TII subcells for the SO(7,7) x SO(12,2) block of SO14 # cell#0 , |C| = 1 special orbit = [13, 1] special rep = [[], [7]] , dim = 1 cell rep = phi[[],[7]] TII depth = 1 TII multiplicity polynomial = X TII subcells: tii[35,1] := {0} cell#1 , |C| = 1 special orbit = [13, 1] special rep = [[], [7]] , dim = 1 cell rep = phi[[],[7]] TII depth = 1 TII multiplicity polynomial = X TII subcells: tii[35,1] := {0} cell#2 , |C| = 7 special orbit = [11, 3] special rep = [[1], [6]] , dim = 7 cell rep = phi[[1],[6]] TII depth = 1 TII multiplicity polynomial = 7*X TII subcells: tii[34,1] := {0} tii[34,2] := {1} tii[34,3] := {2} tii[34,4] := {3} tii[34,5] := {4} tii[34,6] := {5} tii[34,7] := {6} cell#3 , |C| = 6 special orbit = [11, 1, 1, 1] special rep = [[], [6, 1]] , dim = 6 cell rep = phi[[],[6, 1]] TII depth = 1 TII multiplicity polynomial = 6*X TII subcells: tii[33,1] := {2} tii[33,2] := {0} tii[33,3] := {1} tii[33,4] := {3} tii[33,5] := {4} tii[33,6] := {5} cell#4 , |C| = 6 special orbit = [11, 1, 1, 1] special rep = [[], [6, 1]] , dim = 6 cell rep = phi[[],[6, 1]] TII depth = 1 TII multiplicity polynomial = 6*X TII subcells: tii[33,1] := {2} tii[33,2] := {0} tii[33,3] := {1} tii[33,4] := {3} tii[33,5] := {4} tii[33,6] := {5} cell#5 , |C| = 49 special orbit = [9, 3, 1, 1] special rep = [[1], [5, 1]] , dim = 35 cell rep = phi[[],[5, 2]]+phi[[1],[5, 1]] TII depth = 3 TII multiplicity polynomial = 14*X^2+21*X TII subcells: tii[31,1] := {6, 7} tii[31,2] := {18, 19} tii[31,3] := {33, 34} tii[31,4] := {44, 45} tii[31,5] := {0} tii[31,6] := {1, 2} tii[31,7] := {3} tii[31,8] := {4, 5} tii[31,9] := {8} tii[31,10] := {10, 11} tii[31,11] := {14} tii[31,12] := {23} tii[31,13] := {24} tii[31,14] := {9} tii[31,15] := {15} tii[31,16] := {12, 13} tii[31,17] := {16, 17} tii[31,18] := {22} tii[31,19] := {31} tii[31,20] := {32} tii[31,21] := {25} tii[31,22] := {26, 27} tii[31,23] := {30} tii[31,24] := {38} tii[31,25] := {39} tii[31,26] := {37} tii[31,27] := {42} tii[31,28] := {43} tii[31,29] := {46} tii[31,30] := {47} tii[31,31] := {48} tii[31,32] := {20, 21} tii[31,33] := {28, 29} tii[31,34] := {35, 36} tii[31,35] := {40, 41} cell#6 , |C| = 6 special orbit = [11, 1, 1, 1] special rep = [[], [6, 1]] , dim = 6 cell rep = phi[[],[6, 1]] TII depth = 1 TII multiplicity polynomial = 6*X TII subcells: tii[33,1] := {5} tii[33,2] := {4} tii[33,3] := {3} tii[33,4] := {2} tii[33,5] := {1} tii[33,6] := {0} cell#7 , |C| = 15 special orbit = [9, 1, 1, 1, 1, 1] special rep = [[], [5, 1, 1]] , dim = 15 cell rep = phi[[],[5, 1, 1]] TII depth = 1 TII multiplicity polynomial = 15*X TII subcells: tii[30,1] := {14} tii[30,2] := {9} tii[30,3] := {5} tii[30,4] := {2} tii[30,5] := {13} tii[30,6] := {8} tii[30,7] := {4} tii[30,8] := {12} tii[30,9] := {7} tii[30,10] := {11} tii[30,11] := {0} tii[30,12] := {1} tii[30,13] := {3} tii[30,14] := {6} tii[30,15] := {10}