TII subcells for the PSO(10,4) x Spin(7,7) block of PSO14 # cell#0 , |C| = 15 special orbit = [9, 1, 1, 1, 1, 1] special rep = [[], [5, 1, 1]] , dim = 15 cell rep = phi[[],[5, 1, 1]] TII depth = 1 TII multiplicity polynomial = 15*X TII subcells: tii[30,1] := {0} tii[30,2] := {8} tii[30,3] := {1} tii[30,4] := {10} tii[30,5] := {13} tii[30,6] := {6} tii[30,7] := {12} tii[30,8] := {2} tii[30,9] := {11} tii[30,10] := {14} tii[30,11] := {3} tii[30,12] := {7} tii[30,13] := {4} tii[30,14] := {9} tii[30,15] := {5} cell#1 , |C| = 105 special orbit = [7, 3, 1, 1, 1, 1] special rep = [[1], [4, 1, 1]] , dim = 70 cell rep = phi[[],[4, 2, 1]]+phi[[1],[4, 1, 1]] TII depth = 2 TII multiplicity polynomial = 35*X^2+35*X TII subcells: tii[25,1] := {74, 75} tii[25,2] := {66, 67} tii[25,3] := {35, 36} tii[25,4] := {91, 92} tii[25,5] := {87, 88} tii[25,6] := {97, 98} tii[25,7] := {48, 49} tii[25,8] := {93, 94} tii[25,9] := {99, 100} tii[25,10] := {37, 38} tii[25,11] := {83, 84} tii[25,12] := {58, 59} tii[25,13] := {2} tii[25,14] := {6} tii[25,15] := {54, 55} tii[25,16] := {33, 34} tii[25,17] := {0} tii[25,18] := {7} tii[25,19] := {10} tii[25,20] := {85, 86} tii[25,21] := {24} tii[25,22] := {76, 77} tii[25,23] := {50, 51} tii[25,24] := {5} tii[25,25] := {14} tii[25,26] := {16} tii[25,27] := {56, 57} tii[25,28] := {1} tii[25,29] := {8} tii[25,30] := {11} tii[25,31] := {25} tii[25,32] := {27} tii[25,33] := {46} tii[25,34] := {43} tii[25,35] := {23} tii[25,36] := {70, 71} tii[25,37] := {39} tii[25,38] := {41} tii[25,39] := {68, 69} tii[25,40] := {4} tii[25,41] := {13} tii[25,42] := {15} tii[25,43] := {40} tii[25,44] := {42} tii[25,45] := {103, 104} tii[25,46] := {60} tii[25,47] := {3} tii[25,48] := {9} tii[25,49] := {12} tii[25,50] := {26} tii[25,51] := {28} tii[25,52] := {101, 102} tii[25,53] := {47} tii[25,54] := {44} tii[25,55] := {45} tii[25,56] := {80, 81} tii[25,57] := {65} tii[25,58] := {82} tii[25,59] := {17, 18} tii[25,60] := {95, 96} tii[25,61] := {31, 32} tii[25,62] := {78, 79} tii[25,63] := {19, 20} tii[25,64] := {61, 62} tii[25,65] := {52, 53} tii[25,66] := {89, 90} tii[25,67] := {29, 30} tii[25,68] := {72, 73} tii[25,69] := {21, 22} tii[25,70] := {63, 64} cell#2 , |C| = 147 special orbit = [5, 5, 1, 1, 1, 1] special rep = [[2], [3, 1, 1]] , dim = 126 cell rep = phi[[],[3, 3, 1]]+phi[[2],[3, 1, 1]] TII depth = 4 TII multiplicity polynomial = 21*X^2+105*X TII subcells: tii[20,1] := {22, 119} tii[20,2] := {91} tii[20,3] := {40, 132} tii[20,4] := {57, 126} tii[20,5] := {110} tii[20,6] := {64, 139} tii[20,7] := {125} tii[20,8] := {41, 141} tii[20,9] := {134} tii[20,10] := {5} tii[20,11] := {25} tii[20,12] := {26} tii[20,13] := {7, 81} tii[20,14] := {48} tii[20,15] := {54} tii[20,16] := {15} tii[20,17] := {11, 104} tii[20,18] := {34, 112} tii[20,19] := {43} tii[20,20] := {44} tii[20,21] := {33} tii[20,22] := {58} tii[20,23] := {73} tii[20,24] := {60} tii[20,25] := {77} tii[20,26] := {18, 124} tii[20,27] := {67} tii[20,28] := {69} tii[20,29] := {46} tii[20,30] := {96} tii[20,31] := {51} tii[20,32] := {100} tii[20,33] := {114} tii[20,34] := {116} tii[20,35] := {131} tii[20,36] := {31} tii[20,37] := {66} tii[20,38] := {68} tii[20,39] := {23, 121} tii[20,40] := {56} tii[20,41] := {95} tii[20,42] := {83} tii[20,43] := {99} tii[20,44] := {85} tii[20,45] := {24, 135} tii[20,46] := {65} tii[20,47] := {89} tii[20,48] := {90} tii[20,49] := {94} tii[20,50] := {70} tii[20,51] := {113} tii[20,52] := {98} tii[20,53] := {74} tii[20,54] := {115} tii[20,55] := {84} tii[20,56] := {128} tii[20,57] := {86} tii[20,58] := {130} tii[20,59] := {107} tii[20,60] := {138} tii[20,61] := {108} tii[20,62] := {109} tii[20,63] := {127} tii[20,64] := {93} tii[20,65] := {129} tii[20,66] := {97} tii[20,67] := {71} tii[20,68] := {136} tii[20,69] := {75} tii[20,70] := {137} tii[20,71] := {21, 140} tii[20,72] := {102} tii[20,73] := {144} tii[20,74] := {142} tii[20,75] := {143} tii[20,76] := {123} tii[20,77] := {145} tii[20,78] := {146} tii[20,79] := {0} tii[20,80] := {8} tii[20,81] := {9} tii[20,82] := {17} tii[20,83] := {12} tii[20,84] := {35} tii[20,85] := {13} tii[20,86] := {37} tii[20,87] := {19} tii[20,88] := {20} tii[20,89] := {39} tii[20,90] := {42} tii[20,91] := {27} tii[20,92] := {72} tii[20,93] := {29} tii[20,94] := {76} tii[20,95] := {28} tii[20,96] := {59} tii[20,97] := {30} tii[20,98] := {61} tii[20,99] := {4, 87} tii[20,100] := {88} tii[20,101] := {55} tii[20,102] := {36} tii[20,103] := {38} tii[20,104] := {6, 120} tii[20,105] := {78} tii[20,106] := {63} tii[20,107] := {82} tii[20,108] := {45} tii[20,109] := {50} tii[20,110] := {49} tii[20,111] := {53} tii[20,112] := {14, 106} tii[20,113] := {80} tii[20,114] := {47} tii[20,115] := {52} tii[20,116] := {10, 133} tii[20,117] := {32, 118} tii[20,118] := {101} tii[20,119] := {79} tii[20,120] := {3, 122} tii[20,121] := {92} tii[20,122] := {117} tii[20,123] := {111} tii[20,124] := {1, 62} tii[20,125] := {16, 103} tii[20,126] := {2, 105} cell#3 , |C| = 20 special orbit = [7, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [4, 1, 1, 1]] , dim = 20 cell rep = phi[[],[4, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 20*X TII subcells: tii[24,1] := {18} tii[24,2] := {12} tii[24,3] := {16} tii[24,4] := {4} tii[24,5] := {11} tii[24,6] := {17} tii[24,7] := {0} tii[24,8] := {9} tii[24,9] := {15} tii[24,10] := {19} tii[24,11] := {13} tii[24,12] := {5} tii[24,13] := {10} tii[24,14] := {6} tii[24,15] := {1} tii[24,16] := {8} tii[24,17] := {2} tii[24,18] := {14} tii[24,19] := {7} tii[24,20] := {3} cell#4 , |C| = 112 special orbit = [5, 3, 3, 1, 1, 1] special rep = [[1], [3, 2, 1]] , dim = 112 cell rep = phi[[1],[3, 2, 1]] TII depth = 3 TII multiplicity polynomial = 112*X TII subcells: tii[18,1] := {81} tii[18,2] := {67} tii[18,3] := {80} tii[18,4] := {95} tii[18,5] := {66} tii[18,6] := {97} tii[18,7] := {83} tii[18,8] := {103} tii[18,9] := {65} tii[18,10] := {96} tii[18,11] := {108} tii[18,12] := {105} tii[18,13] := {5} tii[18,14] := {3} tii[18,15] := {44} tii[18,16] := {62} tii[18,17] := {13} tii[18,18] := {64} tii[18,19] := {47} tii[18,20] := {8} tii[18,21] := {42} tii[18,22] := {84} tii[18,23] := {15} tii[18,24] := {33} tii[18,25] := {36} tii[18,26] := {31} tii[18,27] := {94} tii[18,28] := {16} tii[18,29] := {32} tii[18,30] := {35} tii[18,31] := {25} tii[18,32] := {63} tii[18,33] := {82} tii[18,34] := {17} tii[18,35] := {28} tii[18,36] := {51} tii[18,37] := {55} tii[18,38] := {48} tii[18,39] := {102} tii[18,40] := {46} tii[18,41] := {30} tii[18,42] := {69} tii[18,43] := {50} tii[18,44] := {73} tii[18,45] := {54} tii[18,46] := {86} tii[18,47] := {88} tii[18,48] := {99} tii[18,49] := {45} tii[18,50] := {68} tii[18,51] := {72} tii[18,52] := {85} tii[18,53] := {87} tii[18,54] := {111} tii[18,55] := {98} tii[18,56] := {110} tii[18,57] := {2} tii[18,58] := {26} tii[18,59] := {7} tii[18,60] := {18} tii[18,61] := {20} tii[18,62] := {9} tii[18,63] := {10} tii[18,64] := {23} tii[18,65] := {29} tii[18,66] := {49} tii[18,67] := {53} tii[18,68] := {70} tii[18,69] := {19} tii[18,70] := {74} tii[18,71] := {21} tii[18,72] := {27} tii[18,73] := {60} tii[18,74] := {91} tii[18,75] := {40} tii[18,76] := {52} tii[18,77] := {56} tii[18,78] := {104} tii[18,79] := {59} tii[18,80] := {22} tii[18,81] := {79} tii[18,82] := {93} tii[18,83] := {34} tii[18,84] := {37} tii[18,85] := {43} tii[18,86] := {78} tii[18,87] := {61} tii[18,88] := {71} tii[18,89] := {75} tii[18,90] := {109} tii[18,91] := {77} tii[18,92] := {39} tii[18,93] := {57} tii[18,94] := {90} tii[18,95] := {92} tii[18,96] := {107} tii[18,97] := {100} tii[18,98] := {58} tii[18,99] := {89} tii[18,100] := {106} tii[18,101] := {0} tii[18,102] := {14} tii[18,103] := {41} tii[18,104] := {1} tii[18,105] := {6} tii[18,106] := {38} tii[18,107] := {4} tii[18,108] := {76} tii[18,109] := {101} tii[18,110] := {12} tii[18,111] := {11} tii[18,112] := {24} cell#5 , |C| = 112 special orbit = [5, 3, 3, 1, 1, 1] special rep = [[1], [3, 2, 1]] , dim = 112 cell rep = phi[[1],[3, 2, 1]] TII depth = 3 TII multiplicity polynomial = 112*X TII subcells: tii[18,1] := {81} tii[18,2] := {67} tii[18,3] := {80} tii[18,4] := {95} tii[18,5] := {66} tii[18,6] := {97} tii[18,7] := {83} tii[18,8] := {103} tii[18,9] := {65} tii[18,10] := {96} tii[18,11] := {108} tii[18,12] := {105} tii[18,13] := {5} tii[18,14] := {3} tii[18,15] := {44} tii[18,16] := {62} tii[18,17] := {13} tii[18,18] := {64} tii[18,19] := {47} tii[18,20] := {8} tii[18,21] := {42} tii[18,22] := {84} tii[18,23] := {15} tii[18,24] := {33} tii[18,25] := {36} tii[18,26] := {31} tii[18,27] := {94} tii[18,28] := {16} tii[18,29] := {32} tii[18,30] := {35} tii[18,31] := {25} tii[18,32] := {63} tii[18,33] := {82} tii[18,34] := {17} tii[18,35] := {28} tii[18,36] := {51} tii[18,37] := {55} tii[18,38] := {48} tii[18,39] := {102} tii[18,40] := {46} tii[18,41] := {30} tii[18,42] := {69} tii[18,43] := {50} tii[18,44] := {73} tii[18,45] := {54} tii[18,46] := {86} tii[18,47] := {88} tii[18,48] := {99} tii[18,49] := {45} tii[18,50] := {68} tii[18,51] := {72} tii[18,52] := {85} tii[18,53] := {87} tii[18,54] := {111} tii[18,55] := {98} tii[18,56] := {110} tii[18,57] := {2} tii[18,58] := {26} tii[18,59] := {7} tii[18,60] := {18} tii[18,61] := {20} tii[18,62] := {9} tii[18,63] := {10} tii[18,64] := {23} tii[18,65] := {29} tii[18,66] := {49} tii[18,67] := {53} tii[18,68] := {70} tii[18,69] := {19} tii[18,70] := {74} tii[18,71] := {21} tii[18,72] := {27} tii[18,73] := {60} tii[18,74] := {91} tii[18,75] := {40} tii[18,76] := {52} tii[18,77] := {56} tii[18,78] := {104} tii[18,79] := {59} tii[18,80] := {22} tii[18,81] := {79} tii[18,82] := {93} tii[18,83] := {34} tii[18,84] := {37} tii[18,85] := {43} tii[18,86] := {78} tii[18,87] := {61} tii[18,88] := {71} tii[18,89] := {75} tii[18,90] := {109} tii[18,91] := {77} tii[18,92] := {39} tii[18,93] := {57} tii[18,94] := {90} tii[18,95] := {92} tii[18,96] := {107} tii[18,97] := {100} tii[18,98] := {58} tii[18,99] := {89} tii[18,100] := {106} tii[18,101] := {0} tii[18,102] := {14} tii[18,103] := {41} tii[18,104] := {1} tii[18,105] := {6} tii[18,106] := {38} tii[18,107] := {4} tii[18,108] := {76} tii[18,109] := {101} tii[18,110] := {12} tii[18,111] := {11} tii[18,112] := {24} cell#6 , |C| = 140 special orbit = [3, 3, 3, 3, 1, 1] special rep = [[1, 1], [2, 2, 1]] , dim = 105 cell rep = phi[[1],[2, 2, 2]]+phi[[1, 1],[2, 2, 1]] TII depth = 3 TII multiplicity polynomial = 35*X^2+70*X TII subcells: tii[10,1] := {135, 136} tii[10,2] := {137, 138} tii[10,3] := {23} tii[10,4] := {124, 125} tii[10,5] := {47, 48} tii[10,6] := {39} tii[10,7] := {110, 111} tii[10,8] := {59} tii[10,9] := {73} tii[10,10] := {76} tii[10,11] := {71, 72} tii[10,12] := {60} tii[10,13] := {128, 129} tii[10,14] := {96, 97} tii[10,15] := {81} tii[10,16] := {112, 113} tii[10,17] := {98} tii[10,18] := {114, 115} tii[10,19] := {101} tii[10,20] := {100} tii[10,21] := {103} tii[10,22] := {105} tii[10,23] := {118} tii[10,24] := {120} tii[10,25] := {132} tii[10,26] := {133} tii[10,27] := {139} tii[10,28] := {1} tii[10,29] := {27, 28} tii[10,30] := {2} tii[10,31] := {6} tii[10,32] := {7} tii[10,33] := {31} tii[10,34] := {34} tii[10,35] := {5} tii[10,36] := {69, 70} tii[10,37] := {14} tii[10,38] := {84, 85} tii[10,39] := {15} tii[10,40] := {88, 89} tii[10,41] := {50} tii[10,42] := {75} tii[10,43] := {17} tii[10,44] := {63, 64} tii[10,45] := {52} tii[10,46] := {78} tii[10,47] := {18} tii[10,48] := {65, 66} tii[10,49] := {37} tii[10,50] := {38} tii[10,51] := {82, 83} tii[10,52] := {99} tii[10,53] := {102} tii[10,54] := {122} tii[10,55] := {92, 93} tii[10,56] := {13} tii[10,57] := {24} tii[10,58] := {25} tii[10,59] := {86, 87} tii[10,60] := {74} tii[10,61] := {29} tii[10,62] := {90, 91} tii[10,63] := {77} tii[10,64] := {32} tii[10,65] := {108, 109} tii[10,66] := {55} tii[10,67] := {57} tii[10,68] := {49} tii[10,69] := {119} tii[10,70] := {51} tii[10,71] := {121} tii[10,72] := {126, 127} tii[10,73] := {79} tii[10,74] := {80} tii[10,75] := {134} tii[10,76] := {116, 117} tii[10,77] := {123} tii[10,78] := {130, 131} tii[10,79] := {3} tii[10,80] := {4} tii[10,81] := {8} tii[10,82] := {9} tii[10,83] := {41, 42} tii[10,84] := {10} tii[10,85] := {43, 44} tii[10,86] := {21} tii[10,87] := {22} tii[10,88] := {16} tii[10,89] := {61, 62} tii[10,90] := {19, 20} tii[10,91] := {45, 46} tii[10,92] := {30} tii[10,93] := {33} tii[10,94] := {106, 107} tii[10,95] := {35, 36} tii[10,96] := {26} tii[10,97] := {56} tii[10,98] := {58} tii[10,99] := {104} tii[10,100] := {67, 68} tii[10,101] := {53, 54} tii[10,102] := {40} tii[10,103] := {94, 95} tii[10,104] := {0} tii[10,105] := {11, 12} cell#7 , |C| = 20 special orbit = [7, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [4, 1, 1, 1]] , dim = 20 cell rep = phi[[],[4, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 20*X TII subcells: tii[24,1] := {5} tii[24,2] := {11} tii[24,3] := {6} tii[24,4] := {17} tii[24,5] := {10} tii[24,6] := {7} tii[24,7] := {12} tii[24,8] := {4} tii[24,9] := {1} tii[24,10] := {0} tii[24,11] := {15} tii[24,12] := {18} tii[24,13] := {16} tii[24,14] := {19} tii[24,15] := {13} tii[24,16] := {9} tii[24,17] := {14} tii[24,18] := {3} tii[24,19] := {8} tii[24,20] := {2} cell#8 , |C| = 20 special orbit = [7, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [4, 1, 1, 1]] , dim = 20 cell rep = phi[[],[4, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 20*X TII subcells: tii[24,1] := {5} tii[24,2] := {11} tii[24,3] := {6} tii[24,4] := {17} tii[24,5] := {10} tii[24,6] := {7} tii[24,7] := {12} tii[24,8] := {4} tii[24,9] := {1} tii[24,10] := {0} tii[24,11] := {15} tii[24,12] := {18} tii[24,13] := {16} tii[24,14] := {19} tii[24,15] := {13} tii[24,16] := {9} tii[24,17] := {14} tii[24,18] := {3} tii[24,19] := {8} tii[24,20] := {2} cell#9 , |C| = 105 special orbit = [5, 3, 1, 1, 1, 1, 1, 1] special rep = [[1], [3, 1, 1, 1]] , dim = 70 cell rep = phi[[],[3, 2, 1, 1]]+phi[[1],[3, 1, 1, 1]] TII depth = 2 TII multiplicity polynomial = 35*X^2+35*X TII subcells: tii[16,1] := {78, 79} tii[16,2] := {44, 45} tii[16,3] := {91, 92} tii[16,4] := {23, 24} tii[16,5] := {76, 77} tii[16,6] := {42, 43} tii[16,7] := {99, 100} tii[16,8] := {13, 14} tii[16,9] := {89, 90} tii[16,10] := {74, 75} tii[16,11] := {27, 28} tii[16,12] := {50, 51} tii[16,13] := {38} tii[16,14] := {62, 63} tii[16,15] := {19} tii[16,16] := {29} tii[16,17] := {32} tii[16,18] := {60, 61} tii[16,19] := {8} tii[16,20] := {15} tii[16,21] := {17} tii[16,22] := {31} tii[16,23] := {34} tii[16,24] := {55} tii[16,25] := {58, 59} tii[16,26] := {1} tii[16,27] := {4} tii[16,28] := {5} tii[16,29] := {16} tii[16,30] := {18} tii[16,31] := {97, 98} tii[16,32] := {35} tii[16,33] := {30} tii[16,34] := {33} tii[16,35] := {64, 65} tii[16,36] := {54} tii[16,37] := {68} tii[16,38] := {0} tii[16,39] := {2} tii[16,40] := {3} tii[16,41] := {9} tii[16,42] := {10} tii[16,43] := {103, 104} tii[16,44] := {22} tii[16,45] := {20} tii[16,46] := {21} tii[16,47] := {52, 53} tii[16,48] := {95, 96} tii[16,49] := {41} tii[16,50] := {101, 102} tii[16,51] := {56} tii[16,52] := {39} tii[16,53] := {40} tii[16,54] := {71, 72} tii[16,55] := {57} tii[16,56] := {86, 87} tii[16,57] := {73} tii[16,58] := {88} tii[16,59] := {46, 47} tii[16,60] := {84, 85} tii[16,61] := {25, 26} tii[16,62] := {66, 67} tii[16,63] := {82, 83} tii[16,64] := {11, 12} tii[16,65] := {93, 94} tii[16,66] := {48, 49} tii[16,67] := {80, 81} tii[16,68] := {6, 7} tii[16,69] := {36, 37} tii[16,70] := {69, 70} cell#10 , |C| = 105 special orbit = [5, 3, 1, 1, 1, 1, 1, 1] special rep = [[1], [3, 1, 1, 1]] , dim = 70 cell rep = phi[[],[3, 2, 1, 1]]+phi[[1],[3, 1, 1, 1]] TII depth = 2 TII multiplicity polynomial = 35*X^2+35*X TII subcells: tii[16,1] := {28, 83} tii[16,2] := {33, 79} tii[16,3] := {38, 91} tii[16,4] := {40, 90} tii[16,5] := {29, 95} tii[16,6] := {34, 97} tii[16,7] := {53, 98} tii[16,8] := {31, 80} tii[16,9] := {39, 102} tii[16,10] := {30, 104} tii[16,11] := {23, 89} tii[16,12] := {13, 96} tii[16,13] := {20} tii[16,14] := {17, 74} tii[16,15] := {32} tii[16,16] := {46} tii[16,17] := {49} tii[16,18] := {19, 88} tii[16,19] := {41} tii[16,20] := {56} tii[16,21] := {59} tii[16,22] := {47} tii[16,23] := {50} tii[16,24] := {65} tii[16,25] := {18, 103} tii[16,26] := {54} tii[16,27] := {68} tii[16,28] := {69} tii[16,29] := {55} tii[16,30] := {58} tii[16,31] := {14, 92} tii[16,32] := {70} tii[16,33] := {48} tii[16,34] := {51} tii[16,35] := {22, 87} tii[16,36] := {66} tii[16,37] := {76} tii[16,38] := {42} tii[16,39] := {57} tii[16,40] := {60} tii[16,41] := {43} tii[16,42] := {44} tii[16,43] := {26, 99} tii[16,44] := {61} tii[16,45] := {35} tii[16,46] := {36} tii[16,47] := {12, 77} tii[16,48] := {15, 101} tii[16,49] := {52} tii[16,50] := {7, 100} tii[16,51] := {63} tii[16,52] := {24} tii[16,53] := {25} tii[16,54] := {6, 86} tii[16,55] := {37} tii[16,56] := {2, 82} tii[16,57] := {45} tii[16,58] := {62} tii[16,59] := {10, 64} tii[16,60] := {8, 84} tii[16,61] := {21, 71} tii[16,62] := {4, 75} tii[16,63] := {9, 94} tii[16,64] := {27, 81} tii[16,65] := {3, 93} tii[16,66] := {11, 78} tii[16,67] := {1, 85} tii[16,68] := {16, 72} tii[16,69] := {5, 67} tii[16,70] := {0, 73} cell#11 , |C| = 84 special orbit = [4, 4, 1, 1, 1, 1, 1, 1] special rep = [[2], [2, 1, 1, 1]] , dim = 84 cell rep = phi[[2],[2, 1, 1, 1]] TII depth = 5 TII multiplicity polynomial = 84*X TII subcells: tii[11,1] := {35} tii[11,2] := {48} tii[11,3] := {57} tii[11,4] := {58} tii[11,5] := {65} tii[11,6] := {71} tii[11,7] := {8} tii[11,8] := {9} tii[11,9] := {25} tii[11,10] := {28} tii[11,11] := {19} tii[11,12] := {20} tii[11,13] := {10} tii[11,14] := {39} tii[11,15] := {13} tii[11,16] := {41} tii[11,17] := {51} tii[11,18] := {53} tii[11,19] := {63} tii[11,20] := {33} tii[11,21] := {34} tii[11,22] := {23} tii[11,23] := {50} tii[11,24] := {26} tii[11,25] := {52} tii[11,26] := {11} tii[11,27] := {60} tii[11,28] := {14} tii[11,29] := {62} tii[11,30] := {30} tii[11,31] := {70} tii[11,32] := {66} tii[11,33] := {68} tii[11,34] := {44} tii[11,35] := {74} tii[11,36] := {76} tii[11,37] := {46} tii[11,38] := {47} tii[11,39] := {38} tii[11,40] := {59} tii[11,41] := {40} tii[11,42] := {61} tii[11,43] := {24} tii[11,44] := {67} tii[11,45] := {27} tii[11,46] := {69} tii[11,47] := {43} tii[11,48] := {75} tii[11,49] := {12} tii[11,50] := {72} tii[11,51] := {15} tii[11,52] := {73} tii[11,53] := {56} tii[11,54] := {31} tii[11,55] := {79} tii[11,56] := {37} tii[11,57] := {80} tii[11,58] := {77} tii[11,59] := {78} tii[11,60] := {64} tii[11,61] := {81} tii[11,62] := {55} tii[11,63] := {82} tii[11,64] := {83} tii[11,65] := {0} tii[11,66] := {4} tii[11,67] := {3} tii[11,68] := {7} tii[11,69] := {18} tii[11,70] := {2} tii[11,71] := {6} tii[11,72] := {29} tii[11,73] := {17} tii[11,74] := {22} tii[11,75] := {1} tii[11,76] := {5} tii[11,77] := {42} tii[11,78] := {16} tii[11,79] := {21} tii[11,80] := {36} tii[11,81] := {32} tii[11,82] := {54} tii[11,83] := {49} tii[11,84] := {45} cell#12 , |C| = 15 special orbit = [5, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [3, 1, 1, 1, 1]] , dim = 15 cell rep = phi[[],[3, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 15*X TII subcells: tii[15,1] := {11} tii[15,2] := {7} tii[15,3] := {3} tii[15,4] := {1} tii[15,5] := {0} tii[15,6] := {13} tii[15,7] := {8} tii[15,8] := {12} tii[15,9] := {6} tii[15,10] := {10} tii[15,11] := {14} tii[15,12] := {2} tii[15,13] := {5} tii[15,14] := {9} tii[15,15] := {4} cell#13 , |C| = 15 special orbit = [5, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [3, 1, 1, 1, 1]] , dim = 15 cell rep = phi[[],[3, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 15*X TII subcells: tii[15,1] := {11} tii[15,2] := {7} tii[15,3] := {3} tii[15,4] := {1} tii[15,5] := {0} tii[15,6] := {13} tii[15,7] := {8} tii[15,8] := {12} tii[15,9] := {6} tii[15,10] := {10} tii[15,11] := {14} tii[15,12] := {2} tii[15,13] := {5} tii[15,14] := {9} tii[15,15] := {4} cell#14 , |C| = 49 special orbit = [3, 3, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [2, 1, 1, 1, 1]] , dim = 35 cell rep = phi[[],[2, 2, 1, 1, 1]]+phi[[1],[2, 1, 1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 14*X^2+21*X TII subcells: tii[6,1] := {18, 41} tii[6,2] := {14, 45} tii[6,3] := {10, 47} tii[6,4] := {8, 48} tii[6,5] := {23} tii[6,6] := {30} tii[6,7] := {31} tii[6,8] := {24} tii[6,9] := {25} tii[6,10] := {32} tii[6,11] := {19} tii[6,12] := {20} tii[6,13] := {9, 40} tii[6,14] := {26} tii[6,15] := {29} tii[6,16] := {15} tii[6,17] := {16} tii[6,18] := {7, 44} tii[6,19] := {22} tii[6,20] := {4, 39} tii[6,21] := {28} tii[6,22] := {34} tii[6,23] := {11} tii[6,24] := {12} tii[6,25] := {5, 46} tii[6,26] := {17} tii[6,27] := {3, 43} tii[6,28] := {21} tii[6,29] := {1, 42} tii[6,30] := {27} tii[6,31] := {33} tii[6,32] := {13, 37} tii[6,33] := {6, 36} tii[6,34] := {2, 35} tii[6,35] := {0, 38} cell#15 , |C| = 105 special orbit = [5, 3, 1, 1, 1, 1, 1, 1] special rep = [[1], [3, 1, 1, 1]] , dim = 70 cell rep = phi[[],[3, 2, 1, 1]]+phi[[1],[3, 1, 1, 1]] TII depth = 2 TII multiplicity polynomial = 35*X^2+35*X TII subcells: tii[16,1] := {36, 56} tii[16,2] := {26, 60} tii[16,3] := {54, 70} tii[16,4] := {43, 72} tii[16,5] := {57, 81} tii[16,6] := {58, 84} tii[16,7] := {34, 82} tii[16,8] := {25, 59} tii[16,9] := {40, 91} tii[16,10] := {24, 97} tii[16,11] := {41, 71} tii[16,12] := {23, 80} tii[16,13] := {2} tii[16,14] := {19, 38} tii[16,15] := {4} tii[16,16] := {14} tii[16,17] := {15} tii[16,18] := {42, 69} tii[16,19] := {11} tii[16,20] := {29} tii[16,21] := {31} tii[16,22] := {47} tii[16,23] := {51} tii[16,24] := {68} tii[16,25] := {12, 90} tii[16,26] := {22} tii[16,27] := {44} tii[16,28] := {48} tii[16,29] := {62} tii[16,30] := {64} tii[16,31] := {55, 93} tii[16,32] := {77} tii[16,33] := {74} tii[16,34] := {75} tii[16,35] := {39, 96} tii[16,36] := {88} tii[16,37] := {94} tii[16,38] := {10} tii[16,39] := {28} tii[16,40] := {30} tii[16,41] := {46} tii[16,42] := {50} tii[16,43] := {35, 100} tii[16,44] := {67} tii[16,45] := {61} tii[16,46] := {63} tii[16,47] := {21, 87} tii[16,48] := {18, 103} tii[16,49] := {76} tii[16,50] := {7, 104} tii[16,51] := {85} tii[16,52] := {45} tii[16,53] := {49} tii[16,54] := {9, 92} tii[16,55] := {66} tii[16,56] := {5, 98} tii[16,57] := {73} tii[16,58] := {86} tii[16,59] := {8, 33} tii[16,60] := {37, 83} tii[16,61] := {16, 53} tii[16,62] := {20, 79} tii[16,63] := {6, 99} tii[16,64] := {32, 65} tii[16,65] := {3, 102} tii[16,66] := {27, 89} tii[16,67] := {0, 101} tii[16,68] := {17, 52} tii[16,69] := {13, 78} tii[16,70] := {1, 95} cell#16 , |C| = 105 special orbit = [5, 3, 1, 1, 1, 1, 1, 1] special rep = [[1], [3, 1, 1, 1]] , dim = 70 cell rep = phi[[],[3, 2, 1, 1]]+phi[[1],[3, 1, 1, 1]] TII depth = 2 TII multiplicity polynomial = 35*X^2+35*X TII subcells: tii[16,1] := {36, 56} tii[16,2] := {26, 60} tii[16,3] := {54, 70} tii[16,4] := {43, 72} tii[16,5] := {57, 81} tii[16,6] := {58, 84} tii[16,7] := {34, 82} tii[16,8] := {25, 59} tii[16,9] := {40, 91} tii[16,10] := {24, 97} tii[16,11] := {41, 71} tii[16,12] := {23, 80} tii[16,13] := {2} tii[16,14] := {19, 38} tii[16,15] := {4} tii[16,16] := {14} tii[16,17] := {15} tii[16,18] := {42, 69} tii[16,19] := {11} tii[16,20] := {29} tii[16,21] := {31} tii[16,22] := {47} tii[16,23] := {51} tii[16,24] := {68} tii[16,25] := {12, 90} tii[16,26] := {22} tii[16,27] := {44} tii[16,28] := {48} tii[16,29] := {62} tii[16,30] := {64} tii[16,31] := {55, 93} tii[16,32] := {77} tii[16,33] := {74} tii[16,34] := {75} tii[16,35] := {39, 96} tii[16,36] := {88} tii[16,37] := {94} tii[16,38] := {10} tii[16,39] := {28} tii[16,40] := {30} tii[16,41] := {46} tii[16,42] := {50} tii[16,43] := {35, 100} tii[16,44] := {67} tii[16,45] := {61} tii[16,46] := {63} tii[16,47] := {21, 87} tii[16,48] := {18, 103} tii[16,49] := {76} tii[16,50] := {7, 104} tii[16,51] := {85} tii[16,52] := {45} tii[16,53] := {49} tii[16,54] := {9, 92} tii[16,55] := {66} tii[16,56] := {5, 98} tii[16,57] := {73} tii[16,58] := {86} tii[16,59] := {8, 33} tii[16,60] := {37, 83} tii[16,61] := {16, 53} tii[16,62] := {20, 79} tii[16,63] := {6, 99} tii[16,64] := {32, 65} tii[16,65] := {3, 102} tii[16,66] := {27, 89} tii[16,67] := {0, 101} tii[16,68] := {17, 52} tii[16,69] := {13, 78} tii[16,70] := {1, 95} cell#17 , |C| = 63 special orbit = [3, 3, 3, 1, 1, 1, 1, 1] special rep = [[1], [2, 2, 1, 1]] , dim = 63 cell rep = phi[[1],[2, 2, 1, 1]] TII depth = 3 TII multiplicity polynomial = 63*X TII subcells: tii[9,1] := {28} tii[9,2] := {17} tii[9,3] := {36} tii[9,4] := {44} tii[9,5] := {27} tii[9,6] := {45} tii[9,7] := {35} tii[9,8] := {51} tii[9,9] := {56} tii[9,10] := {1} tii[9,11] := {9} tii[9,12] := {3} tii[9,13] := {11} tii[9,14] := {12} tii[9,15] := {26} tii[9,16] := {8} tii[9,17] := {19} tii[9,18] := {21} tii[9,19] := {30} tii[9,20] := {32} tii[9,21] := {42} tii[9,22] := {53} tii[9,23] := {16} tii[9,24] := {29} tii[9,25] := {31} tii[9,26] := {38} tii[9,27] := {40} tii[9,28] := {49} tii[9,29] := {46} tii[9,30] := {47} tii[9,31] := {25} tii[9,32] := {59} tii[9,33] := {54} tii[9,34] := {57} tii[9,35] := {61} tii[9,36] := {62} tii[9,37] := {5} tii[9,38] := {6} tii[9,39] := {14} tii[9,40] := {20} tii[9,41] := {22} tii[9,42] := {24} tii[9,43] := {7} tii[9,44] := {34} tii[9,45] := {43} tii[9,46] := {37} tii[9,47] := {39} tii[9,48] := {15} tii[9,49] := {13} tii[9,50] := {33} tii[9,51] := {48} tii[9,52] := {52} tii[9,53] := {50} tii[9,54] := {10} tii[9,55] := {58} tii[9,56] := {23} tii[9,57] := {41} tii[9,58] := {18} tii[9,59] := {55} tii[9,60] := {60} tii[9,61] := {0} tii[9,62] := {2} tii[9,63] := {4} cell#18 , |C| = 63 special orbit = [3, 3, 3, 1, 1, 1, 1, 1] special rep = [[1], [2, 2, 1, 1]] , dim = 63 cell rep = phi[[1],[2, 2, 1, 1]] TII depth = 3 TII multiplicity polynomial = 63*X TII subcells: tii[9,1] := {28} tii[9,2] := {17} tii[9,3] := {36} tii[9,4] := {44} tii[9,5] := {27} tii[9,6] := {45} tii[9,7] := {35} tii[9,8] := {51} tii[9,9] := {56} tii[9,10] := {1} tii[9,11] := {9} tii[9,12] := {3} tii[9,13] := {11} tii[9,14] := {12} tii[9,15] := {26} tii[9,16] := {8} tii[9,17] := {19} tii[9,18] := {21} tii[9,19] := {30} tii[9,20] := {32} tii[9,21] := {42} tii[9,22] := {53} tii[9,23] := {16} tii[9,24] := {29} tii[9,25] := {31} tii[9,26] := {38} tii[9,27] := {40} tii[9,28] := {49} tii[9,29] := {46} tii[9,30] := {47} tii[9,31] := {25} tii[9,32] := {59} tii[9,33] := {54} tii[9,34] := {57} tii[9,35] := {61} tii[9,36] := {62} tii[9,37] := {5} tii[9,38] := {6} tii[9,39] := {14} tii[9,40] := {20} tii[9,41] := {22} tii[9,42] := {24} tii[9,43] := {7} tii[9,44] := {34} tii[9,45] := {43} tii[9,46] := {37} tii[9,47] := {39} tii[9,48] := {15} tii[9,49] := {13} tii[9,50] := {33} tii[9,51] := {48} tii[9,52] := {52} tii[9,53] := {50} tii[9,54] := {10} tii[9,55] := {58} tii[9,56] := {23} tii[9,57] := {41} tii[9,58] := {18} tii[9,59] := {55} tii[9,60] := {60} tii[9,61] := {0} tii[9,62] := {2} tii[9,63] := {4} cell#19 , |C| = 63 special orbit = [3, 3, 3, 1, 1, 1, 1, 1] special rep = [[1], [2, 2, 1, 1]] , dim = 63 cell rep = phi[[1],[2, 2, 1, 1]] TII depth = 3 TII multiplicity polynomial = 63*X TII subcells: tii[9,1] := {41} tii[9,2] := {54} tii[9,3] := {53} tii[9,4] := {59} tii[9,5] := {40} tii[9,6] := {39} tii[9,7] := {25} tii[9,8] := {52} tii[9,9] := {46} tii[9,10] := {3} tii[9,11] := {42} tii[9,12] := {11} tii[9,13] := {17} tii[9,14] := {20} tii[9,15] := {12} tii[9,16] := {24} tii[9,17] := {31} tii[9,18] := {34} tii[9,19] := {47} tii[9,20] := {48} tii[9,21] := {58} tii[9,22] := {62} tii[9,23] := {10} tii[9,24] := {16} tii[9,25] := {19} tii[9,26] := {32} tii[9,27] := {35} tii[9,28] := {49} tii[9,29] := {18} tii[9,30] := {21} tii[9,31] := {13} tii[9,32] := {60} tii[9,33] := {37} tii[9,34] := {45} tii[9,35] := {57} tii[9,36] := {51} tii[9,37] := {7} tii[9,38] := {9} tii[9,39] := {14} tii[9,40] := {33} tii[9,41] := {36} tii[9,42] := {28} tii[9,43] := {29} tii[9,44] := {50} tii[9,45] := {56} tii[9,46] := {6} tii[9,47] := {8} tii[9,48] := {4} tii[9,49] := {44} tii[9,50] := {43} tii[9,51] := {22} tii[9,52] := {30} tii[9,53] := {61} tii[9,54] := {2} tii[9,55] := {23} tii[9,56] := {27} tii[9,57] := {26} tii[9,58] := {5} tii[9,59] := {55} tii[9,60] := {38} tii[9,61] := {1} tii[9,62] := {15} tii[9,63] := {0} cell#20 , |C| = 63 special orbit = [3, 3, 3, 1, 1, 1, 1, 1] special rep = [[1], [2, 2, 1, 1]] , dim = 63 cell rep = phi[[1],[2, 2, 1, 1]] TII depth = 3 TII multiplicity polynomial = 63*X TII subcells: tii[9,1] := {42} tii[9,2] := {53} tii[9,3] := {54} tii[9,4] := {59} tii[9,5] := {39} tii[9,6] := {40} tii[9,7] := {25} tii[9,8] := {52} tii[9,9] := {46} tii[9,10] := {3} tii[9,11] := {41} tii[9,12] := {11} tii[9,13] := {17} tii[9,14] := {20} tii[9,15] := {12} tii[9,16] := {24} tii[9,17] := {31} tii[9,18] := {34} tii[9,19] := {47} tii[9,20] := {48} tii[9,21] := {58} tii[9,22] := {62} tii[9,23] := {10} tii[9,24] := {16} tii[9,25] := {19} tii[9,26] := {32} tii[9,27] := {35} tii[9,28] := {49} tii[9,29] := {18} tii[9,30] := {21} tii[9,31] := {13} tii[9,32] := {60} tii[9,33] := {37} tii[9,34] := {45} tii[9,35] := {57} tii[9,36] := {51} tii[9,37] := {7} tii[9,38] := {9} tii[9,39] := {15} tii[9,40] := {33} tii[9,41] := {36} tii[9,42] := {29} tii[9,43] := {28} tii[9,44] := {50} tii[9,45] := {56} tii[9,46] := {6} tii[9,47] := {8} tii[9,48] := {4} tii[9,49] := {43} tii[9,50] := {44} tii[9,51] := {22} tii[9,52] := {30} tii[9,53] := {61} tii[9,54] := {2} tii[9,55] := {23} tii[9,56] := {26} tii[9,57] := {27} tii[9,58] := {5} tii[9,59] := {55} tii[9,60] := {38} tii[9,61] := {1} tii[9,62] := {14} tii[9,63] := {0} cell#21 , |C| = 98 special orbit = [3, 3, 2, 2, 1, 1, 1, 1] special rep = [[1, 1], [2, 1, 1, 1]] , dim = 84 cell rep = phi[[],[2, 2, 2, 1]]+phi[[1, 1],[2, 1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 14*X^2+70*X TII subcells: tii[7,1] := {61, 62} tii[7,2] := {77, 78} tii[7,3] := {87, 88} tii[7,4] := {12} tii[7,5] := {46, 47} tii[7,6] := {21} tii[7,7] := {24} tii[7,8] := {27} tii[7,9] := {26} tii[7,10] := {29} tii[7,11] := {75, 76} tii[7,12] := {32} tii[7,13] := {35} tii[7,14] := {39} tii[7,15] := {38} tii[7,16] := {53} tii[7,17] := {42} tii[7,18] := {57} tii[7,19] := {74} tii[7,20] := {52} tii[7,21] := {56} tii[7,22] := {73} tii[7,23] := {45} tii[7,24] := {50} tii[7,25] := {54} tii[7,26] := {25} tii[7,27] := {69} tii[7,28] := {28} tii[7,29] := {71} tii[7,30] := {86} tii[7,31] := {83} tii[7,32] := {36} tii[7,33] := {84} tii[7,34] := {40} tii[7,35] := {95, 96} tii[7,36] := {58} tii[7,37] := {94} tii[7,38] := {97} tii[7,39] := {51} tii[7,40] := {55} tii[7,41] := {72} tii[7,42] := {81} tii[7,43] := {0} tii[7,44] := {1} tii[7,45] := {2} tii[7,46] := {14} tii[7,47] := {3} tii[7,48] := {16} tii[7,49] := {4} tii[7,50] := {10} tii[7,51] := {11} tii[7,52] := {7} tii[7,53] := {37} tii[7,54] := {9} tii[7,55] := {41} tii[7,56] := {18} tii[7,57] := {20} tii[7,58] := {33, 34} tii[7,59] := {59} tii[7,60] := {44} tii[7,61] := {68} tii[7,62] := {13} tii[7,63] := {70} tii[7,64] := {15} tii[7,65] := {89, 90} tii[7,66] := {48, 49} tii[7,67] := {30} tii[7,68] := {31} tii[7,69] := {85} tii[7,70] := {93} tii[7,71] := {79, 80} tii[7,72] := {60} tii[7,73] := {82} tii[7,74] := {6} tii[7,75] := {8} tii[7,76] := {63, 64} tii[7,77] := {17} tii[7,78] := {19} tii[7,79] := {91, 92} tii[7,80] := {43} tii[7,81] := {67} tii[7,82] := {5} tii[7,83] := {22, 23} tii[7,84] := {65, 66} cell#22 , |C| = 15 special orbit = [5, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [3, 1, 1, 1, 1]] , dim = 15 cell rep = phi[[],[3, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 15*X TII subcells: tii[15,1] := {8} tii[15,2] := {12} tii[15,3] := {14} tii[15,4] := {13} tii[15,5] := {7} tii[15,6] := {9} tii[15,7] := {11} tii[15,8] := {10} tii[15,9] := {6} tii[15,10] := {5} tii[15,11] := {3} tii[15,12] := {4} tii[15,13] := {2} tii[15,14] := {1} tii[15,15] := {0} cell#23 , |C| = 15 special orbit = [5, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [3, 1, 1, 1, 1]] , dim = 15 cell rep = phi[[],[3, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 15*X TII subcells: tii[15,1] := {8} tii[15,2] := {12} tii[15,3] := {14} tii[15,4] := {13} tii[15,5] := {7} tii[15,6] := {9} tii[15,7] := {11} tii[15,8] := {10} tii[15,9] := {6} tii[15,10] := {5} tii[15,11] := {3} tii[15,12] := {4} tii[15,13] := {2} tii[15,14] := {1} tii[15,15] := {0} cell#24 , |C| = 49 special orbit = [3, 3, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [2, 1, 1, 1, 1]] , dim = 35 cell rep = phi[[],[2, 2, 1, 1, 1]]+phi[[1],[2, 1, 1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 14*X^2+21*X TII subcells: tii[6,1] := {10, 20} tii[6,2] := {15, 26} tii[6,3] := {19, 32} tii[6,4] := {14, 37} tii[6,5] := {4} tii[6,6] := {11} tii[6,7] := {12} tii[6,8] := {16} tii[6,9] := {17} tii[6,10] := {25} tii[6,11] := {22} tii[6,12] := {24} tii[6,13] := {9, 35} tii[6,14] := {30} tii[6,15] := {34} tii[6,16] := {27} tii[6,17] := {28} tii[6,18] := {13, 41} tii[6,19] := {36} tii[6,20] := {7, 45} tii[6,21] := {39} tii[6,22] := {43} tii[6,23] := {21} tii[6,24] := {23} tii[6,25] := {8, 42} tii[6,26] := {29} tii[6,27] := {2, 46} tii[6,28] := {33} tii[6,29] := {1, 48} tii[6,30] := {38} tii[6,31] := {44} tii[6,32] := {6, 18} tii[6,33] := {5, 31} tii[6,34] := {3, 40} tii[6,35] := {0, 47} cell#25 , |C| = 49 special orbit = [3, 3, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [2, 1, 1, 1, 1]] , dim = 35 cell rep = phi[[],[2, 2, 1, 1, 1]]+phi[[1],[2, 1, 1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 14*X^2+21*X TII subcells: tii[6,1] := {10, 20} tii[6,2] := {15, 26} tii[6,3] := {19, 32} tii[6,4] := {14, 37} tii[6,5] := {4} tii[6,6] := {11} tii[6,7] := {12} tii[6,8] := {16} tii[6,9] := {17} tii[6,10] := {25} tii[6,11] := {22} tii[6,12] := {24} tii[6,13] := {9, 35} tii[6,14] := {30} tii[6,15] := {34} tii[6,16] := {27} tii[6,17] := {28} tii[6,18] := {13, 41} tii[6,19] := {36} tii[6,20] := {7, 45} tii[6,21] := {39} tii[6,22] := {43} tii[6,23] := {21} tii[6,24] := {23} tii[6,25] := {8, 42} tii[6,26] := {29} tii[6,27] := {2, 46} tii[6,28] := {33} tii[6,29] := {1, 48} tii[6,30] := {38} tii[6,31] := {44} tii[6,32] := {6, 18} tii[6,33] := {5, 31} tii[6,34] := {3, 40} tii[6,35] := {0, 47} cell#26 , |C| = 6 special orbit = [3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [2, 1, 1, 1, 1, 1]] , dim = 6 cell rep = phi[[],[2, 1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 6*X TII subcells: tii[5,1] := {5} tii[5,2] := {4} tii[5,3] := {3} tii[5,4] := {2} tii[5,5] := {1} tii[5,6] := {0} cell#27 , |C| = 6 special orbit = [3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [2, 1, 1, 1, 1, 1]] , dim = 6 cell rep = phi[[],[2, 1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 6*X TII subcells: tii[5,1] := {5} tii[5,2] := {4} tii[5,3] := {3} tii[5,4] := {2} tii[5,5] := {1} tii[5,6] := {0} cell#28 , |C| = 49 special orbit = [3, 3, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [2, 1, 1, 1, 1]] , dim = 35 cell rep = phi[[],[2, 2, 1, 1, 1]]+phi[[1],[2, 1, 1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 14*X^2+21*X TII subcells: tii[6,1] := {18, 19} tii[6,2] := {28, 29} tii[6,3] := {17, 38} tii[6,4] := {7, 34} tii[6,5] := {1} tii[6,6] := {3} tii[6,7] := {5} tii[6,8] := {13} tii[6,9] := {15} tii[6,10] := {27} tii[6,11] := {24} tii[6,12] := {25} tii[6,13] := {40, 41} tii[6,14] := {37} tii[6,15] := {42} tii[6,16] := {12} tii[6,17] := {14} tii[6,18] := {31, 46} tii[6,19] := {26} tii[6,20] := {21, 48} tii[6,21] := {35} tii[6,22] := {39} tii[6,23] := {4} tii[6,24] := {6} tii[6,25] := {20, 44} tii[6,26] := {16} tii[6,27] := {10, 47} tii[6,28] := {22} tii[6,29] := {2, 43} tii[6,30] := {30} tii[6,31] := {23} tii[6,32] := {8, 9} tii[6,33] := {32, 33} tii[6,34] := {11, 45} tii[6,35] := {0, 36} cell#29 , |C| = 49 special orbit = [3, 3, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [2, 1, 1, 1, 1]] , dim = 35 cell rep = phi[[],[2, 2, 1, 1, 1]]+phi[[1],[2, 1, 1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 14*X^2+21*X TII subcells: tii[6,1] := {18, 19} tii[6,2] := {28, 29} tii[6,3] := {17, 38} tii[6,4] := {7, 34} tii[6,5] := {1} tii[6,6] := {3} tii[6,7] := {5} tii[6,8] := {13} tii[6,9] := {15} tii[6,10] := {27} tii[6,11] := {24} tii[6,12] := {25} tii[6,13] := {40, 41} tii[6,14] := {37} tii[6,15] := {42} tii[6,16] := {12} tii[6,17] := {14} tii[6,18] := {31, 46} tii[6,19] := {26} tii[6,20] := {21, 48} tii[6,21] := {35} tii[6,22] := {39} tii[6,23] := {4} tii[6,24] := {6} tii[6,25] := {20, 44} tii[6,26] := {16} tii[6,27] := {10, 47} tii[6,28] := {22} tii[6,29] := {2, 43} tii[6,30] := {30} tii[6,31] := {23} tii[6,32] := {8, 9} tii[6,33] := {32, 33} tii[6,34] := {11, 45} tii[6,35] := {0, 36} cell#30 , |C| = 21 special orbit = [2, 2, 2, 2, 1, 1, 1, 1, 1, 1] special rep = [[1, 1], [1, 1, 1, 1, 1]] , dim = 21 cell rep = phi[[1, 1],[1, 1, 1, 1, 1]] TII depth = 2 TII multiplicity polynomial = 21*X TII subcells: tii[3,1] := {4} tii[3,2] := {5} tii[3,3] := {6} tii[3,4] := {7} tii[3,5] := {11} tii[3,6] := {9} tii[3,7] := {10} tii[3,8] := {15} tii[3,9] := {16} tii[3,10] := {13} tii[3,11] := {14} tii[3,12] := {17} tii[3,13] := {19} tii[3,14] := {20} tii[3,15] := {0} tii[3,16] := {1} tii[3,17] := {2} tii[3,18] := {3} tii[3,19] := {8} tii[3,20] := {12} tii[3,21] := {18} cell#31 , |C| = 6 special orbit = [3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [2, 1, 1, 1, 1, 1]] , dim = 6 cell rep = phi[[],[2, 1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 6*X TII subcells: tii[5,1] := {1} tii[5,2] := {4} tii[5,3] := {5} tii[5,4] := {3} tii[5,5] := {2} tii[5,6] := {0} cell#32 , |C| = 6 special orbit = [3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [2, 1, 1, 1, 1, 1]] , dim = 6 cell rep = phi[[],[2, 1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 6*X TII subcells: tii[5,1] := {1} tii[5,2] := {4} tii[5,3] := {5} tii[5,4] := {3} tii[5,5] := {2} tii[5,6] := {0} cell#33 , |C| = 7 special orbit = [2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [1, 1, 1, 1, 1, 1]] , dim = 7 cell rep = phi[[1],[1, 1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 7*X TII subcells: tii[2,1] := {0} tii[2,2] := {1} tii[2,3] := {2} tii[2,4] := {3} tii[2,5] := {4} tii[2,6] := {6} tii[2,7] := {5} cell#34 , |C| = 7 special orbit = [2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [1, 1, 1, 1, 1, 1]] , dim = 7 cell rep = phi[[1],[1, 1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 7*X TII subcells: tii[2,1] := {0} tii[2,2] := {1} tii[2,3] := {2} tii[2,4] := {3} tii[2,5] := {4} tii[2,6] := {6} tii[2,7] := {5} cell#35 , |C| = 1 special orbit = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [1, 1, 1, 1, 1, 1, 1]] , dim = 1 cell rep = phi[[],[1, 1, 1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = X TII subcells: tii[1,1] := {0} cell#36 , |C| = 1 special orbit = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [1, 1, 1, 1, 1, 1, 1]] , dim = 1 cell rep = phi[[],[1, 1, 1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = X TII subcells: tii[1,1] := {0}