TII subcells for the SO(7,7) x SO(10,4) block of SO14 # cell#0 , |C| = 1 special orbit = [13, 1] special rep = [[], [7]] , dim = 1 cell rep = phi[[],[7]] TII depth = 1 TII multiplicity polynomial = X TII subcells: tii[35,1] := {0} cell#1 , |C| = 1 special orbit = [13, 1] special rep = [[], [7]] , dim = 1 cell rep = phi[[],[7]] TII depth = 1 TII multiplicity polynomial = X TII subcells: tii[35,1] := {0} cell#2 , |C| = 7 special orbit = [11, 3] special rep = [[1], [6]] , dim = 7 cell rep = phi[[1],[6]] TII depth = 1 TII multiplicity polynomial = 7*X TII subcells: tii[34,1] := {1} tii[34,2] := {0} tii[34,3] := {2} tii[34,4] := {3} tii[34,5] := {4} tii[34,6] := {5} tii[34,7] := {6} cell#3 , |C| = 7 special orbit = [11, 3] special rep = [[1], [6]] , dim = 7 cell rep = phi[[1],[6]] TII depth = 1 TII multiplicity polynomial = 7*X TII subcells: tii[34,1] := {1} tii[34,2] := {0} tii[34,3] := {2} tii[34,4] := {3} tii[34,5] := {4} tii[34,6] := {5} tii[34,7] := {6} cell#4 , |C| = 6 special orbit = [11, 1, 1, 1] special rep = [[], [6, 1]] , dim = 6 cell rep = phi[[],[6, 1]] TII depth = 1 TII multiplicity polynomial = 6*X TII subcells: tii[33,1] := {5} tii[33,2] := {3} tii[33,3] := {2} tii[33,4] := {0} tii[33,5] := {1} tii[33,6] := {4} cell#5 , |C| = 21 special orbit = [9, 5] special rep = [[2], [5]] , dim = 21 cell rep = phi[[2],[5]] TII depth = 2 TII multiplicity polynomial = 21*X TII subcells: tii[32,1] := {2} tii[32,2] := {8} tii[32,3] := {12} tii[32,4] := {17} tii[32,5] := {18} tii[32,6] := {19} tii[32,7] := {20} tii[32,8] := {0} tii[32,9] := {1} tii[32,10] := {3} tii[32,11] := {6} tii[32,12] := {7} tii[32,13] := {4} tii[32,14] := {5} tii[32,15] := {10} tii[32,16] := {11} tii[32,17] := {9} tii[32,18] := {13} tii[32,19] := {14} tii[32,20] := {15} tii[32,21] := {16} cell#6 , |C| = 6 special orbit = [11, 1, 1, 1] special rep = [[], [6, 1]] , dim = 6 cell rep = phi[[],[6, 1]] TII depth = 1 TII multiplicity polynomial = 6*X TII subcells: tii[33,1] := {5} tii[33,2] := {4} tii[33,3] := {3} tii[33,4] := {2} tii[33,5] := {1} tii[33,6] := {0} cell#7 , |C| = 49 special orbit = [9, 3, 1, 1] special rep = [[1], [5, 1]] , dim = 35 cell rep = phi[[],[5, 2]]+phi[[1],[5, 1]] TII depth = 3 TII multiplicity polynomial = 14*X^2+21*X TII subcells: tii[31,1] := {1, 48} tii[31,2] := {8, 45} tii[31,3] := {17, 43} tii[31,4] := {30, 42} tii[31,5] := {4} tii[31,6] := {0, 47} tii[31,7] := {10} tii[31,8] := {2, 46} tii[31,9] := {15} tii[31,10] := {6, 40} tii[31,11] := {19} tii[31,12] := {25} tii[31,13] := {27} tii[31,14] := {5} tii[31,15] := {9} tii[31,16] := {3, 41} tii[31,17] := {7, 35} tii[31,18] := {12} tii[31,19] := {20} tii[31,20] := {21} tii[31,21] := {14} tii[31,22] := {13, 39} tii[31,23] := {18} tii[31,24] := {24} tii[31,25] := {26} tii[31,26] := {23} tii[31,27] := {31} tii[31,28] := {32} tii[31,29] := {36} tii[31,30] := {37} tii[31,31] := {44} tii[31,32] := {11, 34} tii[31,33] := {16, 29} tii[31,34] := {22, 33} tii[31,35] := {28, 38} cell#8 , |C| = 6 special orbit = [11, 1, 1, 1] special rep = [[], [6, 1]] , dim = 6 cell rep = phi[[],[6, 1]] TII depth = 1 TII multiplicity polynomial = 6*X TII subcells: tii[33,1] := {5} tii[33,2] := {3} tii[33,3] := {2} tii[33,4] := {0} tii[33,5] := {1} tii[33,6] := {4} cell#9 , |C| = 6 special orbit = [11, 1, 1, 1] special rep = [[], [6, 1]] , dim = 6 cell rep = phi[[],[6, 1]] TII depth = 1 TII multiplicity polynomial = 6*X TII subcells: tii[33,1] := {5} tii[33,2] := {4} tii[33,3] := {3} tii[33,4] := {2} tii[33,5] := {1} tii[33,6] := {0} cell#10 , |C| = 49 special orbit = [9, 3, 1, 1] special rep = [[1], [5, 1]] , dim = 35 cell rep = phi[[],[5, 2]]+phi[[1],[5, 1]] TII depth = 3 TII multiplicity polynomial = 14*X^2+21*X TII subcells: tii[31,1] := {1, 48} tii[31,2] := {8, 45} tii[31,3] := {17, 43} tii[31,4] := {30, 42} tii[31,5] := {4} tii[31,6] := {0, 47} tii[31,7] := {10} tii[31,8] := {2, 46} tii[31,9] := {15} tii[31,10] := {6, 40} tii[31,11] := {19} tii[31,12] := {25} tii[31,13] := {27} tii[31,14] := {5} tii[31,15] := {9} tii[31,16] := {3, 41} tii[31,17] := {7, 35} tii[31,18] := {12} tii[31,19] := {20} tii[31,20] := {21} tii[31,21] := {14} tii[31,22] := {13, 39} tii[31,23] := {18} tii[31,24] := {24} tii[31,25] := {26} tii[31,26] := {23} tii[31,27] := {31} tii[31,28] := {32} tii[31,29] := {36} tii[31,30] := {37} tii[31,31] := {44} tii[31,32] := {11, 34} tii[31,33] := {16, 29} tii[31,34] := {22, 33} tii[31,35] := {28, 38} cell#11 , |C| = 49 special orbit = [9, 3, 1, 1] special rep = [[1], [5, 1]] , dim = 35 cell rep = phi[[],[5, 2]]+phi[[1],[5, 1]] TII depth = 3 TII multiplicity polynomial = 14*X^2+21*X TII subcells: tii[31,1] := {12, 48} tii[31,2] := {3, 37} tii[31,3] := {15, 16} tii[31,4] := {39, 40} tii[31,5] := {25} tii[31,6] := {5, 46} tii[31,7] := {18} tii[31,8] := {1, 38} tii[31,9] := {26} tii[31,10] := {4, 28} tii[31,11] := {32} tii[31,12] := {42} tii[31,13] := {44} tii[31,14] := {9} tii[31,15] := {13} tii[31,16] := {0, 27} tii[31,17] := {2, 17} tii[31,18] := {22} tii[31,19] := {34} tii[31,20] := {36} tii[31,21] := {6} tii[31,22] := {7, 8} tii[31,23] := {11} tii[31,24] := {23} tii[31,25] := {24} tii[31,26] := {21} tii[31,27] := {33} tii[31,28] := {35} tii[31,29] := {43} tii[31,30] := {45} tii[31,31] := {47} tii[31,32] := {14, 41} tii[31,33] := {10, 31} tii[31,34] := {19, 20} tii[31,35] := {29, 30} cell#12 , |C| = 49 special orbit = [9, 3, 1, 1] special rep = [[1], [5, 1]] , dim = 35 cell rep = phi[[],[5, 2]]+phi[[1],[5, 1]] TII depth = 3 TII multiplicity polynomial = 14*X^2+21*X TII subcells: tii[31,1] := {12, 48} tii[31,2] := {3, 37} tii[31,3] := {15, 16} tii[31,4] := {39, 40} tii[31,5] := {25} tii[31,6] := {5, 46} tii[31,7] := {18} tii[31,8] := {1, 38} tii[31,9] := {26} tii[31,10] := {4, 28} tii[31,11] := {32} tii[31,12] := {42} tii[31,13] := {44} tii[31,14] := {9} tii[31,15] := {13} tii[31,16] := {0, 27} tii[31,17] := {2, 17} tii[31,18] := {22} tii[31,19] := {34} tii[31,20] := {36} tii[31,21] := {6} tii[31,22] := {7, 8} tii[31,23] := {11} tii[31,24] := {23} tii[31,25] := {24} tii[31,26] := {21} tii[31,27] := {33} tii[31,28] := {35} tii[31,29] := {43} tii[31,30] := {45} tii[31,31] := {47} tii[31,32] := {14, 41} tii[31,33] := {10, 31} tii[31,34] := {19, 20} tii[31,35] := {29, 30} cell#13 , |C| = 98 special orbit = [7, 5, 1, 1] special rep = [[2], [4, 1]] , dim = 84 cell rep = phi[[],[4, 3]]+phi[[2],[4, 1]] TII depth = 3 TII multiplicity polynomial = 70*X+14*X^2 TII subcells: tii[28,1] := {31, 32} tii[28,2] := {74, 75} tii[28,3] := {92} tii[28,4] := {30} tii[28,5] := {54} tii[28,6] := {5, 6} tii[28,7] := {33, 34} tii[28,8] := {78} tii[28,9] := {80} tii[28,10] := {89} tii[28,11] := {91} tii[28,12] := {15} tii[28,13] := {17, 18} tii[28,14] := {37} tii[28,15] := {4} tii[28,16] := {7, 8} tii[28,17] := {48, 49} tii[28,18] := {66} tii[28,19] := {67} tii[28,20] := {12} tii[28,21] := {27} tii[28,22] := {82} tii[28,23] := {29} tii[28,24] := {84} tii[28,25] := {53} tii[28,26] := {63, 64} tii[28,27] := {77} tii[28,28] := {79} tii[28,29] := {38} tii[28,30] := {56} tii[28,31] := {88} tii[28,32] := {60} tii[28,33] := {90} tii[28,34] := {86} tii[28,35] := {87} tii[28,36] := {81} tii[28,37] := {93} tii[28,38] := {83} tii[28,39] := {94} tii[28,40] := {95} tii[28,41] := {96} tii[28,42] := {97} tii[28,43] := {16} tii[28,44] := {25} tii[28,45] := {42} tii[28,46] := {46} tii[28,47] := {0} tii[28,48] := {1, 2} tii[28,49] := {3} tii[28,50] := {39} tii[28,51] := {13} tii[28,52] := {57} tii[28,53] := {14} tii[28,54] := {61} tii[28,55] := {11} tii[28,56] := {69} tii[28,57] := {26} tii[28,58] := {72} tii[28,59] := {28} tii[28,60] := {43} tii[28,61] := {47} tii[28,62] := {52} tii[28,63] := {24} tii[28,64] := {41} tii[28,65] := {45} tii[28,66] := {23} tii[28,67] := {55} tii[28,68] := {40} tii[28,69] := {59} tii[28,70] := {44} tii[28,71] := {58} tii[28,72] := {62} tii[28,73] := {21, 22} tii[28,74] := {65} tii[28,75] := {68} tii[28,76] := {71} tii[28,77] := {70} tii[28,78] := {73} tii[28,79] := {50, 51} tii[28,80] := {76} tii[28,81] := {85} tii[28,82] := {9, 10} tii[28,83] := {19, 20} tii[28,84] := {35, 36} cell#14 , |C| = 63 special orbit = [7, 3, 3, 1] special rep = [[1], [4, 2]] , dim = 63 cell rep = phi[[1],[4, 2]] TII depth = 3 TII multiplicity polynomial = 63*X TII subcells: tii[27,1] := {58} tii[27,2] := {60} tii[27,3] := {62} tii[27,4] := {2} tii[27,5] := {7} tii[27,6] := {44} tii[27,7] := {21} tii[27,8] := {39} tii[27,9] := {4} tii[27,10] := {52} tii[27,11] := {12} tii[27,12] := {10} tii[27,13] := {29} tii[27,14] := {47} tii[27,15] := {49} tii[27,16] := {14} tii[27,17] := {23} tii[27,18] := {25} tii[27,19] := {19} tii[27,20] := {55} tii[27,21] := {38} tii[27,22] := {28} tii[27,23] := {40} tii[27,24] := {42} tii[27,25] := {48} tii[27,26] := {56} tii[27,27] := {57} tii[27,28] := {0} tii[27,29] := {1} tii[27,30] := {5} tii[27,31] := {37} tii[27,32] := {3} tii[27,33] := {8} tii[27,34] := {15} tii[27,35] := {16} tii[27,36] := {13} tii[27,37] := {22} tii[27,38] := {24} tii[27,39] := {31} tii[27,40] := {33} tii[27,41] := {46} tii[27,42] := {9} tii[27,43] := {20} tii[27,44] := {30} tii[27,45] := {32} tii[27,46] := {41} tii[27,47] := {43} tii[27,48] := {36} tii[27,49] := {54} tii[27,50] := {50} tii[27,51] := {51} tii[27,52] := {59} tii[27,53] := {53} tii[27,54] := {61} tii[27,55] := {6} tii[27,56] := {27} tii[27,57] := {11} tii[27,58] := {35} tii[27,59] := {17} tii[27,60] := {18} tii[27,61] := {26} tii[27,62] := {45} tii[27,63] := {34} cell#15 , |C| = 63 special orbit = [7, 3, 3, 1] special rep = [[1], [4, 2]] , dim = 63 cell rep = phi[[1],[4, 2]] TII depth = 3 TII multiplicity polynomial = 63*X TII subcells: tii[27,1] := {62} tii[27,2] := {47} tii[27,3] := {61} tii[27,4] := {24} tii[27,5] := {7} tii[27,6] := {57} tii[27,7] := {36} tii[27,8] := {35} tii[27,9] := {39} tii[27,10] := {60} tii[27,11] := {1} tii[27,12] := {32} tii[27,13] := {19} tii[27,14] := {58} tii[27,15] := {18} tii[27,16] := {40} tii[27,17] := {54} tii[27,18] := {56} tii[27,19] := {6} tii[27,20] := {33} tii[27,21] := {34} tii[27,22] := {12} tii[27,23] := {26} tii[27,24] := {29} tii[27,25] := {48} tii[27,26] := {53} tii[27,27] := {55} tii[27,28] := {11} tii[27,29] := {5} tii[27,30] := {17} tii[27,31] := {49} tii[27,32] := {2} tii[27,33] := {25} tii[27,34] := {41} tii[27,35] := {44} tii[27,36] := {13} tii[27,37] := {27} tii[27,38] := {30} tii[27,39] := {43} tii[27,40] := {46} tii[27,41] := {52} tii[27,42] := {0} tii[27,43] := {4} tii[27,44] := {14} tii[27,45] := {15} tii[27,46] := {28} tii[27,47] := {31} tii[27,48] := {50} tii[27,49] := {38} tii[27,50] := {42} tii[27,51] := {45} tii[27,52] := {51} tii[27,53] := {20} tii[27,54] := {59} tii[27,55] := {16} tii[27,56] := {37} tii[27,57] := {10} tii[27,58] := {22} tii[27,59] := {23} tii[27,60] := {3} tii[27,61] := {9} tii[27,62] := {8} tii[27,63] := {21} cell#16 , |C| = 15 special orbit = [9, 1, 1, 1, 1, 1] special rep = [[], [5, 1, 1]] , dim = 15 cell rep = phi[[],[5, 1, 1]] TII depth = 1 TII multiplicity polynomial = 15*X TII subcells: tii[30,1] := {14} tii[30,2] := {13} tii[30,3] := {12} tii[30,4] := {10} tii[30,5] := {11} tii[30,6] := {9} tii[30,7] := {8} tii[30,8] := {6} tii[30,9] := {3} tii[30,10] := {5} tii[30,11] := {7} tii[30,12] := {1} tii[30,13] := {0} tii[30,14] := {2} tii[30,15] := {4} cell#17 , |C| = 105 special orbit = [7, 3, 1, 1, 1, 1] special rep = [[1], [4, 1, 1]] , dim = 70 cell rep = phi[[],[4, 2, 1]]+phi[[1],[4, 1, 1]] TII depth = 2 TII multiplicity polynomial = 35*X^2+35*X TII subcells: tii[25,1] := {9, 103} tii[25,2] := {26, 91} tii[25,3] := {52, 87} tii[25,4] := {3, 104} tii[25,5] := {15, 77} tii[25,6] := {2, 101} tii[25,7] := {39, 72} tii[25,8] := {5, 98} tii[25,9] := {25, 85} tii[25,10] := {51, 88} tii[25,11] := {21, 68} tii[25,12] := {71, 96} tii[25,13] := {18} tii[25,14] := {31} tii[25,15] := {6, 99} tii[25,16] := {12, 95} tii[25,17] := {38} tii[25,18] := {55} tii[25,19] := {59} tii[25,20] := {0, 97} tii[25,21] := {19} tii[25,22] := {1, 86} tii[25,23] := {17, 83} tii[25,24] := {28} tii[25,25] := {41} tii[25,26] := {43} tii[25,27] := {4, 70} tii[25,28] := {37} tii[25,29] := {54} tii[25,30] := {58} tii[25,31] := {74} tii[25,32] := {76} tii[25,33] := {94} tii[25,34] := {10} tii[25,35] := {16} tii[25,36] := {8, 65} tii[25,37] := {29} tii[25,38] := {30} tii[25,39] := {11, 50} tii[25,40] := {27} tii[25,41] := {40} tii[25,42] := {42} tii[25,43] := {56} tii[25,44] := {60} tii[25,45] := {14, 92} tii[25,46] := {82} tii[25,47] := {36} tii[25,48] := {53} tii[25,49] := {57} tii[25,50] := {73} tii[25,51] := {75} tii[25,52] := {35, 62} tii[25,53] := {93} tii[25,54] := {89} tii[25,55] := {90} tii[25,56] := {66, 84} tii[25,57] := {100} tii[25,58] := {102} tii[25,59] := {24, 81} tii[25,60] := {7, 80} tii[25,61] := {33, 63} tii[25,62] := {13, 64} tii[25,63] := {45, 79} tii[25,64] := {22, 69} tii[25,65] := {20, 46} tii[25,66] := {23, 47} tii[25,67] := {32, 61} tii[25,68] := {34, 49} tii[25,69] := {44, 78} tii[25,70] := {48, 67} cell#18 , |C| = 63 special orbit = [7, 3, 3, 1] special rep = [[1], [4, 2]] , dim = 63 cell rep = phi[[1],[4, 2]] TII depth = 3 TII multiplicity polynomial = 63*X TII subcells: tii[27,1] := {58} tii[27,2] := {60} tii[27,3] := {62} tii[27,4] := {2} tii[27,5] := {7} tii[27,6] := {44} tii[27,7] := {21} tii[27,8] := {39} tii[27,9] := {4} tii[27,10] := {52} tii[27,11] := {12} tii[27,12] := {10} tii[27,13] := {29} tii[27,14] := {47} tii[27,15] := {49} tii[27,16] := {14} tii[27,17] := {23} tii[27,18] := {25} tii[27,19] := {19} tii[27,20] := {55} tii[27,21] := {38} tii[27,22] := {28} tii[27,23] := {40} tii[27,24] := {42} tii[27,25] := {48} tii[27,26] := {56} tii[27,27] := {57} tii[27,28] := {0} tii[27,29] := {1} tii[27,30] := {5} tii[27,31] := {37} tii[27,32] := {3} tii[27,33] := {8} tii[27,34] := {15} tii[27,35] := {16} tii[27,36] := {13} tii[27,37] := {22} tii[27,38] := {24} tii[27,39] := {31} tii[27,40] := {33} tii[27,41] := {46} tii[27,42] := {9} tii[27,43] := {20} tii[27,44] := {30} tii[27,45] := {32} tii[27,46] := {41} tii[27,47] := {43} tii[27,48] := {36} tii[27,49] := {54} tii[27,50] := {50} tii[27,51] := {51} tii[27,52] := {59} tii[27,53] := {53} tii[27,54] := {61} tii[27,55] := {6} tii[27,56] := {27} tii[27,57] := {11} tii[27,58] := {35} tii[27,59] := {17} tii[27,60] := {18} tii[27,61] := {26} tii[27,62] := {45} tii[27,63] := {34} cell#19 , |C| = 63 special orbit = [7, 3, 3, 1] special rep = [[1], [4, 2]] , dim = 63 cell rep = phi[[1],[4, 2]] TII depth = 3 TII multiplicity polynomial = 63*X TII subcells: tii[27,1] := {62} tii[27,2] := {48} tii[27,3] := {61} tii[27,4] := {24} tii[27,5] := {7} tii[27,6] := {57} tii[27,7] := {35} tii[27,8] := {36} tii[27,9] := {39} tii[27,10] := {60} tii[27,11] := {1} tii[27,12] := {32} tii[27,13] := {18} tii[27,14] := {58} tii[27,15] := {19} tii[27,16] := {40} tii[27,17] := {54} tii[27,18] := {56} tii[27,19] := {6} tii[27,20] := {34} tii[27,21] := {33} tii[27,22] := {12} tii[27,23] := {26} tii[27,24] := {29} tii[27,25] := {47} tii[27,26] := {53} tii[27,27] := {55} tii[27,28] := {11} tii[27,29] := {5} tii[27,30] := {17} tii[27,31] := {49} tii[27,32] := {2} tii[27,33] := {25} tii[27,34] := {41} tii[27,35] := {44} tii[27,36] := {13} tii[27,37] := {27} tii[27,38] := {30} tii[27,39] := {43} tii[27,40] := {46} tii[27,41] := {52} tii[27,42] := {0} tii[27,43] := {4} tii[27,44] := {14} tii[27,45] := {15} tii[27,46] := {28} tii[27,47] := {31} tii[27,48] := {50} tii[27,49] := {38} tii[27,50] := {42} tii[27,51] := {45} tii[27,52] := {51} tii[27,53] := {21} tii[27,54] := {59} tii[27,55] := {16} tii[27,56] := {37} tii[27,57] := {10} tii[27,58] := {23} tii[27,59] := {22} tii[27,60] := {3} tii[27,61] := {8} tii[27,62] := {9} tii[27,63] := {20} cell#20 , |C| = 15 special orbit = [9, 1, 1, 1, 1, 1] special rep = [[], [5, 1, 1]] , dim = 15 cell rep = phi[[],[5, 1, 1]] TII depth = 1 TII multiplicity polynomial = 15*X TII subcells: tii[30,1] := {14} tii[30,2] := {13} tii[30,3] := {12} tii[30,4] := {10} tii[30,5] := {11} tii[30,6] := {9} tii[30,7] := {8} tii[30,8] := {6} tii[30,9] := {3} tii[30,10] := {5} tii[30,11] := {7} tii[30,12] := {1} tii[30,13] := {0} tii[30,14] := {2} tii[30,15] := {4} cell#21 , |C| = 105 special orbit = [7, 3, 1, 1, 1, 1] special rep = [[1], [4, 1, 1]] , dim = 70 cell rep = phi[[],[4, 2, 1]]+phi[[1],[4, 1, 1]] TII depth = 2 TII multiplicity polynomial = 35*X^2+35*X TII subcells: tii[25,1] := {9, 103} tii[25,2] := {26, 91} tii[25,3] := {52, 87} tii[25,4] := {3, 104} tii[25,5] := {15, 77} tii[25,6] := {2, 101} tii[25,7] := {39, 72} tii[25,8] := {5, 98} tii[25,9] := {25, 85} tii[25,10] := {51, 88} tii[25,11] := {21, 68} tii[25,12] := {71, 96} tii[25,13] := {18} tii[25,14] := {31} tii[25,15] := {6, 99} tii[25,16] := {12, 95} tii[25,17] := {38} tii[25,18] := {55} tii[25,19] := {59} tii[25,20] := {0, 97} tii[25,21] := {19} tii[25,22] := {1, 86} tii[25,23] := {17, 83} tii[25,24] := {28} tii[25,25] := {41} tii[25,26] := {43} tii[25,27] := {4, 70} tii[25,28] := {37} tii[25,29] := {54} tii[25,30] := {58} tii[25,31] := {74} tii[25,32] := {76} tii[25,33] := {94} tii[25,34] := {10} tii[25,35] := {16} tii[25,36] := {8, 65} tii[25,37] := {29} tii[25,38] := {30} tii[25,39] := {11, 50} tii[25,40] := {27} tii[25,41] := {40} tii[25,42] := {42} tii[25,43] := {56} tii[25,44] := {60} tii[25,45] := {14, 92} tii[25,46] := {82} tii[25,47] := {36} tii[25,48] := {53} tii[25,49] := {57} tii[25,50] := {73} tii[25,51] := {75} tii[25,52] := {35, 62} tii[25,53] := {93} tii[25,54] := {89} tii[25,55] := {90} tii[25,56] := {66, 84} tii[25,57] := {100} tii[25,58] := {102} tii[25,59] := {24, 81} tii[25,60] := {7, 80} tii[25,61] := {33, 63} tii[25,62] := {13, 64} tii[25,63] := {45, 79} tii[25,64] := {22, 69} tii[25,65] := {20, 46} tii[25,66] := {23, 47} tii[25,67] := {32, 61} tii[25,68] := {34, 49} tii[25,69] := {44, 78} tii[25,70] := {48, 67} cell#22 , |C| = 49 special orbit = [9, 3, 1, 1] special rep = [[1], [5, 1]] , dim = 35 cell rep = phi[[],[5, 2]]+phi[[1],[5, 1]] TII depth = 3 TII multiplicity polynomial = 14*X^2+21*X TII subcells: tii[31,1] := {10, 48} tii[31,2] := {13, 46} tii[31,3] := {12, 42} tii[31,4] := {11, 35} tii[31,5] := {15} tii[31,6] := {6, 47} tii[31,7] := {21} tii[31,8] := {5, 45} tii[31,9] := {27} tii[31,10] := {2, 43} tii[31,11] := {31} tii[31,12] := {36} tii[31,13] := {37} tii[31,14] := {14} tii[31,15] := {20} tii[31,16] := {9, 44} tii[31,17] := {4, 41} tii[31,18] := {26} tii[31,19] := {32} tii[31,20] := {33} tii[31,21] := {19} tii[31,22] := {8, 39} tii[31,23] := {22} tii[31,24] := {28} tii[31,25] := {29} tii[31,26] := {16} tii[31,27] := {23} tii[31,28] := {24} tii[31,29] := {17} tii[31,30] := {18} tii[31,31] := {25} tii[31,32] := {0, 40} tii[31,33] := {1, 38} tii[31,34] := {3, 34} tii[31,35] := {7, 30} cell#23 , |C| = 84 special orbit = [7, 3, 2, 2] special rep = [[1, 1], [4, 1]] , dim = 84 cell rep = phi[[1, 1],[4, 1]] TII depth = 5 TII multiplicity polynomial = 84*X TII subcells: tii[26,1] := {38} tii[26,2] := {34} tii[26,3] := {29} tii[26,4] := {51} tii[26,5] := {47} tii[26,6] := {62} tii[26,7] := {41} tii[26,8] := {67} tii[26,9] := {78} tii[26,10] := {82} tii[26,11] := {61} tii[26,12] := {54} tii[26,13] := {66} tii[26,14] := {77} tii[26,15] := {81} tii[26,16] := {65} tii[26,17] := {76} tii[26,18] := {80} tii[26,19] := {79} tii[26,20] := {83} tii[26,21] := {0} tii[26,22] := {1} tii[26,23] := {28} tii[26,24] := {19} tii[26,25] := {2} tii[26,26] := {5} tii[26,27] := {6} tii[26,28] := {46} tii[26,29] := {3} tii[26,30] := {27} tii[26,31] := {52} tii[26,32] := {4} tii[26,33] := {68} tii[26,34] := {10} tii[26,35] := {71} tii[26,36] := {11} tii[26,37] := {40} tii[26,38] := {8} tii[26,39] := {56} tii[26,40] := {14} tii[26,41] := {59} tii[26,42] := {16} tii[26,43] := {43} tii[26,44] := {22} tii[26,45] := {45} tii[26,46] := {24} tii[26,47] := {36} tii[26,48] := {37} tii[26,49] := {7} tii[26,50] := {9} tii[26,51] := {39} tii[26,52] := {15} tii[26,53] := {17} tii[26,54] := {53} tii[26,55] := {13} tii[26,56] := {21} tii[26,57] := {69} tii[26,58] := {23} tii[26,59] := {72} tii[26,60] := {31} tii[26,61] := {57} tii[26,62] := {33} tii[26,63] := {60} tii[26,64] := {49} tii[26,65] := {50} tii[26,66] := {20} tii[26,67] := {30} tii[26,68] := {32} tii[26,69] := {42} tii[26,70] := {70} tii[26,71] := {44} tii[26,72] := {73} tii[26,73] := {63} tii[26,74] := {64} tii[26,75] := {55} tii[26,76] := {58} tii[26,77] := {74} tii[26,78] := {75} tii[26,79] := {12} tii[26,80] := {18} tii[26,81] := {25} tii[26,82] := {26} tii[26,83] := {35} tii[26,84] := {48} cell#24 , |C| = 140 special orbit = [5, 5, 3, 1] special rep = [[2], [3, 2]] , dim = 105 cell rep = phi[[1],[3, 3]]+phi[[2],[3, 2]] TII depth = 3 TII multiplicity polynomial = 35*X^2+70*X TII subcells: tii[22,1] := {127, 128} tii[22,2] := {139} tii[22,3] := {44, 45} tii[22,4] := {99} tii[22,5] := {85, 86} tii[22,6] := {35} tii[22,7] := {71, 72} tii[22,8] := {32, 33} tii[22,9] := {103, 104} tii[22,10] := {81} tii[22,11] := {83} tii[22,12] := {113} tii[22,13] := {106} tii[22,14] := {109} tii[22,15] := {93, 94} tii[22,16] := {119, 120} tii[22,17] := {123} tii[22,18] := {117} tii[22,19] := {118} tii[22,20] := {77, 78} tii[22,21] := {95, 96} tii[22,22] := {129} tii[22,23] := {97, 98} tii[22,24] := {130} tii[22,25] := {131} tii[22,26] := {135} tii[22,27] := {136} tii[22,28] := {8, 9} tii[22,29] := {16} tii[22,30] := {22, 23} tii[22,31] := {12, 13} tii[22,32] := {59} tii[22,33] := {60} tii[22,34] := {5} tii[22,35] := {88} tii[22,36] := {18} tii[22,37] := {90} tii[22,38] := {20} tii[22,39] := {82} tii[22,40] := {84} tii[22,41] := {30, 31} tii[22,42] := {62} tii[22,43] := {107} tii[22,44] := {48, 49} tii[22,45] := {65} tii[22,46] := {110} tii[22,47] := {52, 53} tii[22,48] := {114} tii[22,49] := {115} tii[22,50] := {126} tii[22,51] := {46, 47} tii[22,52] := {17} tii[22,53] := {37} tii[22,54] := {40} tii[22,55] := {101} tii[22,56] := {102} tii[22,57] := {56, 57} tii[22,58] := {61} tii[22,59] := {73, 74} tii[22,60] := {121} tii[22,61] := {87} tii[22,62] := {64} tii[22,63] := {75, 76} tii[22,64] := {122} tii[22,65] := {89} tii[22,66] := {50, 51} tii[22,67] := {124} tii[22,68] := {54, 55} tii[22,69] := {125} tii[22,70] := {69, 70} tii[22,71] := {134} tii[22,72] := {105} tii[22,73] := {108} tii[22,74] := {132} tii[22,75] := {133} tii[22,76] := {111, 112} tii[22,77] := {137} tii[22,78] := {138} tii[22,79] := {0} tii[22,80] := {6} tii[22,81] := {7} tii[22,82] := {19} tii[22,83] := {21} tii[22,84] := {34} tii[22,85] := {36} tii[22,86] := {39} tii[22,87] := {38} tii[22,88] := {24, 25} tii[22,89] := {41} tii[22,90] := {26, 27} tii[22,91] := {10, 11} tii[22,92] := {42, 43} tii[22,93] := {58} tii[22,94] := {79} tii[22,95] := {67, 68} tii[22,96] := {63} tii[22,97] := {66} tii[22,98] := {28, 29} tii[22,99] := {80} tii[22,100] := {91, 92} tii[22,101] := {100} tii[22,102] := {14, 15} tii[22,103] := {116} tii[22,104] := {1, 2} tii[22,105] := {3, 4} cell#25 , |C| = 112 special orbit = [5, 3, 3, 1, 1, 1] special rep = [[1], [3, 2, 1]] , dim = 112 cell rep = phi[[1],[3, 2, 1]] TII depth = 3 TII multiplicity polynomial = 112*X TII subcells: tii[18,1] := {87} tii[18,2] := {100} tii[18,3] := {10} tii[18,4] := {99} tii[18,5] := {35} tii[18,6] := {73} tii[18,7] := {107} tii[18,8] := {105} tii[18,9] := {70} tii[18,10] := {110} tii[18,11] := {97} tii[18,12] := {111} tii[18,13] := {5} tii[18,14] := {22} tii[18,15] := {53} tii[18,16] := {4} tii[18,17] := {11} tii[18,18] := {72} tii[18,19] := {21} tii[18,20] := {34} tii[18,21] := {2} tii[18,22] := {54} tii[18,23] := {19} tii[18,24] := {36} tii[18,25] := {40} tii[18,26] := {33} tii[18,27] := {68} tii[18,28] := {50} tii[18,29] := {74} tii[18,30] := {77} tii[18,31] := {18} tii[18,32] := {7} tii[18,33] := {89} tii[18,34] := {52} tii[18,35] := {32} tii[18,36] := {55} tii[18,37] := {59} tii[18,38] := {51} tii[18,39] := {84} tii[18,40] := {20} tii[18,41] := {71} tii[18,42] := {37} tii[18,43] := {90} tii[18,44] := {41} tii[18,45] := {92} tii[18,46] := {58} tii[18,47] := {62} tii[18,48] := {82} tii[18,49] := {88} tii[18,50] := {101} tii[18,51] := {102} tii[18,52] := {91} tii[18,53] := {93} tii[18,54] := {85} tii[18,55] := {104} tii[18,56] := {109} tii[18,57] := {1} tii[18,58] := {0} tii[18,59] := {13} tii[18,60] := {24} tii[18,61] := {26} tii[18,62] := {39} tii[18,63] := {43} tii[18,64] := {66} tii[18,65] := {12} tii[18,66] := {23} tii[18,67] := {25} tii[18,68] := {38} tii[18,69] := {57} tii[18,70] := {42} tii[18,71] := {61} tii[18,72] := {9} tii[18,73] := {63} tii[18,74] := {65} tii[18,75] := {81} tii[18,76] := {56} tii[18,77] := {60} tii[18,78] := {48} tii[18,79] := {94} tii[18,80] := {29} tii[18,81] := {83} tii[18,82] := {86} tii[18,83] := {76} tii[18,84] := {79} tii[18,85] := {17} tii[18,86] := {80} tii[18,87] := {95} tii[18,88] := {75} tii[18,89] := {78} tii[18,90] := {69} tii[18,91] := {103} tii[18,92] := {47} tii[18,93] := {27} tii[18,94] := {64} tii[18,95] := {96} tii[18,96] := {49} tii[18,97] := {98} tii[18,98] := {67} tii[18,99] := {108} tii[18,100] := {106} tii[18,101] := {6} tii[18,102] := {3} tii[18,103] := {46} tii[18,104] := {15} tii[18,105] := {8} tii[18,106] := {14} tii[18,107] := {28} tii[18,108] := {45} tii[18,109] := {31} tii[18,110] := {16} tii[18,111] := {44} tii[18,112] := {30} cell#26 , |C| = 112 special orbit = [5, 3, 3, 1, 1, 1] special rep = [[1], [3, 2, 1]] , dim = 112 cell rep = phi[[1],[3, 2, 1]] TII depth = 3 TII multiplicity polynomial = 112*X TII subcells: tii[18,1] := {87} tii[18,2] := {100} tii[18,3] := {10} tii[18,4] := {99} tii[18,5] := {35} tii[18,6] := {73} tii[18,7] := {107} tii[18,8] := {105} tii[18,9] := {70} tii[18,10] := {110} tii[18,11] := {97} tii[18,12] := {111} tii[18,13] := {5} tii[18,14] := {22} tii[18,15] := {53} tii[18,16] := {4} tii[18,17] := {11} tii[18,18] := {72} tii[18,19] := {21} tii[18,20] := {34} tii[18,21] := {2} tii[18,22] := {54} tii[18,23] := {19} tii[18,24] := {36} tii[18,25] := {40} tii[18,26] := {33} tii[18,27] := {68} tii[18,28] := {50} tii[18,29] := {74} tii[18,30] := {77} tii[18,31] := {18} tii[18,32] := {7} tii[18,33] := {89} tii[18,34] := {52} tii[18,35] := {32} tii[18,36] := {55} tii[18,37] := {59} tii[18,38] := {51} tii[18,39] := {84} tii[18,40] := {20} tii[18,41] := {71} tii[18,42] := {37} tii[18,43] := {90} tii[18,44] := {41} tii[18,45] := {92} tii[18,46] := {58} tii[18,47] := {62} tii[18,48] := {82} tii[18,49] := {88} tii[18,50] := {101} tii[18,51] := {102} tii[18,52] := {91} tii[18,53] := {93} tii[18,54] := {85} tii[18,55] := {104} tii[18,56] := {109} tii[18,57] := {1} tii[18,58] := {0} tii[18,59] := {13} tii[18,60] := {24} tii[18,61] := {26} tii[18,62] := {39} tii[18,63] := {43} tii[18,64] := {66} tii[18,65] := {12} tii[18,66] := {23} tii[18,67] := {25} tii[18,68] := {38} tii[18,69] := {57} tii[18,70] := {42} tii[18,71] := {61} tii[18,72] := {9} tii[18,73] := {63} tii[18,74] := {65} tii[18,75] := {81} tii[18,76] := {56} tii[18,77] := {60} tii[18,78] := {48} tii[18,79] := {94} tii[18,80] := {29} tii[18,81] := {83} tii[18,82] := {86} tii[18,83] := {76} tii[18,84] := {79} tii[18,85] := {17} tii[18,86] := {80} tii[18,87] := {95} tii[18,88] := {75} tii[18,89] := {78} tii[18,90] := {69} tii[18,91] := {103} tii[18,92] := {47} tii[18,93] := {27} tii[18,94] := {64} tii[18,95] := {96} tii[18,96] := {49} tii[18,97] := {98} tii[18,98] := {67} tii[18,99] := {108} tii[18,100] := {106} tii[18,101] := {6} tii[18,102] := {3} tii[18,103] := {46} tii[18,104] := {15} tii[18,105] := {8} tii[18,106] := {14} tii[18,107] := {28} tii[18,108] := {45} tii[18,109] := {31} tii[18,110] := {16} tii[18,111] := {44} tii[18,112] := {30} cell#27 , |C| = 105 special orbit = [7, 3, 1, 1, 1, 1] special rep = [[1], [4, 1, 1]] , dim = 70 cell rep = phi[[],[4, 2, 1]]+phi[[1],[4, 1, 1]] TII depth = 2 TII multiplicity polynomial = 35*X^2+35*X TII subcells: tii[25,1] := {31, 104} tii[25,2] := {37, 99} tii[25,3] := {32, 88} tii[25,4] := {21, 103} tii[25,5] := {26, 94} tii[25,6] := {13, 101} tii[25,7] := {23, 77} tii[25,8] := {10, 95} tii[25,9] := {29, 100} tii[25,10] := {33, 83} tii[25,11] := {20, 96} tii[25,12] := {38, 93} tii[25,13] := {42} tii[25,14] := {59} tii[25,15] := {22, 102} tii[25,16] := {18, 98} tii[25,17] := {67} tii[25,18] := {79} tii[25,19] := {80} tii[25,20] := {6, 97} tii[25,21] := {41} tii[25,22] := {3, 89} tii[25,23] := {27, 92} tii[25,24] := {52} tii[25,25] := {68} tii[25,26] := {69} tii[25,27] := {5, 78} tii[25,28] := {43} tii[25,29] := {60} tii[25,30] := {61} tii[25,31] := {44} tii[25,32] := {47} tii[25,33] := {62} tii[25,34] := {30} tii[25,35] := {40} tii[25,36] := {17, 84} tii[25,37] := {55} tii[25,38] := {58} tii[25,39] := {12, 90} tii[25,40] := {34} tii[25,41] := {46} tii[25,42] := {49} tii[25,43] := {35} tii[25,44] := {36} tii[25,45] := {1, 86} tii[25,46] := {50} tii[25,47] := {39} tii[25,48] := {54} tii[25,49] := {57} tii[25,50] := {45} tii[25,51] := {48} tii[25,52] := {16, 85} tii[25,53] := {63} tii[25,54] := {53} tii[25,55] := {56} tii[25,56] := {28, 87} tii[25,57] := {70} tii[25,58] := {82} tii[25,59] := {8, 91} tii[25,60] := {0, 74} tii[25,61] := {15, 81} tii[25,62] := {2, 65} tii[25,63] := {24, 73} tii[25,64] := {4, 51} tii[25,65] := {7, 72} tii[25,66] := {9, 75} tii[25,67] := {14, 64} tii[25,68] := {11, 66} tii[25,69] := {25, 71} tii[25,70] := {19, 76} cell#28 , |C| = 147 special orbit = [5, 3, 2, 2, 1, 1] special rep = [[1, 1], [3, 1, 1]] , dim = 126 cell rep = phi[[],[3, 2, 2]]+phi[[1, 1],[3, 1, 1]] TII depth = 4 TII multiplicity polynomial = 105*X+21*X^2 TII subcells: tii[17,1] := {42, 146} tii[17,2] := {43, 131} tii[17,3] := {83, 145} tii[17,4] := {35} tii[17,5] := {29} tii[17,6] := {25, 143} tii[17,7] := {54} tii[17,8] := {28, 115} tii[17,9] := {45} tii[17,10] := {14, 136} tii[17,11] := {67} tii[17,12] := {94} tii[17,13] := {99} tii[17,14] := {39, 132} tii[17,15] := {66} tii[17,16] := {92} tii[17,17] := {98} tii[17,18] := {96} tii[17,19] := {101} tii[17,20] := {65} tii[17,21] := {27, 141} tii[17,22] := {68} tii[17,23] := {84} tii[17,24] := {109} tii[17,25] := {111} tii[17,26] := {58, 142} tii[17,27] := {91} tii[17,28] := {59} tii[17,29] := {116} tii[17,30] := {86} tii[17,31] := {118} tii[17,32] := {88} tii[17,33] := {117} tii[17,34] := {70} tii[17,35] := {119} tii[17,36] := {74} tii[17,37] := {104} tii[17,38] := {107} tii[17,39] := {126} tii[17,40] := {127} tii[17,41] := {133} tii[17,42] := {108} tii[17,43] := {134} tii[17,44] := {110} tii[17,45] := {128} tii[17,46] := {137} tii[17,47] := {138} tii[17,48] := {144} tii[17,49] := {0} tii[17,50] := {23} tii[17,51] := {1} tii[17,52] := {3} tii[17,53] := {4} tii[17,54] := {7, 125} tii[17,55] := {44} tii[17,56] := {2} tii[17,57] := {71} tii[17,58] := {9} tii[17,59] := {75} tii[17,60] := {10} tii[17,61] := {49} tii[17,62] := {17} tii[17,63] := {53} tii[17,64] := {19} tii[17,65] := {37} tii[17,66] := {38} tii[17,67] := {8} tii[17,68] := {40} tii[17,69] := {16} tii[17,70] := {61} tii[17,71] := {18} tii[17,72] := {63} tii[17,73] := {48} tii[17,74] := {31} tii[17,75] := {72} tii[17,76] := {52} tii[17,77] := {33} tii[17,78] := {76} tii[17,79] := {11, 122} tii[17,80] := {81} tii[17,81] := {56} tii[17,82] := {57} tii[17,83] := {47} tii[17,84] := {60} tii[17,85] := {51} tii[17,86] := {62} tii[17,87] := {24, 123} tii[17,88] := {78} tii[17,89] := {80} tii[17,90] := {89} tii[17,91] := {114} tii[17,92] := {15} tii[17,93] := {30} tii[17,94] := {32} tii[17,95] := {95} tii[17,96] := {46} tii[17,97] := {100} tii[17,98] := {50} tii[17,99] := {22, 129} tii[17,100] := {77} tii[17,101] := {79} tii[17,102] := {69} tii[17,103] := {85} tii[17,104] := {73} tii[17,105] := {87} tii[17,106] := {41, 135} tii[17,107] := {102} tii[17,108] := {103} tii[17,109] := {34, 113} tii[17,110] := {112} tii[17,111] := {130} tii[17,112] := {93} tii[17,113] := {97} tii[17,114] := {64, 139} tii[17,115] := {120} tii[17,116] := {121} tii[17,117] := {140} tii[17,118] := {12} tii[17,119] := {5, 105} tii[17,120] := {21} tii[17,121] := {6, 82} tii[17,122] := {20, 90} tii[17,123] := {36} tii[17,124] := {13, 106} tii[17,125] := {55} tii[17,126] := {26, 124} cell#29 , |C| = 15 special orbit = [9, 1, 1, 1, 1, 1] special rep = [[], [5, 1, 1]] , dim = 15 cell rep = phi[[],[5, 1, 1]] TII depth = 1 TII multiplicity polynomial = 15*X TII subcells: tii[30,1] := {10} tii[30,2] := {5} tii[30,3] := {9} tii[30,4] := {12} tii[30,5] := {0} tii[30,6] := {4} tii[30,7] := {8} tii[30,8] := {2} tii[30,9] := {6} tii[30,10] := {1} tii[30,11] := {14} tii[30,12] := {13} tii[30,13] := {11} tii[30,14] := {7} tii[30,15] := {3} cell#30 , |C| = 15 special orbit = [9, 1, 1, 1, 1, 1] special rep = [[], [5, 1, 1]] , dim = 15 cell rep = phi[[],[5, 1, 1]] TII depth = 1 TII multiplicity polynomial = 15*X TII subcells: tii[30,1] := {10} tii[30,2] := {5} tii[30,3] := {9} tii[30,4] := {12} tii[30,5] := {0} tii[30,6] := {4} tii[30,7] := {8} tii[30,8] := {2} tii[30,9] := {6} tii[30,10] := {1} tii[30,11] := {14} tii[30,12] := {13} tii[30,13] := {11} tii[30,14] := {7} tii[30,15] := {3} cell#31 , |C| = 105 special orbit = [7, 3, 1, 1, 1, 1] special rep = [[1], [4, 1, 1]] , dim = 70 cell rep = phi[[],[4, 2, 1]]+phi[[1],[4, 1, 1]] TII depth = 2 TII multiplicity polynomial = 35*X^2+35*X TII subcells: tii[25,1] := {34, 35} tii[25,2] := {67, 68} tii[25,3] := {97, 98} tii[25,4] := {23, 24} tii[25,5] := {55, 56} tii[25,6] := {10, 11} tii[25,7] := {92, 93} tii[25,8] := {21, 22} tii[25,9] := {37, 38} tii[25,10] := {78, 79} tii[25,11] := {19, 20} tii[25,12] := {57, 58} tii[25,13] := {16} tii[25,14] := {31} tii[25,15] := {17, 18} tii[25,16] := {32, 33} tii[25,17] := {47} tii[25,18] := {64} tii[25,19] := {65} tii[25,20] := {2, 3} tii[25,21] := {48} tii[25,22] := {8, 9} tii[25,23] := {51, 52} tii[25,24] := {63} tii[25,25] := {83} tii[25,26] := {84} tii[25,27] := {0, 1} tii[25,28] := {82} tii[25,29] := {94} tii[25,30] := {95} tii[25,31] := {101} tii[25,32] := {102} tii[25,33] := {104} tii[25,34] := {36} tii[25,35] := {50} tii[25,36] := {39, 40} tii[25,37] := {71} tii[25,38] := {74} tii[25,39] := {6, 7} tii[25,40] := {69} tii[25,41] := {86} tii[25,42] := {88} tii[25,43] := {99} tii[25,44] := {100} tii[25,45] := {45, 46} tii[25,46] := {103} tii[25,47] := {49} tii[25,48] := {70} tii[25,49] := {73} tii[25,50] := {87} tii[25,51] := {89} tii[25,52] := {43, 44} tii[25,53] := {96} tii[25,54] := {72} tii[25,55] := {75} tii[25,56] := {41, 42} tii[25,57] := {85} tii[25,58] := {66} tii[25,59] := {53, 54} tii[25,60] := {29, 30} tii[25,61] := {76, 77} tii[25,62] := {14, 15} tii[25,63] := {90, 91} tii[25,64] := {4, 5} tii[25,65] := {61, 62} tii[25,66] := {27, 28} tii[25,67] := {80, 81} tii[25,68] := {12, 13} tii[25,69] := {59, 60} tii[25,70] := {25, 26} cell#32 , |C| = 20 special orbit = [7, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [4, 1, 1, 1]] , dim = 20 cell rep = phi[[],[4, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 20*X TII subcells: tii[24,1] := {17} tii[24,2] := {11} tii[24,3] := {16} tii[24,4] := {5} tii[24,5] := {10} tii[24,6] := {6} tii[24,7] := {0} tii[24,8] := {4} tii[24,9] := {1} tii[24,10] := {3} tii[24,11] := {19} tii[24,12] := {18} tii[24,13] := {15} tii[24,14] := {7} tii[24,15] := {14} tii[24,16] := {9} tii[24,17] := {2} tii[24,18] := {13} tii[24,19] := {8} tii[24,20] := {12} cell#33 , |C| = 20 special orbit = [7, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [4, 1, 1, 1]] , dim = 20 cell rep = phi[[],[4, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 20*X TII subcells: tii[24,1] := {17} tii[24,2] := {11} tii[24,3] := {16} tii[24,4] := {5} tii[24,5] := {10} tii[24,6] := {6} tii[24,7] := {0} tii[24,8] := {4} tii[24,9] := {1} tii[24,10] := {3} tii[24,11] := {19} tii[24,12] := {18} tii[24,13] := {15} tii[24,14] := {7} tii[24,15] := {14} tii[24,16] := {9} tii[24,17] := {2} tii[24,18] := {13} tii[24,19] := {8} tii[24,20] := {12} cell#34 , |C| = 105 special orbit = [5, 3, 1, 1, 1, 1, 1, 1] special rep = [[1], [3, 1, 1, 1]] , dim = 70 cell rep = phi[[],[3, 2, 1, 1]]+phi[[1],[3, 1, 1, 1]] TII depth = 2 TII multiplicity polynomial = 35*X^2+35*X TII subcells: tii[16,1] := {41, 43} tii[16,2] := {84, 87} tii[16,3] := {31, 32} tii[16,4] := {74, 75} tii[16,5] := {14, 15} tii[16,6] := {51, 52} tii[16,7] := {40, 42} tii[16,8] := {83, 86} tii[16,9] := {23, 25} tii[16,10] := {8, 9} tii[16,11] := {72, 73} tii[16,12] := {82, 85} tii[16,13] := {22} tii[16,14] := {24, 26} tii[16,15] := {39} tii[16,16] := {59} tii[16,17] := {60} tii[16,18] := {2, 3} tii[16,19] := {58} tii[16,20] := {77} tii[16,21] := {79} tii[16,22] := {94} tii[16,23] := {97} tii[16,24] := {104} tii[16,25] := {0, 1} tii[16,26] := {44} tii[16,27] := {62} tii[16,28] := {64} tii[16,29] := {89} tii[16,30] := {91} tii[16,31] := {35, 36} tii[16,32] := {100} tii[16,33] := {63} tii[16,34] := {65} tii[16,35] := {33, 34} tii[16,36] := {81} tii[16,37] := {61} tii[16,38] := {57} tii[16,39] := {76} tii[16,40] := {78} tii[16,41] := {93} tii[16,42] := {96} tii[16,43] := {46, 49} tii[16,44] := {102} tii[16,45] := {88} tii[16,46] := {90} tii[16,47] := {53, 54} tii[16,48] := {28, 30} tii[16,49] := {99} tii[16,50] := {18, 19} tii[16,51] := {80} tii[16,52] := {92} tii[16,53] := {95} tii[16,54] := {66, 69} tii[16,55] := {101} tii[16,56] := {45, 48} tii[16,57] := {98} tii[16,58] := {103} tii[16,59] := {47, 50} tii[16,60] := {20, 21} tii[16,61] := {68, 71} tii[16,62] := {4, 5} tii[16,63] := {11, 13} tii[16,64] := {55, 56} tii[16,65] := {6, 7} tii[16,66] := {16, 17} tii[16,67] := {10, 12} tii[16,68] := {67, 70} tii[16,69] := {37, 38} tii[16,70] := {27, 29} cell#35 , |C| = 20 special orbit = [7, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [4, 1, 1, 1]] , dim = 20 cell rep = phi[[],[4, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 20*X TII subcells: tii[24,1] := {19} tii[24,2] := {12} tii[24,3] := {5} tii[24,4] := {18} tii[24,5] := {11} tii[24,6] := {17} tii[24,7] := {15} tii[24,8] := {9} tii[24,9] := {14} tii[24,10] := {7} tii[24,11] := {0} tii[24,12] := {4} tii[24,13] := {10} tii[24,14] := {16} tii[24,15] := {2} tii[24,16] := {8} tii[24,17] := {13} tii[24,18] := {3} tii[24,19] := {6} tii[24,20] := {1} cell#36 , |C| = 15 special orbit = [5, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [3, 1, 1, 1, 1]] , dim = 15 cell rep = phi[[],[3, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 15*X TII subcells: tii[15,1] := {14} tii[15,2] := {5} tii[15,3] := {13} tii[15,4] := {8} tii[15,5] := {12} tii[15,6] := {0} tii[15,7] := {4} tii[15,8] := {11} tii[15,9] := {2} tii[15,10] := {7} tii[15,11] := {1} tii[15,12] := {3} tii[15,13] := {10} tii[15,14] := {6} tii[15,15] := {9}