TII subcells for the PSO(11,3) x Spin(8,6) block of PSO14 # cell#0 , |C| = 20 special orbit = [7, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [4, 1, 1, 1]] , dim = 20 cell rep = phi[[],[4, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 20*X TII subcells: tii[24,1] := {0} tii[24,2] := {6} tii[24,3] := {1} tii[24,4] := {11} tii[24,5] := {5} tii[24,6] := {2} tii[24,7] := {16} tii[24,8] := {10} tii[24,9] := {4} tii[24,10] := {3} tii[24,11] := {7} tii[24,12] := {13} tii[24,13] := {8} tii[24,14] := {14} tii[24,15] := {18} tii[24,16] := {12} tii[24,17] := {17} tii[24,18] := {9} tii[24,19] := {15} tii[24,20] := {19} cell#1 , |C| = 105 special orbit = [5, 3, 1, 1, 1, 1, 1, 1] special rep = [[1], [3, 1, 1, 1]] , dim = 70 cell rep = phi[[],[3, 2, 1, 1]]+phi[[1],[3, 1, 1, 1]] TII depth = 2 TII multiplicity polynomial = 35*X^2+35*X TII subcells: tii[16,1] := {16, 35} tii[16,2] := {10, 42} tii[16,3] := {32, 53} tii[16,4] := {24, 59} tii[16,5] := {39, 67} tii[16,6] := {40, 70} tii[16,7] := {49, 68} tii[16,8] := {41, 73} tii[16,9] := {56, 80} tii[16,10] := {72, 89} tii[16,11] := {58, 82} tii[16,12] := {71, 92} tii[16,13] := {0} tii[16,14] := {7, 19} tii[16,15] := {1} tii[16,16] := {4} tii[16,17] := {5} tii[16,18] := {23, 52} tii[16,19] := {3} tii[16,20] := {12} tii[16,21] := {13} tii[16,22] := {27} tii[16,23] := {29} tii[16,24] := {48} tii[16,25] := {57, 79} tii[16,26] := {9} tii[16,27] := {26} tii[16,28] := {28} tii[16,29] := {44} tii[16,30] := {46} tii[16,31] := {33, 81} tii[16,32] := {65} tii[16,33] := {60} tii[16,34] := {62} tii[16,35] := {20, 86} tii[16,36] := {76} tii[16,37] := {83} tii[16,38] := {22} tii[16,39] := {43} tii[16,40] := {45} tii[16,41] := {61} tii[16,42] := {63} tii[16,43] := {50, 91} tii[16,44] := {77} tii[16,45] := {74} tii[16,46] := {75} tii[16,47] := {38, 95} tii[16,48] := {54, 98} tii[16,49] := {87} tii[16,50] := {51, 102} tii[16,51] := {93} tii[16,52] := {84} tii[16,53] := {85} tii[16,54] := {55, 101} tii[16,55] := {96} tii[16,56] := {36, 104} tii[16,57] := {99} tii[16,58] := {103} tii[16,59] := {2, 15} tii[16,60] := {17, 69} tii[16,61] := {6, 31} tii[16,62] := {8, 66} tii[16,63] := {37, 90} tii[16,64] := {14, 47} tii[16,65] := {34, 97} tii[16,66] := {11, 78} tii[16,67] := {18, 94} tii[16,68] := {30, 64} tii[16,69] := {25, 88} tii[16,70] := {21, 100} cell#2 , |C| = 15 special orbit = [5, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [3, 1, 1, 1, 1]] , dim = 15 cell rep = phi[[],[3, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 15*X TII subcells: tii[15,1] := {10} tii[15,2] := {6} tii[15,3] := {3} tii[15,4] := {1} tii[15,5] := {0} tii[15,6] := {13} tii[15,7] := {8} tii[15,8] := {12} tii[15,9] := {4} tii[15,10] := {7} tii[15,11] := {11} tii[15,12] := {2} tii[15,13] := {5} tii[15,14] := {9} tii[15,15] := {14} cell#3 , |C| = 63 special orbit = [3, 3, 3, 1, 1, 1, 1, 1] special rep = [[1], [2, 2, 1, 1]] , dim = 63 cell rep = phi[[1],[2, 2, 1, 1]] TII depth = 3 TII multiplicity polynomial = 63*X TII subcells: tii[9,1] := {18} tii[9,2] := {26} tii[9,3] := {27} tii[9,4] := {38} tii[9,5] := {39} tii[9,6] := {40} tii[9,7] := {47} tii[9,8] := {48} tii[9,9] := {55} tii[9,10] := {1} tii[9,11] := {17} tii[9,12] := {4} tii[9,13] := {7} tii[9,14] := {8} tii[9,15] := {37} tii[9,16] := {9} tii[9,17] := {12} tii[9,18] := {14} tii[9,19] := {22} tii[9,20] := {24} tii[9,21] := {36} tii[9,22] := {50} tii[9,23] := {16} tii[9,24] := {21} tii[9,25] := {23} tii[9,26] := {33} tii[9,27] := {35} tii[9,28] := {46} tii[9,29] := {43} tii[9,30] := {44} tii[9,31] := {57} tii[9,32] := {58} tii[9,33] := {54} tii[9,34] := {59} tii[9,35] := {61} tii[9,36] := {62} tii[9,37] := {2} tii[9,38] := {3} tii[9,39] := {6} tii[9,40] := {13} tii[9,41] := {15} tii[9,42] := {11} tii[9,43] := {10} tii[9,44] := {25} tii[9,45] := {31} tii[9,46] := {32} tii[9,47] := {34} tii[9,48] := {49} tii[9,49] := {19} tii[9,50] := {20} tii[9,51] := {45} tii[9,52] := {53} tii[9,53] := {42} tii[9,54] := {41} tii[9,55] := {56} tii[9,56] := {28} tii[9,57] := {29} tii[9,58] := {51} tii[9,59] := {52} tii[9,60] := {60} tii[9,61] := {0} tii[9,62] := {5} tii[9,63] := {30} cell#4 , |C| = 15 special orbit = [5, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [3, 1, 1, 1, 1]] , dim = 15 cell rep = phi[[],[3, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 15*X TII subcells: tii[15,1] := {3} tii[15,2] := {10} tii[15,3] := {13} tii[15,4] := {14} tii[15,5] := {12} tii[15,6] := {4} tii[15,7] := {8} tii[15,8] := {5} tii[15,9] := {11} tii[15,10] := {7} tii[15,11] := {6} tii[15,12] := {9} tii[15,13] := {2} tii[15,14] := {1} tii[15,15] := {0} cell#5 , |C| = 15 special orbit = [5, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [3, 1, 1, 1, 1]] , dim = 15 cell rep = phi[[],[3, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 15*X TII subcells: tii[15,1] := {0} tii[15,2] := {1} tii[15,3] := {3} tii[15,4] := {5} tii[15,5] := {2} tii[15,6] := {4} tii[15,7] := {7} tii[15,8] := {9} tii[15,9] := {10} tii[15,10] := {13} tii[15,11] := {14} tii[15,12] := {6} tii[15,13] := {8} tii[15,14] := {12} tii[15,15] := {11} cell#6 , |C| = 49 special orbit = [3, 3, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [2, 1, 1, 1, 1]] , dim = 35 cell rep = phi[[],[2, 2, 1, 1, 1]]+phi[[1],[2, 1, 1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 14*X^2+21*X TII subcells: tii[6,1] := {8, 19} tii[6,2] := {13, 23} tii[6,3] := {18, 29} tii[6,4] := {24, 35} tii[6,5] := {2} tii[6,6] := {9} tii[6,7] := {10} tii[6,8] := {14} tii[6,9] := {15} tii[6,10] := {22} tii[6,11] := {20} tii[6,12] := {21} tii[6,13] := {7, 33} tii[6,14] := {27} tii[6,15] := {30} tii[6,16] := {25} tii[6,17] := {26} tii[6,18] := {12, 38} tii[6,19] := {34} tii[6,20] := {6, 41} tii[6,21] := {36} tii[6,22] := {40} tii[6,23] := {31} tii[6,24] := {32} tii[6,25] := {17, 43} tii[6,26] := {39} tii[6,27] := {11, 46} tii[6,28] := {42} tii[6,29] := {5, 48} tii[6,30] := {44} tii[6,31] := {47} tii[6,32] := {4, 16} tii[6,33] := {3, 28} tii[6,34] := {1, 37} tii[6,35] := {0, 45} cell#7 , |C| = 6 special orbit = [3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [2, 1, 1, 1, 1, 1]] , dim = 6 cell rep = phi[[],[2, 1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 6*X TII subcells: tii[5,1] := {5} tii[5,2] := {4} tii[5,3] := {3} tii[5,4] := {2} tii[5,5] := {1} tii[5,6] := {0} cell#8 , |C| = 49 special orbit = [3, 3, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [2, 1, 1, 1, 1]] , dim = 35 cell rep = phi[[],[2, 2, 1, 1, 1]]+phi[[1],[2, 1, 1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 14*X^2+21*X TII subcells: tii[6,1] := {7, 8} tii[6,2] := {15, 16} tii[6,3] := {24, 25} tii[6,4] := {14, 33} tii[6,5] := {0} tii[6,6] := {1} tii[6,7] := {2} tii[6,8] := {5} tii[6,9] := {6} tii[6,10] := {13} tii[6,11] := {10} tii[6,12] := {12} tii[6,13] := {28, 29} tii[6,14] := {23} tii[6,15] := {31} tii[6,16] := {20} tii[6,17] := {21} tii[6,18] := {37, 38} tii[6,19] := {32} tii[6,20] := {42, 43} tii[6,21] := {40} tii[6,22] := {45} tii[6,23] := {9} tii[6,24] := {11} tii[6,25] := {27, 44} tii[6,26] := {22} tii[6,27] := {34, 47} tii[6,28] := {30} tii[6,29] := {26, 48} tii[6,30] := {39} tii[6,31] := {41} tii[6,32] := {3, 4} tii[6,33] := {18, 19} tii[6,34] := {35, 36} tii[6,35] := {17, 46} cell#9 , |C| = 6 special orbit = [3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [2, 1, 1, 1, 1, 1]] , dim = 6 cell rep = phi[[],[2, 1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 6*X TII subcells: tii[5,1] := {0} tii[5,2] := {2} tii[5,3] := {4} tii[5,4] := {5} tii[5,5] := {3} tii[5,6] := {1} cell#10 , |C| = 7 special orbit = [2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [1, 1, 1, 1, 1, 1]] , dim = 7 cell rep = phi[[1],[1, 1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 7*X TII subcells: tii[2,1] := {0} tii[2,2] := {1} tii[2,3] := {2} tii[2,4] := {3} tii[2,5] := {4} tii[2,6] := {5} tii[2,7] := {6} cell#11 , |C| = 6 special orbit = [3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [2, 1, 1, 1, 1, 1]] , dim = 6 cell rep = phi[[],[2, 1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 6*X TII subcells: tii[5,1] := {0} tii[5,2] := {1} tii[5,3] := {2} tii[5,4] := {3} tii[5,5] := {5} tii[5,6] := {4} cell#12 , |C| = 1 special orbit = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [1, 1, 1, 1, 1, 1, 1]] , dim = 1 cell rep = phi[[],[1, 1, 1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = X TII subcells: tii[1,1] := {0}