TII subcells for the Spin(10,2) x PSO(6,6) block of Spin12 # cell#0 , |C| = 10 special orbit = [5, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [3, 1, 1, 1]] , dim = 10 cell rep = phi[[],[3, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 10*X TII subcells: tii[15,1] := {0} tii[15,2] := {6} tii[15,3] := {8} tii[15,4] := {9} tii[15,5] := {1} tii[15,6] := {5} tii[15,7] := {2} tii[15,8] := {7} tii[15,9] := {4} tii[15,10] := {3} cell#1 , |C| = 10 special orbit = [5, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [3, 1, 1, 1]] , dim = 10 cell rep = phi[[],[3, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 10*X TII subcells: tii[15,1] := {0} tii[15,2] := {6} tii[15,3] := {8} tii[15,4] := {9} tii[15,5] := {1} tii[15,6] := {5} tii[15,7] := {2} tii[15,8] := {7} tii[15,9] := {4} tii[15,10] := {3} cell#2 , |C| = 39 special orbit = [3, 3, 1, 1, 1, 1, 1, 1] special rep = [[1], [2, 1, 1, 1]] , dim = 24 cell rep = phi[[1],[2, 1, 1, 1]]+phi[[2],[1, 1, 1, 1]] TII depth = 2 TII multiplicity polynomial = 15*X^2+9*X TII subcells: tii[7,1] := {11} tii[7,2] := {18} tii[7,3] := {26} tii[7,4] := {0, 1} tii[7,5] := {2, 3} tii[7,6] := {4, 5} tii[7,7] := {7, 8} tii[7,8] := {9, 10} tii[7,9] := {16, 17} tii[7,10] := {12, 13} tii[7,11] := {14, 15} tii[7,12] := {27} tii[7,13] := {24, 25} tii[7,14] := {28, 29} tii[7,15] := {20, 21} tii[7,16] := {22, 23} tii[7,17] := {33} tii[7,18] := {30, 31} tii[7,19] := {36} tii[7,20] := {34, 35} tii[7,21] := {37, 38} tii[7,22] := {6} tii[7,23] := {19} tii[7,24] := {32} cell#3 , |C| = 5 special orbit = [3, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [2, 1, 1, 1, 1]] , dim = 5 cell rep = phi[[],[2, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 5*X TII subcells: tii[6,1] := {4} tii[6,2] := {3} tii[6,3] := {2} tii[6,4] := {1} tii[6,5] := {0} cell#4 , |C| = 5 special orbit = [3, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [2, 1, 1, 1, 1]] , dim = 5 cell rep = phi[[],[2, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 5*X TII subcells: tii[6,1] := {4} tii[6,2] := {3} tii[6,3] := {2} tii[6,4] := {1} tii[6,5] := {0} cell#5 , |C| = 5 special orbit = [3, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [2, 1, 1, 1, 1]] , dim = 5 cell rep = phi[[],[2, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 5*X TII subcells: tii[6,1] := {0} tii[6,2] := {1} tii[6,3] := {3} tii[6,4] := {4} tii[6,5] := {2} cell#6 , |C| = 6 special orbit = [2, 2, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [1, 1, 1, 1, 1]] , dim = 6 cell rep = phi[[1],[1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 6*X TII subcells: tii[2,1] := {0} tii[2,2] := {1} tii[2,3] := {2} tii[2,4] := {3} tii[2,5] := {4} tii[2,6] := {5} cell#7 , |C| = 6 special orbit = [2, 2, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [1, 1, 1, 1, 1]] , dim = 6 cell rep = phi[[1],[1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 6*X TII subcells: tii[2,1] := {0} tii[2,2] := {1} tii[2,3] := {2} tii[2,4] := {3} tii[2,5] := {4} tii[2,6] := {5} cell#8 , |C| = 1 special orbit = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [1, 1, 1, 1, 1, 1]] , dim = 1 cell rep = phi[[],[1, 1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = X TII subcells: tii[1,1] := {0}