TII subcells for the SO(6,6) x SO(10,2) block of SO12 # cell#0 , |C| = 1 special orbit = [11, 1] special rep = [[], [6]] , dim = 1 cell rep = phi[[],[6]] TII depth = 1 TII multiplicity polynomial = X TII subcells: tii[27,1] := {0} cell#1 , |C| = 1 special orbit = [11, 1] special rep = [[], [6]] , dim = 1 cell rep = phi[[],[6]] TII depth = 1 TII multiplicity polynomial = X TII subcells: tii[27,1] := {0} cell#2 , |C| = 6 special orbit = [9, 3] special rep = [[1], [5]] , dim = 6 cell rep = phi[[1],[5]] TII depth = 1 TII multiplicity polynomial = 6*X TII subcells: tii[26,1] := {0} tii[26,2] := {1} tii[26,3] := {2} tii[26,4] := {3} tii[26,5] := {4} tii[26,6] := {5} cell#3 , |C| = 5 special orbit = [9, 1, 1, 1] special rep = [[], [5, 1]] , dim = 5 cell rep = phi[[],[5, 1]] TII depth = 1 TII multiplicity polynomial = 5*X TII subcells: tii[25,1] := {2} tii[25,2] := {0} tii[25,3] := {1} tii[25,4] := {3} tii[25,5] := {4} cell#4 , |C| = 5 special orbit = [9, 1, 1, 1] special rep = [[], [5, 1]] , dim = 5 cell rep = phi[[],[5, 1]] TII depth = 1 TII multiplicity polynomial = 5*X TII subcells: tii[25,1] := {2} tii[25,2] := {0} tii[25,3] := {1} tii[25,4] := {3} tii[25,5] := {4} cell#5 , |C| = 33 special orbit = [7, 3, 1, 1] special rep = [[1], [4, 1]] , dim = 24 cell rep = phi[[],[4, 2]]+phi[[1],[4, 1]] TII depth = 2 TII multiplicity polynomial = 9*X^2+15*X TII subcells: tii[23,1] := {6, 7} tii[23,2] := {17, 18} tii[23,3] := {28, 29} tii[23,4] := {0} tii[23,5] := {1, 2} tii[23,6] := {3} tii[23,7] := {4, 5} tii[23,8] := {8} tii[23,9] := {15} tii[23,10] := {16} tii[23,11] := {9} tii[23,12] := {10, 11} tii[23,13] := {14} tii[23,14] := {22} tii[23,15] := {23} tii[23,16] := {21} tii[23,17] := {26} tii[23,18] := {27} tii[23,19] := {30} tii[23,20] := {31} tii[23,21] := {32} tii[23,22] := {12, 13} tii[23,23] := {19, 20} tii[23,24] := {24, 25} cell#6 , |C| = 5 special orbit = [9, 1, 1, 1] special rep = [[], [5, 1]] , dim = 5 cell rep = phi[[],[5, 1]] TII depth = 1 TII multiplicity polynomial = 5*X TII subcells: tii[25,1] := {4} tii[25,2] := {3} tii[25,3] := {2} tii[25,4] := {1} tii[25,5] := {0} cell#7 , |C| = 10 special orbit = [7, 1, 1, 1, 1, 1] special rep = [[], [4, 1, 1]] , dim = 10 cell rep = phi[[],[4, 1, 1]] TII depth = 1 TII multiplicity polynomial = 10*X TII subcells: tii[22,1] := {9} tii[22,2] := {5} tii[22,3] := {2} tii[22,4] := {8} tii[22,5] := {4} tii[22,6] := {7} tii[22,7] := {0} tii[22,8] := {1} tii[22,9] := {3} tii[22,10] := {6}