TII subcells for the PSO(10,4) x Spin(9,5) block of PSO14 # cell#0 , |C| = 15 special orbit = [9, 1, 1, 1, 1, 1] special rep = [[], [5, 1, 1]] , dim = 15 cell rep = phi[[],[5, 1, 1]] TII depth = 1 TII multiplicity polynomial = 15*X TII subcells: tii[30,1] := {0} tii[30,2] := {4} tii[30,3] := {1} tii[30,4] := {5} tii[30,5] := {8} tii[30,6] := {3} tii[30,7] := {7} tii[30,8] := {2} tii[30,9] := {6} tii[30,10] := {9} tii[30,11] := {10} tii[30,12] := {12} tii[30,13] := {11} tii[30,14] := {13} tii[30,15] := {14} cell#1 , |C| = 105 special orbit = [7, 3, 1, 1, 1, 1] special rep = [[1], [4, 1, 1]] , dim = 70 cell rep = phi[[],[4, 2, 1]]+phi[[1],[4, 1, 1]] TII depth = 2 TII multiplicity polynomial = 35*X^2+35*X TII subcells: tii[25,1] := {17, 61} tii[25,2] := {9, 69} tii[25,3] := {38, 64} tii[25,4] := {31, 74} tii[25,5] := {22, 80} tii[25,6] := {35, 85} tii[25,7] := {51, 76} tii[25,8] := {32, 94} tii[25,9] := {36, 90} tii[25,10] := {63, 86} tii[25,11] := {20, 97} tii[25,12] := {75, 96} tii[25,13] := {0} tii[25,14] := {1} tii[25,15] := {6, 49} tii[25,16] := {2, 47} tii[25,17] := {3} tii[25,18] := {13} tii[25,19] := {14} tii[25,20] := {21, 73} tii[25,21] := {5} tii[25,22] := {18, 84} tii[25,23] := {4, 60} tii[25,24] := {11} tii[25,25] := {25} tii[25,26] := {26} tii[25,27] := {7, 77} tii[25,28] := {23} tii[25,29] := {40} tii[25,30] := {42} tii[25,31] := {54} tii[25,32] := {56} tii[25,33] := {71} tii[25,34] := {15} tii[25,35] := {24} tii[25,36] := {12, 72} tii[25,37] := {41} tii[25,38] := {43} tii[25,39] := {10, 87} tii[25,40] := {37} tii[25,41] := {53} tii[25,42] := {55} tii[25,43] := {66} tii[25,44] := {68} tii[25,45] := {48, 101} tii[25,46] := {82} tii[25,47] := {50} tii[25,48] := {65} tii[25,49] := {67} tii[25,50] := {78} tii[25,51] := {79} tii[25,52] := {44, 104} tii[25,53] := {91} tii[25,54] := {88} tii[25,55] := {89} tii[25,56] := {62, 103} tii[25,57] := {98} tii[25,58] := {102} tii[25,59] := {8, 29} tii[25,60] := {34, 95} tii[25,61] := {16, 46} tii[25,62] := {19, 93} tii[25,63] := {27, 58} tii[25,64] := {33, 83} tii[25,65] := {30, 59} tii[25,66] := {28, 100} tii[25,67] := {45, 70} tii[25,68] := {39, 92} tii[25,69] := {57, 81} tii[25,70] := {52, 99} cell#2 , |C| = 20 special orbit = [7, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [4, 1, 1, 1]] , dim = 20 cell rep = phi[[],[4, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 20*X TII subcells: tii[24,1] := {9} tii[24,2] := {4} tii[24,3] := {8} tii[24,4] := {1} tii[24,5] := {3} tii[24,6] := {7} tii[24,7] := {0} tii[24,8] := {2} tii[24,9] := {5} tii[24,10] := {11} tii[24,11] := {14} tii[24,12] := {10} tii[24,13] := {13} tii[24,14] := {17} tii[24,15] := {6} tii[24,16] := {12} tii[24,17] := {15} tii[24,18] := {16} tii[24,19] := {18} tii[24,20] := {19} cell#3 , |C| = 112 special orbit = [5, 3, 3, 1, 1, 1] special rep = [[1], [3, 2, 1]] , dim = 112 cell rep = phi[[1],[3, 2, 1]] TII depth = 3 TII multiplicity polynomial = 112*X TII subcells: tii[18,1] := {41} tii[18,2] := {85} tii[18,3] := {87} tii[18,4] := {62} tii[18,5] := {90} tii[18,6] := {51} tii[18,7] := {98} tii[18,8] := {81} tii[18,9] := {105} tii[18,10] := {106} tii[18,11] := {89} tii[18,12] := {109} tii[18,13] := {1} tii[18,14] := {12} tii[18,15] := {11} tii[18,16] := {66} tii[18,17] := {4} tii[18,18] := {23} tii[18,19] := {72} tii[18,20] := {25} tii[18,21] := {48} tii[18,22] := {32} tii[18,23] := {7} tii[18,24] := {17} tii[18,25] := {19} tii[18,26] := {84} tii[18,27] := {50} tii[18,28] := {43} tii[18,29] := {52} tii[18,30] := {56} tii[18,31] := {10} tii[18,32] := {69} tii[18,33] := {44} tii[18,34] := {46} tii[18,35] := {15} tii[18,36] := {34} tii[18,37] := {37} tii[18,38] := {97} tii[18,39] := {71} tii[18,40] := {31} tii[18,41] := {64} tii[18,42] := {53} tii[18,43] := {73} tii[18,44] := {57} tii[18,45] := {76} tii[18,46] := {75} tii[18,47] := {78} tii[18,48] := {95} tii[18,49] := {83} tii[18,50] := {91} tii[18,51] := {93} tii[18,52] := {102} tii[18,53] := {103} tii[18,54] := {82} tii[18,55] := {108} tii[18,56] := {111} tii[18,57] := {0} tii[18,58] := {29} tii[18,59] := {3} tii[18,60] := {8} tii[18,61] := {9} tii[18,62] := {18} tii[18,63] := {20} tii[18,64] := {30} tii[18,65] := {16} tii[18,66] := {33} tii[18,67] := {36} tii[18,68] := {54} tii[18,69] := {35} tii[18,70] := {58} tii[18,71] := {38} tii[18,72] := {40} tii[18,73] := {13} tii[18,74] := {80} tii[18,75] := {49} tii[18,76] := {74} tii[18,77] := {77} tii[18,78] := {42} tii[18,79] := {67} tii[18,80] := {65} tii[18,81] := {96} tii[18,82] := {101} tii[18,83] := {55} tii[18,84] := {59} tii[18,85] := {61} tii[18,86] := {26} tii[18,87] := {70} tii[18,88] := {92} tii[18,89] := {94} tii[18,90] := {63} tii[18,91] := {88} tii[18,92] := {86} tii[18,93] := {79} tii[18,94] := {39} tii[18,95] := {104} tii[18,96] := {45} tii[18,97] := {107} tii[18,98] := {99} tii[18,99] := {100} tii[18,100] := {110} tii[18,101] := {2} tii[18,102] := {22} tii[18,103] := {5} tii[18,104] := {6} tii[18,105] := {28} tii[18,106] := {60} tii[18,107] := {14} tii[18,108] := {21} tii[18,109] := {24} tii[18,110] := {47} tii[18,111] := {27} tii[18,112] := {68} cell#4 , |C| = 20 special orbit = [7, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [4, 1, 1, 1]] , dim = 20 cell rep = phi[[],[4, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 20*X TII subcells: tii[24,1] := {4} tii[24,2] := {10} tii[24,3] := {5} tii[24,4] := {17} tii[24,5] := {9} tii[24,6] := {6} tii[24,7] := {11} tii[24,8] := {3} tii[24,9] := {1} tii[24,10] := {0} tii[24,11] := {15} tii[24,12] := {18} tii[24,13] := {16} tii[24,14] := {19} tii[24,15] := {12} tii[24,16] := {8} tii[24,17] := {14} tii[24,18] := {2} tii[24,19] := {7} tii[24,20] := {13} cell#5 , |C| = 20 special orbit = [7, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [4, 1, 1, 1]] , dim = 20 cell rep = phi[[],[4, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 20*X TII subcells: tii[24,1] := {0} tii[24,2] := {2} tii[24,3] := {4} tii[24,4] := {5} tii[24,5] := {8} tii[24,6] := {13} tii[24,7] := {1} tii[24,8] := {3} tii[24,9] := {7} tii[24,10] := {6} tii[24,11] := {10} tii[24,12] := {15} tii[24,13] := {18} tii[24,14] := {19} tii[24,15] := {9} tii[24,16] := {14} tii[24,17] := {17} tii[24,18] := {12} tii[24,19] := {16} tii[24,20] := {11} cell#6 , |C| = 105 special orbit = [5, 3, 1, 1, 1, 1, 1, 1] special rep = [[1], [3, 1, 1, 1]] , dim = 70 cell rep = phi[[],[3, 2, 1, 1]]+phi[[1],[3, 1, 1, 1]] TII depth = 2 TII multiplicity polynomial = 35*X^2+35*X TII subcells: tii[16,1] := {6, 53} tii[16,2] := {24, 48} tii[16,3] := {12, 64} tii[16,4] := {35, 58} tii[16,5] := {5, 70} tii[16,6] := {46, 68} tii[16,7] := {21, 74} tii[16,8] := {47, 71} tii[16,9] := {11, 81} tii[16,10] := {4, 90} tii[16,11] := {57, 79} tii[16,12] := {69, 89} tii[16,13] := {3} tii[16,14] := {2, 43} tii[16,15] := {7} tii[16,16] := {16} tii[16,17] := {17} tii[16,18] := {1, 59} tii[16,19] := {13} tii[16,20] := {27} tii[16,21] := {28} tii[16,22] := {38} tii[16,23] := {40} tii[16,24] := {55} tii[16,25] := {0, 80} tii[16,26] := {23} tii[16,27] := {37} tii[16,28] := {39} tii[16,29] := {50} tii[16,30] := {52} tii[16,31] := {19, 87} tii[16,32] := {66} tii[16,33] := {60} tii[16,34] := {62} tii[16,35] := {32, 85} tii[16,36] := {75} tii[16,37] := {82} tii[16,38] := {34} tii[16,39] := {49} tii[16,40] := {51} tii[16,41] := {61} tii[16,42] := {63} tii[16,43] := {29, 96} tii[16,44] := {76} tii[16,45] := {72} tii[16,46] := {73} tii[16,47] := {45, 93} tii[16,48] := {18, 101} tii[16,49] := {86} tii[16,50] := {25, 104} tii[16,51] := {91} tii[16,52] := {83} tii[16,53] := {84} tii[16,54] := {56, 100} tii[16,55] := {95} tii[16,56] := {44, 103} tii[16,57] := {97} tii[16,58] := {102} tii[16,59] := {10, 31} tii[16,60] := {9, 78} tii[16,61] := {20, 42} tii[16,62] := {15, 67} tii[16,63] := {8, 94} tii[16,64] := {30, 54} tii[16,65] := {14, 99} tii[16,66] := {26, 77} tii[16,67] := {22, 92} tii[16,68] := {41, 65} tii[16,69] := {36, 88} tii[16,70] := {33, 98} cell#7 , |C| = 15 special orbit = [5, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [3, 1, 1, 1, 1]] , dim = 15 cell rep = phi[[],[3, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 15*X TII subcells: tii[15,1] := {10} tii[15,2] := {6} tii[15,3] := {3} tii[15,4] := {1} tii[15,5] := {0} tii[15,6] := {12} tii[15,7] := {7} tii[15,8] := {11} tii[15,9] := {5} tii[15,10] := {9} tii[15,11] := {14} tii[15,12] := {2} tii[15,13] := {4} tii[15,14] := {8} tii[15,15] := {13} cell#8 , |C| = 105 special orbit = [5, 3, 1, 1, 1, 1, 1, 1] special rep = [[1], [3, 1, 1, 1]] , dim = 70 cell rep = phi[[],[3, 2, 1, 1]]+phi[[1],[3, 1, 1, 1]] TII depth = 2 TII multiplicity polynomial = 35*X^2+35*X TII subcells: tii[16,1] := {25, 49} tii[16,2] := {16, 57} tii[16,3] := {44, 71} tii[16,4] := {34, 78} tii[16,5] := {53, 88} tii[16,6] := {55, 92} tii[16,7] := {48, 66} tii[16,8] := {15, 56} tii[16,9] := {69, 76} tii[16,10] := {47, 93} tii[16,11] := {32, 75} tii[16,12] := {54, 87} tii[16,13] := {0} tii[16,14] := {11, 29} tii[16,15] := {1} tii[16,16] := {6} tii[16,17] := {7} tii[16,18] := {33, 70} tii[16,19] := {4} tii[16,20] := {19} tii[16,21] := {21} tii[16,22] := {37} tii[16,23] := {40} tii[16,24] := {64} tii[16,25] := {28, 77} tii[16,26] := {14} tii[16,27] := {35} tii[16,28] := {38} tii[16,29] := {59} tii[16,30] := {61} tii[16,31] := {45, 100} tii[16,32] := {84} tii[16,33] := {80} tii[16,34] := {82} tii[16,35] := {31, 103} tii[16,36] := {97} tii[16,37] := {101} tii[16,38] := {3} tii[16,39] := {18} tii[16,40] := {20} tii[16,41] := {36} tii[16,42] := {39} tii[16,43] := {67, 90} tii[16,44] := {63} tii[16,45] := {58} tii[16,46] := {60} tii[16,47] := {13, 95} tii[16,48] := {73, 74} tii[16,49] := {83} tii[16,50] := {65, 68} tii[16,51] := {94} tii[16,52] := {79} tii[16,53] := {81} tii[16,54] := {30, 99} tii[16,55] := {96} tii[16,56] := {24, 89} tii[16,57] := {102} tii[16,58] := {104} tii[16,59] := {2, 23} tii[16,60] := {26, 91} tii[16,61] := {8, 42} tii[16,62] := {12, 86} tii[16,63] := {51, 52} tii[16,64] := {22, 62} tii[16,65] := {43, 46} tii[16,66] := {17, 98} tii[16,67] := {27, 50} tii[16,68] := {9, 41} tii[16,69] := {5, 85} tii[16,70] := {10, 72} cell#9 , |C| = 63 special orbit = [3, 3, 3, 1, 1, 1, 1, 1] special rep = [[1], [2, 2, 1, 1]] , dim = 63 cell rep = phi[[1],[2, 2, 1, 1]] TII depth = 3 TII multiplicity polynomial = 63*X TII subcells: tii[9,1] := {18} tii[9,2] := {26} tii[9,3] := {27} tii[9,4] := {38} tii[9,5] := {39} tii[9,6] := {40} tii[9,7] := {47} tii[9,8] := {48} tii[9,9] := {55} tii[9,10] := {1} tii[9,11] := {17} tii[9,12] := {4} tii[9,13] := {7} tii[9,14] := {8} tii[9,15] := {37} tii[9,16] := {9} tii[9,17] := {12} tii[9,18] := {14} tii[9,19] := {22} tii[9,20] := {24} tii[9,21] := {36} tii[9,22] := {50} tii[9,23] := {16} tii[9,24] := {21} tii[9,25] := {23} tii[9,26] := {33} tii[9,27] := {35} tii[9,28] := {46} tii[9,29] := {43} tii[9,30] := {44} tii[9,31] := {57} tii[9,32] := {58} tii[9,33] := {54} tii[9,34] := {59} tii[9,35] := {61} tii[9,36] := {62} tii[9,37] := {2} tii[9,38] := {3} tii[9,39] := {6} tii[9,40] := {13} tii[9,41] := {15} tii[9,42] := {11} tii[9,43] := {10} tii[9,44] := {25} tii[9,45] := {31} tii[9,46] := {32} tii[9,47] := {34} tii[9,48] := {49} tii[9,49] := {19} tii[9,50] := {20} tii[9,51] := {45} tii[9,52] := {53} tii[9,53] := {42} tii[9,54] := {41} tii[9,55] := {56} tii[9,56] := {28} tii[9,57] := {29} tii[9,58] := {51} tii[9,59] := {52} tii[9,60] := {60} tii[9,61] := {0} tii[9,62] := {5} tii[9,63] := {30} cell#10 , |C| = 15 special orbit = [5, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [3, 1, 1, 1, 1]] , dim = 15 cell rep = phi[[],[3, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 15*X TII subcells: tii[15,1] := {1} tii[15,2] := {3} tii[15,3] := {6} tii[15,4] := {2} tii[15,5] := {0} tii[15,6] := {10} tii[15,7] := {13} tii[15,8] := {14} tii[15,9] := {9} tii[15,10] := {12} tii[15,11] := {11} tii[15,12] := {4} tii[15,13] := {8} tii[15,14] := {5} tii[15,15] := {7} cell#11 , |C| = 49 special orbit = [3, 3, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [2, 1, 1, 1, 1]] , dim = 35 cell rep = phi[[],[2, 2, 1, 1, 1]]+phi[[1],[2, 1, 1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 14*X^2+21*X TII subcells: tii[6,1] := {7, 19} tii[6,2] := {13, 23} tii[6,3] := {18, 29} tii[6,4] := {24, 35} tii[6,5] := {1} tii[6,6] := {8} tii[6,7] := {9} tii[6,8] := {14} tii[6,9] := {15} tii[6,10] := {22} tii[6,11] := {20} tii[6,12] := {21} tii[6,13] := {6, 33} tii[6,14] := {27} tii[6,15] := {30} tii[6,16] := {25} tii[6,17] := {26} tii[6,18] := {12, 39} tii[6,19] := {34} tii[6,20] := {5, 44} tii[6,21] := {37} tii[6,22] := {43} tii[6,23] := {31} tii[6,24] := {32} tii[6,25] := {17, 42} tii[6,26] := {40} tii[6,27] := {11, 46} tii[6,28] := {45} tii[6,29] := {10, 41} tii[6,30] := {47} tii[6,31] := {48} tii[6,32] := {3, 16} tii[6,33] := {2, 28} tii[6,34] := {0, 38} tii[6,35] := {4, 36} cell#12 , |C| = 15 special orbit = [5, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [3, 1, 1, 1, 1]] , dim = 15 cell rep = phi[[],[3, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 15*X TII subcells: tii[15,1] := {0} tii[15,2] := {1} tii[15,3] := {2} tii[15,4] := {5} tii[15,5] := {4} tii[15,6] := {3} tii[15,7] := {6} tii[15,8] := {8} tii[15,9] := {9} tii[15,10] := {12} tii[15,11] := {14} tii[15,12] := {7} tii[15,13] := {11} tii[15,14] := {13} tii[15,15] := {10} cell#13 , |C| = 6 special orbit = [3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [2, 1, 1, 1, 1, 1]] , dim = 6 cell rep = phi[[],[2, 1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 6*X TII subcells: tii[5,1] := {0} tii[5,2] := {1} tii[5,3] := {2} tii[5,4] := {5} tii[5,5] := {3} tii[5,6] := {4}