TII subcells for the SO(12,2) x SO(7,7) block of SO14 # cell#0 , |C| = 15 special orbit = [5, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [3, 1, 1, 1, 1]] , dim = 15 cell rep = phi[[],[3, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 15*X TII subcells: tii[15,1] := {0} tii[15,2] := {8} tii[15,3] := {11} tii[15,4] := {13} tii[15,5] := {14} tii[15,6] := {1} tii[15,7] := {7} tii[15,8] := {2} tii[15,9] := {10} tii[15,10] := {6} tii[15,11] := {3} tii[15,12] := {12} tii[15,13] := {9} tii[15,14] := {5} tii[15,15] := {4} cell#1 , |C| = 49 special orbit = [3, 3, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [2, 1, 1, 1, 1]] , dim = 35 cell rep = phi[[],[2, 2, 1, 1, 1]]+phi[[1],[2, 1, 1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 14*X^2+21*X TII subcells: tii[6,1] := {7, 8} tii[6,2] := {12, 13} tii[6,3] := {19, 20} tii[6,4] := {27, 28} tii[6,5] := {0} tii[6,6] := {1} tii[6,7] := {2} tii[6,8] := {5} tii[6,9] := {6} tii[6,10] := {11} tii[6,11] := {9} tii[6,12] := {10} tii[6,13] := {21, 22} tii[6,14] := {18} tii[6,15] := {23} tii[6,16] := {16} tii[6,17] := {17} tii[6,18] := {31, 32} tii[6,19] := {26} tii[6,20] := {35, 36} tii[6,21] := {33} tii[6,22] := {39} tii[6,23] := {24} tii[6,24] := {25} tii[6,25] := {37, 38} tii[6,26] := {34} tii[6,27] := {43, 44} tii[6,28] := {40} tii[6,29] := {46, 47} tii[6,30] := {45} tii[6,31] := {48} tii[6,32] := {3, 4} tii[6,33] := {14, 15} tii[6,34] := {29, 30} tii[6,35] := {41, 42} cell#2 , |C| = 6 special orbit = [3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [2, 1, 1, 1, 1, 1]] , dim = 6 cell rep = phi[[],[2, 1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 6*X TII subcells: tii[5,1] := {5} tii[5,2] := {4} tii[5,3] := {3} tii[5,4] := {2} tii[5,5] := {1} tii[5,6] := {0} cell#3 , |C| = 6 special orbit = [3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [2, 1, 1, 1, 1, 1]] , dim = 6 cell rep = phi[[],[2, 1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 6*X TII subcells: tii[5,1] := {0} tii[5,2] := {1} tii[5,3] := {2} tii[5,4] := {4} tii[5,5] := {5} tii[5,6] := {3} cell#4 , |C| = 6 special orbit = [3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [2, 1, 1, 1, 1, 1]] , dim = 6 cell rep = phi[[],[2, 1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 6*X TII subcells: tii[5,1] := {0} tii[5,2] := {1} tii[5,3] := {2} tii[5,4] := {4} tii[5,5] := {5} tii[5,6] := {3} cell#5 , |C| = 7 special orbit = [2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [1, 1, 1, 1, 1, 1]] , dim = 7 cell rep = phi[[1],[1, 1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 7*X TII subcells: tii[2,1] := {0} tii[2,2] := {1} tii[2,3] := {2} tii[2,4] := {3} tii[2,5] := {4} tii[2,6] := {5} tii[2,7] := {6} cell#6 , |C| = 1 special orbit = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [1, 1, 1, 1, 1, 1, 1]] , dim = 1 cell rep = phi[[],[1, 1, 1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = X TII subcells: tii[1,1] := {0} cell#7 , |C| = 1 special orbit = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [1, 1, 1, 1, 1, 1, 1]] , dim = 1 cell rep = phi[[],[1, 1, 1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = X TII subcells: tii[1,1] := {0}