TII subcells for the SO(9,3) x SO(7,5) block of SO12 # cell#0 , |C| = 10 special orbit = [7, 1, 1, 1, 1, 1] special rep = [[], [4, 1, 1]] , dim = 10 cell rep = phi[[],[4, 1, 1]] TII depth = 1 TII multiplicity polynomial = 10*X TII subcells: tii[22,1] := {0} tii[22,2] := {4} tii[22,3] := {1} tii[22,4] := {7} tii[22,5] := {3} tii[22,6] := {2} tii[22,7] := {5} tii[22,8] := {8} tii[22,9] := {6} tii[22,10] := {9} cell#1 , |C| = 52 special orbit = [5, 3, 1, 1, 1, 1] special rep = [[1], [3, 1, 1]] , dim = 36 cell rep = phi[[],[3, 2, 1]]+phi[[1],[3, 1, 1]] TII depth = 2 TII multiplicity polynomial = 16*X^2+20*X TII subcells: tii[16,1] := {16, 29} tii[16,2] := {10, 32} tii[16,3] := {27, 38} tii[16,4] := {21, 39} tii[16,5] := {30, 44} tii[16,6] := {31, 46} tii[16,7] := {0} tii[16,8] := {7, 18} tii[16,9] := {1} tii[16,10] := {4} tii[16,11] := {5} tii[16,12] := {20, 37} tii[16,13] := {3} tii[16,14] := {12} tii[16,15] := {13} tii[16,16] := {23} tii[16,17] := {25} tii[16,18] := {36} tii[16,19] := {9} tii[16,20] := {22} tii[16,21] := {24} tii[16,22] := {33} tii[16,23] := {34} tii[16,24] := {28, 49} tii[16,25] := {42} tii[16,26] := {40} tii[16,27] := {41} tii[16,28] := {19, 51} tii[16,29] := {47} tii[16,30] := {50} tii[16,31] := {2, 15} tii[16,32] := {17, 45} tii[16,33] := {6, 26} tii[16,34] := {8, 43} tii[16,35] := {14, 35} tii[16,36] := {11, 48} cell#2 , |C| = 10 special orbit = [5, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [3, 1, 1, 1]] , dim = 10 cell rep = phi[[],[3, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 10*X TII subcells: tii[15,1] := {6} tii[15,2] := {3} tii[15,3] := {1} tii[15,4] := {0} tii[15,5] := {8} tii[15,6] := {4} tii[15,7] := {7} tii[15,8] := {2} tii[15,9] := {5} tii[15,10] := {9} cell#3 , |C| = 30 special orbit = [3, 3, 3, 1, 1, 1] special rep = [[1], [2, 2, 1]] , dim = 30 cell rep = phi[[1],[2, 2, 1]] TII depth = 2 TII multiplicity polynomial = 30*X TII subcells: tii[9,1] := {17} tii[9,2] := {23} tii[9,3] := {24} tii[9,4] := {27} tii[9,5] := {1} tii[9,6] := {16} tii[9,7] := {4} tii[9,8] := {7} tii[9,9] := {8} tii[9,10] := {9} tii[9,11] := {12} tii[9,12] := {14} tii[9,13] := {20} tii[9,14] := {21} tii[9,15] := {26} tii[9,16] := {29} tii[9,17] := {2} tii[9,18] := {3} tii[9,19] := {6} tii[9,20] := {13} tii[9,21] := {15} tii[9,22] := {11} tii[9,23] := {10} tii[9,24] := {22} tii[9,25] := {25} tii[9,26] := {18} tii[9,27] := {19} tii[9,28] := {28} tii[9,29] := {0} tii[9,30] := {5} cell#4 , |C| = 10 special orbit = [5, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [3, 1, 1, 1]] , dim = 10 cell rep = phi[[],[3, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 10*X TII subcells: tii[15,1] := {3} tii[15,2] := {7} tii[15,3] := {9} tii[15,4] := {8} tii[15,5] := {4} tii[15,6] := {6} tii[15,7] := {5} tii[15,8] := {2} tii[15,9] := {1} tii[15,10] := {0} cell#5 , |C| = 10 special orbit = [5, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [3, 1, 1, 1]] , dim = 10 cell rep = phi[[],[3, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 10*X TII subcells: tii[15,1] := {0} tii[15,2] := {2} tii[15,3] := {3} tii[15,4] := {1} tii[15,5] := {5} tii[15,6] := {8} tii[15,7] := {9} tii[15,8] := {4} tii[15,9] := {7} tii[15,10] := {6} cell#6 , |C| = 33 special orbit = [3, 3, 1, 1, 1, 1, 1, 1] special rep = [[1], [2, 1, 1, 1]] , dim = 24 cell rep = phi[[],[2, 2, 1, 1]]+phi[[1],[2, 1, 1, 1]] TII depth = 2 TII multiplicity polynomial = 9*X^2+15*X TII subcells: tii[7,1] := {6, 15} tii[7,2] := {10, 19} tii[7,3] := {14, 24} tii[7,4] := {1} tii[7,5] := {7} tii[7,6] := {8} tii[7,7] := {11} tii[7,8] := {12} tii[7,9] := {18} tii[7,10] := {16} tii[7,11] := {17} tii[7,12] := {5, 26} tii[7,13] := {22} tii[7,14] := {25} tii[7,15] := {20} tii[7,16] := {21} tii[7,17] := {9, 30} tii[7,18] := {27} tii[7,19] := {4, 32} tii[7,20] := {28} tii[7,21] := {31} tii[7,22] := {3, 13} tii[7,23] := {2, 23} tii[7,24] := {0, 29} cell#7 , |C| = 5 special orbit = [3, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [2, 1, 1, 1, 1]] , dim = 5 cell rep = phi[[],[2, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 5*X TII subcells: tii[6,1] := {4} tii[6,2] := {3} tii[6,3] := {2} tii[6,4] := {1} tii[6,5] := {0} cell#8 , |C| = 33 special orbit = [3, 3, 1, 1, 1, 1, 1, 1] special rep = [[1], [2, 1, 1, 1]] , dim = 24 cell rep = phi[[],[2, 2, 1, 1]]+phi[[1],[2, 1, 1, 1]] TII depth = 2 TII multiplicity polynomial = 9*X^2+15*X TII subcells: tii[7,1] := {11, 12} tii[7,2] := {18, 19} tii[7,3] := {10, 25} tii[7,4] := {0} tii[7,5] := {1} tii[7,6] := {2} tii[7,7] := {7} tii[7,8] := {9} tii[7,9] := {17} tii[7,10] := {14} tii[7,11] := {15} tii[7,12] := {27, 28} tii[7,13] := {24} tii[7,14] := {29} tii[7,15] := {6} tii[7,16] := {8} tii[7,17] := {20, 31} tii[7,18] := {16} tii[7,19] := {13, 32} tii[7,20] := {23} tii[7,21] := {26} tii[7,22] := {3, 4} tii[7,23] := {21, 22} tii[7,24] := {5, 30} cell#9 , |C| = 5 special orbit = [3, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [2, 1, 1, 1, 1]] , dim = 5 cell rep = phi[[],[2, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 5*X TII subcells: tii[6,1] := {0} tii[6,2] := {3} tii[6,3] := {4} tii[6,4] := {2} tii[6,5] := {1} cell#10 , |C| = 6 special orbit = [2, 2, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [1, 1, 1, 1, 1]] , dim = 6 cell rep = phi[[1],[1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 6*X TII subcells: tii[2,1] := {0} tii[2,2] := {1} tii[2,3] := {2} tii[2,4] := {3} tii[2,5] := {4} tii[2,6] := {5} cell#11 , |C| = 5 special orbit = [3, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [2, 1, 1, 1, 1]] , dim = 5 cell rep = phi[[],[2, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 5*X TII subcells: tii[6,1] := {0} tii[6,2] := {1} tii[6,3] := {2} tii[6,4] := {4} tii[6,5] := {3} cell#12 , |C| = 1 special orbit = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [1, 1, 1, 1, 1, 1]] , dim = 1 cell rep = phi[[],[1, 1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = X TII subcells: tii[1,1] := {0}