TII subcells for the Spin(9,5) x PSO(10,4) block of Spin14 # cell#0 , |C| = 6 special orbit = [11, 1, 1, 1] special rep = [[], [6, 1]] , dim = 6 cell rep = phi[[],[6, 1]] TII depth = 1 TII multiplicity polynomial = 6*X TII subcells: tii[33,1] := {0} tii[33,2] := {2} tii[33,3] := {1} tii[33,4] := {3} tii[33,5] := {4} tii[33,6] := {5} cell#1 , |C| = 49 special orbit = [9, 3, 1, 1] special rep = [[1], [5, 1]] , dim = 35 cell rep = phi[[],[5, 2]]+phi[[1],[5, 1]] TII depth = 3 TII multiplicity polynomial = 14*X^2+21*X TII subcells: tii[31,1] := {12, 44} tii[31,2] := {10, 48} tii[31,3] := {20, 46} tii[31,4] := {32, 45} tii[31,5] := {0} tii[31,6] := {7, 38} tii[31,7] := {1} tii[31,8] := {2, 37} tii[31,9] := {3} tii[31,10] := {6, 31} tii[31,11] := {8} tii[31,12] := {16} tii[31,13] := {17} tii[31,14] := {5} tii[31,15] := {11} tii[31,16] := {4, 43} tii[31,17] := {9, 36} tii[31,18] := {14} tii[31,19] := {22} tii[31,20] := {23} tii[31,21] := {18} tii[31,22] := {15, 42} tii[31,23] := {21} tii[31,24] := {27} tii[31,25] := {28} tii[31,26] := {26} tii[31,27] := {33} tii[31,28] := {34} tii[31,29] := {39} tii[31,30] := {40} tii[31,31] := {47} tii[31,32] := {13, 24} tii[31,33] := {19, 30} tii[31,34] := {25, 35} tii[31,35] := {29, 41} cell#2 , |C| = 15 special orbit = [9, 1, 1, 1, 1, 1] special rep = [[], [5, 1, 1]] , dim = 15 cell rep = phi[[],[5, 1, 1]] TII depth = 1 TII multiplicity polynomial = 15*X TII subcells: tii[30,1] := {4} tii[30,2] := {1} tii[30,3] := {3} tii[30,4] := {7} tii[30,5] := {0} tii[30,6] := {2} tii[30,7] := {5} tii[30,8] := {6} tii[30,9] := {8} tii[30,10] := {11} tii[30,11] := {10} tii[30,12] := {9} tii[30,13] := {12} tii[30,14] := {13} tii[30,15] := {14} cell#3 , |C| = 63 special orbit = [7, 3, 3, 1] special rep = [[1], [4, 2]] , dim = 63 cell rep = phi[[1],[4, 2]] TII depth = 3 TII multiplicity polynomial = 63*X TII subcells: tii[27,1] := {31} tii[27,2] := {56} tii[27,3] := {62} tii[27,4] := {2} tii[27,5] := {11} tii[27,6] := {10} tii[27,7] := {34} tii[27,8] := {33} tii[27,9] := {6} tii[27,10] := {20} tii[27,11] := {21} tii[27,12] := {9} tii[27,13] := {43} tii[27,14] := {12} tii[27,15] := {42} tii[27,16] := {17} tii[27,17] := {28} tii[27,18] := {30} tii[27,19] := {32} tii[27,20] := {51} tii[27,21] := {52} tii[27,22] := {37} tii[27,23] := {47} tii[27,24] := {49} tii[27,25] := {57} tii[27,26] := {59} tii[27,27] := {60} tii[27,28] := {0} tii[27,29] := {1} tii[27,30] := {3} tii[27,31] := {4} tii[27,32] := {5} tii[27,33] := {8} tii[27,34] := {18} tii[27,35] := {19} tii[27,36] := {16} tii[27,37] := {27} tii[27,38] := {29} tii[27,39] := {39} tii[27,40] := {41} tii[27,41] := {46} tii[27,42] := {13} tii[27,43] := {26} tii[27,44] := {38} tii[27,45] := {40} tii[27,46] := {48} tii[27,47] := {50} tii[27,48] := {24} tii[27,49] := {53} tii[27,50] := {54} tii[27,51] := {55} tii[27,52] := {58} tii[27,53] := {44} tii[27,54] := {61} tii[27,55] := {7} tii[27,56] := {14} tii[27,57] := {15} tii[27,58] := {22} tii[27,59] := {23} tii[27,60] := {25} tii[27,61] := {36} tii[27,62] := {35} tii[27,63] := {45} cell#4 , |C| = 15 special orbit = [9, 1, 1, 1, 1, 1] special rep = [[], [5, 1, 1]] , dim = 15 cell rep = phi[[],[5, 1, 1]] TII depth = 1 TII multiplicity polynomial = 15*X TII subcells: tii[30,1] := {6} tii[30,2] := {9} tii[30,3] := {7} tii[30,4] := {10} tii[30,5] := {3} tii[30,6] := {2} tii[30,7] := {5} tii[30,8] := {0} tii[30,9] := {1} tii[30,10] := {4} tii[30,11] := {14} tii[30,12] := {12} tii[30,13] := {8} tii[30,14] := {11} tii[30,15] := {13} cell#5 , |C| = 15 special orbit = [9, 1, 1, 1, 1, 1] special rep = [[], [5, 1, 1]] , dim = 15 cell rep = phi[[],[5, 1, 1]] TII depth = 1 TII multiplicity polynomial = 15*X TII subcells: tii[30,1] := {1} tii[30,2] := {6} tii[30,3] := {10} tii[30,4] := {12} tii[30,5] := {0} tii[30,6] := {5} tii[30,7] := {9} tii[30,8] := {3} tii[30,9] := {7} tii[30,10] := {2} tii[30,11] := {14} tii[30,12] := {13} tii[30,13] := {11} tii[30,14] := {8} tii[30,15] := {4} cell#6 , |C| = 105 special orbit = [7, 3, 1, 1, 1, 1] special rep = [[1], [4, 1, 1]] , dim = 70 cell rep = phi[[],[4, 2, 1]]+phi[[1],[4, 1, 1]] TII depth = 2 TII multiplicity polynomial = 35*X^2+35*X TII subcells: tii[25,1] := {6, 71} tii[25,2] := {16, 68} tii[25,3] := {39, 63} tii[25,4] := {12, 82} tii[25,5] := {27, 78} tii[25,6] := {5, 90} tii[25,7] := {50, 74} tii[25,8] := {10, 96} tii[25,9] := {37, 89} tii[25,10] := {62, 84} tii[25,11] := {26, 95} tii[25,12] := {73, 94} tii[25,13] := {2} tii[25,14] := {7} tii[25,15] := {1, 60} tii[25,16] := {4, 48} tii[25,17] := {9} tii[25,18] := {20} tii[25,19] := {21} tii[25,20] := {0, 79} tii[25,21] := {13} tii[25,22] := {3, 86} tii[25,23] := {11, 59} tii[25,24] := {18} tii[25,25] := {31} tii[25,26] := {32} tii[25,27] := {8, 75} tii[25,28] := {28} tii[25,29] := {41} tii[25,30] := {43} tii[25,31] := {53} tii[25,32] := {55} tii[25,33] := {70} tii[25,34] := {22} tii[25,35] := {29} tii[25,36] := {19, 72} tii[25,37] := {42} tii[25,38] := {44} tii[25,39] := {17, 85} tii[25,40] := {38} tii[25,41] := {52} tii[25,42] := {54} tii[25,43] := {65} tii[25,44] := {67} tii[25,45] := {24, 104} tii[25,46] := {81} tii[25,47] := {49} tii[25,48] := {64} tii[25,49] := {66} tii[25,50] := {76} tii[25,51] := {77} tii[25,52] := {45, 103} tii[25,53] := {91} tii[25,54] := {87} tii[25,55] := {88} tii[25,56] := {61, 102} tii[25,57] := {97} tii[25,58] := {101} tii[25,59] := {15, 35} tii[25,60] := {14, 100} tii[25,61] := {25, 47} tii[25,62] := {23, 93} tii[25,63] := {33, 57} tii[25,64] := {30, 83} tii[25,65] := {36, 58} tii[25,66] := {34, 99} tii[25,67] := {46, 69} tii[25,68] := {40, 92} tii[25,69] := {56, 80} tii[25,70] := {51, 98} cell#7 , |C| = 20 special orbit = [7, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [4, 1, 1, 1]] , dim = 20 cell rep = phi[[],[4, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 20*X TII subcells: tii[24,1] := {8} tii[24,2] := {3} tii[24,3] := {7} tii[24,4] := {2} tii[24,5] := {5} tii[24,6] := {10} tii[24,7] := {0} tii[24,8] := {1} tii[24,9] := {4} tii[24,10] := {9} tii[24,11] := {13} tii[24,12] := {12} tii[24,13] := {16} tii[24,14] := {18} tii[24,15] := {6} tii[24,16] := {11} tii[24,17] := {14} tii[24,18] := {15} tii[24,19] := {17} tii[24,20] := {19} cell#8 , |C| = 105 special orbit = [7, 3, 1, 1, 1, 1] special rep = [[1], [4, 1, 1]] , dim = 70 cell rep = phi[[],[4, 2, 1]]+phi[[1],[4, 1, 1]] TII depth = 2 TII multiplicity polynomial = 35*X^2+35*X TII subcells: tii[25,1] := {31, 94} tii[25,2] := {19, 99} tii[25,3] := {63, 95} tii[25,4] := {53, 79} tii[25,5] := {6, 87} tii[25,6] := {60, 61} tii[25,7] := {42, 82} tii[25,8] := {52, 54} tii[25,9] := {18, 93} tii[25,10] := {62, 96} tii[25,11] := {13, 78} tii[25,12] := {81, 102} tii[25,13] := {0} tii[25,14] := {2} tii[25,15] := {14, 80} tii[25,16] := {5, 74} tii[25,17] := {8} tii[25,18] := {23} tii[25,19] := {25} tii[25,20] := {38, 39} tii[25,21] := {10} tii[25,22] := {30, 32} tii[25,23] := {9, 91} tii[25,24] := {21} tii[25,25] := {44} tii[25,26] := {46} tii[25,27] := {15, 37} tii[25,28] := {41} tii[25,29] := {65} tii[25,30] := {68} tii[25,31] := {84} tii[25,32] := {86} tii[25,33] := {101} tii[25,34] := {3} tii[25,35] := {7} tii[25,36] := {1, 73} tii[25,37] := {22} tii[25,38] := {24} tii[25,39] := {4, 59} tii[25,40] := {20} tii[25,41] := {43} tii[25,42] := {45} tii[25,43] := {66} tii[25,44] := {69} tii[25,45] := {27, 76} tii[25,46] := {90} tii[25,47] := {40} tii[25,48] := {64} tii[25,49] := {67} tii[25,50] := {83} tii[25,51] := {85} tii[25,52] := {34, 71} tii[25,53] := {100} tii[25,54] := {97} tii[25,55] := {98} tii[25,56] := {75, 92} tii[25,57] := {103} tii[25,58] := {104} tii[25,59] := {17, 50} tii[25,60] := {11, 57} tii[25,61] := {29, 72} tii[25,62] := {28, 35} tii[25,63] := {48, 89} tii[25,64] := {36, 56} tii[25,65] := {12, 49} tii[25,66] := {16, 51} tii[25,67] := {26, 70} tii[25,68] := {33, 58} tii[25,69] := {47, 88} tii[25,70] := {55, 77} cell#9 , |C| = 112 special orbit = [5, 3, 3, 1, 1, 1] special rep = [[1], [3, 2, 1]] , dim = 112 cell rep = phi[[1],[3, 2, 1]] TII depth = 3 TII multiplicity polynomial = 112*X TII subcells: tii[18,1] := {41} tii[18,2] := {85} tii[18,3] := {87} tii[18,4] := {62} tii[18,5] := {90} tii[18,6] := {51} tii[18,7] := {98} tii[18,8] := {81} tii[18,9] := {105} tii[18,10] := {106} tii[18,11] := {89} tii[18,12] := {109} tii[18,13] := {1} tii[18,14] := {12} tii[18,15] := {11} tii[18,16] := {66} tii[18,17] := {4} tii[18,18] := {23} tii[18,19] := {72} tii[18,20] := {25} tii[18,21] := {48} tii[18,22] := {32} tii[18,23] := {7} tii[18,24] := {17} tii[18,25] := {19} tii[18,26] := {84} tii[18,27] := {50} tii[18,28] := {43} tii[18,29] := {52} tii[18,30] := {56} tii[18,31] := {10} tii[18,32] := {69} tii[18,33] := {44} tii[18,34] := {46} tii[18,35] := {15} tii[18,36] := {34} tii[18,37] := {37} tii[18,38] := {97} tii[18,39] := {71} tii[18,40] := {31} tii[18,41] := {64} tii[18,42] := {53} tii[18,43] := {73} tii[18,44] := {57} tii[18,45] := {76} tii[18,46] := {75} tii[18,47] := {78} tii[18,48] := {95} tii[18,49] := {83} tii[18,50] := {91} tii[18,51] := {93} tii[18,52] := {102} tii[18,53] := {103} tii[18,54] := {82} tii[18,55] := {108} tii[18,56] := {111} tii[18,57] := {0} tii[18,58] := {29} tii[18,59] := {3} tii[18,60] := {8} tii[18,61] := {9} tii[18,62] := {18} tii[18,63] := {20} tii[18,64] := {30} tii[18,65] := {16} tii[18,66] := {33} tii[18,67] := {36} tii[18,68] := {54} tii[18,69] := {35} tii[18,70] := {58} tii[18,71] := {38} tii[18,72] := {40} tii[18,73] := {13} tii[18,74] := {80} tii[18,75] := {49} tii[18,76] := {74} tii[18,77] := {77} tii[18,78] := {42} tii[18,79] := {67} tii[18,80] := {65} tii[18,81] := {96} tii[18,82] := {101} tii[18,83] := {55} tii[18,84] := {59} tii[18,85] := {61} tii[18,86] := {26} tii[18,87] := {70} tii[18,88] := {92} tii[18,89] := {94} tii[18,90] := {63} tii[18,91] := {88} tii[18,92] := {86} tii[18,93] := {79} tii[18,94] := {39} tii[18,95] := {104} tii[18,96] := {45} tii[18,97] := {107} tii[18,98] := {99} tii[18,99] := {100} tii[18,100] := {110} tii[18,101] := {2} tii[18,102] := {22} tii[18,103] := {5} tii[18,104] := {6} tii[18,105] := {28} tii[18,106] := {60} tii[18,107] := {14} tii[18,108] := {21} tii[18,109] := {24} tii[18,110] := {47} tii[18,111] := {27} tii[18,112] := {68} cell#10 , |C| = 20 special orbit = [7, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [4, 1, 1, 1]] , dim = 20 cell rep = phi[[],[4, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 20*X TII subcells: tii[24,1] := {6} tii[24,2] := {12} tii[24,3] := {17} tii[24,4] := {5} tii[24,5] := {11} tii[24,6] := {7} tii[24,7] := {0} tii[24,8] := {4} tii[24,9] := {1} tii[24,10] := {3} tii[24,11] := {19} tii[24,12] := {18} tii[24,13] := {16} tii[24,14] := {8} tii[24,15] := {15} tii[24,16] := {10} tii[24,17] := {2} tii[24,18] := {14} tii[24,19] := {9} tii[24,20] := {13} cell#11 , |C| = 105 special orbit = [5, 3, 1, 1, 1, 1, 1, 1] special rep = [[1], [3, 1, 1, 1]] , dim = 70 cell rep = phi[[],[3, 2, 1, 1]]+phi[[1],[3, 1, 1, 1]] TII depth = 2 TII multiplicity polynomial = 35*X^2+35*X TII subcells: tii[16,1] := {5, 52} tii[16,2] := {23, 47} tii[16,3] := {12, 65} tii[16,4] := {34, 59} tii[16,5] := {4, 76} tii[16,6] := {45, 74} tii[16,7] := {21, 71} tii[16,8] := {46, 77} tii[16,9] := {11, 85} tii[16,10] := {9, 70} tii[16,11] := {58, 88} tii[16,12] := {75, 96} tii[16,13] := {2} tii[16,14] := {1, 42} tii[16,15] := {6} tii[16,16] := {15} tii[16,17] := {16} tii[16,18] := {0, 60} tii[16,19] := {13} tii[16,20] := {25} tii[16,21] := {26} tii[16,22] := {37} tii[16,23] := {39} tii[16,24] := {54} tii[16,25] := {3, 56} tii[16,26] := {22} tii[16,27] := {36} tii[16,28] := {38} tii[16,29] := {49} tii[16,30] := {51} tii[16,31] := {17, 94} tii[16,32] := {67} tii[16,33] := {61} tii[16,34] := {63} tii[16,35] := {32, 92} tii[16,36] := {80} tii[16,37] := {89} tii[16,38] := {33} tii[16,39] := {48} tii[16,40] := {50} tii[16,41] := {62} tii[16,42] := {64} tii[16,43] := {27, 98} tii[16,44] := {81} tii[16,45] := {78} tii[16,46] := {79} tii[16,47] := {44, 100} tii[16,48] := {20, 87} tii[16,49] := {93} tii[16,50] := {31, 83} tii[16,51] := {99} tii[16,52] := {90} tii[16,53] := {91} tii[16,54] := {57, 102} tii[16,55] := {101} tii[16,56] := {55, 97} tii[16,57] := {103} tii[16,58] := {104} tii[16,59] := {8, 29} tii[16,60] := {7, 84} tii[16,61] := {18, 41} tii[16,62] := {14, 68} tii[16,63] := {10, 73} tii[16,64] := {28, 53} tii[16,65] := {19, 69} tii[16,66] := {24, 82} tii[16,67] := {30, 72} tii[16,68] := {40, 66} tii[16,69] := {35, 95} tii[16,70] := {43, 86} cell#12 , |C| = 20 special orbit = [7, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [4, 1, 1, 1]] , dim = 20 cell rep = phi[[],[4, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 20*X TII subcells: tii[24,1] := {0} tii[24,2] := {1} tii[24,3] := {3} tii[24,4] := {4} tii[24,5] := {7} tii[24,6] := {13} tii[24,7] := {2} tii[24,8] := {6} tii[24,9] := {9} tii[24,10] := {5} tii[24,11] := {8} tii[24,12] := {14} tii[24,13] := {17} tii[24,14] := {19} tii[24,15] := {12} tii[24,16] := {16} tii[24,17] := {18} tii[24,18] := {11} tii[24,19] := {15} tii[24,20] := {10} cell#13 , |C| = 15 special orbit = [5, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [3, 1, 1, 1, 1]] , dim = 15 cell rep = phi[[],[3, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 15*X TII subcells: tii[15,1] := {0} tii[15,2] := {1} tii[15,3] := {4} tii[15,4] := {2} tii[15,5] := {3} tii[15,6] := {5} tii[15,7] := {9} tii[15,8] := {14} tii[15,9] := {7} tii[15,10] := {11} tii[15,11] := {6} tii[15,12] := {8} tii[15,13] := {13} tii[15,14] := {10} tii[15,15] := {12}