TII subcells for the PSO(8,6) x Spin(11,3) block of PSO14 # cell#0 , |C| = 1 special orbit = [13, 1] special rep = [[], [7]] , dim = 1 cell rep = phi[[],[7]] TII depth = 1 TII multiplicity polynomial = X TII subcells: tii[35,1] := {0} cell#1 , |C| = 6 special orbit = [11, 1, 1, 1] special rep = [[], [6, 1]] , dim = 6 cell rep = phi[[],[6, 1]] TII depth = 1 TII multiplicity polynomial = 6*X TII subcells: tii[33,1] := {1} tii[33,2] := {0} tii[33,3] := {2} tii[33,4] := {3} tii[33,5] := {4} tii[33,6] := {5} cell#2 , |C| = 7 special orbit = [11, 3] special rep = [[1], [6]] , dim = 7 cell rep = phi[[1],[6]] TII depth = 1 TII multiplicity polynomial = 7*X TII subcells: tii[34,1] := {0} tii[34,2] := {1} tii[34,3] := {2} tii[34,4] := {3} tii[34,5] := {4} tii[34,6] := {5} tii[34,7] := {6} cell#3 , |C| = 6 special orbit = [11, 1, 1, 1] special rep = [[], [6, 1]] , dim = 6 cell rep = phi[[],[6, 1]] TII depth = 1 TII multiplicity polynomial = 6*X TII subcells: tii[33,1] := {4} tii[33,2] := {2} tii[33,3] := {0} tii[33,4] := {1} tii[33,5] := {3} tii[33,6] := {5} cell#4 , |C| = 49 special orbit = [9, 3, 1, 1] special rep = [[1], [5, 1]] , dim = 35 cell rep = phi[[],[5, 2]]+phi[[1],[5, 1]] TII depth = 3 TII multiplicity polynomial = 14*X^2+21*X TII subcells: tii[31,1] := {2, 31} tii[31,2] := {12, 13} tii[31,3] := {29, 30} tii[31,4] := {44, 45} tii[31,5] := {7} tii[31,6] := {0, 22} tii[31,7] := {9} tii[31,8] := {1, 14} tii[31,9] := {18} tii[31,10] := {4, 21} tii[31,11] := {26} tii[31,12] := {37} tii[31,13] := {39} tii[31,14] := {3} tii[31,15] := {8} tii[31,16] := {5, 6} tii[31,17] := {10, 11} tii[31,18] := {16} tii[31,19] := {27} tii[31,20] := {28} tii[31,21] := {17} tii[31,22] := {19, 20} tii[31,23] := {25} tii[31,24] := {36} tii[31,25] := {38} tii[31,26] := {35} tii[31,27] := {42} tii[31,28] := {43} tii[31,29] := {46} tii[31,30] := {47} tii[31,31] := {48} tii[31,32] := {15, 34} tii[31,33] := {23, 24} tii[31,34] := {32, 33} tii[31,35] := {40, 41} cell#5 , |C| = 6 special orbit = [11, 1, 1, 1] special rep = [[], [6, 1]] , dim = 6 cell rep = phi[[],[6, 1]] TII depth = 1 TII multiplicity polynomial = 6*X TII subcells: tii[33,1] := {5} tii[33,2] := {4} tii[33,3] := {3} tii[33,4] := {2} tii[33,5] := {1} tii[33,6] := {0} cell#6 , |C| = 49 special orbit = [9, 3, 1, 1] special rep = [[1], [5, 1]] , dim = 35 cell rep = phi[[],[5, 2]]+phi[[1],[5, 1]] TII depth = 3 TII multiplicity polynomial = 14*X^2+21*X TII subcells: tii[31,1] := {3, 48} tii[31,2] := {11, 47} tii[31,3] := {20, 45} tii[31,4] := {32, 44} tii[31,5] := {1} tii[31,6] := {0, 43} tii[31,7] := {4} tii[31,8] := {2, 37} tii[31,9] := {6} tii[31,10] := {5, 31} tii[31,11] := {9} tii[31,12] := {16} tii[31,13] := {17} tii[31,14] := {8} tii[31,15] := {12} tii[31,16] := {7, 42} tii[31,17] := {10, 36} tii[31,18] := {14} tii[31,19] := {22} tii[31,20] := {23} tii[31,21] := {18} tii[31,22] := {15, 41} tii[31,23] := {21} tii[31,24] := {27} tii[31,25] := {28} tii[31,26] := {26} tii[31,27] := {33} tii[31,28] := {34} tii[31,29] := {38} tii[31,30] := {39} tii[31,31] := {46} tii[31,32] := {13, 24} tii[31,33] := {19, 30} tii[31,34] := {25, 35} tii[31,35] := {29, 40} cell#7 , |C| = 15 special orbit = [9, 1, 1, 1, 1, 1] special rep = [[], [5, 1, 1]] , dim = 15 cell rep = phi[[],[5, 1, 1]] TII depth = 1 TII multiplicity polynomial = 15*X TII subcells: tii[30,1] := {3} tii[30,2] := {2} tii[30,3] := {6} tii[30,4] := {8} tii[30,5] := {0} tii[30,6] := {1} tii[30,7] := {4} tii[30,8] := {5} tii[30,9] := {7} tii[30,10] := {10} tii[30,11] := {12} tii[30,12] := {9} tii[30,13] := {11} tii[30,14] := {13} tii[30,15] := {14} cell#8 , |C| = 63 special orbit = [7, 3, 3, 1] special rep = [[1], [4, 2]] , dim = 63 cell rep = phi[[1],[4, 2]] TII depth = 3 TII multiplicity polynomial = 63*X TII subcells: tii[27,1] := {31} tii[27,2] := {56} tii[27,3] := {62} tii[27,4] := {2} tii[27,5] := {11} tii[27,6] := {10} tii[27,7] := {34} tii[27,8] := {33} tii[27,9] := {6} tii[27,10] := {20} tii[27,11] := {21} tii[27,12] := {9} tii[27,13] := {43} tii[27,14] := {12} tii[27,15] := {42} tii[27,16] := {17} tii[27,17] := {28} tii[27,18] := {30} tii[27,19] := {32} tii[27,20] := {51} tii[27,21] := {52} tii[27,22] := {37} tii[27,23] := {47} tii[27,24] := {49} tii[27,25] := {57} tii[27,26] := {59} tii[27,27] := {60} tii[27,28] := {0} tii[27,29] := {1} tii[27,30] := {3} tii[27,31] := {4} tii[27,32] := {5} tii[27,33] := {8} tii[27,34] := {18} tii[27,35] := {19} tii[27,36] := {16} tii[27,37] := {27} tii[27,38] := {29} tii[27,39] := {39} tii[27,40] := {41} tii[27,41] := {46} tii[27,42] := {13} tii[27,43] := {26} tii[27,44] := {38} tii[27,45] := {40} tii[27,46] := {48} tii[27,47] := {50} tii[27,48] := {24} tii[27,49] := {53} tii[27,50] := {54} tii[27,51] := {55} tii[27,52] := {58} tii[27,53] := {44} tii[27,54] := {61} tii[27,55] := {7} tii[27,56] := {14} tii[27,57] := {15} tii[27,58] := {22} tii[27,59] := {23} tii[27,60] := {25} tii[27,61] := {36} tii[27,62] := {35} tii[27,63] := {45} cell#9 , |C| = 15 special orbit = [9, 1, 1, 1, 1, 1] special rep = [[], [5, 1, 1]] , dim = 15 cell rep = phi[[],[5, 1, 1]] TII depth = 1 TII multiplicity polynomial = 15*X TII subcells: tii[30,1] := {14} tii[30,2] := {13} tii[30,3] := {12} tii[30,4] := {5} tii[30,5] := {11} tii[30,6] := {7} tii[30,7] := {3} tii[30,8] := {10} tii[30,9] := {6} tii[30,10] := {9} tii[30,11] := {2} tii[30,12] := {0} tii[30,13] := {1} tii[30,14] := {4} tii[30,15] := {8} cell#10 , |C| = 105 special orbit = [7, 3, 1, 1, 1, 1] special rep = [[1], [4, 1, 1]] , dim = 70 cell rep = phi[[],[4, 2, 1]]+phi[[1],[4, 1, 1]] TII depth = 2 TII multiplicity polynomial = 35*X^2+35*X TII subcells: tii[25,1] := {4, 83} tii[25,2] := {16, 79} tii[25,3] := {40, 74} tii[25,4] := {10, 88} tii[25,5] := {26, 93} tii[25,6] := {7, 72} tii[25,7] := {57, 90} tii[25,8] := {14, 67} tii[25,9] := {38, 97} tii[25,10] := {73, 98} tii[25,11] := {35, 87} tii[25,12] := {89, 102} tii[25,13] := {1} tii[25,14] := {5} tii[25,15] := {0, 68} tii[25,16] := {3, 49} tii[25,17] := {8} tii[25,18] := {19} tii[25,19] := {20} tii[25,20] := {2, 55} tii[25,21] := {11} tii[25,22] := {6, 50} tii[25,23] := {9, 66} tii[25,24] := {17} tii[25,25] := {29} tii[25,26] := {30} tii[25,27] := {13, 54} tii[25,28] := {27} tii[25,29] := {41} tii[25,30] := {43} tii[25,31] := {59} tii[25,32] := {61} tii[25,33] := {82} tii[25,34] := {21} tii[25,35] := {28} tii[25,36] := {18, 84} tii[25,37] := {42} tii[25,38] := {44} tii[25,39] := {23, 71} tii[25,40] := {39} tii[25,41] := {58} tii[25,42] := {60} tii[25,43] := {76} tii[25,44] := {78} tii[25,45] := {25, 47} tii[25,46] := {95} tii[25,47] := {56} tii[25,48] := {75} tii[25,49] := {77} tii[25,50] := {91} tii[25,51] := {92} tii[25,52] := {52, 81} tii[25,53] := {101} tii[25,54] := {99} tii[25,55] := {100} tii[25,56] := {85, 96} tii[25,57] := {103} tii[25,58] := {104} tii[25,59] := {12, 33} tii[25,60] := {15, 32} tii[25,61] := {22, 46} tii[25,62] := {24, 48} tii[25,63] := {31, 63} tii[25,64] := {36, 53} tii[25,65] := {34, 64} tii[25,66] := {37, 65} tii[25,67] := {45, 80} tii[25,68] := {51, 70} tii[25,69] := {62, 94} tii[25,70] := {69, 86} cell#11 , |C| = 15 special orbit = [9, 1, 1, 1, 1, 1] special rep = [[], [5, 1, 1]] , dim = 15 cell rep = phi[[],[5, 1, 1]] TII depth = 1 TII multiplicity polynomial = 15*X TII subcells: tii[30,1] := {0} tii[30,2] := {5} tii[30,3] := {9} tii[30,4] := {12} tii[30,5] := {3} tii[30,6] := {7} tii[30,7] := {10} tii[30,8] := {2} tii[30,9] := {6} tii[30,10] := {1} tii[30,11] := {14} tii[30,12] := {13} tii[30,13] := {11} tii[30,14] := {8} tii[30,15] := {4} cell#12 , |C| = 20 special orbit = [7, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [4, 1, 1, 1]] , dim = 20 cell rep = phi[[],[4, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 20*X TII subcells: tii[24,1] := {0} tii[24,2] := {5} tii[24,3] := {12} tii[24,4] := {2} tii[24,5] := {7} tii[24,6] := {1} tii[24,7] := {4} tii[24,8] := {11} tii[24,9] := {6} tii[24,10] := {10} tii[24,11] := {19} tii[24,12] := {15} tii[24,13] := {9} tii[24,14] := {3} tii[24,15] := {18} tii[24,16] := {14} tii[24,17] := {8} tii[24,18] := {17} tii[24,19] := {13} tii[24,20] := {16}