TII subcells for the Spin(8,6) x PSO(7,7) block of Spin14 # cell#0 , |C| = 1 special orbit = [13, 1] special rep = [[], [7]] , dim = 1 cell rep = phi[[],[7]] TII depth = 1 TII multiplicity polynomial = X TII subcells: tii[35,1] := {0} cell#1 , |C| = 6 special orbit = [11, 1, 1, 1] special rep = [[], [6, 1]] , dim = 6 cell rep = phi[[],[6, 1]] TII depth = 1 TII multiplicity polynomial = 6*X TII subcells: tii[33,1] := {3} tii[33,2] := {0} tii[33,3] := {4} tii[33,4] := {1} tii[33,5] := {5} tii[33,6] := {2} cell#2 , |C| = 1 special orbit = [13, 1] special rep = [[], [7]] , dim = 1 cell rep = phi[[],[7]] TII depth = 1 TII multiplicity polynomial = X TII subcells: tii[35,1] := {0} cell#3 , |C| = 7 special orbit = [11, 3] special rep = [[1], [6]] , dim = 7 cell rep = phi[[1],[6]] TII depth = 1 TII multiplicity polynomial = 7*X TII subcells: tii[34,1] := {2} tii[34,2] := {3} tii[34,3] := {1} tii[34,4] := {4} tii[34,5] := {0} tii[34,6] := {5} tii[34,7] := {6} cell#4 , |C| = 7 special orbit = [11, 3] special rep = [[1], [6]] , dim = 7 cell rep = phi[[1],[6]] TII depth = 1 TII multiplicity polynomial = 7*X TII subcells: tii[34,1] := {2} tii[34,2] := {3} tii[34,3] := {1} tii[34,4] := {4} tii[34,5] := {0} tii[34,6] := {5} tii[34,7] := {6} cell#5 , |C| = 21 special orbit = [9, 5] special rep = [[2], [5]] , dim = 21 cell rep = phi[[2],[5]] TII depth = 2 TII multiplicity polynomial = 21*X TII subcells: tii[32,1] := {3} tii[32,2] := {16} tii[32,3] := {5} tii[32,4] := {17} tii[32,5] := {18} tii[32,6] := {19} tii[32,7] := {20} tii[32,8] := {0} tii[32,9] := {6} tii[32,10] := {2} tii[32,11] := {8} tii[32,12] := {10} tii[32,13] := {11} tii[32,14] := {4} tii[32,15] := {12} tii[32,16] := {14} tii[32,17] := {1} tii[32,18] := {7} tii[32,19] := {9} tii[32,20] := {13} tii[32,21] := {15} cell#6 , |C| = 6 special orbit = [11, 1, 1, 1] special rep = [[], [6, 1]] , dim = 6 cell rep = phi[[],[6, 1]] TII depth = 1 TII multiplicity polynomial = 6*X TII subcells: tii[33,1] := {5} tii[33,2] := {4} tii[33,3] := {3} tii[33,4] := {2} tii[33,5] := {1} tii[33,6] := {0} cell#7 , |C| = 49 special orbit = [9, 3, 1, 1] special rep = [[1], [5, 1]] , dim = 35 cell rep = phi[[],[5, 2]]+phi[[1],[5, 1]] TII depth = 3 TII multiplicity polynomial = 14*X^2+21*X TII subcells: tii[31,1] := {18, 48} tii[31,2] := {5, 45} tii[31,3] := {19, 40} tii[31,4] := {7, 32} tii[31,5] := {12} tii[31,6] := {9, 47} tii[31,7] := {20} tii[31,8] := {3, 46} tii[31,9] := {26} tii[31,10] := {10, 44} tii[31,11] := {31} tii[31,12] := {37} tii[31,13] := {38} tii[31,14] := {13} tii[31,15] := {21} tii[31,16] := {0, 43} tii[31,17] := {8, 41} tii[31,18] := {27} tii[31,19] := {33} tii[31,20] := {34} tii[31,21] := {14} tii[31,22] := {11, 36} tii[31,23] := {22} tii[31,24] := {28} tii[31,25] := {29} tii[31,26] := {15} tii[31,27] := {23} tii[31,28] := {24} tii[31,29] := {16} tii[31,30] := {17} tii[31,31] := {25} tii[31,32] := {4, 42} tii[31,33] := {2, 39} tii[31,34] := {6, 35} tii[31,35] := {1, 30} cell#8 , |C| = 6 special orbit = [11, 1, 1, 1] special rep = [[], [6, 1]] , dim = 6 cell rep = phi[[],[6, 1]] TII depth = 1 TII multiplicity polynomial = 6*X TII subcells: tii[33,1] := {3} tii[33,2] := {0} tii[33,3] := {4} tii[33,4] := {1} tii[33,5] := {5} tii[33,6] := {2} cell#9 , |C| = 56 special orbit = [9, 3, 1, 1] special rep = [[1], [5, 1]] , dim = 35 cell rep = phi[[1],[5, 1]]+phi[[1, 1],[5]] TII depth = 3 TII multiplicity polynomial = 21*X^2+14*X TII subcells: tii[31,1] := {55} tii[31,2] := {53} tii[31,3] := {51} tii[31,4] := {45} tii[31,5] := {34, 35} tii[31,6] := {54} tii[31,7] := {8, 9} tii[31,8] := {52} tii[31,9] := {22, 23} tii[31,10] := {48} tii[31,11] := {6, 7} tii[31,12] := {24, 25} tii[31,13] := {28, 29} tii[31,14] := {4, 5} tii[31,15] := {12, 13} tii[31,16] := {50} tii[31,17] := {44} tii[31,18] := {0, 1} tii[31,19] := {14, 16} tii[31,20] := {18, 20} tii[31,21] := {36, 37} tii[31,22] := {49} tii[31,23] := {10, 11} tii[31,24] := {26, 27} tii[31,25] := {30, 31} tii[31,26] := {2, 3} tii[31,27] := {15, 17} tii[31,28] := {19, 21} tii[31,29] := {38, 39} tii[31,30] := {40, 41} tii[31,31] := {46, 47} tii[31,32] := {42} tii[31,33] := {32} tii[31,34] := {43} tii[31,35] := {33} cell#10 , |C| = 98 special orbit = [7, 5, 1, 1] special rep = [[2], [4, 1]] , dim = 84 cell rep = phi[[],[4, 3]]+phi[[2],[4, 1]] TII depth = 3 TII multiplicity polynomial = 70*X+14*X^2 TII subcells: tii[28,1] := {79, 97} tii[28,2] := {28, 92} tii[28,3] := {80} tii[28,4] := {48} tii[28,5] := {10} tii[28,6] := {44, 93} tii[28,7] := {11, 81} tii[28,8] := {46} tii[28,9] := {47} tii[28,10] := {65} tii[28,11] := {66} tii[28,12] := {67} tii[28,13] := {64, 96} tii[28,14] := {5} tii[28,15] := {49} tii[28,16] := {45, 94} tii[28,17] := {6, 77} tii[28,18] := {30} tii[28,19] := {31} tii[28,20] := {68} tii[28,21] := {82} tii[28,22] := {55} tii[28,23] := {84} tii[28,24] := {58} tii[28,25] := {18} tii[28,26] := {12, 87} tii[28,27] := {51} tii[28,28] := {52} tii[28,29] := {40} tii[28,30] := {61} tii[28,31] := {72} tii[28,32] := {62} tii[28,33] := {74} tii[28,34] := {69} tii[28,35] := {70} tii[28,36] := {53} tii[28,37] := {83} tii[28,38] := {56} tii[28,39] := {85} tii[28,40] := {89} tii[28,41] := {90} tii[28,42] := {95} tii[28,43] := {26} tii[28,44] := {17} tii[28,45] := {32} tii[28,46] := {36} tii[28,47] := {27} tii[28,48] := {22, 88} tii[28,49] := {50} tii[28,50] := {2} tii[28,51] := {71} tii[28,52] := {13} tii[28,53] := {73} tii[28,54] := {15} tii[28,55] := {29} tii[28,56] := {23} tii[28,57] := {54} tii[28,58] := {24} tii[28,59] := {57} tii[28,60] := {34} tii[28,61] := {38} tii[28,62] := {59} tii[28,63] := {0} tii[28,64] := {7} tii[28,65] := {8} tii[28,66] := {19} tii[28,67] := {14} tii[28,68] := {41} tii[28,69] := {16} tii[28,70] := {42} tii[28,71] := {20} tii[28,72] := {21} tii[28,73] := {25, 91} tii[28,74] := {43} tii[28,75] := {33} tii[28,76] := {37} tii[28,77] := {35} tii[28,78] := {39} tii[28,79] := {4, 78} tii[28,80] := {60} tii[28,81] := {75} tii[28,82] := {9, 86} tii[28,83] := {3, 76} tii[28,84] := {1, 63} cell#11 , |C| = 21 special orbit = [9, 5] special rep = [[2], [5]] , dim = 21 cell rep = phi[[2],[5]] TII depth = 2 TII multiplicity polynomial = 21*X TII subcells: tii[32,1] := {3} tii[32,2] := {16} tii[32,3] := {5} tii[32,4] := {17} tii[32,5] := {18} tii[32,6] := {19} tii[32,7] := {20} tii[32,8] := {0} tii[32,9] := {6} tii[32,10] := {2} tii[32,11] := {8} tii[32,12] := {10} tii[32,13] := {11} tii[32,14] := {4} tii[32,15] := {12} tii[32,16] := {14} tii[32,17] := {1} tii[32,18] := {7} tii[32,19] := {9} tii[32,20] := {13} tii[32,21] := {15} cell#12 , |C| = 35 special orbit = [7, 7] special rep = [[3], [4]] , dim = 35 cell rep = phi[[3],[4]] TII depth = 4 TII multiplicity polynomial = 35*X TII subcells: tii[29,1] := {12} tii[29,2] := {26} tii[29,3] := {25} tii[29,4] := {31} tii[29,5] := {32} tii[29,6] := {33} tii[29,7] := {34} tii[29,8] := {2} tii[29,9] := {13} tii[29,10] := {14} tii[29,11] := {19} tii[29,12] := {20} tii[29,13] := {5} tii[29,14] := {15} tii[29,15] := {16} tii[29,16] := {1} tii[29,17] := {6} tii[29,18] := {23} tii[29,19] := {8} tii[29,20] := {24} tii[29,21] := {22} tii[29,22] := {21} tii[29,23] := {27} tii[29,24] := {17} tii[29,25] := {28} tii[29,26] := {18} tii[29,27] := {29} tii[29,28] := {30} tii[29,29] := {0} tii[29,30] := {3} tii[29,31] := {4} tii[29,32] := {7} tii[29,33] := {9} tii[29,34] := {10} tii[29,35] := {11} cell#13 , |C| = 35 special orbit = [7, 7] special rep = [[3], [4]] , dim = 35 cell rep = phi[[3],[4]] TII depth = 4 TII multiplicity polynomial = 35*X TII subcells: tii[29,1] := {12} tii[29,2] := {26} tii[29,3] := {25} tii[29,4] := {31} tii[29,5] := {32} tii[29,6] := {33} tii[29,7] := {34} tii[29,8] := {2} tii[29,9] := {13} tii[29,10] := {14} tii[29,11] := {19} tii[29,12] := {20} tii[29,13] := {5} tii[29,14] := {15} tii[29,15] := {16} tii[29,16] := {1} tii[29,17] := {6} tii[29,18] := {23} tii[29,19] := {8} tii[29,20] := {24} tii[29,21] := {22} tii[29,22] := {21} tii[29,23] := {27} tii[29,24] := {17} tii[29,25] := {28} tii[29,26] := {18} tii[29,27] := {29} tii[29,28] := {30} tii[29,29] := {0} tii[29,30] := {3} tii[29,31] := {4} tii[29,32] := {7} tii[29,33] := {9} tii[29,34] := {10} tii[29,35] := {11} cell#14 , |C| = 49 special orbit = [9, 3, 1, 1] special rep = [[1], [5, 1]] , dim = 35 cell rep = phi[[],[5, 2]]+phi[[1],[5, 1]] TII depth = 3 TII multiplicity polynomial = 14*X^2+21*X TII subcells: tii[31,1] := {18, 48} tii[31,2] := {5, 45} tii[31,3] := {19, 40} tii[31,4] := {7, 32} tii[31,5] := {12} tii[31,6] := {9, 47} tii[31,7] := {20} tii[31,8] := {3, 46} tii[31,9] := {26} tii[31,10] := {10, 44} tii[31,11] := {31} tii[31,12] := {37} tii[31,13] := {38} tii[31,14] := {13} tii[31,15] := {21} tii[31,16] := {0, 43} tii[31,17] := {8, 41} tii[31,18] := {27} tii[31,19] := {33} tii[31,20] := {34} tii[31,21] := {14} tii[31,22] := {11, 36} tii[31,23] := {22} tii[31,24] := {28} tii[31,25] := {29} tii[31,26] := {15} tii[31,27] := {23} tii[31,28] := {24} tii[31,29] := {16} tii[31,30] := {17} tii[31,31] := {25} tii[31,32] := {4, 42} tii[31,33] := {2, 39} tii[31,34] := {6, 35} tii[31,35] := {1, 30} cell#15 , |C| = 154 special orbit = [7, 5, 1, 1] special rep = [[2], [4, 1]] , dim = 84 cell rep = phi[[2],[4, 1]]+phi[[2, 1],[4]] TII depth = 3 TII multiplicity polynomial = 70*X^2+14*X TII subcells: tii[28,1] := {151} tii[28,2] := {105} tii[28,3] := {132, 133} tii[28,4] := {77, 78} tii[28,5] := {101, 102} tii[28,6] := {126} tii[28,7] := {71} tii[28,8] := {128, 129} tii[28,9] := {130, 131} tii[28,10] := {143, 144} tii[28,11] := {147, 148} tii[28,12] := {106, 107} tii[28,13] := {142} tii[28,14] := {66, 67} tii[28,15] := {79, 80} tii[28,16] := {127} tii[28,17] := {43} tii[28,18] := {108, 109} tii[28,19] := {112, 113} tii[28,20] := {37, 38} tii[28,21] := {73, 74} tii[28,22] := {134, 135} tii[28,23] := {75, 76} tii[28,24] := {138, 139} tii[28,25] := {25, 26} tii[28,26] := {72} tii[28,27] := {81, 82} tii[28,28] := {83, 84} tii[28,29] := {4, 5} tii[28,30] := {14, 15} tii[28,31] := {118, 119} tii[28,32] := {18, 19} tii[28,33] := {122, 123} tii[28,34] := {110, 111} tii[28,35] := {114, 115} tii[28,36] := {89, 90} tii[28,37] := {136, 137} tii[28,38] := {95, 96} tii[28,39] := {140, 141} tii[28,40] := {145, 146} tii[28,41] := {149, 150} tii[28,42] := {152, 153} tii[28,43] := {39, 40} tii[28,44] := {21, 22} tii[28,45] := {44, 45} tii[28,46] := {54, 55} tii[28,47] := {41, 42} tii[28,48] := {103} tii[28,49] := {10, 11} tii[28,50] := {64, 65} tii[28,51] := {31, 32} tii[28,52] := {85, 86} tii[28,53] := {33, 34} tii[28,54] := {91, 92} tii[28,55] := {2, 3} tii[28,56] := {116, 117} tii[28,57] := {12, 13} tii[28,58] := {120, 121} tii[28,59] := {16, 17} tii[28,60] := {50, 51} tii[28,61] := {60, 61} tii[28,62] := {97, 98} tii[28,63] := {23, 24} tii[28,64] := {46, 47} tii[28,65] := {56, 57} tii[28,66] := {0, 1} tii[28,67] := {87, 88} tii[28,68] := {6, 7} tii[28,69] := {93, 94} tii[28,70] := {8, 9} tii[28,71] := {27, 28} tii[28,72] := {29, 30} tii[28,73] := {104} tii[28,74] := {68, 69} tii[28,75] := {48, 49} tii[28,76] := {58, 59} tii[28,77] := {52, 53} tii[28,78] := {62, 63} tii[28,79] := {36} tii[28,80] := {99, 100} tii[28,81] := {124, 125} tii[28,82] := {70} tii[28,83] := {35} tii[28,84] := {20} cell#16 , |C| = 105 special orbit = [6, 6, 1, 1] special rep = [[3], [3, 1]] , dim = 105 cell rep = phi[[3],[3, 1]] TII depth = 6 TII multiplicity polynomial = 105*X TII subcells: tii[23,1] := {77} tii[23,2] := {99} tii[23,3] := {36} tii[23,4] := {35} tii[23,5] := {41} tii[23,6] := {67} tii[23,7] := {68} tii[23,8] := {81} tii[23,9] := {84} tii[23,10] := {52} tii[23,11] := {51} tii[23,12] := {20} tii[23,13] := {23} tii[23,14] := {55} tii[23,15] := {78} tii[23,16] := {79} tii[23,17] := {44} tii[23,18] := {90} tii[23,19] := {48} tii[23,20] := {92} tii[23,21] := {66} tii[23,22] := {65} tii[23,23] := {69} tii[23,24] := {87} tii[23,25] := {88} tii[23,26] := {54} tii[23,27] := {53} tii[23,28] := {71} tii[23,29] := {42} tii[23,30] := {96} tii[23,31] := {74} tii[23,32] := {46} tii[23,33] := {97} tii[23,34] := {94} tii[23,35] := {95} tii[23,36] := {89} tii[23,37] := {100} tii[23,38] := {91} tii[23,39] := {101} tii[23,40] := {102} tii[23,41] := {103} tii[23,42] := {104} tii[23,43] := {7} tii[23,44] := {9} tii[23,45] := {28} tii[23,46] := {32} tii[23,47] := {6} tii[23,48] := {8} tii[23,49] := {22} tii[23,50] := {19} tii[23,51] := {10} tii[23,52] := {27} tii[23,53] := {43} tii[23,54] := {14} tii[23,55] := {31} tii[23,56] := {47} tii[23,57] := {24} tii[23,58] := {21} tii[23,59] := {56} tii[23,60] := {45} tii[23,61] := {12} tii[23,62] := {60} tii[23,63] := {49} tii[23,64] := {16} tii[23,65] := {59} tii[23,66] := {63} tii[23,67] := {76} tii[23,68] := {39} tii[23,69] := {37} tii[23,70] := {25} tii[23,71] := {57} tii[23,72] := {29} tii[23,73] := {61} tii[23,74] := {40} tii[23,75] := {38} tii[23,76] := {11} tii[23,77] := {70} tii[23,78] := {58} tii[23,79] := {26} tii[23,80] := {15} tii[23,81] := {73} tii[23,82] := {62} tii[23,83] := {30} tii[23,84] := {13} tii[23,85] := {72} tii[23,86] := {17} tii[23,87] := {75} tii[23,88] := {34} tii[23,89] := {86} tii[23,90] := {80} tii[23,91] := {83} tii[23,92] := {82} tii[23,93] := {85} tii[23,94] := {64} tii[23,95] := {93} tii[23,96] := {98} tii[23,97] := {0} tii[23,98] := {3} tii[23,99] := {1} tii[23,100] := {4} tii[23,101] := {2} tii[23,102] := {5} tii[23,103] := {18} tii[23,104] := {33} tii[23,105] := {50} cell#17 , |C| = 49 special orbit = [9, 3, 1, 1] special rep = [[1], [5, 1]] , dim = 35 cell rep = phi[[],[5, 2]]+phi[[1],[5, 1]] TII depth = 3 TII multiplicity polynomial = 14*X^2+21*X TII subcells: tii[31,1] := {22, 48} tii[31,2] := {16, 45} tii[31,3] := {8, 40} tii[31,4] := {6, 30} tii[31,5] := {29} tii[31,6] := {15, 47} tii[31,7] := {31} tii[31,8] := {9, 46} tii[31,9] := {28} tii[31,10] := {5, 44} tii[31,11] := {32} tii[31,12] := {37} tii[31,13] := {38} tii[31,14] := {23} tii[31,15] := {21} tii[31,16] := {10, 43} tii[31,17] := {7, 41} tii[31,18] := {24} tii[31,19] := {33} tii[31,20] := {34} tii[31,21] := {14} tii[31,22] := {4, 36} tii[31,23] := {17} tii[31,24] := {25} tii[31,25] := {26} tii[31,26] := {11} tii[31,27] := {18} tii[31,28] := {19} tii[31,29] := {12} tii[31,30] := {13} tii[31,31] := {20} tii[31,32] := {1, 42} tii[31,33] := {2, 39} tii[31,34] := {0, 35} tii[31,35] := {3, 27} cell#18 , |C| = 98 special orbit = [7, 5, 1, 1] special rep = [[2], [4, 1]] , dim = 84 cell rep = phi[[],[4, 3]]+phi[[2],[4, 1]] TII depth = 3 TII multiplicity polynomial = 70*X+14*X^2 TII subcells: tii[28,1] := {19, 94} tii[28,2] := {25, 80} tii[28,3] := {71} tii[28,4] := {47} tii[28,5] := {68} tii[28,6] := {7, 78} tii[28,7] := {5, 46} tii[28,8] := {90} tii[28,9] := {91} tii[28,10] := {96} tii[28,11] := {97} tii[28,12] := {32} tii[28,13] := {10, 89} tii[28,14] := {53} tii[28,15] := {24} tii[28,16] := {6, 79} tii[28,17] := {8, 52} tii[28,18] := {81} tii[28,19] := {82} tii[28,20] := {33} tii[28,21] := {49} tii[28,22] := {92} tii[28,23] := {50} tii[28,24] := {93} tii[28,25] := {38} tii[28,26] := {16, 67} tii[28,27] := {69} tii[28,28] := {70} tii[28,29] := {26} tii[28,30] := {41} tii[28,31] := {84} tii[28,32] := {43} tii[28,33] := {87} tii[28,34] := {55} tii[28,35] := {56} tii[28,36] := {40} tii[28,37] := {74} tii[28,38] := {42} tii[28,39] := {77} tii[28,40] := {85} tii[28,41] := {88} tii[28,42] := {95} tii[28,43] := {37} tii[28,44] := {48} tii[28,45] := {64} tii[28,46] := {65} tii[28,47] := {14} tii[28,48] := {3, 63} tii[28,49] := {20} tii[28,50] := {54} tii[28,51] := {34} tii[28,52] := {73} tii[28,53] := {35} tii[28,54] := {76} tii[28,55] := {11} tii[28,56] := {83} tii[28,57] := {21} tii[28,58] := {86} tii[28,59] := {22} tii[28,60] := {12} tii[28,61] := {13} tii[28,62] := {23} tii[28,63] := {39} tii[28,64] := {58} tii[28,65] := {60} tii[28,66] := {15} tii[28,67] := {72} tii[28,68] := {27} tii[28,69] := {75} tii[28,70] := {29} tii[28,71] := {17} tii[28,72] := {18} tii[28,73] := {1, 66} tii[28,74] := {31} tii[28,75] := {57} tii[28,76] := {59} tii[28,77] := {28} tii[28,78] := {30} tii[28,79] := {9, 62} tii[28,80] := {44} tii[28,81] := {61} tii[28,82] := {0, 51} tii[28,83] := {2, 36} tii[28,84] := {4, 45} cell#19 , |C| = 63 special orbit = [7, 3, 3, 1] special rep = [[1], [4, 2]] , dim = 63 cell rep = phi[[1],[4, 2]] TII depth = 3 TII multiplicity polynomial = 63*X TII subcells: tii[27,1] := {62} tii[27,2] := {56} tii[27,3] := {38} tii[27,4] := {16} tii[27,5] := {18} tii[27,6] := {59} tii[27,7] := {20} tii[27,8] := {52} tii[27,9] := {26} tii[27,10] := {61} tii[27,11] := {8} tii[27,12] := {36} tii[27,13] := {11} tii[27,14] := {60} tii[27,15] := {46} tii[27,16] := {45} tii[27,17] := {53} tii[27,18] := {54} tii[27,19] := {17} tii[27,20] := {51} tii[27,21] := {3} tii[27,22] := {28} tii[27,23] := {39} tii[27,24] := {41} tii[27,25] := {10} tii[27,26] := {21} tii[27,27] := {23} tii[27,28] := {9} tii[27,29] := {4} tii[27,30] := {27} tii[27,31] := {57} tii[27,32] := {12} tii[27,33] := {37} tii[27,34] := {47} tii[27,35] := {48} tii[27,36] := {29} tii[27,37] := {40} tii[27,38] := {42} tii[27,39] := {31} tii[27,40] := {33} tii[27,41] := {44} tii[27,42] := {5} tii[27,43] := {19} tii[27,44] := {30} tii[27,45] := {32} tii[27,46] := {22} tii[27,47] := {24} tii[27,48] := {58} tii[27,49] := {35} tii[27,50] := {13} tii[27,51] := {14} tii[27,52] := {25} tii[27,53] := {49} tii[27,54] := {34} tii[27,55] := {0} tii[27,56] := {55} tii[27,57] := {6} tii[27,58] := {50} tii[27,59] := {15} tii[27,60] := {1} tii[27,61] := {7} tii[27,62] := {43} tii[27,63] := {2} cell#20 , |C| = 140 special orbit = [5, 5, 3, 1] special rep = [[2], [3, 2]] , dim = 105 cell rep = phi[[1],[3, 3]]+phi[[2],[3, 2]] TII depth = 3 TII multiplicity polynomial = 35*X^2+70*X TII subcells: tii[22,1] := {77, 139} tii[22,2] := {127} tii[22,3] := {30, 93} tii[22,4] := {81} tii[22,5] := {44, 132} tii[22,6] := {60} tii[22,7] := {18, 107} tii[22,8] := {3, 109} tii[22,9] := {49, 136} tii[22,10] := {95} tii[22,11] := {96} tii[22,12] := {65} tii[22,13] := {111} tii[22,14] := {114} tii[22,15] := {31, 118} tii[22,16] := {66, 138} tii[22,17] := {80} tii[22,18] := {61} tii[22,19] := {63} tii[22,20] := {20, 126} tii[22,21] := {34, 133} tii[22,22] := {84} tii[22,23] := {38, 134} tii[22,24] := {88} tii[22,25] := {94} tii[22,26] := {110} tii[22,27] := {113} tii[22,28] := {9, 67} tii[22,29] := {45} tii[22,30] := {19, 82} tii[22,31] := {2, 97} tii[22,32] := {78} tii[22,33] := {79} tii[22,34] := {32} tii[22,35] := {99} tii[22,36] := {52} tii[22,37] := {102} tii[22,38] := {55} tii[22,39] := {62} tii[22,40] := {64} tii[22,41] := {6, 108} tii[22,42] := {51} tii[22,43] := {85} tii[22,44] := {15, 120} tii[22,45] := {54} tii[22,46] := {89} tii[22,47] := {16, 122} tii[22,48] := {101} tii[22,49] := {104} tii[22,50] := {117} tii[22,51] := {10, 98} tii[22,52] := {46} tii[22,53] := {69} tii[22,54] := {72} tii[22,55] := {47} tii[22,56] := {48} tii[22,57] := {11, 119} tii[22,58] := {83} tii[22,59] := {22, 128} tii[22,60] := {70} tii[22,61] := {33} tii[22,62] := {87} tii[22,63] := {25, 129} tii[22,64] := {73} tii[22,65] := {37} tii[22,66] := {12, 121} tii[22,67] := {86} tii[22,68] := {13, 123} tii[22,69] := {90} tii[22,70] := {28, 131} tii[22,71] := {106} tii[22,72] := {50} tii[22,73] := {53} tii[22,74] := {100} tii[22,75] := {103} tii[22,76] := {57, 137} tii[22,77] := {116} tii[22,78] := {124} tii[22,79] := {21} tii[22,80] := {35} tii[22,81] := {39} tii[22,82] := {23} tii[22,83] := {26} tii[22,84] := {42} tii[22,85] := {68} tii[22,86] := {71} tii[22,87] := {36} tii[22,88] := {7, 112} tii[22,89] := {40} tii[22,90] := {8, 115} tii[22,91] := {14, 76} tii[22,92] := {17, 125} tii[22,93] := {59} tii[22,94] := {75} tii[22,95] := {29, 130} tii[22,96] := {24} tii[22,97] := {27} tii[22,98] := {5, 92} tii[22,99] := {43} tii[22,100] := {41, 135} tii[22,101] := {56} tii[22,102] := {1, 105} tii[22,103] := {74} tii[22,104] := {4, 58} tii[22,105] := {0, 91} cell#21 , |C| = 15 special orbit = [9, 1, 1, 1, 1, 1] special rep = [[], [5, 1, 1]] , dim = 15 cell rep = phi[[],[5, 1, 1]] TII depth = 1 TII multiplicity polynomial = 15*X TII subcells: tii[30,1] := {12} tii[30,2] := {9} tii[30,3] := {13} tii[30,4] := {10} tii[30,5] := {5} tii[30,6] := {8} tii[30,7] := {6} tii[30,8] := {4} tii[30,9] := {2} tii[30,10] := {0} tii[30,11] := {14} tii[30,12] := {11} tii[30,13] := {7} tii[30,14] := {3} tii[30,15] := {1} cell#22 , |C| = 105 special orbit = [7, 3, 1, 1, 1, 1] special rep = [[1], [4, 1, 1]] , dim = 70 cell rep = phi[[],[4, 2, 1]]+phi[[1],[4, 1, 1]] TII depth = 2 TII multiplicity polynomial = 35*X^2+35*X TII subcells: tii[25,1] := {23, 99} tii[25,2] := {43, 92} tii[25,3] := {49, 89} tii[25,4] := {14, 103} tii[25,5] := {31, 83} tii[25,6] := {4, 101} tii[25,7] := {38, 80} tii[25,8] := {11, 104} tii[25,9] := {44, 90} tii[25,10] := {27, 68} tii[25,11] := {33, 95} tii[25,12] := {17, 79} tii[25,13] := {30} tii[25,14] := {42} tii[25,15] := {12, 94} tii[25,16] := {20, 88} tii[25,17] := {56} tii[25,18] := {69} tii[25,19] := {71} tii[25,20] := {0, 97} tii[25,21] := {35} tii[25,22] := {9, 100} tii[25,23] := {32, 85} tii[25,24] := {48} tii[25,25] := {62} tii[25,26] := {64} tii[25,27] := {18, 96} tii[25,28] := {57} tii[25,29] := {70} tii[25,30] := {72} tii[25,31] := {63} tii[25,32] := {65} tii[25,33] := {78} tii[25,34] := {25} tii[25,35] := {37} tii[25,36] := {21, 75} tii[25,37] := {51} tii[25,38] := {53} tii[25,39] := {22, 87} tii[25,40] := {45} tii[25,41] := {58} tii[25,42] := {59} tii[25,43] := {52} tii[25,44] := {54} tii[25,45] := {5, 102} tii[25,46] := {67} tii[25,47] := {34} tii[25,48] := {46} tii[25,49] := {47} tii[25,50] := {39} tii[25,51] := {40} tii[25,52] := {19, 91} tii[25,53] := {55} tii[25,54] := {28} tii[25,55] := {29} tii[25,56] := {7, 74} tii[25,57] := {41} tii[25,58] := {50} tii[25,59] := {13, 81} tii[25,60] := {1, 98} tii[25,61] := {24, 77} tii[25,62] := {8, 93} tii[25,63] := {36, 82} tii[25,64] := {3, 86} tii[25,65] := {15, 66} tii[25,66] := {10, 84} tii[25,67] := {26, 73} tii[25,68] := {6, 76} tii[25,69] := {16, 60} tii[25,70] := {2, 61} cell#23 , |C| = 63 special orbit = [7, 3, 3, 1] special rep = [[1], [4, 2]] , dim = 63 cell rep = phi[[1],[4, 2]] TII depth = 3 TII multiplicity polynomial = 63*X TII subcells: tii[27,1] := {62} tii[27,2] := {60} tii[27,3] := {48} tii[27,4] := {5} tii[27,5] := {21} tii[27,6] := {58} tii[27,7] := {8} tii[27,8] := {49} tii[27,9] := {12} tii[27,10] := {61} tii[27,11] := {34} tii[27,12] := {26} tii[27,13] := {10} tii[27,14] := {59} tii[27,15] := {53} tii[27,16] := {39} tii[27,17] := {50} tii[27,18] := {51} tii[27,19] := {44} tii[27,20] := {57} tii[27,21] := {7} tii[27,22] := {35} tii[27,23] := {45} tii[27,24] := {46} tii[27,25] := {15} tii[27,26] := {28} tii[27,27] := {30} tii[27,28] := {1} tii[27,29] := {9} tii[27,30] := {14} tii[27,31] := {55} tii[27,32] := {11} tii[27,33] := {27} tii[27,34] := {40} tii[27,35] := {41} tii[27,36] := {16} tii[27,37] := {29} tii[27,38] := {31} tii[27,39] := {18} tii[27,40] := {20} tii[27,41] := {33} tii[27,42] := {22} tii[27,43] := {23} tii[27,44] := {36} tii[27,45] := {37} tii[27,46] := {24} tii[27,47] := {25} tii[27,48] := {56} tii[27,49] := {38} tii[27,50] := {17} tii[27,51] := {19} tii[27,52] := {32} tii[27,53] := {54} tii[27,54] := {42} tii[27,55] := {3} tii[27,56] := {52} tii[27,57] := {6} tii[27,58] := {43} tii[27,59] := {2} tii[27,60] := {13} tii[27,61] := {4} tii[27,62] := {47} tii[27,63] := {0} cell#24 , |C| = 63 special orbit = [7, 3, 3, 1] special rep = [[1], [4, 2]] , dim = 63 cell rep = phi[[1],[4, 2]] TII depth = 3 TII multiplicity polynomial = 63*X TII subcells: tii[27,1] := {62} tii[27,2] := {60} tii[27,3] := {48} tii[27,4] := {5} tii[27,5] := {21} tii[27,6] := {58} tii[27,7] := {8} tii[27,8] := {49} tii[27,9] := {12} tii[27,10] := {61} tii[27,11] := {34} tii[27,12] := {26} tii[27,13] := {10} tii[27,14] := {59} tii[27,15] := {53} tii[27,16] := {39} tii[27,17] := {50} tii[27,18] := {51} tii[27,19] := {44} tii[27,20] := {57} tii[27,21] := {7} tii[27,22] := {35} tii[27,23] := {45} tii[27,24] := {46} tii[27,25] := {15} tii[27,26] := {28} tii[27,27] := {30} tii[27,28] := {1} tii[27,29] := {9} tii[27,30] := {14} tii[27,31] := {55} tii[27,32] := {11} tii[27,33] := {27} tii[27,34] := {40} tii[27,35] := {41} tii[27,36] := {16} tii[27,37] := {29} tii[27,38] := {31} tii[27,39] := {18} tii[27,40] := {20} tii[27,41] := {33} tii[27,42] := {22} tii[27,43] := {23} tii[27,44] := {36} tii[27,45] := {37} tii[27,46] := {24} tii[27,47] := {25} tii[27,48] := {56} tii[27,49] := {38} tii[27,50] := {17} tii[27,51] := {19} tii[27,52] := {32} tii[27,53] := {54} tii[27,54] := {42} tii[27,55] := {3} tii[27,56] := {52} tii[27,57] := {6} tii[27,58] := {43} tii[27,59] := {2} tii[27,60] := {13} tii[27,61] := {4} tii[27,62] := {47} tii[27,63] := {0} cell#25 , |C| = 175 special orbit = [5, 5, 3, 1] special rep = [[2], [3, 2]] , dim = 105 cell rep = phi[[2],[3, 2]]+phi[[3],[2, 2]] TII depth = 3 TII multiplicity polynomial = 70*X^2+35*X TII subcells: tii[22,1] := {172} tii[22,2] := {173, 174} tii[22,3] := {60} tii[22,4] := {93, 94} tii[22,5] := {149} tii[22,6] := {35, 36} tii[22,7] := {84} tii[22,8] := {86} tii[22,9] := {161} tii[22,10] := {64, 65} tii[22,11] := {68, 69} tii[22,12] := {120, 121} tii[22,13] := {97, 98} tii[22,14] := {103, 104} tii[22,15] := {109} tii[22,16] := {169} tii[22,17] := {137, 138} tii[22,18] := {116, 117} tii[22,19] := {118, 119} tii[22,20] := {132} tii[22,21] := {150} tii[22,22] := {139, 140} tii[22,23] := {151} tii[22,24] := {143, 144} tii[22,25] := {153, 154} tii[22,26] := {163, 164} tii[22,27] := {165, 166} tii[22,28] := {22} tii[22,29] := {15, 16} tii[22,30] := {39} tii[22,31] := {61} tii[22,32] := {42, 43} tii[22,33] := {44, 45} tii[22,34] := {2, 3} tii[22,35] := {74, 75} tii[22,36] := {8, 9} tii[22,37] := {78, 79} tii[22,38] := {10, 11} tii[22,39] := {66, 67} tii[22,40] := {70, 71} tii[22,41] := {85} tii[22,42] := {48, 49} tii[22,43] := {99, 100} tii[22,44] := {111} tii[22,45] := {54, 55} tii[22,46] := {105, 106} tii[22,47] := {113} tii[22,48] := {124, 125} tii[22,49] := {128, 129} tii[22,50] := {147, 148} tii[22,51] := {62} tii[22,52] := {13, 14} tii[22,53] := {23, 24} tii[22,54] := {29, 30} tii[22,55] := {89, 90} tii[22,56] := {91, 92} tii[22,57] := {110} tii[22,58] := {46, 47} tii[22,59] := {133} tii[22,60] := {122, 123} tii[22,61] := {72, 73} tii[22,62] := {52, 53} tii[22,63] := {134} tii[22,64] := {126, 127} tii[22,65] := {76, 77} tii[22,66] := {112} tii[22,67] := {141, 142} tii[22,68] := {114} tii[22,69] := {145, 146} tii[22,70] := {136} tii[22,71] := {159, 160} tii[22,72] := {95, 96} tii[22,73] := {101, 102} tii[22,74] := {155, 156} tii[22,75] := {157, 158} tii[22,76] := {162} tii[22,77] := {167, 168} tii[22,78] := {170, 171} tii[22,79] := {0, 1} tii[22,80] := {4, 5} tii[22,81] := {6, 7} tii[22,82] := {17, 18} tii[22,83] := {19, 20} tii[22,84] := {37, 38} tii[22,85] := {25, 26} tii[22,86] := {31, 32} tii[22,87] := {27, 28} tii[22,88] := {87} tii[22,89] := {33, 34} tii[22,90] := {88} tii[22,91] := {21} tii[22,92] := {115} tii[22,93] := {58, 59} tii[22,94] := {80, 81} tii[22,95] := {135} tii[22,96] := {50, 51} tii[22,97] := {56, 57} tii[22,98] := {40} tii[22,99] := {82, 83} tii[22,100] := {152} tii[22,101] := {107, 108} tii[22,102] := {63} tii[22,103] := {130, 131} tii[22,104] := {12} tii[22,105] := {41} cell#26 , |C| = 98 special orbit = [7, 5, 1, 1] special rep = [[2], [4, 1]] , dim = 84 cell rep = phi[[],[4, 3]]+phi[[2],[4, 1]] TII depth = 3 TII multiplicity polynomial = 70*X+14*X^2 TII subcells: tii[28,1] := {79, 97} tii[28,2] := {28, 92} tii[28,3] := {80} tii[28,4] := {48} tii[28,5] := {10} tii[28,6] := {44, 93} tii[28,7] := {11, 81} tii[28,8] := {46} tii[28,9] := {47} tii[28,10] := {65} tii[28,11] := {66} tii[28,12] := {67} tii[28,13] := {64, 96} tii[28,14] := {5} tii[28,15] := {49} tii[28,16] := {45, 94} tii[28,17] := {6, 77} tii[28,18] := {30} tii[28,19] := {31} tii[28,20] := {68} tii[28,21] := {82} tii[28,22] := {55} tii[28,23] := {84} tii[28,24] := {58} tii[28,25] := {18} tii[28,26] := {12, 87} tii[28,27] := {51} tii[28,28] := {52} tii[28,29] := {40} tii[28,30] := {61} tii[28,31] := {72} tii[28,32] := {62} tii[28,33] := {74} tii[28,34] := {69} tii[28,35] := {70} tii[28,36] := {53} tii[28,37] := {83} tii[28,38] := {56} tii[28,39] := {85} tii[28,40] := {89} tii[28,41] := {90} tii[28,42] := {95} tii[28,43] := {26} tii[28,44] := {17} tii[28,45] := {32} tii[28,46] := {36} tii[28,47] := {27} tii[28,48] := {22, 88} tii[28,49] := {50} tii[28,50] := {2} tii[28,51] := {71} tii[28,52] := {13} tii[28,53] := {73} tii[28,54] := {15} tii[28,55] := {29} tii[28,56] := {23} tii[28,57] := {54} tii[28,58] := {24} tii[28,59] := {57} tii[28,60] := {34} tii[28,61] := {38} tii[28,62] := {59} tii[28,63] := {0} tii[28,64] := {7} tii[28,65] := {8} tii[28,66] := {19} tii[28,67] := {14} tii[28,68] := {41} tii[28,69] := {16} tii[28,70] := {42} tii[28,71] := {20} tii[28,72] := {21} tii[28,73] := {25, 91} tii[28,74] := {43} tii[28,75] := {33} tii[28,76] := {37} tii[28,77] := {35} tii[28,78] := {39} tii[28,79] := {4, 78} tii[28,80] := {60} tii[28,81] := {75} tii[28,82] := {9, 86} tii[28,83] := {3, 76} tii[28,84] := {1, 63} cell#27 , |C| = 63 special orbit = [7, 3, 3, 1] special rep = [[1], [4, 2]] , dim = 63 cell rep = phi[[1],[4, 2]] TII depth = 3 TII multiplicity polynomial = 63*X TII subcells: tii[27,1] := {62} tii[27,2] := {57} tii[27,3] := {55} tii[27,4] := {35} tii[27,5] := {11} tii[27,6] := {59} tii[27,7] := {10} tii[27,8] := {50} tii[27,9] := {47} tii[27,10] := {61} tii[27,11] := {9} tii[27,12] := {34} tii[27,13] := {5} tii[27,14] := {60} tii[27,15] := {46} tii[27,16] := {42} tii[27,17] := {51} tii[27,18] := {52} tii[27,19] := {17} tii[27,20] := {54} tii[27,21] := {13} tii[27,22] := {23} tii[27,23] := {37} tii[27,24] := {39} tii[27,25] := {24} tii[27,26] := {36} tii[27,27] := {38} tii[27,28] := {22} tii[27,29] := {14} tii[27,30] := {21} tii[27,31] := {56} tii[27,32] := {6} tii[27,33] := {30} tii[27,34] := {43} tii[27,35] := {44} tii[27,36] := {18} tii[27,37] := {31} tii[27,38] := {32} tii[27,39] := {19} tii[27,40] := {20} tii[27,41] := {33} tii[27,42] := {3} tii[27,43] := {12} tii[27,44] := {25} tii[27,45] := {27} tii[27,46] := {15} tii[27,47] := {16} tii[27,48] := {58} tii[27,49] := {29} tii[27,50] := {26} tii[27,51] := {28} tii[27,52] := {40} tii[27,53] := {49} tii[27,54] := {48} tii[27,55] := {7} tii[27,56] := {53} tii[27,57] := {1} tii[27,58] := {45} tii[27,59] := {4} tii[27,60] := {0} tii[27,61] := {2} tii[27,62] := {41} tii[27,63] := {8} cell#28 , |C| = 105 special orbit = [6, 6, 1, 1] special rep = [[3], [3, 1]] , dim = 105 cell rep = phi[[3],[3, 1]] TII depth = 6 TII multiplicity polynomial = 105*X TII subcells: tii[23,1] := {77} tii[23,2] := {99} tii[23,3] := {36} tii[23,4] := {35} tii[23,5] := {41} tii[23,6] := {67} tii[23,7] := {68} tii[23,8] := {81} tii[23,9] := {84} tii[23,10] := {52} tii[23,11] := {51} tii[23,12] := {20} tii[23,13] := {23} tii[23,14] := {55} tii[23,15] := {78} tii[23,16] := {79} tii[23,17] := {44} tii[23,18] := {90} tii[23,19] := {48} tii[23,20] := {92} tii[23,21] := {66} tii[23,22] := {65} tii[23,23] := {69} tii[23,24] := {87} tii[23,25] := {88} tii[23,26] := {54} tii[23,27] := {53} tii[23,28] := {71} tii[23,29] := {42} tii[23,30] := {96} tii[23,31] := {74} tii[23,32] := {46} tii[23,33] := {97} tii[23,34] := {94} tii[23,35] := {95} tii[23,36] := {89} tii[23,37] := {100} tii[23,38] := {91} tii[23,39] := {101} tii[23,40] := {102} tii[23,41] := {103} tii[23,42] := {104} tii[23,43] := {7} tii[23,44] := {9} tii[23,45] := {28} tii[23,46] := {32} tii[23,47] := {6} tii[23,48] := {8} tii[23,49] := {22} tii[23,50] := {19} tii[23,51] := {10} tii[23,52] := {27} tii[23,53] := {43} tii[23,54] := {14} tii[23,55] := {31} tii[23,56] := {47} tii[23,57] := {24} tii[23,58] := {21} tii[23,59] := {56} tii[23,60] := {45} tii[23,61] := {12} tii[23,62] := {60} tii[23,63] := {49} tii[23,64] := {16} tii[23,65] := {59} tii[23,66] := {63} tii[23,67] := {76} tii[23,68] := {39} tii[23,69] := {37} tii[23,70] := {25} tii[23,71] := {57} tii[23,72] := {29} tii[23,73] := {61} tii[23,74] := {40} tii[23,75] := {38} tii[23,76] := {11} tii[23,77] := {70} tii[23,78] := {58} tii[23,79] := {26} tii[23,80] := {15} tii[23,81] := {73} tii[23,82] := {62} tii[23,83] := {30} tii[23,84] := {13} tii[23,85] := {72} tii[23,86] := {17} tii[23,87] := {75} tii[23,88] := {34} tii[23,89] := {86} tii[23,90] := {80} tii[23,91] := {83} tii[23,92] := {82} tii[23,93] := {85} tii[23,94] := {64} tii[23,95] := {93} tii[23,96] := {98} tii[23,97] := {0} tii[23,98] := {3} tii[23,99] := {1} tii[23,100] := {4} tii[23,101] := {2} tii[23,102] := {5} tii[23,103] := {18} tii[23,104] := {33} tii[23,105] := {50} cell#29 , |C| = 63 special orbit = [7, 3, 3, 1] special rep = [[1], [4, 2]] , dim = 63 cell rep = phi[[1],[4, 2]] TII depth = 3 TII multiplicity polynomial = 63*X TII subcells: tii[27,1] := {62} tii[27,2] := {56} tii[27,3] := {43} tii[27,4] := {24} tii[27,5] := {20} tii[27,6] := {59} tii[27,7] := {21} tii[27,8] := {54} tii[27,9] := {34} tii[27,10] := {61} tii[27,11] := {9} tii[27,12] := {41} tii[27,13] := {11} tii[27,14] := {60} tii[27,15] := {50} tii[27,16] := {45} tii[27,17] := {51} tii[27,18] := {52} tii[27,19] := {19} tii[27,20] := {55} tii[27,21] := {4} tii[27,22] := {26} tii[27,23] := {37} tii[27,24] := {39} tii[27,25] := {8} tii[27,26] := {17} tii[27,27] := {18} tii[27,28] := {15} tii[27,29] := {7} tii[27,30] := {30} tii[27,31] := {58} tii[27,32] := {10} tii[27,33] := {36} tii[27,34] := {46} tii[27,35] := {47} tii[27,36] := {27} tii[27,37] := {38} tii[27,38] := {40} tii[27,39] := {32} tii[27,40] := {33} tii[27,41] := {44} tii[27,42] := {3} tii[27,43] := {16} tii[27,44] := {28} tii[27,45] := {29} tii[27,46] := {22} tii[27,47] := {23} tii[27,48] := {57} tii[27,49] := {35} tii[27,50] := {12} tii[27,51] := {13} tii[27,52] := {25} tii[27,53] := {48} tii[27,54] := {31} tii[27,55] := {2} tii[27,56] := {53} tii[27,57] := {6} tii[27,58] := {49} tii[27,59] := {14} tii[27,60] := {1} tii[27,61] := {5} tii[27,62] := {42} tii[27,63] := {0} cell#30 , |C| = 140 special orbit = [5, 5, 3, 1] special rep = [[2], [3, 2]] , dim = 105 cell rep = phi[[1],[3, 3]]+phi[[2],[3, 2]] TII depth = 3 TII multiplicity polynomial = 35*X^2+70*X TII subcells: tii[22,1] := {99, 139} tii[22,2] := {137} tii[22,3] := {15, 80} tii[22,4] := {68} tii[22,5] := {50, 133} tii[22,6] := {46} tii[22,7] := {30, 98} tii[22,8] := {9, 101} tii[22,9] := {69, 136} tii[22,10] := {83} tii[22,11] := {85} tii[22,12] := {86} tii[22,13] := {103} tii[22,14] := {107} tii[22,15] := {47, 114} tii[22,16] := {88, 138} tii[22,17] := {100} tii[22,18] := {82} tii[22,19] := {84} tii[22,20] := {32, 122} tii[22,21] := {53, 130} tii[22,22] := {102} tii[22,23] := {57, 131} tii[22,24] := {106} tii[22,25] := {115} tii[22,26] := {126} tii[22,27] := {127} tii[22,28] := {3, 45} tii[22,29] := {29} tii[22,30] := {8, 63} tii[22,31] := {2, 87} tii[22,32] := {64} tii[22,33] := {66} tii[22,34] := {16} tii[22,35] := {89} tii[22,36] := {35} tii[22,37] := {92} tii[22,38] := {39} tii[22,39] := {48} tii[22,40] := {49} tii[22,41] := {6, 97} tii[22,42] := {33} tii[22,43] := {72} tii[22,44] := {19, 112} tii[22,45] := {37} tii[22,46] := {75} tii[22,47] := {23, 113} tii[22,48] := {91} tii[22,49] := {94} tii[22,50] := {110} tii[22,51] := {18, 81} tii[22,52] := {31} tii[22,53] := {54} tii[22,54] := {58} tii[22,55] := {65} tii[22,56] := {67} tii[22,57] := {17, 111} tii[22,58] := {71} tii[22,59] := {34, 123} tii[22,60] := {90} tii[22,61] := {52} tii[22,62] := {74} tii[22,63] := {38, 124} tii[22,64] := {93} tii[22,65] := {56} tii[22,66] := {22, 117} tii[22,67] := {104} tii[22,68] := {26, 119} tii[22,69] := {108} tii[22,70] := {43, 129} tii[22,71] := {120} tii[22,72] := {70} tii[22,73] := {73} tii[22,74] := {116} tii[22,75] := {118} tii[22,76] := {78, 135} tii[22,77] := {128} tii[22,78] := {134} tii[22,79] := {7} tii[22,80] := {20} tii[22,81] := {24} tii[22,82] := {11} tii[22,83] := {13} tii[22,84] := {28} tii[22,85] := {51} tii[22,86] := {55} tii[22,87] := {21} tii[22,88] := {10, 105} tii[22,89] := {25} tii[22,90] := {12, 109} tii[22,91] := {4, 62} tii[22,92] := {27, 121} tii[22,93] := {42} tii[22,94] := {59} tii[22,95] := {41, 125} tii[22,96] := {36} tii[22,97] := {40} tii[22,98] := {14, 79} tii[22,99] := {61} tii[22,100] := {60, 132} tii[22,101] := {76} tii[22,102] := {5, 96} tii[22,103] := {95} tii[22,104] := {0, 44} tii[22,105] := {1, 77} cell#31 , |C| = 15 special orbit = [9, 1, 1, 1, 1, 1] special rep = [[], [5, 1, 1]] , dim = 15 cell rep = phi[[],[5, 1, 1]] TII depth = 1 TII multiplicity polynomial = 15*X TII subcells: tii[30,1] := {14} tii[30,2] := {13} tii[30,3] := {12} tii[30,4] := {10} tii[30,5] := {11} tii[30,6] := {9} tii[30,7] := {7} tii[30,8] := {6} tii[30,9] := {4} tii[30,10] := {2} tii[30,11] := {8} tii[30,12] := {5} tii[30,13] := {3} tii[30,14] := {1} tii[30,15] := {0} cell#32 , |C| = 105 special orbit = [7, 3, 1, 1, 1, 1] special rep = [[1], [4, 1, 1]] , dim = 70 cell rep = phi[[],[4, 2, 1]]+phi[[1],[4, 1, 1]] TII depth = 2 TII multiplicity polynomial = 35*X^2+35*X TII subcells: tii[25,1] := {50, 103} tii[25,2] := {24, 95} tii[25,3] := {53, 78} tii[25,4] := {35, 104} tii[25,5] := {15, 87} tii[25,6] := {22, 101} tii[25,7] := {41, 66} tii[25,8] := {14, 98} tii[25,9] := {8, 91} tii[25,10] := {27, 54} tii[25,11] := {5, 84} tii[25,12] := {17, 64} tii[25,13] := {37} tii[25,14] := {51} tii[25,15] := {36, 100} tii[25,16] := {23, 96} tii[25,17] := {65} tii[25,18] := {79} tii[25,19] := {80} tii[25,20] := {13, 97} tii[25,21] := {38} tii[25,22] := {7, 92} tii[25,23] := {20, 88} tii[25,24] := {52} tii[25,25] := {67} tii[25,26] := {69} tii[25,27] := {2, 85} tii[25,28] := {40} tii[25,29] := {56} tii[25,30] := {59} tii[25,31] := {68} tii[25,32] := {70} tii[25,33] := {82} tii[25,34] := {25} tii[25,35] := {39} tii[25,36] := {11, 77} tii[25,37] := {55} tii[25,38] := {58} tii[25,39] := {0, 75} tii[25,40] := {26} tii[25,41] := {42} tii[25,42] := {44} tii[25,43] := {57} tii[25,44] := {60} tii[25,45] := {32, 102} tii[25,46] := {73} tii[25,47] := {16} tii[25,48] := {28} tii[25,49] := {30} tii[25,50] := {43} tii[25,51] := {45} tii[25,52] := {12, 93} tii[25,53] := {62} tii[25,54] := {29} tii[25,55] := {31} tii[25,56] := {9, 76} tii[25,57] := {49} tii[25,58] := {63} tii[25,59] := {46, 89} tii[25,60] := {18, 99} tii[25,61] := {34, 81} tii[25,62] := {10, 94} tii[25,63] := {47, 72} tii[25,64] := {3, 90} tii[25,65] := {21, 71} tii[25,66] := {6, 86} tii[25,67] := {33, 61} tii[25,68] := {1, 83} tii[25,69] := {19, 48} tii[25,70] := {4, 74} cell#33 , |C| = 105 special orbit = [7, 3, 1, 1, 1, 1] special rep = [[1], [4, 1, 1]] , dim = 70 cell rep = phi[[],[4, 2, 1]]+phi[[1],[4, 1, 1]] TII depth = 2 TII multiplicity polynomial = 35*X^2+35*X TII subcells: tii[25,1] := {86, 96} tii[25,2] := {68, 84} tii[25,3] := {57, 87} tii[25,4] := {73, 101} tii[25,5] := {51, 70} tii[25,6] := {56, 98} tii[25,7] := {38, 75} tii[25,8] := {39, 102} tii[25,9] := {31, 83} tii[25,10] := {21, 59} tii[25,11] := {16, 91} tii[25,12] := {11, 69} tii[25,13] := {35} tii[25,14] := {18} tii[25,15] := {74, 90} tii[25,16] := {58, 81} tii[25,17] := {34} tii[25,18] := {53} tii[25,19] := {54} tii[25,20] := {36, 93} tii[25,21] := {15} tii[25,22] := {22, 97} tii[25,23] := {52, 72} tii[25,24] := {19} tii[25,25] := {41} tii[25,26] := {44} tii[25,27] := {12, 92} tii[25,28] := {37} tii[25,29] := {60} tii[25,30] := {62} tii[25,31] := {76} tii[25,32] := {77} tii[25,33] := {88} tii[25,34] := {6} tii[25,35] := {9} tii[25,36] := {32, 55} tii[25,37] := {24} tii[25,38] := {27} tii[25,39] := {7, 82} tii[25,40] := {20} tii[25,41] := {40} tii[25,42] := {43} tii[25,43] := {61} tii[25,44] := {63} tii[25,45] := {29, 104} tii[25,46] := {79} tii[25,47] := {10} tii[25,48] := {23} tii[25,49] := {26} tii[25,50] := {42} tii[25,51] := {45} tii[25,52] := {8, 99} tii[25,53] := {66} tii[25,54] := {25} tii[25,55] := {28} tii[25,56] := {4, 85} tii[25,57] := {50} tii[25,58] := {67} tii[25,59] := {46, 71} tii[25,60] := {13, 103} tii[25,61] := {33, 65} tii[25,62] := {5, 100} tii[25,63] := {47, 78} tii[25,64] := {1, 95} tii[25,65] := {17, 49} tii[25,66] := {3, 94} tii[25,67] := {30, 64} tii[25,68] := {0, 89} tii[25,69] := {14, 48} tii[25,70] := {2, 80} cell#34 , |C| = 147 special orbit = [5, 5, 1, 1, 1, 1] special rep = [[2], [3, 1, 1]] , dim = 126 cell rep = phi[[],[3, 3, 1]]+phi[[2],[3, 1, 1]] TII depth = 4 TII multiplicity polynomial = 105*X+21*X^2 TII subcells: tii[20,1] := {78, 121} tii[20,2] := {133} tii[20,3] := {55, 101} tii[20,4] := {20, 57} tii[20,5] := {124} tii[20,6] := {33, 119} tii[20,7] := {106} tii[20,8] := {19, 99} tii[20,9] := {125} tii[20,10] := {31} tii[20,11] := {80} tii[20,12] := {83} tii[20,13] := {36, 86} tii[20,14] := {110} tii[20,15] := {114} tii[20,16] := {54} tii[20,17] := {56, 107} tii[20,18] := {8, 37} tii[20,19] := {102} tii[20,20] := {104} tii[20,21] := {34} tii[20,22] := {61} tii[20,23] := {126} tii[20,24] := {67} tii[20,25] := {129} tii[20,26] := {4, 53} tii[20,27] := {122} tii[20,28] := {123} tii[20,29] := {108} tii[20,30] := {134} tii[20,31] := {112} tii[20,32] := {137} tii[20,33] := {141} tii[20,34] := {142} tii[20,35] := {145} tii[20,36] := {32} tii[20,37] := {79} tii[20,38] := {82} tii[20,39] := {35, 85} tii[20,40] := {17} tii[20,41] := {109} tii[20,42] := {38} tii[20,43] := {113} tii[20,44] := {43} tii[20,45] := {9, 76} tii[20,46] := {7} tii[20,47] := {103} tii[20,48] := {105} tii[20,49] := {21} tii[20,50] := {88} tii[20,51] := {127} tii[20,52] := {24} tii[20,53] := {91} tii[20,54] := {130} tii[20,55] := {42} tii[20,56] := {135} tii[20,57] := {47} tii[20,58] := {138} tii[20,59] := {73} tii[20,60] := {143} tii[20,61] := {81} tii[20,62] := {84} tii[20,63] := {111} tii[20,64] := {60} tii[20,65] := {115} tii[20,66] := {66} tii[20,67] := {41} tii[20,68] := {128} tii[20,69] := {46} tii[20,70] := {131} tii[20,71] := {14, 120} tii[20,72] := {72} tii[20,73] := {140} tii[20,74] := {136} tii[20,75] := {139} tii[20,76] := {117} tii[20,77] := {144} tii[20,78] := {146} tii[20,79] := {16} tii[20,80] := {40} tii[20,81] := {45} tii[20,82] := {18} tii[20,83] := {59} tii[20,84] := {39} tii[20,85] := {65} tii[20,86] := {44} tii[20,87] := {63} tii[20,88] := {69} tii[20,89] := {96} tii[20,90] := {3} tii[20,91] := {87} tii[20,92] := {10} tii[20,93] := {90} tii[20,94] := {12} tii[20,95] := {89} tii[20,96] := {22} tii[20,97] := {92} tii[20,98] := {25} tii[20,99] := {48, 94} tii[20,100] := {50} tii[20,101] := {118} tii[20,102] := {11} tii[20,103] := {13} tii[20,104] := {1, 77} tii[20,105] := {132} tii[20,106] := {30} tii[20,107] := {52} tii[20,108] := {58} tii[20,109] := {64} tii[20,110] := {62} tii[20,111] := {68} tii[20,112] := {27, 70} tii[20,113] := {95} tii[20,114] := {23} tii[20,115] := {26} tii[20,116] := {6, 100} tii[20,117] := {15, 49} tii[20,118] := {116} tii[20,119] := {51} tii[20,120] := {2, 98} tii[20,121] := {74} tii[20,122] := {93} tii[20,123] := {97} tii[20,124] := {28, 71} tii[20,125] := {5, 29} tii[20,126] := {0, 75} cell#35 , |C| = 112 special orbit = [5, 3, 3, 1, 1, 1] special rep = [[1], [3, 2, 1]] , dim = 112 cell rep = phi[[1],[3, 2, 1]] TII depth = 3 TII multiplicity polynomial = 112*X TII subcells: tii[18,1] := {111} tii[18,2] := {101} tii[18,3] := {69} tii[18,4] := {107} tii[18,5] := {32} tii[18,6] := {95} tii[18,7] := {91} tii[18,8] := {110} tii[18,9] := {11} tii[18,10] := {71} tii[18,11] := {108} tii[18,12] := {89} tii[18,13] := {44} tii[18,14] := {50} tii[18,15] := {104} tii[18,16] := {48} tii[18,17] := {63} tii[18,18] := {109} tii[18,19] := {17} tii[18,20] := {39} tii[18,21] := {31} tii[18,22] := {82} tii[18,23] := {81} tii[18,24] := {96} tii[18,25] := {97} tii[18,26] := {9} tii[18,27] := {94} tii[18,28] := {51} tii[18,29] := {73} tii[18,30] := {75} tii[18,31] := {80} tii[18,32] := {49} tii[18,33] := {103} tii[18,34] := {23} tii[18,35] := {64} tii[18,36] := {83} tii[18,37] := {85} tii[18,38] := {6} tii[18,39] := {102} tii[18,40] := {45} tii[18,41] := {33} tii[18,42] := {66} tii[18,43] := {54} tii[18,44] := {67} tii[18,45] := {56} tii[18,46] := {53} tii[18,47] := {55} tii[18,48] := {76} tii[18,49] := {19} tii[18,50] := {35} tii[18,51] := {37} tii[18,52] := {24} tii[18,53] := {25} tii[18,54] := {106} tii[18,55] := {43} tii[18,56] := {78} tii[18,57] := {27} tii[18,58] := {18} tii[18,59] := {65} tii[18,60] := {84} tii[18,61] := {86} tii[18,62] := {72} tii[18,63] := {74} tii[18,64] := {92} tii[18,65] := {28} tii[18,66] := {46} tii[18,67] := {47} tii[18,68] := {34} tii[18,69] := {60} tii[18,70] := {36} tii[18,71] := {61} tii[18,72] := {15} tii[18,73] := {105} tii[18,74] := {57} tii[18,75] := {79} tii[18,76] := {20} tii[18,77] := {21} tii[18,78] := {88} tii[18,79] := {93} tii[18,80] := {3} tii[18,81] := {38} tii[18,82] := {52} tii[18,83] := {41} tii[18,84] := {42} tii[18,85] := {29} tii[18,86] := {98} tii[18,87] := {62} tii[18,88] := {12} tii[18,89] := {13} tii[18,90] := {100} tii[18,91] := {77} tii[18,92] := {2} tii[18,93] := {16} tii[18,94] := {87} tii[18,95] := {26} tii[18,96] := {90} tii[18,97] := {40} tii[18,98] := {5} tii[18,99] := {58} tii[18,100] := {59} tii[18,101] := {14} tii[18,102] := {7} tii[18,103] := {99} tii[18,104] := {30} tii[18,105] := {4} tii[18,106] := {8} tii[18,107] := {22} tii[18,108] := {68} tii[18,109] := {70} tii[18,110] := {1} tii[18,111] := {10} tii[18,112] := {0} cell#36 , |C| = 105 special orbit = [7, 3, 1, 1, 1, 1] special rep = [[1], [4, 1, 1]] , dim = 70 cell rep = phi[[],[4, 2, 1]]+phi[[1],[4, 1, 1]] TII depth = 2 TII multiplicity polynomial = 35*X^2+35*X TII subcells: tii[25,1] := {23, 99} tii[25,2] := {43, 92} tii[25,3] := {49, 89} tii[25,4] := {14, 103} tii[25,5] := {31, 83} tii[25,6] := {4, 101} tii[25,7] := {38, 80} tii[25,8] := {11, 104} tii[25,9] := {44, 90} tii[25,10] := {27, 68} tii[25,11] := {33, 95} tii[25,12] := {17, 79} tii[25,13] := {30} tii[25,14] := {42} tii[25,15] := {12, 94} tii[25,16] := {20, 88} tii[25,17] := {56} tii[25,18] := {69} tii[25,19] := {71} tii[25,20] := {0, 97} tii[25,21] := {35} tii[25,22] := {9, 100} tii[25,23] := {32, 85} tii[25,24] := {48} tii[25,25] := {62} tii[25,26] := {64} tii[25,27] := {18, 96} tii[25,28] := {57} tii[25,29] := {70} tii[25,30] := {72} tii[25,31] := {63} tii[25,32] := {65} tii[25,33] := {78} tii[25,34] := {25} tii[25,35] := {37} tii[25,36] := {21, 75} tii[25,37] := {51} tii[25,38] := {53} tii[25,39] := {22, 87} tii[25,40] := {45} tii[25,41] := {58} tii[25,42] := {59} tii[25,43] := {52} tii[25,44] := {54} tii[25,45] := {5, 102} tii[25,46] := {67} tii[25,47] := {34} tii[25,48] := {46} tii[25,49] := {47} tii[25,50] := {39} tii[25,51] := {40} tii[25,52] := {19, 91} tii[25,53] := {55} tii[25,54] := {28} tii[25,55] := {29} tii[25,56] := {7, 74} tii[25,57] := {41} tii[25,58] := {50} tii[25,59] := {13, 81} tii[25,60] := {1, 98} tii[25,61] := {24, 77} tii[25,62] := {8, 93} tii[25,63] := {36, 82} tii[25,64] := {3, 86} tii[25,65] := {15, 66} tii[25,66] := {10, 84} tii[25,67] := {26, 73} tii[25,68] := {6, 76} tii[25,69] := {16, 60} tii[25,70] := {2, 61} cell#37 , |C| = 231 special orbit = [5, 5, 1, 1, 1, 1] special rep = [[2], [3, 1, 1]] , dim = 126 cell rep = phi[[2],[3, 1, 1]]+phi[[3],[2, 1, 1]] TII depth = 4 TII multiplicity polynomial = 105*X^2+21*X TII subcells: tii[20,1] := {155} tii[20,2] := {193, 194} tii[20,3] := {119} tii[20,4] := {45} tii[20,5] := {169, 170} tii[20,6] := {154} tii[20,7] := {191, 192} tii[20,8] := {118} tii[20,9] := {207, 208} tii[20,10] := {87, 88} tii[20,11] := {156, 157} tii[20,12] := {158, 159} tii[20,13] := {79} tii[20,14] := {185, 186} tii[20,15] := {187, 188} tii[20,16] := {74, 75} tii[20,17] := {120} tii[20,18] := {22} tii[20,19] := {126, 127} tii[20,20] := {130, 131} tii[20,21] := {35, 36} tii[20,22] := {51, 52} tii[20,23] := {173, 174} tii[20,24] := {61, 62} tii[20,25] := {177, 178} tii[20,26] := {50} tii[20,27] := {163, 164} tii[20,28] := {167, 168} tii[20,29] := {138, 139} tii[20,30] := {197, 198} tii[20,31] := {144, 145} tii[20,32] := {203, 204} tii[20,33] := {211, 212} tii[20,34] := {215, 216} tii[20,35] := {225, 226} tii[20,36] := {37, 38} tii[20,37] := {89, 90} tii[20,38] := {91, 92} tii[20,39] := {80} tii[20,40] := {15, 16} tii[20,41] := {140, 141} tii[20,42] := {25, 26} tii[20,43] := {146, 147} tii[20,44] := {31, 32} tii[20,45] := {78} tii[20,46] := {2, 3} tii[20,47] := {128, 129} tii[20,48] := {132, 133} tii[20,49] := {8, 9} tii[20,50] := {95, 96} tii[20,51] := {175, 176} tii[20,52] := {10, 11} tii[20,53] := {103, 104} tii[20,54] := {179, 180} tii[20,55] := {27, 28} tii[20,56] := {199, 200} tii[20,57] := {33, 34} tii[20,58] := {205, 206} tii[20,59] := {71, 72} tii[20,60] := {217, 218} tii[20,61] := {161, 162} tii[20,62] := {165, 166} tii[20,63] := {195, 196} tii[20,64] := {136, 137} tii[20,65] := {201, 202} tii[20,66] := {142, 143} tii[20,67] := {97, 98} tii[20,68] := {209, 210} tii[20,69] := {105, 106} tii[20,70] := {213, 214} tii[20,71] := {160} tii[20,72] := {150, 151} tii[20,73] := {223, 224} tii[20,74] := {219, 220} tii[20,75] := {221, 222} tii[20,76] := {189, 190} tii[20,77] := {227, 228} tii[20,78] := {229, 230} tii[20,79] := {48, 49} tii[20,80] := {81, 82} tii[20,81] := {83, 84} tii[20,82] := {13, 14} tii[20,83] := {121, 122} tii[20,84] := {23, 24} tii[20,85] := {123, 124} tii[20,86] := {29, 30} tii[20,87] := {57, 58} tii[20,88] := {67, 68} tii[20,89] := {112, 113} tii[20,90] := {0, 1} tii[20,91] := {93, 94} tii[20,92] := {4, 5} tii[20,93] := {101, 102} tii[20,94] := {6, 7} tii[20,95] := {99, 100} tii[20,96] := {17, 18} tii[20,97] := {107, 108} tii[20,98] := {19, 20} tii[20,99] := {85} tii[20,100] := {43, 44} tii[20,101] := {152, 153} tii[20,102] := {39, 40} tii[20,103] := {41, 42} tii[20,104] := {109} tii[20,105] := {183, 184} tii[20,106] := {76, 77} tii[20,107] := {116, 117} tii[20,108] := {53, 54} tii[20,109] := {63, 64} tii[20,110] := {59, 60} tii[20,111] := {69, 70} tii[20,112] := {47} tii[20,113] := {114, 115} tii[20,114] := {55, 56} tii[20,115] := {65, 66} tii[20,116] := {125} tii[20,117] := {21} tii[20,118] := {148, 149} tii[20,119] := {110, 111} tii[20,120] := {86} tii[20,121] := {134, 135} tii[20,122] := {181, 182} tii[20,123] := {171, 172} tii[20,124] := {46} tii[20,125] := {12} tii[20,126] := {73} cell#38 , |C| = 84 special orbit = [7, 3, 2, 2] special rep = [[1, 1], [4, 1]] , dim = 84 cell rep = phi[[1, 1],[4, 1]] TII depth = 5 TII multiplicity polynomial = 84*X TII subcells: tii[26,1] := {75} tii[26,2] := {69} tii[26,3] := {57} tii[26,4] := {80} tii[26,5] := {59} tii[26,6] := {81} tii[26,7] := {45} tii[26,8] := {79} tii[26,9] := {82} tii[26,10] := {83} tii[26,11] := {68} tii[26,12] := {29} tii[26,13] := {65} tii[26,14] := {70} tii[26,15] := {72} tii[26,16] := {44} tii[26,17] := {49} tii[26,18] := {51} tii[26,19] := {23} tii[26,20] := {26} tii[26,21] := {0} tii[26,22] := {5} tii[26,23] := {67} tii[26,24] := {58} tii[26,25] := {16} tii[26,26] := {31} tii[26,27] := {33} tii[26,28] := {76} tii[26,29] := {9} tii[26,30] := {60} tii[26,31] := {74} tii[26,32] := {20} tii[26,33] := {77} tii[26,34] := {35} tii[26,35] := {78} tii[26,36] := {38} tii[26,37] := {66} tii[26,38] := {15} tii[26,39] := {71} tii[26,40] := {30} tii[26,41] := {73} tii[26,42] := {32} tii[26,43] := {62} tii[26,44] := {36} tii[26,45] := {64} tii[26,46] := {39} tii[26,47] := {54} tii[26,48] := {55} tii[26,49] := {2} tii[26,50] := {10} tii[26,51] := {48} tii[26,52] := {21} tii[26,53] := {24} tii[26,54] := {56} tii[26,55] := {6} tii[26,56] := {17} tii[26,57] := {61} tii[26,58] := {18} tii[26,59] := {63} tii[26,60] := {22} tii[26,61] := {50} tii[26,62] := {25} tii[26,63] := {52} tii[26,64] := {42} tii[26,65] := {43} tii[26,66] := {1} tii[26,67] := {7} tii[26,68] := {8} tii[26,69] := {11} tii[26,70] := {37} tii[26,71] := {12} tii[26,72] := {40} tii[26,73] := {27} tii[26,74] := {28} tii[26,75] := {3} tii[26,76] := {4} tii[26,77] := {13} tii[26,78] := {14} tii[26,79] := {47} tii[26,80] := {53} tii[26,81] := {46} tii[26,82] := {41} tii[26,83] := {34} tii[26,84] := {19} cell#39 , |C| = 105 special orbit = [5, 3, 3, 3] special rep = [[1, 1], [3, 2]] , dim = 105 cell rep = phi[[1, 1],[3, 2]] TII depth = 4 TII multiplicity polynomial = 105*X TII subcells: tii[19,1] := {95} tii[19,2] := {53} tii[19,3] := {101} tii[19,4] := {87} tii[19,5] := {45} tii[19,6] := {104} tii[19,7] := {64} tii[19,8] := {100} tii[19,9] := {102} tii[19,10] := {103} tii[19,11] := {80} tii[19,12] := {88} tii[19,13] := {89} tii[19,14] := {32} tii[19,15] := {8} tii[19,16] := {73} tii[19,17] := {51} tii[19,18] := {86} tii[19,19] := {3} tii[19,20] := {72} tii[19,21] := {33} tii[19,22] := {54} tii[19,23] := {57} tii[19,24] := {9} tii[19,25] := {85} tii[19,26] := {20} tii[19,27] := {91} tii[19,28] := {23} tii[19,29] := {93} tii[19,30] := {66} tii[19,31] := {68} tii[19,32] := {71} tii[19,33] := {97} tii[19,34] := {2} tii[19,35] := {52} tii[19,36] := {74} tii[19,37] := {76} tii[19,38] := {96} tii[19,39] := {34} tii[19,40] := {5} tii[19,41] := {98} tii[19,42] := {55} tii[19,43] := {14} tii[19,44] := {99} tii[19,45] := {58} tii[19,46] := {15} tii[19,47] := {56} tii[19,48] := {92} tii[19,49] := {65} tii[19,50] := {59} tii[19,51] := {94} tii[19,52] := {67} tii[19,53] := {83} tii[19,54] := {84} tii[19,55] := {13} tii[19,56] := {27} tii[19,57] := {28} tii[19,58] := {75} tii[19,59] := {37} tii[19,60] := {77} tii[19,61] := {40} tii[19,62] := {62} tii[19,63] := {63} tii[19,64] := {17} tii[19,65] := {19} tii[19,66] := {36} tii[19,67] := {39} tii[19,68] := {21} tii[19,69] := {24} tii[19,70] := {44} tii[19,71] := {18} tii[19,72] := {35} tii[19,73] := {38} tii[19,74] := {47} tii[19,75] := {10} tii[19,76] := {81} tii[19,77] := {48} tii[19,78] := {11} tii[19,79] := {82} tii[19,80] := {78} tii[19,81] := {69} tii[19,82] := {70} tii[19,83] := {26} tii[19,84] := {30} tii[19,85] := {31} tii[19,86] := {41} tii[19,87] := {49} tii[19,88] := {50} tii[19,89] := {6} tii[19,90] := {7} tii[19,91] := {16} tii[19,92] := {90} tii[19,93] := {22} tii[19,94] := {25} tii[19,95] := {29} tii[19,96] := {79} tii[19,97] := {42} tii[19,98] := {43} tii[19,99] := {46} tii[19,100] := {12} tii[19,101] := {61} tii[19,102] := {4} tii[19,103] := {1} tii[19,104] := {60} tii[19,105] := {0} cell#40 , |C| = 84 special orbit = [7, 3, 2, 2] special rep = [[1, 1], [4, 1]] , dim = 84 cell rep = phi[[1, 1],[4, 1]] TII depth = 5 TII multiplicity polynomial = 84*X TII subcells: tii[26,1] := {75} tii[26,2] := {69} tii[26,3] := {57} tii[26,4] := {80} tii[26,5] := {59} tii[26,6] := {81} tii[26,7] := {45} tii[26,8] := {79} tii[26,9] := {82} tii[26,10] := {83} tii[26,11] := {68} tii[26,12] := {29} tii[26,13] := {65} tii[26,14] := {70} tii[26,15] := {72} tii[26,16] := {44} tii[26,17] := {49} tii[26,18] := {51} tii[26,19] := {23} tii[26,20] := {26} tii[26,21] := {0} tii[26,22] := {5} tii[26,23] := {67} tii[26,24] := {58} tii[26,25] := {16} tii[26,26] := {31} tii[26,27] := {33} tii[26,28] := {76} tii[26,29] := {9} tii[26,30] := {60} tii[26,31] := {74} tii[26,32] := {20} tii[26,33] := {77} tii[26,34] := {35} tii[26,35] := {78} tii[26,36] := {38} tii[26,37] := {66} tii[26,38] := {15} tii[26,39] := {71} tii[26,40] := {30} tii[26,41] := {73} tii[26,42] := {32} tii[26,43] := {62} tii[26,44] := {36} tii[26,45] := {64} tii[26,46] := {39} tii[26,47] := {54} tii[26,48] := {55} tii[26,49] := {2} tii[26,50] := {10} tii[26,51] := {48} tii[26,52] := {21} tii[26,53] := {24} tii[26,54] := {56} tii[26,55] := {6} tii[26,56] := {17} tii[26,57] := {61} tii[26,58] := {18} tii[26,59] := {63} tii[26,60] := {22} tii[26,61] := {50} tii[26,62] := {25} tii[26,63] := {52} tii[26,64] := {42} tii[26,65] := {43} tii[26,66] := {1} tii[26,67] := {7} tii[26,68] := {8} tii[26,69] := {11} tii[26,70] := {37} tii[26,71] := {12} tii[26,72] := {40} tii[26,73] := {27} tii[26,74] := {28} tii[26,75] := {3} tii[26,76] := {4} tii[26,77] := {13} tii[26,78] := {14} tii[26,79] := {47} tii[26,80] := {53} tii[26,81] := {46} tii[26,82] := {41} tii[26,83] := {34} tii[26,84] := {19} cell#41 , |C| = 105 special orbit = [5, 3, 3, 3] special rep = [[1, 1], [3, 2]] , dim = 105 cell rep = phi[[1, 1],[3, 2]] TII depth = 4 TII multiplicity polynomial = 105*X TII subcells: tii[19,1] := {95} tii[19,2] := {53} tii[19,3] := {101} tii[19,4] := {87} tii[19,5] := {45} tii[19,6] := {104} tii[19,7] := {64} tii[19,8] := {100} tii[19,9] := {102} tii[19,10] := {103} tii[19,11] := {80} tii[19,12] := {88} tii[19,13] := {89} tii[19,14] := {32} tii[19,15] := {8} tii[19,16] := {73} tii[19,17] := {51} tii[19,18] := {86} tii[19,19] := {3} tii[19,20] := {72} tii[19,21] := {33} tii[19,22] := {54} tii[19,23] := {57} tii[19,24] := {9} tii[19,25] := {85} tii[19,26] := {20} tii[19,27] := {91} tii[19,28] := {23} tii[19,29] := {93} tii[19,30] := {66} tii[19,31] := {68} tii[19,32] := {71} tii[19,33] := {97} tii[19,34] := {2} tii[19,35] := {52} tii[19,36] := {74} tii[19,37] := {76} tii[19,38] := {96} tii[19,39] := {34} tii[19,40] := {5} tii[19,41] := {98} tii[19,42] := {55} tii[19,43] := {14} tii[19,44] := {99} tii[19,45] := {58} tii[19,46] := {15} tii[19,47] := {56} tii[19,48] := {92} tii[19,49] := {65} tii[19,50] := {59} tii[19,51] := {94} tii[19,52] := {67} tii[19,53] := {83} tii[19,54] := {84} tii[19,55] := {13} tii[19,56] := {27} tii[19,57] := {28} tii[19,58] := {75} tii[19,59] := {37} tii[19,60] := {77} tii[19,61] := {40} tii[19,62] := {62} tii[19,63] := {63} tii[19,64] := {17} tii[19,65] := {19} tii[19,66] := {36} tii[19,67] := {39} tii[19,68] := {21} tii[19,69] := {24} tii[19,70] := {44} tii[19,71] := {18} tii[19,72] := {35} tii[19,73] := {38} tii[19,74] := {47} tii[19,75] := {10} tii[19,76] := {81} tii[19,77] := {48} tii[19,78] := {11} tii[19,79] := {82} tii[19,80] := {78} tii[19,81] := {69} tii[19,82] := {70} tii[19,83] := {26} tii[19,84] := {30} tii[19,85] := {31} tii[19,86] := {41} tii[19,87] := {49} tii[19,88] := {50} tii[19,89] := {6} tii[19,90] := {7} tii[19,91] := {16} tii[19,92] := {90} tii[19,93] := {22} tii[19,94] := {25} tii[19,95] := {29} tii[19,96] := {79} tii[19,97] := {42} tii[19,98] := {43} tii[19,99] := {46} tii[19,100] := {12} tii[19,101] := {61} tii[19,102] := {4} tii[19,103] := {1} tii[19,104] := {60} tii[19,105] := {0} cell#42 , |C| = 140 special orbit = [5, 5, 3, 1] special rep = [[2], [3, 2]] , dim = 105 cell rep = phi[[1],[3, 3]]+phi[[2],[3, 2]] TII depth = 3 TII multiplicity polynomial = 35*X^2+70*X TII subcells: tii[22,1] := {77, 139} tii[22,2] := {127} tii[22,3] := {30, 93} tii[22,4] := {81} tii[22,5] := {44, 132} tii[22,6] := {60} tii[22,7] := {18, 107} tii[22,8] := {3, 109} tii[22,9] := {49, 136} tii[22,10] := {95} tii[22,11] := {96} tii[22,12] := {65} tii[22,13] := {111} tii[22,14] := {114} tii[22,15] := {31, 118} tii[22,16] := {66, 138} tii[22,17] := {80} tii[22,18] := {61} tii[22,19] := {63} tii[22,20] := {20, 126} tii[22,21] := {34, 133} tii[22,22] := {84} tii[22,23] := {38, 134} tii[22,24] := {88} tii[22,25] := {94} tii[22,26] := {110} tii[22,27] := {113} tii[22,28] := {9, 67} tii[22,29] := {45} tii[22,30] := {19, 82} tii[22,31] := {2, 97} tii[22,32] := {78} tii[22,33] := {79} tii[22,34] := {32} tii[22,35] := {99} tii[22,36] := {52} tii[22,37] := {102} tii[22,38] := {55} tii[22,39] := {62} tii[22,40] := {64} tii[22,41] := {6, 108} tii[22,42] := {51} tii[22,43] := {85} tii[22,44] := {15, 120} tii[22,45] := {54} tii[22,46] := {89} tii[22,47] := {16, 122} tii[22,48] := {101} tii[22,49] := {104} tii[22,50] := {117} tii[22,51] := {10, 98} tii[22,52] := {46} tii[22,53] := {69} tii[22,54] := {72} tii[22,55] := {47} tii[22,56] := {48} tii[22,57] := {11, 119} tii[22,58] := {83} tii[22,59] := {22, 128} tii[22,60] := {70} tii[22,61] := {33} tii[22,62] := {87} tii[22,63] := {25, 129} tii[22,64] := {73} tii[22,65] := {37} tii[22,66] := {12, 121} tii[22,67] := {86} tii[22,68] := {13, 123} tii[22,69] := {90} tii[22,70] := {28, 131} tii[22,71] := {106} tii[22,72] := {50} tii[22,73] := {53} tii[22,74] := {100} tii[22,75] := {103} tii[22,76] := {57, 137} tii[22,77] := {116} tii[22,78] := {124} tii[22,79] := {21} tii[22,80] := {35} tii[22,81] := {39} tii[22,82] := {23} tii[22,83] := {26} tii[22,84] := {42} tii[22,85] := {68} tii[22,86] := {71} tii[22,87] := {36} tii[22,88] := {7, 112} tii[22,89] := {40} tii[22,90] := {8, 115} tii[22,91] := {14, 76} tii[22,92] := {17, 125} tii[22,93] := {59} tii[22,94] := {75} tii[22,95] := {29, 130} tii[22,96] := {24} tii[22,97] := {27} tii[22,98] := {5, 92} tii[22,99] := {43} tii[22,100] := {41, 135} tii[22,101] := {56} tii[22,102] := {1, 105} tii[22,103] := {74} tii[22,104] := {4, 58} tii[22,105] := {0, 91} cell#43 , |C| = 112 special orbit = [5, 3, 3, 1, 1, 1] special rep = [[1], [3, 2, 1]] , dim = 112 cell rep = phi[[1],[3, 2, 1]] TII depth = 3 TII multiplicity polynomial = 112*X TII subcells: tii[18,1] := {111} tii[18,2] := {101} tii[18,3] := {69} tii[18,4] := {107} tii[18,5] := {32} tii[18,6] := {95} tii[18,7] := {91} tii[18,8] := {110} tii[18,9] := {11} tii[18,10] := {71} tii[18,11] := {108} tii[18,12] := {89} tii[18,13] := {44} tii[18,14] := {50} tii[18,15] := {104} tii[18,16] := {48} tii[18,17] := {63} tii[18,18] := {109} tii[18,19] := {17} tii[18,20] := {39} tii[18,21] := {31} tii[18,22] := {82} tii[18,23] := {81} tii[18,24] := {96} tii[18,25] := {97} tii[18,26] := {9} tii[18,27] := {94} tii[18,28] := {51} tii[18,29] := {73} tii[18,30] := {75} tii[18,31] := {80} tii[18,32] := {49} tii[18,33] := {103} tii[18,34] := {23} tii[18,35] := {64} tii[18,36] := {83} tii[18,37] := {85} tii[18,38] := {6} tii[18,39] := {102} tii[18,40] := {45} tii[18,41] := {33} tii[18,42] := {66} tii[18,43] := {54} tii[18,44] := {67} tii[18,45] := {56} tii[18,46] := {53} tii[18,47] := {55} tii[18,48] := {76} tii[18,49] := {19} tii[18,50] := {35} tii[18,51] := {37} tii[18,52] := {24} tii[18,53] := {25} tii[18,54] := {106} tii[18,55] := {43} tii[18,56] := {78} tii[18,57] := {27} tii[18,58] := {18} tii[18,59] := {65} tii[18,60] := {84} tii[18,61] := {86} tii[18,62] := {72} tii[18,63] := {74} tii[18,64] := {92} tii[18,65] := {28} tii[18,66] := {46} tii[18,67] := {47} tii[18,68] := {34} tii[18,69] := {60} tii[18,70] := {36} tii[18,71] := {61} tii[18,72] := {15} tii[18,73] := {105} tii[18,74] := {57} tii[18,75] := {79} tii[18,76] := {20} tii[18,77] := {21} tii[18,78] := {88} tii[18,79] := {93} tii[18,80] := {3} tii[18,81] := {38} tii[18,82] := {52} tii[18,83] := {41} tii[18,84] := {42} tii[18,85] := {29} tii[18,86] := {98} tii[18,87] := {62} tii[18,88] := {12} tii[18,89] := {13} tii[18,90] := {100} tii[18,91] := {77} tii[18,92] := {2} tii[18,93] := {16} tii[18,94] := {87} tii[18,95] := {26} tii[18,96] := {90} tii[18,97] := {40} tii[18,98] := {5} tii[18,99] := {58} tii[18,100] := {59} tii[18,101] := {14} tii[18,102] := {7} tii[18,103] := {99} tii[18,104] := {30} tii[18,105] := {4} tii[18,106] := {8} tii[18,107] := {22} tii[18,108] := {68} tii[18,109] := {70} tii[18,110] := {1} tii[18,111] := {10} tii[18,112] := {0} cell#44 , |C| = 112 special orbit = [5, 3, 3, 1, 1, 1] special rep = [[1], [3, 2, 1]] , dim = 112 cell rep = phi[[1],[3, 2, 1]] TII depth = 3 TII multiplicity polynomial = 112*X TII subcells: tii[18,1] := {102} tii[18,2] := {74} tii[18,3] := {36} tii[18,4] := {107} tii[18,5] := {72} tii[18,6] := {98} tii[18,7] := {57} tii[18,8] := {110} tii[18,9] := {38} tii[18,10] := {73} tii[18,11] := {108} tii[18,12] := {87} tii[18,13] := {17} tii[18,14] := {18} tii[18,15] := {83} tii[18,16] := {20} tii[18,17] := {32} tii[18,18] := {95} tii[18,19] := {56} tii[18,20] := {11} tii[18,21] := {9} tii[18,22] := {88} tii[18,23] := {51} tii[18,24] := {69} tii[18,25] := {70} tii[18,26] := {39} tii[18,27] := {97} tii[18,28] := {22} tii[18,29] := {41} tii[18,30] := {44} tii[18,31] := {50} tii[18,32] := {19} tii[18,33] := {103} tii[18,34] := {3} tii[18,35] := {68} tii[18,36] := {84} tii[18,37] := {85} tii[18,38] := {23} tii[18,39] := {104} tii[18,40] := {55} tii[18,41] := {10} tii[18,42] := {75} tii[18,43] := {24} tii[18,44] := {77} tii[18,45] := {26} tii[18,46] := {89} tii[18,47] := {90} tii[18,48] := {100} tii[18,49] := {21} tii[18,50] := {40} tii[18,51] := {43} tii[18,52] := {59} tii[18,53] := {62} tii[18,54] := {111} tii[18,55] := {80} tii[18,56] := {99} tii[18,57] := {7} tii[18,58] := {2} tii[18,59] := {33} tii[18,60] := {52} tii[18,61] := {53} tii[18,62] := {34} tii[18,63] := {35} tii[18,64] := {54} tii[18,65] := {37} tii[18,66] := {58} tii[18,67] := {61} tii[18,68] := {76} tii[18,69] := {25} tii[18,70] := {78} tii[18,71] := {27} tii[18,72] := {28} tii[18,73] := {86} tii[18,74] := {92} tii[18,75] := {49} tii[18,76] := {60} tii[18,77] := {63} tii[18,78] := {105} tii[18,79] := {66} tii[18,80] := {30} tii[18,81] := {81} tii[18,82] := {94} tii[18,83] := {12} tii[18,84] := {13} tii[18,85] := {46} tii[18,86] := {96} tii[18,87] := {31} tii[18,88] := {42} tii[18,89] := {45} tii[18,90] := {109} tii[18,91] := {48} tii[18,92] := {14} tii[18,93] := {64} tii[18,94] := {91} tii[18,95] := {67} tii[18,96] := {106} tii[18,97] := {82} tii[18,98] := {29} tii[18,99] := {65} tii[18,100] := {93} tii[18,101] := {1} tii[18,102] := {15} tii[18,103] := {71} tii[18,104] := {8} tii[18,105] := {5} tii[18,106] := {47} tii[18,107] := {4} tii[18,108] := {79} tii[18,109] := {101} tii[18,110] := {16} tii[18,111] := {0} tii[18,112] := {6} cell#45 , |C| = 105 special orbit = [4, 4, 3, 1, 1, 1] special rep = [[2], [2, 2, 1]] , dim = 105 cell rep = phi[[2],[2, 2, 1]] TII depth = 3 TII multiplicity polynomial = 105*X TII subcells: tii[13,1] := {93} tii[13,2] := {54} tii[13,3] := {99} tii[13,4] := {79} tii[13,5] := {102} tii[13,6] := {104} tii[13,7] := {30} tii[13,8] := {46} tii[13,9] := {28} tii[13,10] := {29} tii[13,11] := {39} tii[13,12] := {47} tii[13,13] := {49} tii[13,14] := {53} tii[13,15] := {59} tii[13,16] := {74} tii[13,17] := {76} tii[13,18] := {44} tii[13,19] := {45} tii[13,20] := {60} tii[13,21] := {61} tii[13,22] := {63} tii[13,23] := {67} tii[13,24] := {37} tii[13,25] := {38} tii[13,26] := {73} tii[13,27] := {24} tii[13,28] := {85} tii[13,29] := {55} tii[13,30] := {25} tii[13,31] := {86} tii[13,32] := {57} tii[13,33] := {69} tii[13,34] := {71} tii[13,35] := {83} tii[13,36] := {84} tii[13,37] := {94} tii[13,38] := {95} tii[13,39] := {90} tii[13,40] := {91} tii[13,41] := {98} tii[13,42] := {103} tii[13,43] := {16} tii[13,44] := {17} tii[13,45] := {32} tii[13,46] := {7} tii[13,47] := {34} tii[13,48] := {8} tii[13,49] := {48} tii[13,50] := {50} tii[13,51] := {65} tii[13,52] := {21} tii[13,53] := {22} tii[13,54] := {18} tii[13,55] := {11} tii[13,56] := {41} tii[13,57] := {19} tii[13,58] := {13} tii[13,59] := {42} tii[13,60] := {56} tii[13,61] := {4} tii[13,62] := {62} tii[13,63] := {58} tii[13,64] := {5} tii[13,65] := {64} tii[13,66] := {72} tii[13,67] := {78} tii[13,68] := {15} tii[13,69] := {68} tii[13,70] := {70} tii[13,71] := {87} tii[13,72] := {82} tii[13,73] := {36} tii[13,74] := {89} tii[13,75] := {31} tii[13,76] := {33} tii[13,77] := {12} tii[13,78] := {75} tii[13,79] := {14} tii[13,80] := {77} tii[13,81] := {27} tii[13,82] := {88} tii[13,83] := {80} tii[13,84] := {81} tii[13,85] := {43} tii[13,86] := {96} tii[13,87] := {52} tii[13,88] := {92} tii[13,89] := {97} tii[13,90] := {66} tii[13,91] := {100} tii[13,92] := {101} tii[13,93] := {2} tii[13,94] := {3} tii[13,95] := {9} tii[13,96] := {0} tii[13,97] := {1} tii[13,98] := {20} tii[13,99] := {6} tii[13,100] := {10} tii[13,101] := {26} tii[13,102] := {35} tii[13,103] := {23} tii[13,104] := {51} tii[13,105] := {40} cell#46 , |C| = 20 special orbit = [7, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [4, 1, 1, 1]] , dim = 20 cell rep = phi[[],[4, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 20*X TII subcells: tii[24,1] := {18} tii[24,2] := {16} tii[24,3] := {19} tii[24,4] := {13} tii[24,5] := {15} tii[24,6] := {12} tii[24,7] := {8} tii[24,8] := {11} tii[24,9] := {7} tii[24,10] := {4} tii[24,11] := {17} tii[24,12] := {14} tii[24,13] := {10} tii[24,14] := {6} tii[24,15] := {9} tii[24,16] := {5} tii[24,17] := {3} tii[24,18] := {2} tii[24,19] := {1} tii[24,20] := {0} cell#47 , |C| = 112 special orbit = [5, 3, 3, 1, 1, 1] special rep = [[1], [3, 2, 1]] , dim = 112 cell rep = phi[[1],[3, 2, 1]] TII depth = 3 TII multiplicity polynomial = 112*X TII subcells: tii[18,1] := {93} tii[18,2] := {86} tii[18,3] := {41} tii[18,4] := {101} tii[18,5] := {76} tii[18,6] := {99} tii[18,7] := {71} tii[18,8] := {105} tii[18,9] := {44} tii[18,10] := {77} tii[18,11] := {109} tii[18,12] := {90} tii[18,13] := {5} tii[18,14] := {7} tii[18,15] := {70} tii[18,16] := {23} tii[18,17] := {13} tii[18,18] := {85} tii[18,19] := {60} tii[18,20] := {16} tii[18,21] := {12} tii[18,22] := {89} tii[18,23] := {25} tii[18,24] := {46} tii[18,25] := {48} tii[18,26] := {52} tii[18,27] := {100} tii[18,28] := {32} tii[18,29] := {53} tii[18,30] := {55} tii[18,31] := {29} tii[18,32] := {26} tii[18,33] := {96} tii[18,34] := {6} tii[18,35] := {43} tii[18,36] := {62} tii[18,37] := {65} tii[18,38] := {33} tii[18,39] := {106} tii[18,40] := {59} tii[18,41] := {15} tii[18,42] := {78} tii[18,43] := {34} tii[18,44] := {80} tii[18,45] := {36} tii[18,46] := {91} tii[18,47] := {92} tii[18,48] := {102} tii[18,49] := {24} tii[18,50] := {45} tii[18,51] := {47} tii[18,52] := {63} tii[18,53] := {66} tii[18,54] := {111} tii[18,55] := {84} tii[18,56] := {104} tii[18,57] := {1} tii[18,58] := {4} tii[18,59] := {11} tii[18,60] := {27} tii[18,61] := {28} tii[18,62] := {18} tii[18,63] := {20} tii[18,64] := {40} tii[18,65] := {42} tii[18,66] := {61} tii[18,67] := {64} tii[18,68] := {79} tii[18,69] := {35} tii[18,70] := {81} tii[18,71] := {37} tii[18,72] := {31} tii[18,73] := {69} tii[18,74] := {95} tii[18,75] := {58} tii[18,76] := {72} tii[18,77] := {73} tii[18,78] := {108} tii[18,79] := {74} tii[18,80] := {38} tii[18,81] := {87} tii[18,82] := {98} tii[18,83] := {17} tii[18,84] := {19} tii[18,85] := {51} tii[18,86] := {83} tii[18,87] := {39} tii[18,88] := {54} tii[18,89] := {56} tii[18,90] := {110} tii[18,91] := {57} tii[18,92] := {21} tii[18,93] := {67} tii[18,94] := {94} tii[18,95] := {75} tii[18,96] := {107} tii[18,97] := {88} tii[18,98] := {30} tii[18,99] := {68} tii[18,100] := {97} tii[18,101] := {0} tii[18,102] := {14} tii[18,103] := {50} tii[18,104] := {3} tii[18,105] := {10} tii[18,106] := {49} tii[18,107] := {8} tii[18,108] := {82} tii[18,109] := {103} tii[18,110] := {22} tii[18,111] := {2} tii[18,112] := {9} cell#48 , |C| = 105 special orbit = [5, 3, 1, 1, 1, 1, 1, 1] special rep = [[1], [3, 1, 1, 1]] , dim = 70 cell rep = phi[[],[3, 2, 1, 1]]+phi[[1],[3, 1, 1, 1]] TII depth = 2 TII multiplicity polynomial = 35*X^2+35*X TII subcells: tii[16,1] := {23, 91} tii[16,2] := {48, 75} tii[16,3] := {16, 98} tii[16,4] := {37, 62} tii[16,5] := {9, 94} tii[16,6] := {47, 74} tii[16,7] := {10, 102} tii[16,8] := {27, 49} tii[16,9] := {4, 97} tii[16,10] := {1, 90} tii[16,11] := {36, 61} tii[16,12] := {26, 72} tii[16,13] := {33} tii[16,14] := {15, 83} tii[16,15] := {46} tii[16,16] := {59} tii[16,17] := {60} tii[16,18] := {6, 85} tii[16,19] := {35} tii[16,20] := {50} tii[16,21] := {53} tii[16,22] := {65} tii[16,23] := {67} tii[16,24] := {80} tii[16,25] := {0, 82} tii[16,26] := {25} tii[16,27] := {38} tii[16,28] := {41} tii[16,29] := {52} tii[16,30] := {55} tii[16,31] := {20, 101} tii[16,32] := {70} tii[16,33] := {64} tii[16,34] := {66} tii[16,35] := {34, 88} tii[16,36] := {79} tii[16,37] := {86} tii[16,38] := {18} tii[16,39] := {29} tii[16,40] := {30} tii[16,41] := {40} tii[16,42] := {43} tii[16,43] := {12, 104} tii[16,44] := {58} tii[16,45] := {51} tii[16,46] := {54} tii[16,47] := {24, 78} tii[16,48] := {8, 100} tii[16,49] := {69} tii[16,50] := {13, 103} tii[16,51] := {76} tii[16,52] := {39} tii[16,53] := {42} tii[16,54] := {17, 84} tii[16,55] := {57} tii[16,56] := {11, 92} tii[16,57] := {63} tii[16,58] := {77} tii[16,59] := {31, 73} tii[16,60] := {14, 96} tii[16,61] := {44, 68} tii[16,62] := {22, 89} tii[16,63] := {3, 93} tii[16,64] := {32, 56} tii[16,65] := {7, 99} tii[16,66] := {28, 81} tii[16,67] := {2, 95} tii[16,68] := {21, 45} tii[16,69] := {19, 71} tii[16,70] := {5, 87} cell#49 , |C| = 63 special orbit = [3, 3, 3, 1, 1, 1, 1, 1] special rep = [[1], [2, 2, 1, 1]] , dim = 63 cell rep = phi[[1],[2, 2, 1, 1]] TII depth = 3 TII multiplicity polynomial = 63*X TII subcells: tii[9,1] := {62} tii[9,2] := {19} tii[9,3] := {58} tii[9,4] := {61} tii[9,5] := {13} tii[9,6] := {49} tii[9,7] := {9} tii[9,8] := {57} tii[9,9] := {60} tii[9,10] := {27} tii[9,11] := {14} tii[9,12] := {37} tii[9,13] := {50} tii[9,14] := {51} tii[9,15] := {6} tii[9,16] := {28} tii[9,17] := {40} tii[9,18] := {42} tii[9,19] := {29} tii[9,20] := {31} tii[9,21] := {43} tii[9,22] := {56} tii[9,23] := {20} tii[9,24] := {30} tii[9,25] := {32} tii[9,26] := {21} tii[9,27] := {22} tii[9,28] := {33} tii[9,29] := {15} tii[9,30] := {16} tii[9,31] := {5} tii[9,32] := {47} tii[9,33] := {26} tii[9,34] := {35} tii[9,35] := {55} tii[9,36] := {54} tii[9,37] := {39} tii[9,38] := {41} tii[9,39] := {52} tii[9,40] := {24} tii[9,41] := {25} tii[9,42] := {59} tii[9,43] := {8} tii[9,44] := {36} tii[9,45] := {46} tii[9,46] := {10} tii[9,47] := {11} tii[9,48] := {3} tii[9,49] := {12} tii[9,50] := {53} tii[9,51] := {17} tii[9,52] := {23} tii[9,53] := {48} tii[9,54] := {1} tii[9,55] := {34} tii[9,56] := {7} tii[9,57] := {44} tii[9,58] := {2} tii[9,59] := {38} tii[9,60] := {45} tii[9,61] := {18} tii[9,62] := {4} tii[9,63] := {0} cell#50 , |C| = 105 special orbit = [7, 3, 1, 1, 1, 1] special rep = [[1], [4, 1, 1]] , dim = 70 cell rep = phi[[],[4, 2, 1]]+phi[[1],[4, 1, 1]] TII depth = 2 TII multiplicity polynomial = 35*X^2+35*X TII subcells: tii[25,1] := {73, 104} tii[25,2] := {64, 99} tii[25,3] := {43, 86} tii[25,4] := {57, 103} tii[25,5] := {47, 94} tii[25,6] := {42, 101} tii[25,7] := {27, 74} tii[25,8] := {28, 98} tii[25,9] := {32, 89} tii[25,10] := {15, 60} tii[25,11] := {20, 78} tii[25,12] := {6, 49} tii[25,13] := {84} tii[25,14] := {88} tii[25,15] := {59, 102} tii[25,16] := {44, 100} tii[25,17] := {83} tii[25,18] := {91} tii[25,19] := {92} tii[25,20] := {26, 97} tii[25,21] := {77} tii[25,22] := {16, 90} tii[25,23] := {48, 95} tii[25,24] := {72} tii[25,25] := {80} tii[25,26] := {81} tii[25,27] := {7, 79} tii[25,28] := {58} tii[25,29] := {67} tii[25,30] := {69} tii[25,31] := {51} tii[25,32] := {53} tii[25,33] := {62} tii[25,34] := {63} tii[25,35] := {56} tii[25,36] := {33, 85} tii[25,37] := {66} tii[25,38] := {68} tii[25,39] := {10, 65} tii[25,40] := {41} tii[25,41] := {50} tii[25,42] := {52} tii[25,43] := {35} tii[25,44] := {37} tii[25,45] := {18, 93} tii[25,46] := {46} tii[25,47] := {25} tii[25,48] := {34} tii[25,49] := {36} tii[25,50] := {21} tii[25,51] := {22} tii[25,52] := {13, 70} tii[25,53] := {31} tii[25,54] := {11} tii[25,55] := {12} tii[25,56] := {3, 39} tii[25,57] := {19} tii[25,58] := {14} tii[25,59] := {30, 96} tii[25,60] := {9, 82} tii[25,61] := {38, 87} tii[25,62] := {4, 71} tii[25,63] := {29, 76} tii[25,64] := {1, 55} tii[25,65] := {23, 75} tii[25,66] := {5, 54} tii[25,67] := {17, 61} tii[25,68] := {2, 40} tii[25,69] := {8, 45} tii[25,70] := {0, 24} cell#51 , |C| = 210 special orbit = [5, 5, 2, 2] special rep = [[2, 1], [3, 1]] , dim = 210 cell rep = phi[[2, 1],[3, 1]] TII depth = 5 TII multiplicity polynomial = 210*X TII subcells: tii[21,1] := {151} tii[21,2] := {160} tii[21,3] := {159} tii[21,4] := {191} tii[21,5] := {124} tii[21,6] := {76} tii[21,7] := {135} tii[21,8] := {134} tii[21,9] := {204} tii[21,10] := {205} tii[21,11] := {208} tii[21,12] := {209} tii[21,13] := {150} tii[21,14] := {107} tii[21,15] := {106} tii[21,16] := {179} tii[21,17] := {181} tii[21,18] := {130} tii[21,19] := {152} tii[21,20] := {197} tii[21,21] := {154} tii[21,22] := {201} tii[21,23] := {132} tii[21,24] := {133} tii[21,25] := {108} tii[21,26] := {163} tii[21,27] := {114} tii[21,28] := {169} tii[21,29] := {199} tii[21,30] := {203} tii[21,31] := {7} tii[21,32] := {36} tii[21,33] := {37} tii[21,34] := {105} tii[21,35] := {65} tii[21,36] := {70} tii[21,37] := {175} tii[21,38] := {15} tii[21,39] := {125} tii[21,40] := {46} tii[21,41] := {194} tii[21,42] := {195} tii[21,43] := {52} tii[21,44] := {53} tii[21,45] := {35} tii[21,46] := {156} tii[21,47] := {64} tii[21,48] := {206} tii[21,49] := {176} tii[21,50] := {84} tii[21,51] := {68} tii[21,52] := {207} tii[21,53] := {177} tii[21,54] := {90} tii[21,55] := {180} tii[21,56] := {182} tii[21,57] := {78} tii[21,58] := {79} tii[21,59] := {75} tii[21,60] := {110} tii[21,61] := {162} tii[21,62] := {97} tii[21,63] := {198} tii[21,64] := {109} tii[21,65] := {115} tii[21,66] := {167} tii[21,67] := {99} tii[21,68] := {202} tii[21,69] := {116} tii[21,70] := {40} tii[21,71] := {185} tii[21,72] := {137} tii[21,73] := {43} tii[21,74] := {188} tii[21,75] := {142} tii[21,76] := {171} tii[21,77] := {172} tii[21,78] := {2} tii[21,79] := {27} tii[21,80] := {28} tii[21,81] := {96} tii[21,82] := {178} tii[21,83] := {16} tii[21,84] := {55} tii[21,85] := {38} tii[21,86] := {192} tii[21,87] := {60} tii[21,88] := {41} tii[21,89] := {193} tii[21,90] := {104} tii[21,91] := {8} tii[21,92] := {157} tii[21,93] := {158} tii[21,94] := {50} tii[21,95] := {51} tii[21,96] := {196} tii[21,97] := {126} tii[21,98] := {24} tii[21,99] := {83} tii[21,100] := {82} tii[21,101] := {136} tii[21,102] := {184} tii[21,103] := {200} tii[21,104] := {128} tii[21,105] := {25} tii[21,106] := {87} tii[21,107] := {88} tii[21,108] := {141} tii[21,109] := {187} tii[21,110] := {57} tii[21,111] := {98} tii[21,112] := {39} tii[21,113] := {112} tii[21,114] := {165} tii[21,115] := {61} tii[21,116] := {100} tii[21,117] := {42} tii[21,118] := {117} tii[21,119] := {170} tii[21,120] := {73} tii[21,121] := {74} tii[21,122] := {148} tii[21,123] := {149} tii[21,124] := {81} tii[21,125] := {80} tii[21,126] := {111} tii[21,127] := {161} tii[21,128] := {54} tii[21,129] := {118} tii[21,130] := {166} tii[21,131] := {58} tii[21,132] := {86} tii[21,133] := {30} tii[21,134] := {138} tii[21,135] := {139} tii[21,136] := {91} tii[21,137] := {32} tii[21,138] := {144} tii[21,139] := {143} tii[21,140] := {62} tii[21,141] := {63} tii[21,142] := {174} tii[21,143] := {173} tii[21,144] := {164} tii[21,145] := {168} tii[21,146] := {189} tii[21,147] := {190} tii[21,148] := {0} tii[21,149] := {3} tii[21,150] := {5} tii[21,151] := {23} tii[21,152] := {131} tii[21,153] := {17} tii[21,154] := {153} tii[21,155] := {47} tii[21,156] := {19} tii[21,157] := {155} tii[21,158] := {48} tii[21,159] := {66} tii[21,160] := {127} tii[21,161] := {69} tii[21,162] := {129} tii[21,163] := {103} tii[21,164] := {102} tii[21,165] := {1} tii[21,166] := {183} tii[21,167] := {29} tii[21,168] := {9} tii[21,169] := {186} tii[21,170] := {31} tii[21,171] := {10} tii[21,172] := {85} tii[21,173] := {140} tii[21,174] := {67} tii[21,175] := {18} tii[21,176] := {89} tii[21,177] := {145} tii[21,178] := {71} tii[21,179] := {20} tii[21,180] := {101} tii[21,181] := {44} tii[21,182] := {45} tii[21,183] := {123} tii[21,184] := {122} tii[21,185] := {4} tii[21,186] := {6} tii[21,187] := {147} tii[21,188] := {146} tii[21,189] := {21} tii[21,190] := {22} tii[21,191] := {11} tii[21,192] := {13} tii[21,193] := {56} tii[21,194] := {113} tii[21,195] := {59} tii[21,196] := {119} tii[21,197] := {72} tii[21,198] := {95} tii[21,199] := {94} tii[21,200] := {12} tii[21,201] := {14} tii[21,202] := {121} tii[21,203] := {120} tii[21,204] := {33} tii[21,205] := {34} tii[21,206] := {49} tii[21,207] := {93} tii[21,208] := {92} tii[21,209] := {77} tii[21,210] := {26} cell#52 , |C| = 210 special orbit = [5, 5, 2, 2] special rep = [[2, 1], [3, 1]] , dim = 210 cell rep = phi[[2, 1],[3, 1]] TII depth = 5 TII multiplicity polynomial = 210*X TII subcells: tii[21,1] := {151} tii[21,2] := {160} tii[21,3] := {159} tii[21,4] := {191} tii[21,5] := {124} tii[21,6] := {76} tii[21,7] := {135} tii[21,8] := {134} tii[21,9] := {204} tii[21,10] := {205} tii[21,11] := {208} tii[21,12] := {209} tii[21,13] := {150} tii[21,14] := {107} tii[21,15] := {106} tii[21,16] := {179} tii[21,17] := {181} tii[21,18] := {130} tii[21,19] := {152} tii[21,20] := {197} tii[21,21] := {154} tii[21,22] := {201} tii[21,23] := {132} tii[21,24] := {133} tii[21,25] := {108} tii[21,26] := {163} tii[21,27] := {114} tii[21,28] := {169} tii[21,29] := {199} tii[21,30] := {203} tii[21,31] := {7} tii[21,32] := {36} tii[21,33] := {37} tii[21,34] := {105} tii[21,35] := {65} tii[21,36] := {70} tii[21,37] := {175} tii[21,38] := {15} tii[21,39] := {125} tii[21,40] := {46} tii[21,41] := {194} tii[21,42] := {195} tii[21,43] := {52} tii[21,44] := {53} tii[21,45] := {35} tii[21,46] := {156} tii[21,47] := {64} tii[21,48] := {206} tii[21,49] := {176} tii[21,50] := {84} tii[21,51] := {68} tii[21,52] := {207} tii[21,53] := {177} tii[21,54] := {90} tii[21,55] := {180} tii[21,56] := {182} tii[21,57] := {78} tii[21,58] := {79} tii[21,59] := {75} tii[21,60] := {110} tii[21,61] := {162} tii[21,62] := {97} tii[21,63] := {198} tii[21,64] := {109} tii[21,65] := {115} tii[21,66] := {167} tii[21,67] := {99} tii[21,68] := {202} tii[21,69] := {116} tii[21,70] := {40} tii[21,71] := {185} tii[21,72] := {137} tii[21,73] := {43} tii[21,74] := {188} tii[21,75] := {142} tii[21,76] := {171} tii[21,77] := {172} tii[21,78] := {2} tii[21,79] := {27} tii[21,80] := {28} tii[21,81] := {96} tii[21,82] := {178} tii[21,83] := {16} tii[21,84] := {55} tii[21,85] := {38} tii[21,86] := {192} tii[21,87] := {60} tii[21,88] := {41} tii[21,89] := {193} tii[21,90] := {104} tii[21,91] := {8} tii[21,92] := {157} tii[21,93] := {158} tii[21,94] := {50} tii[21,95] := {51} tii[21,96] := {196} tii[21,97] := {126} tii[21,98] := {24} tii[21,99] := {83} tii[21,100] := {82} tii[21,101] := {136} tii[21,102] := {184} tii[21,103] := {200} tii[21,104] := {128} tii[21,105] := {25} tii[21,106] := {87} tii[21,107] := {88} tii[21,108] := {141} tii[21,109] := {187} tii[21,110] := {57} tii[21,111] := {98} tii[21,112] := {39} tii[21,113] := {112} tii[21,114] := {165} tii[21,115] := {61} tii[21,116] := {100} tii[21,117] := {42} tii[21,118] := {117} tii[21,119] := {170} tii[21,120] := {73} tii[21,121] := {74} tii[21,122] := {148} tii[21,123] := {149} tii[21,124] := {81} tii[21,125] := {80} tii[21,126] := {111} tii[21,127] := {161} tii[21,128] := {54} tii[21,129] := {118} tii[21,130] := {166} tii[21,131] := {58} tii[21,132] := {86} tii[21,133] := {30} tii[21,134] := {138} tii[21,135] := {139} tii[21,136] := {91} tii[21,137] := {32} tii[21,138] := {144} tii[21,139] := {143} tii[21,140] := {62} tii[21,141] := {63} tii[21,142] := {174} tii[21,143] := {173} tii[21,144] := {164} tii[21,145] := {168} tii[21,146] := {189} tii[21,147] := {190} tii[21,148] := {0} tii[21,149] := {3} tii[21,150] := {5} tii[21,151] := {23} tii[21,152] := {131} tii[21,153] := {17} tii[21,154] := {153} tii[21,155] := {47} tii[21,156] := {19} tii[21,157] := {155} tii[21,158] := {48} tii[21,159] := {66} tii[21,160] := {127} tii[21,161] := {69} tii[21,162] := {129} tii[21,163] := {103} tii[21,164] := {102} tii[21,165] := {1} tii[21,166] := {183} tii[21,167] := {29} tii[21,168] := {9} tii[21,169] := {186} tii[21,170] := {31} tii[21,171] := {10} tii[21,172] := {85} tii[21,173] := {140} tii[21,174] := {67} tii[21,175] := {18} tii[21,176] := {89} tii[21,177] := {145} tii[21,178] := {71} tii[21,179] := {20} tii[21,180] := {101} tii[21,181] := {44} tii[21,182] := {45} tii[21,183] := {123} tii[21,184] := {122} tii[21,185] := {4} tii[21,186] := {6} tii[21,187] := {147} tii[21,188] := {146} tii[21,189] := {21} tii[21,190] := {22} tii[21,191] := {11} tii[21,192] := {13} tii[21,193] := {56} tii[21,194] := {113} tii[21,195] := {59} tii[21,196] := {119} tii[21,197] := {72} tii[21,198] := {95} tii[21,199] := {94} tii[21,200] := {12} tii[21,201] := {14} tii[21,202] := {121} tii[21,203] := {120} tii[21,204] := {33} tii[21,205] := {34} tii[21,206] := {49} tii[21,207] := {93} tii[21,208] := {92} tii[21,209] := {77} tii[21,210] := {26} cell#53 , |C| = 105 special orbit = [5, 3, 3, 3] special rep = [[1, 1], [3, 2]] , dim = 105 cell rep = phi[[1, 1],[3, 2]] TII depth = 4 TII multiplicity polynomial = 105*X TII subcells: tii[19,1] := {83} tii[19,2] := {58} tii[19,3] := {93} tii[19,4] := {86} tii[19,5] := {42} tii[19,6] := {99} tii[19,7] := {57} tii[19,8] := {100} tii[19,9] := {103} tii[19,10] := {104} tii[19,11] := {72} tii[19,12] := {87} tii[19,13] := {89} tii[19,14] := {6} tii[19,15] := {7} tii[19,16] := {53} tii[19,17] := {12} tii[19,18] := {70} tii[19,19] := {9} tii[19,20] := {73} tii[19,21] := {24} tii[19,22] := {38} tii[19,23] := {39} tii[19,24] := {17} tii[19,25] := {85} tii[19,26] := {30} tii[19,27] := {95} tii[19,28] := {33} tii[19,29] := {97} tii[19,30] := {76} tii[19,31] := {79} tii[19,32] := {23} tii[19,33] := {84} tii[19,34] := {4} tii[19,35] := {37} tii[19,36] := {54} tii[19,37] := {55} tii[19,38] := {94} tii[19,39] := {41} tii[19,40] := {8} tii[19,41] := {101} tii[19,42] := {59} tii[19,43] := {18} tii[19,44] := {102} tii[19,45] := {62} tii[19,46] := {20} tii[19,47] := {61} tii[19,48] := {96} tii[19,49] := {74} tii[19,50] := {64} tii[19,51] := {98} tii[19,52] := {77} tii[19,53] := {91} tii[19,54] := {92} tii[19,55] := {16} tii[19,56] := {29} tii[19,57] := {32} tii[19,58] := {75} tii[19,59] := {44} tii[19,60] := {78} tii[19,61] := {47} tii[19,62] := {66} tii[19,63] := {68} tii[19,64] := {2} tii[19,65] := {13} tii[19,66] := {25} tii[19,67] := {26} tii[19,68] := {14} tii[19,69] := {15} tii[19,70] := {27} tii[19,71] := {28} tii[19,72] := {43} tii[19,73] := {46} tii[19,74] := {60} tii[19,75] := {19} tii[19,76] := {88} tii[19,77] := {63} tii[19,78] := {21} tii[19,79] := {90} tii[19,80] := {56} tii[19,81] := {81} tii[19,82] := {82} tii[19,83] := {36} tii[19,84] := {45} tii[19,85] := {48} tii[19,86] := {50} tii[19,87] := {67} tii[19,88] := {69} tii[19,89] := {10} tii[19,90] := {11} tii[19,91] := {22} tii[19,92] := {71} tii[19,93] := {31} tii[19,94] := {34} tii[19,95] := {35} tii[19,96] := {80} tii[19,97] := {51} tii[19,98] := {52} tii[19,99] := {49} tii[19,100] := {0} tii[19,101] := {40} tii[19,102] := {3} tii[19,103] := {5} tii[19,104] := {65} tii[19,105] := {1} cell#54 , |C| = 147 special orbit = [5, 5, 1, 1, 1, 1] special rep = [[2], [3, 1, 1]] , dim = 126 cell rep = phi[[],[3, 3, 1]]+phi[[2],[3, 1, 1]] TII depth = 4 TII multiplicity polynomial = 105*X+21*X^2 TII subcells: tii[20,1] := {72, 139} tii[20,2] := {121} tii[20,3] := {49, 125} tii[20,4] := {23, 85} tii[20,5] := {101} tii[20,6] := {30, 118} tii[20,7] := {80} tii[20,8] := {17, 97} tii[20,9] := {63} tii[20,10] := {117} tii[20,11] := {140} tii[20,12] := {141} tii[20,13] := {40, 110} tii[20,14] := {145} tii[20,15] := {146} tii[20,16] := {96} tii[20,17] := {50, 128} tii[20,18] := {11, 64} tii[20,19] := {126} tii[20,20] := {127} tii[20,21] := {79} tii[20,22] := {98} tii[20,23] := {142} tii[20,24] := {99} tii[20,25] := {143} tii[20,26] := {4, 51} tii[20,27] := {106} tii[20,28] := {108} tii[20,29] := {87} tii[20,30] := {131} tii[20,31] := {91} tii[20,32] := {134} tii[20,33] := {136} tii[20,34] := {137} tii[20,35] := {144} tii[20,36] := {71} tii[20,37] := {105} tii[20,38] := {107} tii[20,39] := {31, 109} tii[20,40] := {57} tii[20,41] := {130} tii[20,42] := {74} tii[20,43] := {133} tii[20,44] := {76} tii[20,45] := {6, 73} tii[20,46] := {39} tii[20,47] := {83} tii[20,48] := {84} tii[20,49] := {52} tii[20,50] := {65} tii[20,51] := {112} tii[20,52] := {54} tii[20,53] := {67} tii[20,54] := {114} tii[20,55] := {33} tii[20,56] := {122} tii[20,57] := {35} tii[20,58] := {123} tii[20,59] := {48} tii[20,60] := {138} tii[20,61] := {61} tii[20,62] := {62} tii[20,63] := {88} tii[20,64] := {42} tii[20,65] := {92} tii[20,66] := {44} tii[20,67] := {26} tii[20,68] := {102} tii[20,69] := {27} tii[20,70] := {103} tii[20,71] := {9, 78} tii[20,72] := {41} tii[20,73] := {124} tii[20,74] := {89} tii[20,75] := {93} tii[20,76] := {46} tii[20,77] := {116} tii[20,78] := {135} tii[20,79] := {100} tii[20,80] := {119} tii[20,81] := {120} tii[20,82] := {58} tii[20,83] := {129} tii[20,84] := {75} tii[20,85] := {132} tii[20,86] := {77} tii[20,87] := {53} tii[20,88] := {55} tii[20,89] := {70} tii[20,90] := {22} tii[20,91] := {111} tii[20,92] := {32} tii[20,93] := {113} tii[20,94] := {34} tii[20,95] := {66} tii[20,96] := {18} tii[20,97] := {68} tii[20,98] := {19} tii[20,99] := {36, 115} tii[20,100] := {29} tii[20,101] := {82} tii[20,102] := {7} tii[20,103] := {8} tii[20,104] := {2, 37} tii[20,105] := {104} tii[20,106] := {16} tii[20,107] := {10} tii[20,108] := {86} tii[20,109] := {90} tii[20,110] := {43} tii[20,111] := {45} tii[20,112] := {20, 94} tii[20,113] := {60} tii[20,114] := {13} tii[20,115] := {14} tii[20,116] := {3, 56} tii[20,117] := {12, 69} tii[20,118] := {81} tii[20,119] := {25} tii[20,120] := {1, 38} tii[20,121] := {15} tii[20,122] := {59} tii[20,123] := {28} tii[20,124] := {24, 95} tii[20,125] := {5, 47} tii[20,126] := {0, 21} cell#55 , |C| = 112 special orbit = [5, 3, 3, 1, 1, 1] special rep = [[1], [3, 2, 1]] , dim = 112 cell rep = phi[[1],[3, 2, 1]] TII depth = 3 TII multiplicity polynomial = 112*X TII subcells: tii[18,1] := {107} tii[18,2] := {111} tii[18,3] := {10} tii[18,4] := {97} tii[18,5] := {33} tii[18,6] := {65} tii[18,7] := {108} tii[18,8] := {105} tii[18,9] := {32} tii[18,10] := {99} tii[18,11] := {95} tii[18,12] := {109} tii[18,13] := {17} tii[18,14] := {47} tii[18,15] := {84} tii[18,16] := {5} tii[18,17] := {29} tii[18,18] := {98} tii[18,19] := {20} tii[18,20] := {64} tii[18,21] := {3} tii[18,22] := {48} tii[18,23] := {44} tii[18,24] := {66} tii[18,25] := {70} tii[18,26] := {12} tii[18,27] := {62} tii[18,28] := {82} tii[18,29] := {100} tii[18,30] := {101} tii[18,31] := {18} tii[18,32] := {8} tii[18,33] := {83} tii[18,34] := {46} tii[18,35] := {30} tii[18,36] := {49} tii[18,37] := {53} tii[18,38] := {21} tii[18,39] := {80} tii[18,40] := {19} tii[18,41] := {63} tii[18,42] := {34} tii[18,43] := {85} tii[18,44] := {37} tii[18,45] := {87} tii[18,46] := {52} tii[18,47] := {56} tii[18,48] := {77} tii[18,49] := {45} tii[18,50] := {67} tii[18,51] := {71} tii[18,52] := {51} tii[18,53] := {55} tii[18,54] := {106} tii[18,55] := {76} tii[18,56] := {102} tii[18,57] := {15} tii[18,58] := {0} tii[18,59] := {31} tii[18,60] := {50} tii[18,61] := {54} tii[18,62] := {69} tii[18,63] := {73} tii[18,64] := {92} tii[18,65] := {11} tii[18,66] := {22} tii[18,67] := {24} tii[18,68] := {35} tii[18,69] := {86} tii[18,70] := {38} tii[18,71] := {88} tii[18,72] := {9} tii[18,73] := {89} tii[18,74] := {59} tii[18,75] := {104} tii[18,76] := {23} tii[18,77] := {25} tii[18,78] := {81} tii[18,79] := {110} tii[18,80] := {6} tii[18,81] := {43} tii[18,82] := {61} tii[18,83] := {68} tii[18,84] := {72} tii[18,85] := {16} tii[18,86] := {74} tii[18,87] := {91} tii[18,88] := {36} tii[18,89] := {39} tii[18,90] := {96} tii[18,91] := {103} tii[18,92] := {14} tii[18,93] := {26} tii[18,94] := {58} tii[18,95] := {60} tii[18,96] := {94} tii[18,97] := {78} tii[18,98] := {27} tii[18,99] := {90} tii[18,100] := {93} tii[18,101] := {28} tii[18,102] := {4} tii[18,103] := {75} tii[18,104] := {40} tii[18,105] := {1} tii[18,106] := {13} tii[18,107] := {57} tii[18,108] := {42} tii[18,109] := {79} tii[18,110] := {2} tii[18,111] := {41} tii[18,112] := {7} cell#56 , |C| = 140 special orbit = [4, 4, 3, 3] special rep = [[2, 1], [2, 2]] , dim = 140 cell rep = phi[[2, 1],[2, 2]] TII depth = 4 TII multiplicity polynomial = 140*X TII subcells: tii[14,1] := {116} tii[14,2] := {72} tii[14,3] := {71} tii[14,4] := {128} tii[14,5] := {134} tii[14,6] := {106} tii[14,7] := {107} tii[14,8] := {120} tii[14,9] := {124} tii[14,10] := {137} tii[14,11] := {138} tii[14,12] := {139} tii[14,13] := {26} tii[14,14] := {44} tii[14,15] := {53} tii[14,16] := {52} tii[14,17] := {24} tii[14,18] := {25} tii[14,19] := {45} tii[14,20] := {47} tii[14,21] := {62} tii[14,22] := {69} tii[14,23] := {70} tii[14,24] := {82} tii[14,25] := {90} tii[14,26] := {54} tii[14,27] := {84} tii[14,28] := {96} tii[14,29] := {57} tii[14,30] := {122} tii[14,31] := {125} tii[14,32] := {42} tii[14,33] := {43} tii[14,34] := {63} tii[14,35] := {64} tii[14,36] := {66} tii[14,37] := {87} tii[14,38] := {88} tii[14,39] := {50} tii[14,40] := {51} tii[14,41] := {81} tii[14,42] := {34} tii[14,43] := {108} tii[14,44] := {73} tii[14,45] := {74} tii[14,46] := {102} tii[14,47] := {36} tii[14,48] := {111} tii[14,49] := {77} tii[14,50] := {78} tii[14,51] := {103} tii[14,52] := {130} tii[14,53] := {93} tii[14,54] := {92} tii[14,55] := {131} tii[14,56] := {97} tii[14,57] := {98} tii[14,58] := {115} tii[14,59] := {114} tii[14,60] := {101} tii[14,61] := {89} tii[14,62] := {117} tii[14,63] := {94} tii[14,64] := {118} tii[14,65] := {135} tii[14,66] := {121} tii[14,67] := {136} tii[14,68] := {123} tii[14,69] := {132} tii[14,70] := {133} tii[14,71] := {11} tii[14,72] := {12} tii[14,73] := {28} tii[14,74] := {4} tii[14,75] := {30} tii[14,76] := {5} tii[14,77] := {18} tii[14,78] := {46} tii[14,79] := {21} tii[14,80] := {48} tii[14,81] := {68} tii[14,82] := {32} tii[14,83] := {33} tii[14,84] := {13} tii[14,85] := {16} tii[14,86] := {55} tii[14,87] := {14} tii[14,88] := {19} tii[14,89] := {58} tii[14,90] := {35} tii[14,91] := {75} tii[14,92] := {65} tii[14,93] := {76} tii[14,94] := {7} tii[14,95] := {37} tii[14,96] := {80} tii[14,97] := {67} tii[14,98] := {79} tii[14,99] := {8} tii[14,100] := {100} tii[14,101] := {99} tii[14,102] := {86} tii[14,103] := {22} tii[14,104] := {23} tii[14,105] := {91} tii[14,106] := {95} tii[14,107] := {104} tii[14,108] := {112} tii[14,109] := {113} tii[14,110] := {27} tii[14,111] := {29} tii[14,112] := {56} tii[14,113] := {17} tii[14,114] := {83} tii[14,115] := {59} tii[14,116] := {20} tii[14,117] := {85} tii[14,118] := {41} tii[14,119] := {40} tii[14,120] := {105} tii[14,121] := {109} tii[14,122] := {110} tii[14,123] := {61} tii[14,124] := {60} tii[14,125] := {119} tii[14,126] := {126} tii[14,127] := {127} tii[14,128] := {129} tii[14,129] := {0} tii[14,130] := {1} tii[14,131] := {6} tii[14,132] := {2} tii[14,133] := {3} tii[14,134] := {15} tii[14,135] := {9} tii[14,136] := {10} tii[14,137] := {31} tii[14,138] := {39} tii[14,139] := {38} tii[14,140] := {49} cell#57 , |C| = 112 special orbit = [5, 3, 3, 1, 1, 1] special rep = [[1], [3, 2, 1]] , dim = 112 cell rep = phi[[1],[3, 2, 1]] TII depth = 3 TII multiplicity polynomial = 112*X TII subcells: tii[18,1] := {111} tii[18,2] := {98} tii[18,3] := {50} tii[18,4] := {110} tii[18,5] := {40} tii[18,6] := {103} tii[18,7] := {86} tii[18,8] := {106} tii[18,9] := {11} tii[18,10] := {78} tii[18,11] := {102} tii[18,12] := {58} tii[18,13] := {59} tii[18,14] := {52} tii[18,15] := {105} tii[18,16] := {32} tii[18,17] := {79} tii[18,18] := {109} tii[18,19] := {22} tii[18,20] := {35} tii[18,21] := {17} tii[18,22] := {93} tii[18,23] := {87} tii[18,24] := {99} tii[18,25] := {100} tii[18,26] := {12} tii[18,27] := {77} tii[18,28] := {51} tii[18,29] := {71} tii[18,30] := {73} tii[18,31] := {69} tii[18,32] := {33} tii[18,33] := {108} tii[18,34] := {19} tii[18,35] := {80} tii[18,36] := {94} tii[18,37] := {95} tii[18,38] := {5} tii[18,39] := {92} tii[18,40] := {60} tii[18,41] := {34} tii[18,42] := {81} tii[18,43] := {53} tii[18,44] := {82} tii[18,45] := {55} tii[18,46] := {62} tii[18,47] := {64} tii[18,48] := {83} tii[18,49] := {21} tii[18,50] := {42} tii[18,51] := {44} tii[18,52] := {23} tii[18,53] := {25} tii[18,54] := {96} tii[18,55] := {46} tii[18,56] := {48} tii[18,57] := {41} tii[18,58] := {8} tii[18,59] := {70} tii[18,60] := {88} tii[18,61] := {89} tii[18,62] := {72} tii[18,63] := {74} tii[18,64] := {90} tii[18,65] := {39} tii[18,66] := {61} tii[18,67] := {63} tii[18,68] := {43} tii[18,69] := {54} tii[18,70] := {45} tii[18,71] := {56} tii[18,72] := {9} tii[18,73] := {107} tii[18,74] := {65} tii[18,75] := {75} tii[18,76] := {24} tii[18,77] := {26} tii[18,78] := {66} tii[18,79] := {91} tii[18,80] := {7} tii[18,81] := {47} tii[18,82] := {30} tii[18,83] := {36} tii[18,84] := {37} tii[18,85] := {18} tii[18,86] := {104} tii[18,87] := {57} tii[18,88] := {13} tii[18,89] := {14} tii[18,90] := {84} tii[18,91] := {76} tii[18,92] := {2} tii[18,93] := {28} tii[18,94] := {97} tii[18,95] := {29} tii[18,96] := {68} tii[18,97] := {16} tii[18,98] := {6} tii[18,99] := {67} tii[18,100] := {31} tii[18,101] := {27} tii[18,102] := {4} tii[18,103] := {101} tii[18,104] := {38} tii[18,105] := {1} tii[18,106] := {15} tii[18,107] := {20} tii[18,108] := {85} tii[18,109] := {49} tii[18,110] := {3} tii[18,111] := {10} tii[18,112] := {0} cell#58 , |C| = 140 special orbit = [3, 3, 3, 3, 1, 1] special rep = [[1, 1], [2, 2, 1]] , dim = 105 cell rep = phi[[1],[2, 2, 2]]+phi[[1, 1],[2, 2, 1]] TII depth = 3 TII multiplicity polynomial = 35*X^2+70*X TII subcells: tii[10,1] := {48, 139} tii[10,2] := {80, 131} tii[10,3] := {64} tii[10,4] := {34, 137} tii[10,5] := {5, 95} tii[10,6] := {83} tii[10,7] := {47, 132} tii[10,8] := {97} tii[10,9] := {113} tii[10,10] := {116} tii[10,11] := {10, 110} tii[10,12] := {65} tii[10,13] := {63, 123} tii[10,14] := {14, 122} tii[10,15] := {82} tii[10,16] := {24, 133} tii[10,17] := {98} tii[10,18] := {26, 134} tii[10,19] := {102} tii[10,20] := {68} tii[10,21] := {71} tii[10,22] := {96} tii[10,23] := {112} tii[10,24] := {115} tii[10,25] := {99} tii[10,26] := {103} tii[10,27] := {119} tii[10,28] := {17} tii[10,29] := {3, 81} tii[10,30] := {22} tii[10,31] := {35} tii[10,32] := {38} tii[10,33] := {86} tii[10,34] := {89} tii[10,35] := {33} tii[10,36] := {8, 111} tii[10,37] := {49} tii[10,38] := {15, 124} tii[10,39] := {53} tii[10,40] := {16, 126} tii[10,41] := {101} tii[10,42] := {52} tii[10,43] := {66} tii[10,44] := {11, 114} tii[10,45] := {105} tii[10,46] := {56} tii[10,47] := {69} tii[10,48] := {12, 117} tii[10,49] := {90} tii[10,50] := {91} tii[10,51] := {21, 130} tii[10,52] := {67} tii[10,53] := {70} tii[10,54] := {92} tii[10,55] := {44, 129} tii[10,56] := {23} tii[10,57] := {36} tii[10,58] := {39} tii[10,59] := {19, 125} tii[10,60] := {85} tii[10,61] := {50} tii[10,62] := {20, 127} tii[10,63] := {88} tii[10,64] := {54} tii[10,65] := {32, 136} tii[10,66] := {73} tii[10,67] := {75} tii[10,68] := {37} tii[10,69] := {84} tii[10,70] := {40} tii[10,71] := {87} tii[10,72] := {41, 138} tii[10,73] := {59} tii[10,74] := {60} tii[10,75] := {106} tii[10,76] := {61, 118} tii[10,77] := {93} tii[10,78] := {78, 128} tii[10,79] := {30} tii[10,80] := {31} tii[10,81] := {46} tii[10,82] := {51} tii[10,83] := {6, 100} tii[10,84] := {55} tii[10,85] := {7, 104} tii[10,86] := {74} tii[10,87] := {76} tii[10,88] := {57} tii[10,89] := {13, 120} tii[10,90] := {1, 79} tii[10,91] := {18, 108} tii[10,92] := {25} tii[10,93] := {27} tii[10,94] := {28, 135} tii[10,95] := {2, 94} tii[10,96] := {72} tii[10,97] := {42} tii[10,98] := {43} tii[10,99] := {77} tii[10,100] := {29, 121} tii[10,101] := {4, 109} tii[10,102] := {58} tii[10,103] := {45, 107} tii[10,104] := {9} tii[10,105] := {0, 62} cell#59 , |C| = 140 special orbit = [4, 4, 3, 3] special rep = [[2, 1], [2, 2]] , dim = 140 cell rep = phi[[2, 1],[2, 2]] TII depth = 4 TII multiplicity polynomial = 140*X TII subcells: tii[14,1] := {116} tii[14,2] := {72} tii[14,3] := {71} tii[14,4] := {128} tii[14,5] := {134} tii[14,6] := {106} tii[14,7] := {107} tii[14,8] := {120} tii[14,9] := {124} tii[14,10] := {137} tii[14,11] := {138} tii[14,12] := {139} tii[14,13] := {26} tii[14,14] := {44} tii[14,15] := {53} tii[14,16] := {52} tii[14,17] := {24} tii[14,18] := {25} tii[14,19] := {45} tii[14,20] := {47} tii[14,21] := {62} tii[14,22] := {69} tii[14,23] := {70} tii[14,24] := {82} tii[14,25] := {90} tii[14,26] := {54} tii[14,27] := {84} tii[14,28] := {96} tii[14,29] := {57} tii[14,30] := {122} tii[14,31] := {125} tii[14,32] := {42} tii[14,33] := {43} tii[14,34] := {63} tii[14,35] := {64} tii[14,36] := {66} tii[14,37] := {87} tii[14,38] := {88} tii[14,39] := {50} tii[14,40] := {51} tii[14,41] := {81} tii[14,42] := {34} tii[14,43] := {108} tii[14,44] := {73} tii[14,45] := {74} tii[14,46] := {102} tii[14,47] := {36} tii[14,48] := {111} tii[14,49] := {77} tii[14,50] := {78} tii[14,51] := {103} tii[14,52] := {130} tii[14,53] := {93} tii[14,54] := {92} tii[14,55] := {131} tii[14,56] := {97} tii[14,57] := {98} tii[14,58] := {115} tii[14,59] := {114} tii[14,60] := {101} tii[14,61] := {89} tii[14,62] := {117} tii[14,63] := {94} tii[14,64] := {118} tii[14,65] := {135} tii[14,66] := {121} tii[14,67] := {136} tii[14,68] := {123} tii[14,69] := {132} tii[14,70] := {133} tii[14,71] := {11} tii[14,72] := {12} tii[14,73] := {28} tii[14,74] := {4} tii[14,75] := {30} tii[14,76] := {5} tii[14,77] := {18} tii[14,78] := {46} tii[14,79] := {21} tii[14,80] := {48} tii[14,81] := {68} tii[14,82] := {32} tii[14,83] := {33} tii[14,84] := {13} tii[14,85] := {16} tii[14,86] := {55} tii[14,87] := {14} tii[14,88] := {19} tii[14,89] := {58} tii[14,90] := {35} tii[14,91] := {75} tii[14,92] := {65} tii[14,93] := {76} tii[14,94] := {7} tii[14,95] := {37} tii[14,96] := {80} tii[14,97] := {67} tii[14,98] := {79} tii[14,99] := {8} tii[14,100] := {100} tii[14,101] := {99} tii[14,102] := {86} tii[14,103] := {22} tii[14,104] := {23} tii[14,105] := {91} tii[14,106] := {95} tii[14,107] := {104} tii[14,108] := {112} tii[14,109] := {113} tii[14,110] := {27} tii[14,111] := {29} tii[14,112] := {56} tii[14,113] := {17} tii[14,114] := {83} tii[14,115] := {59} tii[14,116] := {20} tii[14,117] := {85} tii[14,118] := {41} tii[14,119] := {40} tii[14,120] := {105} tii[14,121] := {109} tii[14,122] := {110} tii[14,123] := {61} tii[14,124] := {60} tii[14,125] := {119} tii[14,126] := {126} tii[14,127] := {127} tii[14,128] := {129} tii[14,129] := {0} tii[14,130] := {1} tii[14,131] := {6} tii[14,132] := {2} tii[14,133] := {3} tii[14,134] := {15} tii[14,135] := {9} tii[14,136] := {10} tii[14,137] := {31} tii[14,138] := {39} tii[14,139] := {38} tii[14,140] := {49} cell#60 , |C| = 140 special orbit = [3, 3, 3, 3, 1, 1] special rep = [[1, 1], [2, 2, 1]] , dim = 105 cell rep = phi[[1],[2, 2, 2]]+phi[[1, 1],[2, 2, 1]] TII depth = 3 TII multiplicity polynomial = 35*X^2+70*X TII subcells: tii[10,1] := {48, 139} tii[10,2] := {80, 131} tii[10,3] := {64} tii[10,4] := {34, 137} tii[10,5] := {5, 95} tii[10,6] := {83} tii[10,7] := {47, 132} tii[10,8] := {97} tii[10,9] := {113} tii[10,10] := {116} tii[10,11] := {10, 110} tii[10,12] := {65} tii[10,13] := {63, 123} tii[10,14] := {14, 122} tii[10,15] := {82} tii[10,16] := {24, 133} tii[10,17] := {98} tii[10,18] := {26, 134} tii[10,19] := {102} tii[10,20] := {68} tii[10,21] := {71} tii[10,22] := {96} tii[10,23] := {112} tii[10,24] := {115} tii[10,25] := {99} tii[10,26] := {103} tii[10,27] := {119} tii[10,28] := {17} tii[10,29] := {3, 81} tii[10,30] := {22} tii[10,31] := {35} tii[10,32] := {38} tii[10,33] := {86} tii[10,34] := {89} tii[10,35] := {33} tii[10,36] := {8, 111} tii[10,37] := {49} tii[10,38] := {15, 124} tii[10,39] := {53} tii[10,40] := {16, 126} tii[10,41] := {101} tii[10,42] := {52} tii[10,43] := {66} tii[10,44] := {11, 114} tii[10,45] := {105} tii[10,46] := {56} tii[10,47] := {69} tii[10,48] := {12, 117} tii[10,49] := {90} tii[10,50] := {91} tii[10,51] := {21, 130} tii[10,52] := {67} tii[10,53] := {70} tii[10,54] := {92} tii[10,55] := {44, 129} tii[10,56] := {23} tii[10,57] := {36} tii[10,58] := {39} tii[10,59] := {19, 125} tii[10,60] := {85} tii[10,61] := {50} tii[10,62] := {20, 127} tii[10,63] := {88} tii[10,64] := {54} tii[10,65] := {32, 136} tii[10,66] := {73} tii[10,67] := {75} tii[10,68] := {37} tii[10,69] := {84} tii[10,70] := {40} tii[10,71] := {87} tii[10,72] := {41, 138} tii[10,73] := {59} tii[10,74] := {60} tii[10,75] := {106} tii[10,76] := {61, 118} tii[10,77] := {93} tii[10,78] := {78, 128} tii[10,79] := {30} tii[10,80] := {31} tii[10,81] := {46} tii[10,82] := {51} tii[10,83] := {6, 100} tii[10,84] := {55} tii[10,85] := {7, 104} tii[10,86] := {74} tii[10,87] := {76} tii[10,88] := {57} tii[10,89] := {13, 120} tii[10,90] := {1, 79} tii[10,91] := {18, 108} tii[10,92] := {25} tii[10,93] := {27} tii[10,94] := {28, 135} tii[10,95] := {2, 94} tii[10,96] := {72} tii[10,97] := {42} tii[10,98] := {43} tii[10,99] := {77} tii[10,100] := {29, 121} tii[10,101] := {4, 109} tii[10,102] := {58} tii[10,103] := {45, 107} tii[10,104] := {9} tii[10,105] := {0, 62} cell#61 , |C| = 105 special orbit = [4, 4, 3, 1, 1, 1] special rep = [[2], [2, 2, 1]] , dim = 105 cell rep = phi[[2],[2, 2, 1]] TII depth = 3 TII multiplicity polynomial = 105*X TII subcells: tii[13,1] := {93} tii[13,2] := {54} tii[13,3] := {99} tii[13,4] := {79} tii[13,5] := {102} tii[13,6] := {104} tii[13,7] := {30} tii[13,8] := {46} tii[13,9] := {28} tii[13,10] := {29} tii[13,11] := {39} tii[13,12] := {47} tii[13,13] := {49} tii[13,14] := {53} tii[13,15] := {59} tii[13,16] := {74} tii[13,17] := {76} tii[13,18] := {44} tii[13,19] := {45} tii[13,20] := {60} tii[13,21] := {61} tii[13,22] := {63} tii[13,23] := {67} tii[13,24] := {37} tii[13,25] := {38} tii[13,26] := {73} tii[13,27] := {24} tii[13,28] := {85} tii[13,29] := {55} tii[13,30] := {25} tii[13,31] := {86} tii[13,32] := {57} tii[13,33] := {69} tii[13,34] := {71} tii[13,35] := {83} tii[13,36] := {84} tii[13,37] := {94} tii[13,38] := {95} tii[13,39] := {90} tii[13,40] := {91} tii[13,41] := {98} tii[13,42] := {103} tii[13,43] := {16} tii[13,44] := {17} tii[13,45] := {32} tii[13,46] := {7} tii[13,47] := {34} tii[13,48] := {8} tii[13,49] := {48} tii[13,50] := {50} tii[13,51] := {65} tii[13,52] := {21} tii[13,53] := {22} tii[13,54] := {18} tii[13,55] := {11} tii[13,56] := {41} tii[13,57] := {19} tii[13,58] := {13} tii[13,59] := {42} tii[13,60] := {56} tii[13,61] := {4} tii[13,62] := {62} tii[13,63] := {58} tii[13,64] := {5} tii[13,65] := {64} tii[13,66] := {72} tii[13,67] := {78} tii[13,68] := {15} tii[13,69] := {68} tii[13,70] := {70} tii[13,71] := {87} tii[13,72] := {82} tii[13,73] := {36} tii[13,74] := {89} tii[13,75] := {31} tii[13,76] := {33} tii[13,77] := {12} tii[13,78] := {75} tii[13,79] := {14} tii[13,80] := {77} tii[13,81] := {27} tii[13,82] := {88} tii[13,83] := {80} tii[13,84] := {81} tii[13,85] := {43} tii[13,86] := {96} tii[13,87] := {52} tii[13,88] := {92} tii[13,89] := {97} tii[13,90] := {66} tii[13,91] := {100} tii[13,92] := {101} tii[13,93] := {2} tii[13,94] := {3} tii[13,95] := {9} tii[13,96] := {0} tii[13,97] := {1} tii[13,98] := {20} tii[13,99] := {6} tii[13,100] := {10} tii[13,101] := {26} tii[13,102] := {35} tii[13,103] := {23} tii[13,104] := {51} tii[13,105] := {40} cell#62 , |C| = 63 special orbit = [3, 3, 3, 1, 1, 1, 1, 1] special rep = [[1], [2, 2, 1, 1]] , dim = 63 cell rep = phi[[1],[2, 2, 1, 1]] TII depth = 3 TII multiplicity polynomial = 63*X TII subcells: tii[9,1] := {62} tii[9,2] := {19} tii[9,3] := {58} tii[9,4] := {61} tii[9,5] := {13} tii[9,6] := {49} tii[9,7] := {9} tii[9,8] := {57} tii[9,9] := {60} tii[9,10] := {27} tii[9,11] := {14} tii[9,12] := {37} tii[9,13] := {50} tii[9,14] := {51} tii[9,15] := {6} tii[9,16] := {28} tii[9,17] := {40} tii[9,18] := {42} tii[9,19] := {29} tii[9,20] := {31} tii[9,21] := {43} tii[9,22] := {56} tii[9,23] := {20} tii[9,24] := {30} tii[9,25] := {32} tii[9,26] := {21} tii[9,27] := {22} tii[9,28] := {33} tii[9,29] := {15} tii[9,30] := {16} tii[9,31] := {5} tii[9,32] := {47} tii[9,33] := {26} tii[9,34] := {35} tii[9,35] := {55} tii[9,36] := {54} tii[9,37] := {39} tii[9,38] := {41} tii[9,39] := {52} tii[9,40] := {24} tii[9,41] := {25} tii[9,42] := {59} tii[9,43] := {8} tii[9,44] := {36} tii[9,45] := {46} tii[9,46] := {10} tii[9,47] := {11} tii[9,48] := {3} tii[9,49] := {12} tii[9,50] := {53} tii[9,51] := {17} tii[9,52] := {23} tii[9,53] := {48} tii[9,54] := {1} tii[9,55] := {34} tii[9,56] := {7} tii[9,57] := {44} tii[9,58] := {2} tii[9,59] := {38} tii[9,60] := {45} tii[9,61] := {18} tii[9,62] := {4} tii[9,63] := {0} cell#63 , |C| = 112 special orbit = [5, 3, 3, 1, 1, 1] special rep = [[1], [3, 2, 1]] , dim = 112 cell rep = phi[[1],[3, 2, 1]] TII depth = 3 TII multiplicity polynomial = 112*X TII subcells: tii[18,1] := {111} tii[18,2] := {101} tii[18,3] := {78} tii[18,4] := {109} tii[18,5] := {35} tii[18,6] := {97} tii[18,7] := {87} tii[18,8] := {108} tii[18,9] := {13} tii[18,10] := {69} tii[18,11] := {100} tii[18,12] := {59} tii[18,13] := {96} tii[18,14] := {57} tii[18,15] := {106} tii[18,16] := {55} tii[18,17] := {104} tii[18,18] := {110} tii[18,19] := {19} tii[18,20] := {45} tii[18,21] := {36} tii[18,22] := {83} tii[18,23] := {94} tii[18,24] := {102} tii[18,25] := {103} tii[18,26] := {7} tii[18,27] := {68} tii[18,28] := {65} tii[18,29] := {81} tii[18,30] := {82} tii[18,31] := {95} tii[18,32] := {58} tii[18,33] := {105} tii[18,34] := {27} tii[18,35] := {77} tii[18,36] := {88} tii[18,37] := {90} tii[18,38] := {5} tii[18,39] := {86} tii[18,40] := {56} tii[18,41] := {44} tii[18,42] := {70} tii[18,43] := {60} tii[18,44] := {72} tii[18,45] := {62} tii[18,46] := {48} tii[18,47] := {50} tii[18,48] := {67} tii[18,49] := {26} tii[18,50] := {37} tii[18,51] := {39} tii[18,52] := {21} tii[18,53] := {22} tii[18,54] := {92} tii[18,55] := {32} tii[18,56] := {43} tii[18,57] := {80} tii[18,58] := {20} tii[18,59] := {79} tii[18,60] := {89} tii[18,61] := {91} tii[18,62] := {71} tii[18,63] := {73} tii[18,64] := {85} tii[18,65] := {34} tii[18,66] := {47} tii[18,67] := {49} tii[18,68] := {30} tii[18,69] := {61} tii[18,70] := {31} tii[18,71] := {63} tii[18,72] := {24} tii[18,73] := {107} tii[18,74] := {46} tii[18,75] := {76} tii[18,76] := {15} tii[18,77] := {16} tii[18,78] := {51} tii[18,79] := {93} tii[18,80] := {3} tii[18,81] := {29} tii[18,82] := {17} tii[18,83] := {38} tii[18,84] := {40} tii[18,85] := {42} tii[18,86] := {98} tii[18,87] := {53} tii[18,88] := {8} tii[18,89] := {9} tii[18,90] := {74} tii[18,91] := {75} tii[18,92] := {2} tii[18,93] := {23} tii[18,94] := {84} tii[18,95] := {18} tii[18,96] := {54} tii[18,97] := {12} tii[18,98] := {6} tii[18,99] := {52} tii[18,100] := {25} tii[18,101] := {64} tii[18,102] := {11} tii[18,103] := {99} tii[18,104] := {41} tii[18,105] := {4} tii[18,106] := {10} tii[18,107] := {28} tii[18,108] := {66} tii[18,109] := {33} tii[18,110] := {1} tii[18,111] := {14} tii[18,112] := {0} cell#64 , |C| = 231 special orbit = [5, 3, 2, 2, 1, 1] special rep = [[1, 1], [3, 1, 1]] , dim = 126 cell rep = phi[[1, 1],[3, 1, 1]]+phi[[1, 1, 1],[3, 1]] TII depth = 4 TII multiplicity polynomial = 105*X^2+21*X TII subcells: tii[17,1] := {230} tii[17,2] := {225} tii[17,3] := {184} tii[17,4] := {163, 164} tii[17,5] := {91, 92} tii[17,6] := {228} tii[17,7] := {193, 194} tii[17,8] := {209} tii[17,9] := {84, 85} tii[17,10] := {223} tii[17,11] := {161, 162} tii[17,12] := {186, 187} tii[17,13] := {188, 189} tii[17,14] := {185} tii[17,15] := {119, 120} tii[17,16] := {133, 134} tii[17,17] := {141, 142} tii[17,18] := {137, 138} tii[17,19] := {145, 146} tii[17,20] := {215, 216} tii[17,21] := {229} tii[17,22] := {48, 49} tii[17,23] := {191, 192} tii[17,24] := {210, 211} tii[17,25] := {212, 213} tii[17,26] := {154} tii[17,27] := {82, 83} tii[17,28] := {181, 182} tii[17,29] := {93, 94} tii[17,30] := {195, 196} tii[17,31] := {101, 102} tii[17,32] := {199, 200} tii[17,33] := {99, 100} tii[17,34] := {217, 218} tii[17,35] := {107, 108} tii[17,36] := {219, 220} tii[17,37] := {226, 227} tii[17,38] := {117, 118} tii[17,39] := {131, 132} tii[17,40] := {139, 140} tii[17,41] := {62, 63} tii[17,42] := {167, 168} tii[17,43] := {70, 71} tii[17,44] := {173, 174} tii[17,45] := {203, 204} tii[17,46] := {95, 96} tii[17,47] := {103, 104} tii[17,48] := {147, 148} tii[17,49] := {8, 9} tii[17,50] := {129, 130} tii[17,51] := {26, 27} tii[17,52] := {56, 57} tii[17,53] := {64, 65} tii[17,54] := {207} tii[17,55] := {127, 128} tii[17,56] := {10, 11} tii[17,57] := {155, 156} tii[17,58] := {28, 29} tii[17,59] := {157, 158} tii[17,60] := {34, 35} tii[17,61] := {121, 122} tii[17,62] := {52, 53} tii[17,63] := {123, 124} tii[17,64] := {54, 55} tii[17,65] := {86, 87} tii[17,66] := {88, 89} tii[17,67] := {2, 3} tii[17,68] := {151, 152} tii[17,69] := {20, 21} tii[17,70] := {165, 166} tii[17,71] := {22, 23} tii[17,72] := {171, 172} tii[17,73] := {197, 198} tii[17,74] := {30, 31} tii[17,75] := {97, 98} tii[17,76] := {201, 202} tii[17,77] := {36, 37} tii[17,78] := {105, 106} tii[17,79] := {208} tii[17,80] := {221, 222} tii[17,81] := {74, 75} tii[17,82] := {78, 79} tii[17,83] := {58, 59} tii[17,84] := {169, 170} tii[17,85] := {66, 67} tii[17,86] := {175, 176} tii[17,87] := {160} tii[17,88] := {111, 112} tii[17,89] := {113, 114} tii[17,90] := {205, 206} tii[17,91] := {179, 180} tii[17,92] := {0, 1} tii[17,93] := {4, 5} tii[17,94] := {6, 7} tii[17,95] := {60, 61} tii[17,96] := {12, 13} tii[17,97] := {68, 69} tii[17,98] := {16, 17} tii[17,99] := {224} tii[17,100] := {40, 41} tii[17,101] := {44, 45} tii[17,102] := {32, 33} tii[17,103] := {135, 136} tii[17,104] := {38, 39} tii[17,105] := {143, 144} tii[17,106] := {125} tii[17,107] := {76, 77} tii[17,108] := {80, 81} tii[17,109] := {214} tii[17,110] := {177, 178} tii[17,111] := {149, 150} tii[17,112] := {14, 15} tii[17,113] := {18, 19} tii[17,114] := {159} tii[17,115] := {42, 43} tii[17,116] := {46, 47} tii[17,117] := {115, 116} tii[17,118] := {109, 110} tii[17,119] := {183} tii[17,120] := {72, 73} tii[17,121] := {153} tii[17,122] := {190} tii[17,123] := {50, 51} tii[17,124] := {126} tii[17,125] := {24, 25} tii[17,126] := {90} cell#65 , |C| = 112 special orbit = [5, 3, 3, 1, 1, 1] special rep = [[1], [3, 2, 1]] , dim = 112 cell rep = phi[[1],[3, 2, 1]] TII depth = 3 TII multiplicity polynomial = 112*X TII subcells: tii[18,1] := {110} tii[18,2] := {95} tii[18,3] := {31} tii[18,4] := {107} tii[18,5] := {34} tii[18,6] := {94} tii[18,7] := {82} tii[18,8] := {111} tii[18,9] := {10} tii[18,10] := {68} tii[18,11] := {108} tii[18,12] := {84} tii[18,13] := {48} tii[18,14] := {51} tii[18,15] := {103} tii[18,16] := {18} tii[18,17] := {65} tii[18,18] := {109} tii[18,19] := {21} tii[18,20] := {35} tii[18,21] := {12} tii[18,22] := {83} tii[18,23] := {81} tii[18,24] := {97} tii[18,25] := {98} tii[18,26] := {11} tii[18,27] := {96} tii[18,28] := {50} tii[18,29] := {70} tii[18,30] := {73} tii[18,31] := {47} tii[18,32] := {22} tii[18,33] := {102} tii[18,34] := {20} tii[18,35] := {66} tii[18,36] := {85} tii[18,37] := {87} tii[18,38] := {5} tii[18,39] := {104} tii[18,40] := {49} tii[18,41] := {32} tii[18,42] := {69} tii[18,43] := {52} tii[18,44] := {72} tii[18,45] := {56} tii[18,46] := {54} tii[18,47] := {58} tii[18,48] := {78} tii[18,49] := {19} tii[18,50] := {37} tii[18,51] := {40} tii[18,52] := {23} tii[18,53] := {25} tii[18,54] := {105} tii[18,55] := {44} tii[18,56] := {75} tii[18,57] := {36} tii[18,58] := {6} tii[18,59] := {67} tii[18,60] := {86} tii[18,61] := {88} tii[18,62] := {71} tii[18,63] := {74} tii[18,64] := {92} tii[18,65] := {33} tii[18,66] := {53} tii[18,67] := {57} tii[18,68] := {39} tii[18,69] := {55} tii[18,70] := {42} tii[18,71] := {59} tii[18,72] := {7} tii[18,73] := {106} tii[18,74] := {62} tii[18,75] := {79} tii[18,76] := {24} tii[18,77] := {26} tii[18,78] := {89} tii[18,79] := {91} tii[18,80] := {9} tii[18,81] := {45} tii[18,82] := {64} tii[18,83] := {38} tii[18,84] := {41} tii[18,85] := {15} tii[18,86] := {100} tii[18,87] := {61} tii[18,88] := {13} tii[18,89] := {14} tii[18,90] := {99} tii[18,91] := {76} tii[18,92] := {2} tii[18,93] := {28} tii[18,94] := {90} tii[18,95] := {30} tii[18,96] := {93} tii[18,97] := {46} tii[18,98] := {8} tii[18,99] := {60} tii[18,100] := {63} tii[18,101] := {27} tii[18,102] := {3} tii[18,103] := {101} tii[18,104] := {43} tii[18,105] := {0} tii[18,106] := {17} tii[18,107] := {29} tii[18,108] := {77} tii[18,109] := {80} tii[18,110] := {4} tii[18,111] := {16} tii[18,112] := {1} cell#66 , |C| = 147 special orbit = [5, 3, 2, 2, 1, 1] special rep = [[1, 1], [3, 1, 1]] , dim = 126 cell rep = phi[[],[3, 2, 2]]+phi[[1, 1],[3, 1, 1]] TII depth = 4 TII multiplicity polynomial = 105*X+21*X^2 TII subcells: tii[17,1] := {124, 146} tii[17,2] := {93, 142} tii[17,3] := {50, 126} tii[17,4] := {71} tii[17,5] := {75} tii[17,6] := {108, 144} tii[17,7] := {92} tii[17,8] := {72, 135} tii[17,9] := {54} tii[17,10] := {90, 141} tii[17,11] := {111} tii[17,12] := {128} tii[17,13] := {130} tii[17,14] := {51, 127} tii[17,15] := {74} tii[17,16] := {97} tii[17,17] := {101} tii[17,18] := {58} tii[17,19] := {62} tii[17,20] := {110} tii[17,21] := {109, 145} tii[17,22] := {31} tii[17,23] := {125} tii[17,24] := {137} tii[17,25] := {138} tii[17,26] := {29, 113} tii[17,27] := {52} tii[17,28] := {112} tii[17,29] := {76} tii[17,30] := {129} tii[17,31] := {80} tii[17,32] := {131} tii[17,33] := {35} tii[17,34] := {116} tii[17,35] := {39} tii[17,36] := {119} tii[17,37] := {134} tii[17,38] := {73} tii[17,39] := {96} tii[17,40] := {100} tii[17,41] := {18} tii[17,42] := {77} tii[17,43] := {23} tii[17,44] := {81} tii[17,45] := {105} tii[17,46] := {34} tii[17,47] := {38} tii[17,48] := {66} tii[17,49] := {0} tii[17,50] := {53} tii[17,51] := {4} tii[17,52] := {14} tii[17,53] := {19} tii[17,54] := {69, 136} tii[17,55] := {95} tii[17,56] := {13} tii[17,57] := {115} tii[17,58] := {32} tii[17,59] := {118} tii[17,60] := {36} tii[17,61] := {99} tii[17,62] := {55} tii[17,63] := {103} tii[17,64] := {59} tii[17,65] := {84} tii[17,66] := {85} tii[17,67] := {5} tii[17,68] := {94} tii[17,69] := {15} tii[17,70] := {114} tii[17,71] := {20} tii[17,72] := {117} tii[17,73] := {98} tii[17,74] := {33} tii[17,75] := {79} tii[17,76] := {102} tii[17,77] := {37} tii[17,78] := {83} tii[17,79] := {70, 139} tii[17,80] := {122} tii[17,81] := {64} tii[17,82] := {65} tii[17,83] := {17} tii[17,84] := {78} tii[17,85] := {22} tii[17,86] := {82} tii[17,87] := {48, 121} tii[17,88] := {43} tii[17,89] := {45} tii[17,90] := {106} tii[17,91] := {88} tii[17,92] := {1} tii[17,93] := {6} tii[17,94] := {8} tii[17,95] := {57} tii[17,96] := {16} tii[17,97] := {61} tii[17,98] := {21} tii[17,99] := {91, 143} tii[17,100] := {42} tii[17,101] := {44} tii[17,102] := {7} tii[17,103] := {56} tii[17,104] := {9} tii[17,105] := {60} tii[17,106] := {27, 104} tii[17,107] := {25} tii[17,108] := {26} tii[17,109] := {89, 140} tii[17,110] := {86} tii[17,111] := {67} tii[17,112] := {2} tii[17,113] := {3} tii[17,114] := {47, 120} tii[17,115] := {10} tii[17,116] := {11} tii[17,117] := {46} tii[17,118] := {40} tii[17,119] := {49, 133} tii[17,120] := {63} tii[17,121] := {30, 123} tii[17,122] := {68, 132} tii[17,123] := {41} tii[17,124] := {28, 107} tii[17,125] := {24} tii[17,126] := {12, 87} cell#67 , |C| = 147 special orbit = [5, 3, 2, 2, 1, 1] special rep = [[1, 1], [3, 1, 1]] , dim = 126 cell rep = phi[[],[3, 2, 2]]+phi[[1, 1],[3, 1, 1]] TII depth = 4 TII multiplicity polynomial = 105*X+21*X^2 TII subcells: tii[17,1] := {124, 146} tii[17,2] := {93, 142} tii[17,3] := {50, 126} tii[17,4] := {71} tii[17,5] := {75} tii[17,6] := {108, 144} tii[17,7] := {92} tii[17,8] := {72, 135} tii[17,9] := {54} tii[17,10] := {90, 141} tii[17,11] := {111} tii[17,12] := {128} tii[17,13] := {130} tii[17,14] := {51, 127} tii[17,15] := {74} tii[17,16] := {97} tii[17,17] := {101} tii[17,18] := {58} tii[17,19] := {62} tii[17,20] := {110} tii[17,21] := {109, 145} tii[17,22] := {31} tii[17,23] := {125} tii[17,24] := {137} tii[17,25] := {138} tii[17,26] := {29, 113} tii[17,27] := {52} tii[17,28] := {112} tii[17,29] := {76} tii[17,30] := {129} tii[17,31] := {80} tii[17,32] := {131} tii[17,33] := {35} tii[17,34] := {116} tii[17,35] := {39} tii[17,36] := {119} tii[17,37] := {134} tii[17,38] := {73} tii[17,39] := {96} tii[17,40] := {100} tii[17,41] := {18} tii[17,42] := {77} tii[17,43] := {23} tii[17,44] := {81} tii[17,45] := {105} tii[17,46] := {34} tii[17,47] := {38} tii[17,48] := {66} tii[17,49] := {0} tii[17,50] := {53} tii[17,51] := {4} tii[17,52] := {14} tii[17,53] := {19} tii[17,54] := {69, 136} tii[17,55] := {95} tii[17,56] := {13} tii[17,57] := {115} tii[17,58] := {32} tii[17,59] := {118} tii[17,60] := {36} tii[17,61] := {99} tii[17,62] := {55} tii[17,63] := {103} tii[17,64] := {59} tii[17,65] := {84} tii[17,66] := {85} tii[17,67] := {5} tii[17,68] := {94} tii[17,69] := {15} tii[17,70] := {114} tii[17,71] := {20} tii[17,72] := {117} tii[17,73] := {98} tii[17,74] := {33} tii[17,75] := {79} tii[17,76] := {102} tii[17,77] := {37} tii[17,78] := {83} tii[17,79] := {70, 139} tii[17,80] := {122} tii[17,81] := {64} tii[17,82] := {65} tii[17,83] := {17} tii[17,84] := {78} tii[17,85] := {22} tii[17,86] := {82} tii[17,87] := {48, 121} tii[17,88] := {43} tii[17,89] := {45} tii[17,90] := {106} tii[17,91] := {88} tii[17,92] := {1} tii[17,93] := {6} tii[17,94] := {8} tii[17,95] := {57} tii[17,96] := {16} tii[17,97] := {61} tii[17,98] := {21} tii[17,99] := {91, 143} tii[17,100] := {42} tii[17,101] := {44} tii[17,102] := {7} tii[17,103] := {56} tii[17,104] := {9} tii[17,105] := {60} tii[17,106] := {27, 104} tii[17,107] := {25} tii[17,108] := {26} tii[17,109] := {89, 140} tii[17,110] := {86} tii[17,111] := {67} tii[17,112] := {2} tii[17,113] := {3} tii[17,114] := {47, 120} tii[17,115] := {10} tii[17,116] := {11} tii[17,117] := {46} tii[17,118] := {40} tii[17,119] := {49, 133} tii[17,120] := {63} tii[17,121] := {30, 123} tii[17,122] := {68, 132} tii[17,123] := {41} tii[17,124] := {28, 107} tii[17,125] := {24} tii[17,126] := {12, 87} cell#68 , |C| = 20 special orbit = [7, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [4, 1, 1, 1]] , dim = 20 cell rep = phi[[],[4, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 20*X TII subcells: tii[24,1] := {19} tii[24,2] := {18} tii[24,3] := {17} tii[24,4] := {16} tii[24,5] := {14} tii[24,6] := {11} tii[24,7] := {13} tii[24,8] := {10} tii[24,9] := {7} tii[24,10] := {4} tii[24,11] := {15} tii[24,12] := {12} tii[24,13] := {9} tii[24,14] := {6} tii[24,15] := {8} tii[24,16] := {5} tii[24,17] := {3} tii[24,18] := {2} tii[24,19] := {1} tii[24,20] := {0} cell#69 , |C| = 105 special orbit = [5, 3, 1, 1, 1, 1, 1, 1] special rep = [[1], [3, 1, 1, 1]] , dim = 70 cell rep = phi[[],[3, 2, 1, 1]]+phi[[1],[3, 1, 1, 1]] TII depth = 2 TII multiplicity polynomial = 35*X^2+35*X TII subcells: tii[16,1] := {70, 102} tii[16,2] := {46, 93} tii[16,3] := {56, 104} tii[16,4] := {33, 85} tii[16,5] := {43, 101} tii[16,6] := {23, 91} tii[16,7] := {42, 103} tii[16,8] := {22, 74} tii[16,9] := {29, 99} tii[16,10] := {19, 94} tii[16,11] := {13, 82} tii[16,12] := {7, 75} tii[16,13] := {60} tii[16,14] := {57, 100} tii[16,15] := {73} tii[16,16] := {87} tii[16,17] := {88} tii[16,18] := {30, 97} tii[16,19] := {61} tii[16,20] := {76} tii[16,21] := {77} tii[16,22] := {63} tii[16,23] := {65} tii[16,24] := {80} tii[16,25] := {11, 86} tii[16,26] := {47} tii[16,27] := {62} tii[16,28] := {64} tii[16,29] := {49} tii[16,30] := {51} tii[16,31] := {32, 98} tii[16,32] := {68} tii[16,33] := {36} tii[16,34] := {38} tii[16,35] := {18, 83} tii[16,36] := {53} tii[16,37] := {59} tii[16,38] := {34} tii[16,39] := {48} tii[16,40] := {50} tii[16,41] := {35} tii[16,42] := {37} tii[16,43] := {20, 95} tii[16,44] := {52} tii[16,45] := {24} tii[16,46] := {25} tii[16,47] := {9, 71} tii[16,48] := {12, 89} tii[16,49] := {39} tii[16,50] := {8, 81} tii[16,51] := {44} tii[16,52] := {15} tii[16,53] := {16} tii[16,54] := {4, 66} tii[16,55] := {26} tii[16,56] := {2, 54} tii[16,57] := {31} tii[16,58] := {27} tii[16,59] := {45, 96} tii[16,60] := {21, 92} tii[16,61] := {41, 90} tii[16,62] := {14, 84} tii[16,63] := {6, 78} tii[16,64] := {28, 79} tii[16,65] := {3, 69} tii[16,66] := {10, 72} tii[16,67] := {1, 55} tii[16,68] := {17, 67} tii[16,69] := {5, 58} tii[16,70] := {0, 40} cell#70 , |C| = 105 special orbit = [4, 4, 3, 1, 1, 1] special rep = [[2], [2, 2, 1]] , dim = 105 cell rep = phi[[2],[2, 2, 1]] TII depth = 3 TII multiplicity polynomial = 105*X TII subcells: tii[13,1] := {104} tii[13,2] := {39} tii[13,3] := {101} tii[13,4] := {48} tii[13,5] := {99} tii[13,6] := {103} tii[13,7] := {57} tii[13,8] := {74} tii[13,9] := {63} tii[13,10] := {64} tii[13,11] := {24} tii[13,12] := {81} tii[13,13] := {83} tii[13,14] := {18} tii[13,15] := {86} tii[13,16] := {95} tii[13,17] := {96} tii[13,18] := {44} tii[13,19] := {46} tii[13,20] := {56} tii[13,21] := {65} tii[13,22] := {68} tii[13,23] := {29} tii[13,24] := {27} tii[13,25] := {28} tii[13,26] := {73} tii[13,27] := {19} tii[13,28] := {87} tii[13,29] := {50} tii[13,30] := {21} tii[13,31] := {89} tii[13,32] := {53} tii[13,33] := {58} tii[13,34] := {59} tii[13,35] := {79} tii[13,36] := {62} tii[13,37] := {80} tii[13,38] := {82} tii[13,39] := {67} tii[13,40] := {70} tii[13,41] := {84} tii[13,42] := {100} tii[13,43] := {45} tii[13,44] := {47} tii[13,45] := {66} tii[13,46] := {31} tii[13,47] := {69} tii[13,48] := {35} tii[13,49] := {76} tii[13,50] := {78} tii[13,51] := {92} tii[13,52] := {16} tii[13,53] := {17} tii[13,54] := {49} tii[13,55] := {8} tii[13,56] := {32} tii[13,57] := {52} tii[13,58] := {10} tii[13,59] := {36} tii[13,60] := {40} tii[13,61] := {4} tii[13,62] := {88} tii[13,63] := {41} tii[13,64] := {5} tii[13,65] := {90} tii[13,66] := {61} tii[13,67] := {98} tii[13,68] := {7} tii[13,69] := {33} tii[13,70] := {37} tii[13,71] := {102} tii[13,72] := {55} tii[13,73] := {12} tii[13,74] := {72} tii[13,75] := {30} tii[13,76] := {34} tii[13,77] := {9} tii[13,78] := {75} tii[13,79] := {11} tii[13,80] := {77} tii[13,81] := {15} tii[13,82] := {91} tii[13,83] := {51} tii[13,84] := {54} tii[13,85] := {25} tii[13,86] := {97} tii[13,87] := {23} tii[13,88] := {71} tii[13,89] := {85} tii[13,90] := {38} tii[13,91] := {93} tii[13,92] := {94} tii[13,93] := {20} tii[13,94] := {22} tii[13,95] := {26} tii[13,96] := {0} tii[13,97] := {1} tii[13,98] := {43} tii[13,99] := {3} tii[13,100] := {2} tii[13,101] := {14} tii[13,102] := {60} tii[13,103] := {6} tii[13,104] := {42} tii[13,105] := {13} cell#71 , |C| = 147 special orbit = [5, 3, 2, 2, 1, 1] special rep = [[1, 1], [3, 1, 1]] , dim = 126 cell rep = phi[[],[3, 2, 2]]+phi[[1, 1],[3, 1, 1]] TII depth = 4 TII multiplicity polynomial = 105*X+21*X^2 TII subcells: tii[17,1] := {87, 146} tii[17,2] := {132, 133} tii[17,3] := {89, 90} tii[17,4] := {76} tii[17,5] := {60} tii[17,6] := {57, 144} tii[17,7] := {102} tii[17,8] := {115, 116} tii[17,9] := {35} tii[17,10] := {34, 137} tii[17,11] := {114} tii[17,12] := {134} tii[17,13] := {135} tii[17,14] := {103, 104} tii[17,15] := {58} tii[17,16] := {91} tii[17,17] := {95} tii[17,18] := {93} tii[17,19] := {97} tii[17,20] := {113} tii[17,21] := {59, 143} tii[17,22] := {16} tii[17,23] := {126} tii[17,24] := {139} tii[17,25] := {141} tii[17,26] := {77, 78} tii[17,27] := {33} tii[17,28] := {106} tii[17,29] := {61} tii[17,30] := {127} tii[17,31] := {65} tii[17,32] := {129} tii[17,33] := {63} tii[17,34] := {140} tii[17,35] := {67} tii[17,36] := {142} tii[17,37] := {145} tii[17,38] := {55} tii[17,39] := {83} tii[17,40] := {84} tii[17,41] := {39} tii[17,42] := {108} tii[17,43] := {43} tii[17,44] := {110} tii[17,45] := {125} tii[17,46] := {64} tii[17,47] := {68} tii[17,48] := {86} tii[17,49] := {1} tii[17,50] := {50} tii[17,51] := {5} tii[17,52] := {14} tii[17,53] := {15} tii[17,54] := {17, 123} tii[17,55] := {88} tii[17,56] := {6} tii[17,57] := {117} tii[17,58] := {18} tii[17,59] := {119} tii[17,60] := {21} tii[17,61] := {92} tii[17,62] := {36} tii[17,63] := {96} tii[17,64] := {40} tii[17,65] := {71} tii[17,66] := {73} tii[17,67] := {2} tii[17,68] := {82} tii[17,69] := {7} tii[17,70] := {107} tii[17,71] := {10} tii[17,72] := {109} tii[17,73] := {128} tii[17,74] := {19} tii[17,75] := {62} tii[17,76] := {130} tii[17,77] := {22} tii[17,78] := {66} tii[17,79] := {75, 124} tii[17,80] := {138} tii[17,81] := {45} tii[17,82] := {47} tii[17,83] := {37} tii[17,84] := {118} tii[17,85] := {41} tii[17,86] := {120} tii[17,87] := {79, 80} tii[17,88] := {72} tii[17,89] := {74} tii[17,90] := {131} tii[17,91] := {111} tii[17,92] := {0} tii[17,93] := {3} tii[17,94] := {4} tii[17,95] := {38} tii[17,96] := {8} tii[17,97] := {42} tii[17,98] := {11} tii[17,99] := {101, 136} tii[17,100] := {25} tii[17,101] := {27} tii[17,102] := {20} tii[17,103] := {94} tii[17,104] := {23} tii[17,105] := {98} tii[17,106] := {51, 52} tii[17,107] := {46} tii[17,108] := {48} tii[17,109] := {121, 122} tii[17,110] := {112} tii[17,111] := {85} tii[17,112] := {9} tii[17,113] := {12} tii[17,114] := {69, 70} tii[17,115] := {26} tii[17,116] := {28} tii[17,117] := {56} tii[17,118] := {29} tii[17,119] := {49, 105} tii[17,120] := {44} tii[17,121] := {32, 81} tii[17,122] := {99, 100} tii[17,123] := {24} tii[17,124] := {53, 54} tii[17,125] := {13} tii[17,126] := {30, 31} cell#72 , |C| = 140 special orbit = [3, 3, 3, 3, 1, 1] special rep = [[1, 1], [2, 2, 1]] , dim = 105 cell rep = phi[[1],[2, 2, 2]]+phi[[1, 1],[2, 2, 1]] TII depth = 3 TII multiplicity polynomial = 35*X^2+70*X TII subcells: tii[10,1] := {55, 139} tii[10,2] := {91, 133} tii[10,3] := {75} tii[10,4] := {38, 138} tii[10,5] := {4, 109} tii[10,6] := {92} tii[10,7] := {56, 132} tii[10,8] := {107} tii[10,9] := {115} tii[10,10] := {118} tii[10,11] := {9, 114} tii[10,12] := {74} tii[10,13] := {76, 122} tii[10,14] := {14, 128} tii[10,15] := {90} tii[10,16] := {26, 134} tii[10,17] := {98} tii[10,18] := {28, 135} tii[10,19] := {102} tii[10,20] := {65} tii[10,21] := {68} tii[10,22] := {108} tii[10,23] := {116} tii[10,24] := {119} tii[10,25] := {99} tii[10,26] := {103} tii[10,27] := {111} tii[10,28] := {15} tii[10,29] := {2, 93} tii[10,30] := {25} tii[10,31] := {40} tii[10,32] := {42} tii[10,33] := {83} tii[10,34] := {86} tii[10,35] := {37} tii[10,36] := {8, 121} tii[10,37] := {57} tii[10,38] := {16, 129} tii[10,39] := {58} tii[10,40] := {18, 130} tii[10,41] := {100} tii[10,42] := {49} tii[10,43] := {64} tii[10,44] := {10, 117} tii[10,45] := {104} tii[10,46] := {52} tii[10,47] := {67} tii[10,48] := {11, 120} tii[10,49] := {88} tii[10,50] := {89} tii[10,51] := {20, 127} tii[10,52] := {66} tii[10,53] := {69} tii[10,54] := {81} tii[10,55] := {43, 125} tii[10,56] := {24} tii[10,57] := {39} tii[10,58] := {41} tii[10,59] := {17, 123} tii[10,60] := {82} tii[10,61] := {47} tii[10,62] := {19, 124} tii[10,63] := {85} tii[10,64] := {50} tii[10,65] := {31, 131} tii[10,66] := {70} tii[10,67] := {72} tii[10,68] := {33} tii[10,69] := {84} tii[10,70] := {34} tii[10,71] := {87} tii[10,72] := {44, 137} tii[10,73] := {53} tii[10,74] := {54} tii[10,75] := {97} tii[10,76] := {59, 110} tii[10,77] := {80} tii[10,78] := {77, 126} tii[10,79] := {27} tii[10,80] := {29} tii[10,81] := {45} tii[10,82] := {48} tii[10,83] := {5, 101} tii[10,84] := {51} tii[10,85] := {6, 105} tii[10,86] := {71} tii[10,87] := {73} tii[10,88] := {61} tii[10,89] := {13, 113} tii[10,90] := {1, 78} tii[10,91] := {21, 96} tii[10,92] := {22} tii[10,93] := {23} tii[10,94] := {30, 136} tii[10,95] := {3, 94} tii[10,96] := {79} tii[10,97] := {35} tii[10,98] := {36} tii[10,99] := {63} tii[10,100] := {32, 112} tii[10,101] := {7, 106} tii[10,102] := {60} tii[10,103] := {46, 95} tii[10,104] := {12} tii[10,105] := {0, 62} cell#73 , |C| = 105 special orbit = [5, 3, 1, 1, 1, 1, 1, 1] special rep = [[1], [3, 1, 1, 1]] , dim = 70 cell rep = phi[[],[3, 2, 1, 1]]+phi[[1],[3, 1, 1, 1]] TII depth = 2 TII multiplicity polynomial = 35*X^2+35*X TII subcells: tii[16,1] := {56, 103} tii[16,2] := {47, 95} tii[16,3] := {43, 102} tii[16,4] := {35, 86} tii[16,5] := {32, 99} tii[16,6] := {26, 83} tii[16,7] := {31, 104} tii[16,8] := {25, 74} tii[16,9] := {22, 101} tii[16,10] := {14, 96} tii[16,11] := {17, 69} tii[16,12] := {11, 75} tii[16,13] := {70} tii[16,14] := {44, 100} tii[16,15] := {76} tii[16,16] := {88} tii[16,17] := {89} tii[16,18] := {23, 92} tii[16,19] := {59} tii[16,20] := {77} tii[16,21] := {78} tii[16,22] := {61} tii[16,23] := {63} tii[16,24] := {79} tii[16,25] := {8, 87} tii[16,26] := {46} tii[16,27] := {60} tii[16,28] := {62} tii[16,29] := {49} tii[16,30] := {51} tii[16,31] := {24, 93} tii[16,32] := {64} tii[16,33] := {37} tii[16,34] := {39} tii[16,35] := {21, 71} tii[16,36] := {53} tii[16,37] := {67} tii[16,38] := {34} tii[16,39] := {48} tii[16,40] := {50} tii[16,41] := {36} tii[16,42] := {38} tii[16,43] := {15, 98} tii[16,44] := {52} tii[16,45] := {27} tii[16,46] := {28} tii[16,47] := {12, 57} tii[16,48] := {9, 91} tii[16,49] := {41} tii[16,50] := {5, 94} tii[16,51] := {54} tii[16,52] := {18} tii[16,53] := {19} tii[16,54] := {6, 66} tii[16,55] := {30} tii[16,56] := {3, 73} tii[16,57] := {42} tii[16,58] := {55} tii[16,59] := {33, 97} tii[16,60] := {16, 84} tii[16,61] := {40, 90} tii[16,62] := {10, 72} tii[16,63] := {4, 81} tii[16,64] := {29, 80} tii[16,65] := {2, 85} tii[16,66] := {13, 58} tii[16,67] := {0, 82} tii[16,68] := {20, 65} tii[16,69] := {7, 45} tii[16,70] := {1, 68} cell#74 , |C| = 63 special orbit = [3, 3, 3, 1, 1, 1, 1, 1] special rep = [[1], [2, 2, 1, 1]] , dim = 63 cell rep = phi[[1],[2, 2, 1, 1]] TII depth = 3 TII multiplicity polynomial = 63*X TII subcells: tii[9,1] := {62} tii[9,2] := {20} tii[9,3] := {59} tii[9,4] := {61} tii[9,5] := {12} tii[9,6] := {51} tii[9,7] := {7} tii[9,8] := {57} tii[9,9] := {52} tii[9,10] := {30} tii[9,11] := {13} tii[9,12] := {41} tii[9,13] := {53} tii[9,14] := {54} tii[9,15] := {4} tii[9,16] := {31} tii[9,17] := {42} tii[9,18] := {44} tii[9,19] := {33} tii[9,20] := {35} tii[9,21] := {48} tii[9,22] := {58} tii[9,23] := {21} tii[9,24] := {32} tii[9,25] := {34} tii[9,26] := {22} tii[9,27] := {24} tii[9,28] := {36} tii[9,29] := {14} tii[9,30] := {15} tii[9,31] := {5} tii[9,32] := {49} tii[9,33] := {26} tii[9,34] := {29} tii[9,35] := {46} tii[9,36] := {38} tii[9,37] := {43} tii[9,38] := {45} tii[9,39] := {56} tii[9,40] := {23} tii[9,41] := {25} tii[9,42] := {60} tii[9,43] := {11} tii[9,44] := {37} tii[9,45] := {40} tii[9,46] := {8} tii[9,47] := {9} tii[9,48] := {2} tii[9,49] := {18} tii[9,50] := {55} tii[9,51] := {16} tii[9,52] := {19} tii[9,53] := {50} tii[9,54] := {1} tii[9,55] := {17} tii[9,56] := {10} tii[9,57] := {47} tii[9,58] := {3} tii[9,59] := {39} tii[9,60] := {27} tii[9,61] := {28} tii[9,62] := {6} tii[9,63] := {0} cell#75 , |C| = 210 special orbit = [4, 4, 2, 2, 1, 1] special rep = [[2, 1], [2, 1, 1]] , dim = 210 cell rep = phi[[2, 1],[2, 1, 1]] TII depth = 5 TII multiplicity polynomial = 210*X TII subcells: tii[12,1] := {192} tii[12,2] := {154} tii[12,3] := {72} tii[12,4] := {71} tii[12,5] := {176} tii[12,6] := {99} tii[12,7] := {98} tii[12,8] := {122} tii[12,9] := {125} tii[12,10] := {157} tii[12,11] := {165} tii[12,12] := {155} tii[12,13] := {124} tii[12,14] := {127} tii[12,15] := {102} tii[12,16] := {159} tii[12,17] := {110} tii[12,18] := {167} tii[12,19] := {162} tii[12,20] := {169} tii[12,21] := {150} tii[12,22] := {152} tii[12,23] := {70} tii[12,24] := {69} tii[12,25] := {177} tii[12,26] := {182} tii[12,27] := {128} tii[12,28] := {174} tii[12,29] := {175} tii[12,30] := {94} tii[12,31] := {96} tii[12,32] := {156} tii[12,33] := {73} tii[12,34] := {131} tii[12,35] := {193} tii[12,36] := {163} tii[12,37] := {80} tii[12,38] := {140} tii[12,39] := {196} tii[12,40] := {31} tii[12,41] := {181} tii[12,42] := {203} tii[12,43] := {37} tii[12,44] := {186} tii[12,45] := {205} tii[12,46] := {208} tii[12,47] := {123} tii[12,48] := {126} tii[12,49] := {101} tii[12,50] := {158} tii[12,51] := {109} tii[12,52] := {166} tii[12,53] := {195} tii[12,54] := {76} tii[12,55] := {179} tii[12,56] := {198} tii[12,57] := {82} tii[12,58] := {184} tii[12,59] := {119} tii[12,60] := {199} tii[12,61] := {202} tii[12,62] := {204} tii[12,63] := {209} tii[12,64] := {4} tii[12,65] := {5} tii[12,66] := {12} tii[12,67] := {20} tii[12,68] := {95} tii[12,69] := {97} tii[12,70] := {10} tii[12,71] := {11} tii[12,72] := {28} tii[12,73] := {132} tii[12,74] := {74} tii[12,75] := {27} tii[12,76] := {33} tii[12,77] := {141} tii[12,78] := {81} tii[12,79] := {34} tii[12,80] := {53} tii[12,81] := {107} tii[12,82] := {49} tii[12,83] := {60} tii[12,84] := {115} tii[12,85] := {56} tii[12,86] := {89} tii[12,87] := {90} tii[12,88] := {25} tii[12,89] := {24} tii[12,90] := {151} tii[12,91] := {153} tii[12,92] := {100} tii[12,93] := {48} tii[12,94] := {47} tii[12,95] := {130} tii[12,96] := {178} tii[12,97] := {108} tii[12,98] := {54} tii[12,99] := {55} tii[12,100] := {137} tii[12,101] := {183} tii[12,102] := {79} tii[12,103] := {16} tii[12,104] := {29} tii[12,105] := {194} tii[12,106] := {103} tii[12,107] := {77} tii[12,108] := {135} tii[12,109] := {86} tii[12,110] := {21} tii[12,111] := {35} tii[12,112] := {197} tii[12,113] := {111} tii[12,114] := {83} tii[12,115] := {142} tii[12,116] := {66} tii[12,117] := {65} tii[12,118] := {206} tii[12,119] := {117} tii[12,120] := {118} tii[12,121] := {147} tii[12,122] := {104} tii[12,123] := {30} tii[12,124] := {180} tii[12,125] := {112} tii[12,126] := {36} tii[12,127] := {185} tii[12,128] := {67} tii[12,129] := {144} tii[12,130] := {145} tii[12,131] := {146} tii[12,132] := {200} tii[12,133] := {191} tii[12,134] := {45} tii[12,135] := {46} tii[12,136] := {129} tii[12,137] := {75} tii[12,138] := {26} tii[12,139] := {136} tii[12,140] := {85} tii[12,141] := {32} tii[12,142] := {133} tii[12,143] := {51} tii[12,144] := {106} tii[12,145] := {13} tii[12,146] := {105} tii[12,147] := {138} tii[12,148] := {58} tii[12,149] := {113} tii[12,150] := {17} tii[12,151] := {114} tii[12,152] := {41} tii[12,153] := {38} tii[12,154] := {173} tii[12,155] := {149} tii[12,156] := {148} tii[12,157] := {134} tii[12,158] := {6} tii[12,159] := {50} tii[12,160] := {161} tii[12,161] := {139} tii[12,162] := {7} tii[12,163] := {57} tii[12,164] := {168} tii[12,165] := {22} tii[12,166] := {23} tii[12,167] := {91} tii[12,168] := {187} tii[12,169] := {116} tii[12,170] := {171} tii[12,171] := {172} tii[12,172] := {190} tii[12,173] := {68} tii[12,174] := {201} tii[12,175] := {160} tii[12,176] := {164} tii[12,177] := {143} tii[12,178] := {188} tii[12,179] := {189} tii[12,180] := {207} tii[12,181] := {0} tii[12,182] := {2} tii[12,183] := {52} tii[12,184] := {14} tii[12,185] := {59} tii[12,186] := {18} tii[12,187] := {42} tii[12,188] := {39} tii[12,189] := {15} tii[12,190] := {78} tii[12,191] := {19} tii[12,192] := {84} tii[12,193] := {40} tii[12,194] := {43} tii[12,195] := {64} tii[12,196] := {63} tii[12,197] := {120} tii[12,198] := {93} tii[12,199] := {1} tii[12,200] := {3} tii[12,201] := {170} tii[12,202] := {8} tii[12,203] := {9} tii[12,204] := {88} tii[12,205] := {87} tii[12,206] := {44} tii[12,207] := {121} tii[12,208] := {62} tii[12,209] := {61} tii[12,210] := {92} cell#76 , |C| = 210 special orbit = [4, 4, 2, 2, 1, 1] special rep = [[2, 1], [2, 1, 1]] , dim = 210 cell rep = phi[[2, 1],[2, 1, 1]] TII depth = 5 TII multiplicity polynomial = 210*X TII subcells: tii[12,1] := {192} tii[12,2] := {154} tii[12,3] := {72} tii[12,4] := {71} tii[12,5] := {176} tii[12,6] := {99} tii[12,7] := {98} tii[12,8] := {122} tii[12,9] := {125} tii[12,10] := {157} tii[12,11] := {165} tii[12,12] := {155} tii[12,13] := {124} tii[12,14] := {127} tii[12,15] := {102} tii[12,16] := {159} tii[12,17] := {110} tii[12,18] := {167} tii[12,19] := {162} tii[12,20] := {169} tii[12,21] := {150} tii[12,22] := {152} tii[12,23] := {70} tii[12,24] := {69} tii[12,25] := {177} tii[12,26] := {182} tii[12,27] := {128} tii[12,28] := {174} tii[12,29] := {175} tii[12,30] := {94} tii[12,31] := {96} tii[12,32] := {156} tii[12,33] := {73} tii[12,34] := {131} tii[12,35] := {193} tii[12,36] := {163} tii[12,37] := {80} tii[12,38] := {140} tii[12,39] := {196} tii[12,40] := {31} tii[12,41] := {181} tii[12,42] := {203} tii[12,43] := {37} tii[12,44] := {186} tii[12,45] := {205} tii[12,46] := {208} tii[12,47] := {123} tii[12,48] := {126} tii[12,49] := {101} tii[12,50] := {158} tii[12,51] := {109} tii[12,52] := {166} tii[12,53] := {195} tii[12,54] := {76} tii[12,55] := {179} tii[12,56] := {198} tii[12,57] := {82} tii[12,58] := {184} tii[12,59] := {119} tii[12,60] := {199} tii[12,61] := {202} tii[12,62] := {204} tii[12,63] := {209} tii[12,64] := {4} tii[12,65] := {5} tii[12,66] := {12} tii[12,67] := {20} tii[12,68] := {95} tii[12,69] := {97} tii[12,70] := {10} tii[12,71] := {11} tii[12,72] := {28} tii[12,73] := {132} tii[12,74] := {74} tii[12,75] := {27} tii[12,76] := {33} tii[12,77] := {141} tii[12,78] := {81} tii[12,79] := {34} tii[12,80] := {53} tii[12,81] := {107} tii[12,82] := {49} tii[12,83] := {60} tii[12,84] := {115} tii[12,85] := {56} tii[12,86] := {89} tii[12,87] := {90} tii[12,88] := {25} tii[12,89] := {24} tii[12,90] := {151} tii[12,91] := {153} tii[12,92] := {100} tii[12,93] := {48} tii[12,94] := {47} tii[12,95] := {130} tii[12,96] := {178} tii[12,97] := {108} tii[12,98] := {54} tii[12,99] := {55} tii[12,100] := {137} tii[12,101] := {183} tii[12,102] := {79} tii[12,103] := {16} tii[12,104] := {29} tii[12,105] := {194} tii[12,106] := {103} tii[12,107] := {77} tii[12,108] := {135} tii[12,109] := {86} tii[12,110] := {21} tii[12,111] := {35} tii[12,112] := {197} tii[12,113] := {111} tii[12,114] := {83} tii[12,115] := {142} tii[12,116] := {66} tii[12,117] := {65} tii[12,118] := {206} tii[12,119] := {117} tii[12,120] := {118} tii[12,121] := {147} tii[12,122] := {104} tii[12,123] := {30} tii[12,124] := {180} tii[12,125] := {112} tii[12,126] := {36} tii[12,127] := {185} tii[12,128] := {67} tii[12,129] := {144} tii[12,130] := {145} tii[12,131] := {146} tii[12,132] := {200} tii[12,133] := {191} tii[12,134] := {45} tii[12,135] := {46} tii[12,136] := {129} tii[12,137] := {75} tii[12,138] := {26} tii[12,139] := {136} tii[12,140] := {85} tii[12,141] := {32} tii[12,142] := {133} tii[12,143] := {51} tii[12,144] := {106} tii[12,145] := {13} tii[12,146] := {105} tii[12,147] := {138} tii[12,148] := {58} tii[12,149] := {113} tii[12,150] := {17} tii[12,151] := {114} tii[12,152] := {41} tii[12,153] := {38} tii[12,154] := {173} tii[12,155] := {149} tii[12,156] := {148} tii[12,157] := {134} tii[12,158] := {6} tii[12,159] := {50} tii[12,160] := {161} tii[12,161] := {139} tii[12,162] := {7} tii[12,163] := {57} tii[12,164] := {168} tii[12,165] := {22} tii[12,166] := {23} tii[12,167] := {91} tii[12,168] := {187} tii[12,169] := {116} tii[12,170] := {171} tii[12,171] := {172} tii[12,172] := {190} tii[12,173] := {68} tii[12,174] := {201} tii[12,175] := {160} tii[12,176] := {164} tii[12,177] := {143} tii[12,178] := {188} tii[12,179] := {189} tii[12,180] := {207} tii[12,181] := {0} tii[12,182] := {2} tii[12,183] := {52} tii[12,184] := {14} tii[12,185] := {59} tii[12,186] := {18} tii[12,187] := {42} tii[12,188] := {39} tii[12,189] := {15} tii[12,190] := {78} tii[12,191] := {19} tii[12,192] := {84} tii[12,193] := {40} tii[12,194] := {43} tii[12,195] := {64} tii[12,196] := {63} tii[12,197] := {120} tii[12,198] := {93} tii[12,199] := {1} tii[12,200] := {3} tii[12,201] := {170} tii[12,202] := {8} tii[12,203] := {9} tii[12,204] := {88} tii[12,205] := {87} tii[12,206] := {44} tii[12,207] := {121} tii[12,208] := {62} tii[12,209] := {61} tii[12,210] := {92} cell#77 , |C| = 140 special orbit = [3, 3, 3, 3, 1, 1] special rep = [[1, 1], [2, 2, 1]] , dim = 105 cell rep = phi[[1],[2, 2, 2]]+phi[[1, 1],[2, 2, 1]] TII depth = 3 TII multiplicity polynomial = 35*X^2+70*X TII subcells: tii[10,1] := {85, 137} tii[10,2] := {117, 138} tii[10,3] := {30} tii[10,4] := {65, 130} tii[10,5] := {10, 63} tii[10,6] := {46} tii[10,7] := {84, 118} tii[10,8] := {62} tii[10,9] := {86} tii[10,10] := {90} tii[10,11] := {19, 83} tii[10,12] := {64} tii[10,13] := {101, 131} tii[10,14] := {29, 100} tii[10,15] := {82} tii[10,16] := {47, 120} tii[10,17] := {103} tii[10,18] := {51, 123} tii[10,19] := {108} tii[10,20] := {106} tii[10,21] := {111} tii[10,22] := {99} tii[10,23] := {119} tii[10,24] := {122} tii[10,25] := {132} tii[10,26] := {133} tii[10,27] := {139} tii[10,28] := {2} tii[10,29] := {5, 45} tii[10,30] := {4} tii[10,31] := {11} tii[10,32] := {13} tii[10,33] := {50} tii[10,34] := {54} tii[10,35] := {9} tii[10,36] := {18, 81} tii[10,37] := {20} tii[10,38] := {32, 102} tii[10,39] := {23} tii[10,40] := {36, 107} tii[10,41] := {68} tii[10,42] := {89} tii[10,43] := {33} tii[10,44] := {22, 87} tii[10,45] := {71} tii[10,46] := {93} tii[10,47] := {37} tii[10,48] := {25, 91} tii[10,49] := {58} tii[10,50] := {59} tii[10,51] := {43, 114} tii[10,52] := {105} tii[10,53] := {110} tii[10,54] := {128} tii[10,55] := {73, 113} tii[10,56] := {17} tii[10,57] := {31} tii[10,58] := {35} tii[10,59] := {34, 104} tii[10,60] := {88} tii[10,61] := {48} tii[10,62] := {38, 109} tii[10,63] := {92} tii[10,64] := {52} tii[10,65] := {60, 127} tii[10,66] := {75} tii[10,67] := {77} tii[10,68] := {66} tii[10,69] := {121} tii[10,70] := {69} tii[10,71] := {124} tii[10,72] := {74, 135} tii[10,73] := {95} tii[10,74] := {96} tii[10,75] := {136} tii[10,76] := {94, 126} tii[10,77] := {129} tii[10,78] := {112, 134} tii[10,79] := {6} tii[10,80] := {7} tii[10,81] := {16} tii[10,82] := {21} tii[10,83] := {12, 67} tii[10,84] := {24} tii[10,85] := {14, 70} tii[10,86] := {41} tii[10,87] := {42} tii[10,88] := {26} tii[10,89] := {27, 97} tii[10,90] := {3, 39} tii[10,91] := {44, 80} tii[10,92] := {49} tii[10,93] := {53} tii[10,94] := {57, 125} tii[10,95] := {8, 55} tii[10,96] := {40} tii[10,97] := {76} tii[10,98] := {78} tii[10,99] := {116} tii[10,100] := {61, 98} tii[10,101] := {15, 72} tii[10,102] := {56} tii[10,103] := {79, 115} tii[10,104] := {0} tii[10,105] := {1, 28} cell#78 , |C| = 105 special orbit = [5, 3, 1, 1, 1, 1, 1, 1] special rep = [[1], [3, 1, 1, 1]] , dim = 70 cell rep = phi[[],[3, 2, 1, 1]]+phi[[1],[3, 1, 1, 1]] TII depth = 2 TII multiplicity polynomial = 35*X^2+35*X TII subcells: tii[16,1] := {97, 98} tii[16,2] := {81, 82} tii[16,3] := {89, 103} tii[16,4] := {61, 62} tii[16,5] := {77, 99} tii[16,6] := {43, 80} tii[16,7] := {76, 100} tii[16,8] := {41, 42} tii[16,9] := {57, 95} tii[16,10] := {38, 85} tii[16,11] := {24, 60} tii[16,12] := {11, 48} tii[16,13] := {69} tii[16,14] := {90, 91} tii[16,15] := {47} tii[16,16] := {63} tii[16,17] := {64} tii[16,18] := {58, 92} tii[16,19] := {37} tii[16,20] := {49} tii[16,21] := {51} tii[16,22] := {71} tii[16,23] := {72} tii[16,24] := {87} tii[16,25] := {21, 70} tii[16,26] := {20} tii[16,27] := {29} tii[16,28] := {32} tii[16,29] := {50} tii[16,30] := {52} tii[16,31] := {59, 104} tii[16,32] := {74} tii[16,33] := {31} tii[16,34] := {34} tii[16,35] := {27, 93} tii[16,36] := {54} tii[16,37] := {68} tii[16,38] := {8} tii[16,39] := {14} tii[16,40] := {16} tii[16,41] := {30} tii[16,42] := {33} tii[16,43] := {39, 102} tii[16,44] := {53} tii[16,45] := {15} tii[16,46] := {17} tii[16,47] := {12, 83} tii[16,48] := {22, 96} tii[16,49] := {35} tii[16,50] := {10, 88} tii[16,51] := {46} tii[16,52] := {6} tii[16,53] := {7} tii[16,54] := {4, 73} tii[16,55] := {18} tii[16,56] := {2, 55} tii[16,57] := {28} tii[16,58] := {19} tii[16,59] := {78, 79} tii[16,60] := {40, 101} tii[16,61] := {65, 66} tii[16,62] := {23, 94} tii[16,63] := {9, 86} tii[16,64] := {44, 45} tii[16,65] := {3, 75} tii[16,66] := {13, 84} tii[16,67] := {1, 56} tii[16,68] := {25, 26} tii[16,69] := {5, 67} tii[16,70] := {0, 36} cell#79 , |C| = 84 special orbit = [4, 4, 1, 1, 1, 1, 1, 1] special rep = [[2], [2, 1, 1, 1]] , dim = 84 cell rep = phi[[2],[2, 1, 1, 1]] TII depth = 5 TII multiplicity polynomial = 84*X TII subcells: tii[11,1] := {65} tii[11,2] := {52} tii[11,3] := {62} tii[11,4] := {40} tii[11,5] := {48} tii[11,6] := {41} tii[11,7] := {36} tii[11,8] := {38} tii[11,9] := {53} tii[11,10] := {57} tii[11,11] := {50} tii[11,12] := {51} tii[11,13] := {42} tii[11,14] := {66} tii[11,15] := {44} tii[11,16] := {68} tii[11,17] := {75} tii[11,18] := {76} tii[11,19] := {81} tii[11,20] := {37} tii[11,21] := {39} tii[11,22] := {26} tii[11,23] := {54} tii[11,24] := {29} tii[11,25] := {58} tii[11,26] := {15} tii[11,27] := {67} tii[11,28] := {17} tii[11,29] := {69} tii[11,30] := {33} tii[11,31] := {77} tii[11,32] := {72} tii[11,33] := {73} tii[11,34] := {49} tii[11,35] := {79} tii[11,36] := {83} tii[11,37] := {23} tii[11,38] := {24} tii[11,39] := {14} tii[11,40] := {43} tii[11,41] := {16} tii[11,42] := {45} tii[11,43] := {7} tii[11,44] := {55} tii[11,45] := {9} tii[11,46] := {59} tii[11,47] := {18} tii[11,48] := {70} tii[11,49] := {2} tii[11,50] := {63} tii[11,51] := {3} tii[11,52] := {64} tii[11,53] := {34} tii[11,54] := {11} tii[11,55] := {74} tii[11,56] := {13} tii[11,57] := {80} tii[11,58] := {56} tii[11,59] := {60} tii[11,60] := {32} tii[11,61] := {71} tii[11,62] := {20} tii[11,63] := {78} tii[11,64] := {82} tii[11,65] := {25} tii[11,66] := {28} tii[11,67] := {27} tii[11,68] := {30} tii[11,69] := {47} tii[11,70] := {8} tii[11,71] := {10} tii[11,72] := {61} tii[11,73] := {19} tii[11,74] := {22} tii[11,75] := {0} tii[11,76] := {1} tii[11,77] := {46} tii[11,78] := {4} tii[11,79] := {6} tii[11,80] := {35} tii[11,81] := {5} tii[11,82] := {31} tii[11,83] := {21} tii[11,84] := {12} cell#80 , |C| = 63 special orbit = [3, 3, 3, 1, 1, 1, 1, 1] special rep = [[1], [2, 2, 1, 1]] , dim = 63 cell rep = phi[[1],[2, 2, 1, 1]] TII depth = 3 TII multiplicity polynomial = 63*X TII subcells: tii[9,1] := {52} tii[9,2] := {24} tii[9,3] := {58} tii[9,4] := {61} tii[9,5] := {15} tii[9,6] := {51} tii[9,7] := {10} tii[9,8] := {57} tii[9,9] := {62} tii[9,10] := {13} tii[9,11] := {16} tii[9,12] := {21} tii[9,13] := {33} tii[9,14] := {35} tii[9,15] := {5} tii[9,16] := {31} tii[9,17] := {43} tii[9,18] := {44} tii[9,19] := {39} tii[9,20] := {40} tii[9,21] := {50} tii[9,22] := {59} tii[9,23] := {20} tii[9,24] := {32} tii[9,25] := {34} tii[9,26] := {26} tii[9,27] := {28} tii[9,28] := {41} tii[9,29] := {17} tii[9,30] := {18} tii[9,31] := {4} tii[9,32] := {54} tii[9,33] := {30} tii[9,34] := {37} tii[9,35] := {60} tii[9,36] := {55} tii[9,37] := {22} tii[9,38] := {23} tii[9,39] := {36} tii[9,40] := {27} tii[9,41] := {29} tii[9,42] := {46} tii[9,43] := {9} tii[9,44] := {42} tii[9,45] := {48} tii[9,46] := {11} tii[9,47] := {12} tii[9,48] := {2} tii[9,49] := {14} tii[9,50] := {53} tii[9,51] := {19} tii[9,52] := {25} tii[9,53] := {56} tii[9,54] := {1} tii[9,55] := {38} tii[9,56] := {8} tii[9,57] := {45} tii[9,58] := {3} tii[9,59] := {47} tii[9,60] := {49} tii[9,61] := {7} tii[9,62] := {6} tii[9,63] := {0} cell#81 , |C| = 63 special orbit = [3, 3, 3, 1, 1, 1, 1, 1] special rep = [[1], [2, 2, 1, 1]] , dim = 63 cell rep = phi[[1],[2, 2, 1, 1]] TII depth = 3 TII multiplicity polynomial = 63*X TII subcells: tii[9,1] := {43} tii[9,2] := {31} tii[9,3] := {53} tii[9,4] := {59} tii[9,5] := {24} tii[9,6] := {49} tii[9,7] := {14} tii[9,8] := {54} tii[9,9] := {44} tii[9,10] := {5} tii[9,11] := {19} tii[9,12] := {9} tii[9,13] := {20} tii[9,14] := {21} tii[9,15] := {7} tii[9,16] := {18} tii[9,17] := {32} tii[9,18] := {34} tii[9,19] := {45} tii[9,20] := {46} tii[9,21] := {55} tii[9,22] := {62} tii[9,23] := {13} tii[9,24] := {25} tii[9,25] := {27} tii[9,26] := {37} tii[9,27] := {38} tii[9,28] := {50} tii[9,29] := {26} tii[9,30] := {28} tii[9,31] := {8} tii[9,32] := {61} tii[9,33] := {40} tii[9,34] := {51} tii[9,35] := {57} tii[9,36] := {52} tii[9,37] := {10} tii[9,38] := {11} tii[9,39] := {23} tii[9,40] := {33} tii[9,41] := {35} tii[9,42] := {36} tii[9,43] := {12} tii[9,44] := {48} tii[9,45] := {56} tii[9,46] := {15} tii[9,47] := {16} tii[9,48] := {3} tii[9,49] := {22} tii[9,50] := {47} tii[9,51] := {29} tii[9,52] := {41} tii[9,53] := {60} tii[9,54] := {1} tii[9,55] := {30} tii[9,56] := {17} tii[9,57] := {39} tii[9,58] := {4} tii[9,59] := {58} tii[9,60] := {42} tii[9,61] := {2} tii[9,62] := {6} tii[9,63] := {0} cell#82 , |C| = 98 special orbit = [3, 3, 2, 2, 1, 1, 1, 1] special rep = [[1, 1], [2, 1, 1, 1]] , dim = 84 cell rep = phi[[],[2, 2, 2, 1]]+phi[[1, 1],[2, 1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 70*X+14*X^2 TII subcells: tii[7,1] := {50, 90} tii[7,2] := {64, 95} tii[7,3] := {51, 97} tii[7,4] := {31} tii[7,5] := {37, 83} tii[7,6] := {46} tii[7,7] := {61} tii[7,8] := {62} tii[7,9] := {40} tii[7,10] := {43} tii[7,11] := {36, 94} tii[7,12] := {60} tii[7,13] := {74} tii[7,14] := {75} tii[7,15] := {24} tii[7,16] := {67} tii[7,17] := {26} tii[7,18] := {69} tii[7,19] := {81} tii[7,20] := {39} tii[7,21] := {42} tii[7,22] := {58} tii[7,23] := {73} tii[7,24] := {84} tii[7,25] := {85} tii[7,26] := {12} tii[7,27] := {79} tii[7,28] := {14} tii[7,29] := {80} tii[7,30] := {89} tii[7,31] := {68} tii[7,32] := {23} tii[7,33] := {70} tii[7,34] := {25} tii[7,35] := {34, 96} tii[7,36] := {44} tii[7,37] := {82} tii[7,38] := {88} tii[7,39] := {38} tii[7,40] := {41} tii[7,41] := {57} tii[7,42] := {65} tii[7,43] := {2} tii[7,44] := {8} tii[7,45] := {9} tii[7,46] := {47} tii[7,47] := {18} tii[7,48] := {48} tii[7,49] := {19} tii[7,50] := {32} tii[7,51] := {33} tii[7,52] := {11} tii[7,53] := {54} tii[7,54] := {13} tii[7,55] := {56} tii[7,56] := {27} tii[7,57] := {28} tii[7,58] := {22, 76} tii[7,59] := {72} tii[7,60] := {59} tii[7,61] := {53} tii[7,62] := {3} tii[7,63] := {55} tii[7,64] := {4} tii[7,65] := {21, 92} tii[7,66] := {35, 86} tii[7,67] := {15} tii[7,68] := {16} tii[7,69] := {71} tii[7,70] := {77} tii[7,71] := {17, 87} tii[7,72] := {45} tii[7,73] := {66} tii[7,74] := {0} tii[7,75] := {1} tii[7,76] := {49, 91} tii[7,77] := {5} tii[7,78] := {6} tii[7,79] := {30, 93} tii[7,80] := {29} tii[7,81] := {52} tii[7,82] := {20} tii[7,83] := {10, 63} tii[7,84] := {7, 78} cell#83 , |C| = 98 special orbit = [3, 3, 2, 2, 1, 1, 1, 1] special rep = [[1, 1], [2, 1, 1, 1]] , dim = 84 cell rep = phi[[],[2, 2, 2, 1]]+phi[[1, 1],[2, 1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 70*X+14*X^2 TII subcells: tii[7,1] := {50, 90} tii[7,2] := {64, 95} tii[7,3] := {51, 97} tii[7,4] := {31} tii[7,5] := {37, 83} tii[7,6] := {46} tii[7,7] := {61} tii[7,8] := {62} tii[7,9] := {40} tii[7,10] := {43} tii[7,11] := {36, 94} tii[7,12] := {60} tii[7,13] := {74} tii[7,14] := {75} tii[7,15] := {24} tii[7,16] := {67} tii[7,17] := {26} tii[7,18] := {69} tii[7,19] := {81} tii[7,20] := {39} tii[7,21] := {42} tii[7,22] := {58} tii[7,23] := {73} tii[7,24] := {84} tii[7,25] := {85} tii[7,26] := {12} tii[7,27] := {79} tii[7,28] := {14} tii[7,29] := {80} tii[7,30] := {89} tii[7,31] := {68} tii[7,32] := {23} tii[7,33] := {70} tii[7,34] := {25} tii[7,35] := {34, 96} tii[7,36] := {44} tii[7,37] := {82} tii[7,38] := {88} tii[7,39] := {38} tii[7,40] := {41} tii[7,41] := {57} tii[7,42] := {65} tii[7,43] := {2} tii[7,44] := {8} tii[7,45] := {9} tii[7,46] := {47} tii[7,47] := {18} tii[7,48] := {48} tii[7,49] := {19} tii[7,50] := {32} tii[7,51] := {33} tii[7,52] := {11} tii[7,53] := {54} tii[7,54] := {13} tii[7,55] := {56} tii[7,56] := {27} tii[7,57] := {28} tii[7,58] := {22, 76} tii[7,59] := {72} tii[7,60] := {59} tii[7,61] := {53} tii[7,62] := {3} tii[7,63] := {55} tii[7,64] := {4} tii[7,65] := {21, 92} tii[7,66] := {35, 86} tii[7,67] := {15} tii[7,68] := {16} tii[7,69] := {71} tii[7,70] := {77} tii[7,71] := {17, 87} tii[7,72] := {45} tii[7,73] := {66} tii[7,74] := {0} tii[7,75] := {1} tii[7,76] := {49, 91} tii[7,77] := {5} tii[7,78] := {6} tii[7,79] := {30, 93} tii[7,80] := {29} tii[7,81] := {52} tii[7,82] := {20} tii[7,83] := {10, 63} tii[7,84] := {7, 78} cell#84 , |C| = 15 special orbit = [5, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [3, 1, 1, 1, 1]] , dim = 15 cell rep = phi[[],[3, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 15*X TII subcells: tii[15,1] := {13} tii[15,2] := {11} tii[15,3] := {8} tii[15,4] := {5} tii[15,5] := {2} tii[15,6] := {14} tii[15,7] := {12} tii[15,8] := {10} tii[15,9] := {9} tii[15,10] := {7} tii[15,11] := {4} tii[15,12] := {6} tii[15,13] := {3} tii[15,14] := {1} tii[15,15] := {0} cell#85 , |C| = 49 special orbit = [3, 3, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [2, 1, 1, 1, 1]] , dim = 35 cell rep = phi[[],[2, 2, 1, 1, 1]]+phi[[1],[2, 1, 1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 14*X^2+21*X TII subcells: tii[6,1] := {18, 42} tii[6,2] := {14, 46} tii[6,3] := {10, 48} tii[6,4] := {7, 47} tii[6,5] := {24} tii[6,6] := {32} tii[6,7] := {33} tii[6,8] := {28} tii[6,9] := {29} tii[6,10] := {36} tii[6,11] := {21} tii[6,12] := {22} tii[6,13] := {9, 43} tii[6,14] := {30} tii[6,15] := {34} tii[6,16] := {15} tii[6,17] := {16} tii[6,18] := {6, 45} tii[6,19] := {23} tii[6,20] := {5, 41} tii[6,21] := {26} tii[6,22] := {31} tii[6,23] := {11} tii[6,24] := {12} tii[6,25] := {4, 44} tii[6,26] := {17} tii[6,27] := {2, 39} tii[6,28] := {19} tii[6,29] := {1, 35} tii[6,30] := {25} tii[6,31] := {20} tii[6,32] := {13, 38} tii[6,33] := {8, 40} tii[6,34] := {3, 37} tii[6,35] := {0, 27} cell#86 , |C| = 105 special orbit = [3, 3, 2, 2, 2, 2] special rep = [[1, 1, 1], [2, 1, 1]] , dim = 105 cell rep = phi[[1, 1, 1],[2, 1, 1]] TII depth = 4 TII multiplicity polynomial = 105*X TII subcells: tii[8,1] := {88} tii[8,2] := {97} tii[8,3] := {102} tii[8,4] := {103} tii[8,5] := {104} tii[8,6] := {91} tii[8,7] := {93} tii[8,8] := {64} tii[8,9] := {68} tii[8,10] := {18} tii[8,11] := {74} tii[8,12] := {29} tii[8,13] := {43} tii[8,14] := {44} tii[8,15] := {34} tii[8,16] := {37} tii[8,17] := {96} tii[8,18] := {42} tii[8,19] := {98} tii[8,20] := {59} tii[8,21] := {100} tii[8,22] := {60} tii[8,23] := {79} tii[8,24] := {22} tii[8,25] := {90} tii[8,26] := {62} tii[8,27] := {82} tii[8,28] := {24} tii[8,29] := {92} tii[8,30] := {66} tii[8,31] := {84} tii[8,32] := {86} tii[8,33] := {65} tii[8,34] := {33} tii[8,35] := {69} tii[8,36] := {36} tii[8,37] := {53} tii[8,38] := {55} tii[8,39] := {58} tii[8,40] := {75} tii[8,41] := {76} tii[8,42] := {13} tii[8,43] := {99} tii[8,44] := {78} tii[8,45] := {15} tii[8,46] := {101} tii[8,47] := {81} tii[8,48] := {94} tii[8,49] := {95} tii[8,50] := {63} tii[8,51] := {48} tii[8,52] := {21} tii[8,53] := {67} tii[8,54] := {51} tii[8,55] := {23} tii[8,56] := {85} tii[8,57] := {87} tii[8,58] := {38} tii[8,59] := {39} tii[8,60] := {32} tii[8,61] := {35} tii[8,62] := {52} tii[8,63] := {54} tii[8,64] := {0} tii[8,65] := {3} tii[8,66] := {4} tii[8,67] := {30} tii[8,68] := {9} tii[8,69] := {31} tii[8,70] := {10} tii[8,71] := {19} tii[8,72] := {20} tii[8,73] := {12} tii[8,74] := {80} tii[8,75] := {47} tii[8,76] := {14} tii[8,77] := {83} tii[8,78] := {50} tii[8,79] := {25} tii[8,80] := {26} tii[8,81] := {71} tii[8,82] := {73} tii[8,83] := {61} tii[8,84] := {57} tii[8,85] := {56} tii[8,86] := {46} tii[8,87] := {5} tii[8,88] := {49} tii[8,89] := {6} tii[8,90] := {77} tii[8,91] := {70} tii[8,92] := {16} tii[8,93] := {72} tii[8,94] := {17} tii[8,95] := {41} tii[8,96] := {40} tii[8,97] := {1} tii[8,98] := {2} tii[8,99] := {7} tii[8,100] := {8} tii[8,101] := {89} tii[8,102] := {28} tii[8,103] := {27} tii[8,104] := {11} tii[8,105] := {45} cell#87 , |C| = 105 special orbit = [3, 3, 2, 2, 2, 2] special rep = [[1, 1, 1], [2, 1, 1]] , dim = 105 cell rep = phi[[1, 1, 1],[2, 1, 1]] TII depth = 4 TII multiplicity polynomial = 105*X TII subcells: tii[8,1] := {88} tii[8,2] := {97} tii[8,3] := {102} tii[8,4] := {103} tii[8,5] := {104} tii[8,6] := {91} tii[8,7] := {93} tii[8,8] := {64} tii[8,9] := {68} tii[8,10] := {18} tii[8,11] := {74} tii[8,12] := {29} tii[8,13] := {43} tii[8,14] := {44} tii[8,15] := {34} tii[8,16] := {37} tii[8,17] := {96} tii[8,18] := {42} tii[8,19] := {98} tii[8,20] := {59} tii[8,21] := {100} tii[8,22] := {60} tii[8,23] := {79} tii[8,24] := {22} tii[8,25] := {90} tii[8,26] := {62} tii[8,27] := {82} tii[8,28] := {24} tii[8,29] := {92} tii[8,30] := {66} tii[8,31] := {84} tii[8,32] := {86} tii[8,33] := {65} tii[8,34] := {33} tii[8,35] := {69} tii[8,36] := {36} tii[8,37] := {53} tii[8,38] := {55} tii[8,39] := {58} tii[8,40] := {75} tii[8,41] := {76} tii[8,42] := {13} tii[8,43] := {99} tii[8,44] := {78} tii[8,45] := {15} tii[8,46] := {101} tii[8,47] := {81} tii[8,48] := {94} tii[8,49] := {95} tii[8,50] := {63} tii[8,51] := {48} tii[8,52] := {21} tii[8,53] := {67} tii[8,54] := {51} tii[8,55] := {23} tii[8,56] := {85} tii[8,57] := {87} tii[8,58] := {38} tii[8,59] := {39} tii[8,60] := {32} tii[8,61] := {35} tii[8,62] := {52} tii[8,63] := {54} tii[8,64] := {0} tii[8,65] := {3} tii[8,66] := {4} tii[8,67] := {30} tii[8,68] := {9} tii[8,69] := {31} tii[8,70] := {10} tii[8,71] := {19} tii[8,72] := {20} tii[8,73] := {12} tii[8,74] := {80} tii[8,75] := {47} tii[8,76] := {14} tii[8,77] := {83} tii[8,78] := {50} tii[8,79] := {25} tii[8,80] := {26} tii[8,81] := {71} tii[8,82] := {73} tii[8,83] := {61} tii[8,84] := {57} tii[8,85] := {56} tii[8,86] := {46} tii[8,87] := {5} tii[8,88] := {49} tii[8,89] := {6} tii[8,90] := {77} tii[8,91] := {70} tii[8,92] := {16} tii[8,93] := {72} tii[8,94] := {17} tii[8,95] := {41} tii[8,96] := {40} tii[8,97] := {1} tii[8,98] := {2} tii[8,99] := {7} tii[8,100] := {8} tii[8,101] := {89} tii[8,102] := {28} tii[8,103] := {27} tii[8,104] := {11} tii[8,105] := {45} cell#88 , |C| = 63 special orbit = [3, 3, 3, 1, 1, 1, 1, 1] special rep = [[1], [2, 2, 1, 1]] , dim = 63 cell rep = phi[[1],[2, 2, 1, 1]] TII depth = 3 TII multiplicity polynomial = 63*X TII subcells: tii[9,1] := {60} tii[9,2] := {19} tii[9,3] := {55} tii[9,4] := {61} tii[9,5] := {12} tii[9,6] := {47} tii[9,7] := {7} tii[9,8] := {56} tii[9,9] := {62} tii[9,10] := {28} tii[9,11] := {13} tii[9,12] := {37} tii[9,13] := {48} tii[9,14] := {49} tii[9,15] := {4} tii[9,16] := {27} tii[9,17] := {38} tii[9,18] := {40} tii[9,19] := {30} tii[9,20] := {32} tii[9,21] := {43} tii[9,22] := {57} tii[9,23] := {18} tii[9,24] := {29} tii[9,25] := {31} tii[9,26] := {20} tii[9,27] := {22} tii[9,28] := {33} tii[9,29] := {14} tii[9,30] := {15} tii[9,31] := {5} tii[9,32] := {50} tii[9,33] := {25} tii[9,34] := {35} tii[9,35] := {58} tii[9,36] := {53} tii[9,37] := {39} tii[9,38] := {41} tii[9,39] := {52} tii[9,40] := {21} tii[9,41] := {23} tii[9,42] := {59} tii[9,43] := {11} tii[9,44] := {34} tii[9,45] := {45} tii[9,46] := {8} tii[9,47] := {9} tii[9,48] := {2} tii[9,49] := {16} tii[9,50] := {51} tii[9,51] := {17} tii[9,52] := {26} tii[9,53] := {54} tii[9,54] := {1} tii[9,55] := {36} tii[9,56] := {10} tii[9,57] := {42} tii[9,58] := {3} tii[9,59] := {44} tii[9,60] := {46} tii[9,61] := {24} tii[9,62] := {6} tii[9,63] := {0} cell#89 , |C| = 15 special orbit = [5, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [3, 1, 1, 1, 1]] , dim = 15 cell rep = phi[[],[3, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 15*X TII subcells: tii[15,1] := {14} tii[15,2] := {13} tii[15,3] := {11} tii[15,4] := {9} tii[15,5] := {6} tii[15,6] := {12} tii[15,7] := {10} tii[15,8] := {8} tii[15,9] := {7} tii[15,10] := {5} tii[15,11] := {3} tii[15,12] := {4} tii[15,13] := {2} tii[15,14] := {1} tii[15,15] := {0} cell#90 , |C| = 98 special orbit = [3, 3, 2, 2, 1, 1, 1, 1] special rep = [[1, 1], [2, 1, 1, 1]] , dim = 84 cell rep = phi[[],[2, 2, 2, 1]]+phi[[1, 1],[2, 1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 70*X+14*X^2 TII subcells: tii[7,1] := {67, 97} tii[7,2] := {60, 96} tii[7,3] := {42, 93} tii[7,4] := {61} tii[7,5] := {50, 95} tii[7,6] := {74} tii[7,7] := {83} tii[7,8] := {85} tii[7,9] := {51} tii[7,10] := {53} tii[7,11] := {23, 82} tii[7,12] := {81} tii[7,13] := {89} tii[7,14] := {90} tii[7,15] := {32} tii[7,16] := {77} tii[7,17] := {35} tii[7,18] := {78} tii[7,19] := {88} tii[7,20] := {46} tii[7,21] := {47} tii[7,22] := {62} tii[7,23] := {75} tii[7,24] := {84} tii[7,25] := {86} tii[7,26] := {13} tii[7,27] := {68} tii[7,28] := {16} tii[7,29] := {70} tii[7,30] := {79} tii[7,31] := {52} tii[7,32] := {27} tii[7,33] := {54} tii[7,34] := {28} tii[7,35] := {26, 87} tii[7,36] := {45} tii[7,37] := {66} tii[7,38] := {59} tii[7,39] := {14} tii[7,40] := {17} tii[7,41] := {30} tii[7,42] := {21} tii[7,43] := {9} tii[7,44] := {24} tii[7,45] := {25} tii[7,46] := {69} tii[7,47] := {31} tii[7,48] := {71} tii[7,49] := {34} tii[7,50] := {56} tii[7,51] := {57} tii[7,52] := {12} tii[7,53] := {63} tii[7,54] := {15} tii[7,55] := {64} tii[7,56] := {38} tii[7,57] := {39} tii[7,58] := {37, 91} tii[7,59] := {76} tii[7,60] := {65} tii[7,61] := {33} tii[7,62] := {4} tii[7,63] := {36} tii[7,64] := {5} tii[7,65] := {10, 72} tii[7,66] := {55, 94} tii[7,67] := {18} tii[7,68] := {19} tii[7,69] := {49} tii[7,70] := {40} tii[7,71] := {3, 58} tii[7,72] := {48} tii[7,73] := {22} tii[7,74] := {1} tii[7,75] := {2} tii[7,76] := {43, 92} tii[7,77] := {6} tii[7,78] := {7} tii[7,79] := {11, 73} tii[7,80] := {29} tii[7,81] := {8} tii[7,82] := {44} tii[7,83] := {20, 80} tii[7,84] := {0, 41} cell#91 , |C| = 49 special orbit = [3, 3, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [2, 1, 1, 1, 1]] , dim = 35 cell rep = phi[[],[2, 2, 1, 1, 1]]+phi[[1],[2, 1, 1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 14*X^2+21*X TII subcells: tii[6,1] := {29, 48} tii[6,2] := {21, 45} tii[6,3] := {13, 47} tii[6,4] := {6, 46} tii[6,5] := {36} tii[6,6] := {39} tii[6,7] := {40} tii[6,8] := {32} tii[6,9] := {33} tii[6,10] := {38} tii[6,11] := {25} tii[6,12] := {26} tii[6,13] := {14, 41} tii[6,14] := {31} tii[6,15] := {27} tii[6,16] := {17} tii[6,17] := {18} tii[6,18] := {7, 43} tii[6,19] := {24} tii[6,20] := {5, 37} tii[6,21] := {19} tii[6,22] := {23} tii[6,23] := {9} tii[6,24] := {10} tii[6,25] := {4, 42} tii[6,26] := {16} tii[6,27] := {2, 34} tii[6,28] := {11} tii[6,29] := {1, 28} tii[6,30] := {15} tii[6,31] := {12} tii[6,32] := {22, 44} tii[6,33] := {8, 35} tii[6,34] := {3, 30} tii[6,35] := {0, 20} cell#92 , |C| = 98 special orbit = [3, 3, 2, 2, 1, 1, 1, 1] special rep = [[1, 1], [2, 1, 1, 1]] , dim = 84 cell rep = phi[[],[2, 2, 2, 1]]+phi[[1, 1],[2, 1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 70*X+14*X^2 TII subcells: tii[7,1] := {41, 79} tii[7,2] := {55, 86} tii[7,3] := {73, 94} tii[7,4] := {6} tii[7,5] := {26, 61} tii[7,6] := {14} tii[7,7] := {27} tii[7,8] := {30} tii[7,9] := {29} tii[7,10] := {32} tii[7,11] := {60, 87} tii[7,12] := {25} tii[7,13] := {43} tii[7,14] := {47} tii[7,15] := {46} tii[7,16] := {64} tii[7,17] := {50} tii[7,18] := {67} tii[7,19] := {82} tii[7,20] := {62} tii[7,21] := {65} tii[7,22] := {83} tii[7,23] := {38} tii[7,24] := {56} tii[7,25] := {57} tii[7,26] := {28} tii[7,27] := {74} tii[7,28] := {31} tii[7,29] := {75} tii[7,30] := {90} tii[7,31] := {88} tii[7,32] := {44} tii[7,33] := {89} tii[7,34] := {48} tii[7,35] := {59, 85} tii[7,36] := {70} tii[7,37] := {95} tii[7,38] := {97} tii[7,39] := {63} tii[7,40] := {66} tii[7,41] := {84} tii[7,42] := {92} tii[7,43] := {0} tii[7,44] := {1} tii[7,45] := {2} tii[7,46] := {16} tii[7,47] := {3} tii[7,48] := {18} tii[7,49] := {4} tii[7,50] := {11} tii[7,51] := {12} tii[7,52] := {8} tii[7,53] := {45} tii[7,54] := {10} tii[7,55] := {49} tii[7,56] := {21} tii[7,57] := {23} tii[7,58] := {19, 51} tii[7,59] := {69} tii[7,60] := {52} tii[7,61] := {80} tii[7,62] := {15} tii[7,63] := {81} tii[7,64] := {17} tii[7,65] := {54, 76} tii[7,66] := {33, 68} tii[7,67] := {34} tii[7,68] := {35} tii[7,69] := {93} tii[7,70] := {96} tii[7,71] := {37, 58} tii[7,72] := {71} tii[7,73] := {91} tii[7,74] := {7} tii[7,75] := {9} tii[7,76] := {39, 77} tii[7,77] := {20} tii[7,78] := {22} tii[7,79] := {42, 72} tii[7,80] := {53} tii[7,81] := {78} tii[7,82] := {5} tii[7,83] := {13, 36} tii[7,84] := {24, 40} cell#93 , |C| = 35 special orbit = [2, 2, 2, 2, 2, 2, 1, 1] special rep = [[1, 1, 1], [1, 1, 1, 1]] , dim = 35 cell rep = phi[[1, 1, 1],[1, 1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 35*X TII subcells: tii[4,1] := {20} tii[4,2] := {21} tii[4,3] := {26} tii[4,4] := {28} tii[4,5] := {30} tii[4,6] := {31} tii[4,7] := {34} tii[4,8] := {4} tii[4,9] := {5} tii[4,10] := {15} tii[4,11] := {6} tii[4,12] := {17} tii[4,13] := {7} tii[4,14] := {12} tii[4,15] := {13} tii[4,16] := {25} tii[4,17] := {10} tii[4,18] := {27} tii[4,19] := {11} tii[4,20] := {18} tii[4,21] := {19} tii[4,22] := {32} tii[4,23] := {29} tii[4,24] := {14} tii[4,25] := {16} tii[4,26] := {22} tii[4,27] := {23} tii[4,28] := {33} tii[4,29] := {0} tii[4,30] := {1} tii[4,31] := {2} tii[4,32] := {3} tii[4,33] := {9} tii[4,34] := {8} tii[4,35] := {24} cell#94 , |C| = 35 special orbit = [2, 2, 2, 2, 2, 2, 1, 1] special rep = [[1, 1, 1], [1, 1, 1, 1]] , dim = 35 cell rep = phi[[1, 1, 1],[1, 1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 35*X TII subcells: tii[4,1] := {20} tii[4,2] := {21} tii[4,3] := {26} tii[4,4] := {28} tii[4,5] := {30} tii[4,6] := {31} tii[4,7] := {34} tii[4,8] := {4} tii[4,9] := {5} tii[4,10] := {15} tii[4,11] := {6} tii[4,12] := {17} tii[4,13] := {7} tii[4,14] := {12} tii[4,15] := {13} tii[4,16] := {25} tii[4,17] := {10} tii[4,18] := {27} tii[4,19] := {11} tii[4,20] := {18} tii[4,21] := {19} tii[4,22] := {32} tii[4,23] := {29} tii[4,24] := {14} tii[4,25] := {16} tii[4,26] := {22} tii[4,27] := {23} tii[4,28] := {33} tii[4,29] := {0} tii[4,30] := {1} tii[4,31] := {2} tii[4,32] := {3} tii[4,33] := {9} tii[4,34] := {8} tii[4,35] := {24} cell#95 , |C| = 49 special orbit = [3, 3, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [2, 1, 1, 1, 1]] , dim = 35 cell rep = phi[[],[2, 2, 1, 1, 1]]+phi[[1],[2, 1, 1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 14*X^2+21*X TII subcells: tii[6,1] := {19, 33} tii[6,2] := {14, 40} tii[6,3] := {9, 34} tii[6,4] := {6, 41} tii[6,5] := {13} tii[6,6] := {20} tii[6,7] := {22} tii[6,8] := {26} tii[6,9] := {27} tii[6,10] := {35} tii[6,11] := {21} tii[6,12] := {23} tii[6,13] := {12, 47} tii[6,14] := {29} tii[6,15] := {36} tii[6,16] := {15} tii[6,17] := {16} tii[6,18] := {7, 45} tii[6,19] := {24} tii[6,20] := {5, 39} tii[6,21] := {30} tii[6,22] := {37} tii[6,23] := {10} tii[6,24] := {11} tii[6,25] := {4, 48} tii[6,26] := {18} tii[6,27] := {2, 43} tii[6,28] := {25} tii[6,29] := {1, 46} tii[6,30] := {31} tii[6,31] := {38} tii[6,32] := {17, 28} tii[6,33] := {8, 42} tii[6,34] := {3, 32} tii[6,35] := {0, 44} cell#96 , |C| = 6 special orbit = [3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [2, 1, 1, 1, 1, 1]] , dim = 6 cell rep = phi[[],[2, 1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 6*X TII subcells: tii[5,1] := {5} tii[5,2] := {4} tii[5,3] := {3} tii[5,4] := {2} tii[5,5] := {1} tii[5,6] := {0} cell#97 , |C| = 6 special orbit = [3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [2, 1, 1, 1, 1, 1]] , dim = 6 cell rep = phi[[],[2, 1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 6*X TII subcells: tii[5,1] := {5} tii[5,2] := {4} tii[5,3] := {3} tii[5,4] := {2} tii[5,5] := {1} tii[5,6] := {0} cell#98 , |C| = 21 special orbit = [2, 2, 2, 2, 1, 1, 1, 1, 1, 1] special rep = [[1, 1], [1, 1, 1, 1, 1]] , dim = 21 cell rep = phi[[1, 1],[1, 1, 1, 1, 1]] TII depth = 2 TII multiplicity polynomial = 21*X TII subcells: tii[3,1] := {4} tii[3,2] := {5} tii[3,3] := {6} tii[3,4] := {8} tii[3,5] := {14} tii[3,6] := {12} tii[3,7] := {13} tii[3,8] := {17} tii[3,9] := {20} tii[3,10] := {7} tii[3,11] := {9} tii[3,12] := {15} tii[3,13] := {19} tii[3,14] := {16} tii[3,15] := {0} tii[3,16] := {1} tii[3,17] := {2} tii[3,18] := {3} tii[3,19] := {10} tii[3,20] := {18} tii[3,21] := {11} cell#99 , |C| = 7 special orbit = [2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [1, 1, 1, 1, 1, 1]] , dim = 7 cell rep = phi[[1],[1, 1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 7*X TII subcells: tii[2,1] := {0} tii[2,2] := {1} tii[2,3] := {2} tii[2,4] := {6} tii[2,5] := {3} tii[2,6] := {5} tii[2,7] := {4} cell#100 , |C| = 1 special orbit = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [1, 1, 1, 1, 1, 1, 1]] , dim = 1 cell rep = phi[[],[1, 1, 1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = X TII subcells: tii[1,1] := {0}