := {40, 41} tii[8,4] := {21} tii[8,5] := {24} tii[8,6] := {27} tii[8,7] := {26} tii[8,8] := {29} tii[8,9] := {31} tii[8,10] := {34} tii[8,11] := {36} tii[8,12] := {16} tii[8,13] := {44} tii[8,14] := {18} tii[8,15] := {45} tii[8,16] := {49} tii[8,17] := {25} tii[8,18] := {28} tii[8,19] := {38} tii[8,20] := {0} tii[8,21] := {1} tii[8,22] := {2} tii[8,23] := {15} tii[8,24] := {3} tii[8,25] := {17} tii[8,26] := {5} tii[8,27] := {10} tii[8,28] := {12} tii[8,29] := {8} tii[8,30] := {35} tii[8,31] := {9} tii[8,32] := {37} tii[8,33] := {32, 33} tii[8,34] := {19} tii[8,35] := {20} tii[8,36] := {46} tii[8,37] := {39} tii[8,38] := {4} tii[8,39] := {6} tii[8,40] := {42, 43} tii[8,41] := {11} tii[8,42] := {13} tii[8,43] := {30} tii[8,44] := {7} tii[8,45] := {22, 23} cell#22 , |C| = 10 special orbit = [5, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [3, 1, 1, 1]] , dim = 10 cell rep = phi[[],[3, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 10*X TII subcells: tii[15,1] := {7} tii[15,2] := {9} tii[15,3] := {6} tii[15,4] := {4} tii[15,5] := {8} tii[15,6] := {5} tii[15,7] := {3} tii[15,8] := {2} tii[15,9] := {1} tii[15,10] := {0} cell#23 , |C| = 10 special orbit = [5, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [3, 1, 1, 1]] , dim = 10 cell rep = phi[[],[3, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 10*X TII subcells: tii[15,1] := {7} tii[15,2] := {9} tii[15,3] := {6} tii[15,4] := {4} tii[15,5] := {8} tii[15,6] := {5} tii[15,7] := {3} tii[15,8] := {2} tii[15,9] := {1} tii[15,10] := {0} cell#24 , |C| = 33 special orbit = [3, 3, 1, 1, 1, 1, 1, 1] special rep = [[1], [2, 1, 1, 1]] , dim = 24 cell rep = phi[[],[2, 2, 1, 1]]+phi[[1],[2, 1, 1, 1]] TII depth = 2 TII multiplicity polynomial = 9*X^2+15*X TII subcells: tii[7,1] := {8, 17} tii[7,2] := {11, 22} tii[7,3] := {7, 26} tii[7,4] := {3} tii[7,5] := {9} tii[7,6] := {10} tii[7,7] := {13} tii[7,8] := {15} tii[7,9] := {21} tii[7,10] := {18} tii[7,11] := {19} tii[7,12] := {6, 29} tii[7,13] := {24} tii[7,14] := {27} tii[7,15] := {12} tii[7,16] := {14} tii[7,17] := {2, 30} tii[7,18] := {20} tii[7,19] := {1, 32} tii[7,20] := {23} tii[7,21] := {28} tii[7,22] := {5, 16} tii[7,23] := {4, 25} tii[7,24] := {0, 31} cell#25 , |C| = 33 special orbit = [3, 3, 1, 1, 1, 1, 1, 1] special rep = [[1], [2, 1, 1, 1]] , dim = 24 cell rep = phi[[],[2, 2, 1, 1]]+phi[[1],[2, 1, 1, 1]] TII depth = 2 TII multiplicity polynomial = 9*X^2+15*X TII subcells: tii[7,1] := {8, 17} tii[7,2] := {11, 22} tii[7,3] := {7, 26} tii[7,4] := {3} tii[7,5] := {9} tii[7,6] := {10} tii[7,7] := {13} tii[7,8] := {15} tii[7,9] := {21} tii[7,10] := {18} tii[7,11] := {19} tii[7,12] := {6, 29} tii[7,13] := {24} tii[7,14] := {27} tii[7,15] := {12} tii[7,16] := {14} tii[7,17] := {2, 30} tii[7,18] := {20} tii[7,19] := {1, 32} tii[7,20] := {23} tii[7,21] := {28} tii[7,22] := {5, 16} tii[7,23] := {4, 25} tii[7,24] := {0, 31} cell#26 , |C| = 33 special orbit = [3, 3, 1, 1, 1, 1, 1, 1] special rep = [[1], [2, 1, 1, 1]] , dim = 24 cell rep = phi[[],[2, 2, 1, 1]]+phi[[1],[2, 1, 1, 1]] TII depth = 2 TII multiplicity polynomial = 9*X^2+15*X TII subcells: tii[7,1] := {23, 24} tii[7,2] := {15, 29} tii[7,3] := {7, 26} tii[7,4] := {6} tii[7,5] := {9} tii[7,6] := {11} tii[7,7] := {19} tii[7,8] := {20} tii[7,9] := {27} tii[7,10] := {10} tii[7,11] := {12} tii[7,12] := {8, 32} tii[7,13] := {21} tii[7,14] := {25} tii[7,15] := {4} tii[7,16] := {5} tii[7,17] := {2, 31} tii[7,18] := {13} tii[7,19] := {1, 28} tii[7,20] := {18} tii[7,21] := {14} tii[7,22] := {16, 17} tii[7,23] := {3, 30} tii[7,24] := {0, 22} cell#27 , |C| = 33 special orbit = [3, 3, 1, 1, 1, 1, 1, 1] special rep = [[1], [2, 1, 1, 1]] , dim = 24 cell rep = phi[[],[2, 2, 1, 1]]+phi[[1],[2, 1, 1, 1]] TII depth = 2 TII multiplicity polynomial = 9*X^2+15*X TII subcells: tii[7,1] := {23, 24} tii[7,2] := {15, 29} tii[7,3] := {7, 26} tii[7,4] := {6} tii[7,5] := {9} tii[7,6] := {11} tii[7,7] := {19} tii[7,8] := {20} tii[7,9] := {27} tii[7,10] := {10} tii[7,11] := {12} tii[7,12] := {8, 32} tii[7,13] := {21} tii[7,14] := {25} tii[7,15] := {4} tii[7,16] := {5} tii[7,17] := {2, 31} tii[7,18] := {13} tii[7,19] := {1, 28} tii[7,20] := {18} tii[7,21] := {14} tii[7,22] := {16, 17} tii[7,23] := {3, 30} tii[7,24] := {0, 22} cell#28 , |C| = 5 special orbit = [3, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [2, 1, 1, 1, 1]] , dim = 5 cell rep = phi[[],[2, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 5*X TII subcells: tii[6,1] := {4} tii[6,2] := {3} tii[6,3] := {2} tii[6,4] := {1} tii[6,5] := {0} cell#29 , |C| = 5 special orbit = [3, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [2, 1, 1, 1, 1]] , dim = 5 cell rep = phi[[],[2, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 5*X TII subcells: tii[6,1] := {4} tii[6,2] := {3} tii[6,3] := {2} tii[6,4] := {1} tii[6,5] := {0} cell#30 , |C| = 15 special orbit = [2, 2, 2, 2, 1, 1, 1, 1] special rep = [[1, 1], [1, 1, 1, 1]] , dim = 15 cell rep = phi[[1, 1],[1, 1, 1, 1]] TII depth = 2 TII multiplicity polynomial = 15*X TII subcells: tii[3,1] := {4} tii[3,2] := {5} tii[3,3] := {6} tii[3,4] := {7} tii[3,5] := {11} tii[3,6] := {9} tii[3,7] := {10} tii[3,8] := {13} tii[3,9] := {14} tii[3,10] := {0} tii[3,11] := {1} tii[3,12] := {2} tii[3,13] := {3} tii[3,14] := {8} tii[3,15] := {12} cell#31 , |C| = 5 special orbit = [3, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [2, 1, 1, 1, 1]] , dim = 5 cell rep = phi[[],[2, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 5*X TII subcells: tii[6,1] := {2} tii[6,2] := {4} tii[6,3] := {3} tii[6,4] := {1} tii[6,5] := {0} cell#32 , |C| = 5 special orbit = [3, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [2, 1, 1, 1, 1]] , dim = 5 cell rep = phi[[],[2, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 5*X TII subcells: tii[6,1] := {2} tii[6,2] := {4} tii[6,3] := {3} tii[6,4] := {1} tii[6,5] := {0} cell#33 , |C| = 6 special orbit = [2, 2, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [1, 1, 1, 1, 1]] , dim = 6 cell rep = phi[[1],[1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 6*X TII subcells: tii[2,1] := {0} tii[2,2] := {1} tii[2,3] := {2} tii[2,4] := {3} tii[2,5] := {5} tii[2,6] := {4} cell#34 , |C| = 6 special orbit = [2, 2, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [1, 1, 1, 1, 1]] , dim = 6 cell rep = phi[[1],[1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 6*X TII subcells: tii[2,1] := {0} tii[2,2] := {1} tii[2,3] := {2} tii[2,4] := {3} tii[2,5] := {5} tii[2,6] := {4} cell#35 , |C| = 1 special orbit = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [1, 1, 1, 1, 1, 1]] , dim = 1 cell rep = phi[[],[1, 1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = X TII subcells: tii[1,1] := {0} cell#36 , |C| = 1 special orbit = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [1, 1, 1, 1, 1, 1]] , dim = 1 cell rep = phi[[],[1, 1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = X TII subcells: tii[1,1] := {0}