TII subcells for the Spin(9,5) x PSO(8,6) block of Spin14 # cell#0 , |C| = 6 special orbit = [11, 1, 1, 1] special rep = [[], [6, 1]] , dim = 6 cell rep = phi[[],[6, 1]] TII depth = 1 TII multiplicity polynomial = 6*X TII subcells: tii[33,1] := {0} tii[33,2] := {3} tii[33,3] := {1} tii[33,4] := {4} tii[33,5] := {2} tii[33,6] := {5} cell#1 , |C| = 49 special orbit = [9, 3, 1, 1] special rep = [[1], [5, 1]] , dim = 35 cell rep = phi[[],[5, 2]]+phi[[1],[5, 1]] TII depth = 3 TII multiplicity polynomial = 14*X^2+21*X TII subcells: tii[31,1] := {44, 48} tii[31,2] := {41, 47} tii[31,3] := {29, 40} tii[31,4] := {22, 42} tii[31,5] := {2} tii[31,6] := {37, 46} tii[31,7] := {4} tii[31,8] := {28, 39} tii[31,9] := {0} tii[31,10] := {18, 31} tii[31,11] := {5} tii[31,12] := {12} tii[31,13] := {14} tii[31,14] := {10} tii[31,15] := {3} tii[31,16] := {33, 45} tii[31,17] := {23, 38} tii[31,18] := {9} tii[31,19] := {20} tii[31,20] := {21} tii[31,21] := {1} tii[31,22] := {19, 32} tii[31,23] := {6} tii[31,24] := {13} tii[31,25] := {15} tii[31,26] := {11} tii[31,27] := {24} tii[31,28] := {25} tii[31,29] := {34} tii[31,30] := {35} tii[31,31] := {43} tii[31,32] := {7, 26} tii[31,33] := {16, 30} tii[31,34] := {8, 27} tii[31,35] := {17, 36} cell#2 , |C| = 98 special orbit = [7, 5, 1, 1] special rep = [[2], [4, 1]] , dim = 84 cell rep = phi[[],[4, 3]]+phi[[2],[4, 1]] TII depth = 3 TII multiplicity polynomial = 14*X^2+70*X TII subcells: tii[28,1] := {16, 94} tii[28,2] := {60, 84} tii[28,3] := {91} tii[28,4] := {3} tii[28,5] := {17} tii[28,6] := {4, 82} tii[28,7] := {25, 55} tii[28,8] := {45} tii[28,9] := {46} tii[28,10] := {65} tii[28,11] := {68} tii[28,12] := {9} tii[28,13] := {7, 90} tii[28,14] := {28} tii[28,15] := {23} tii[28,16] := {2, 83} tii[28,17] := {30, 63} tii[28,18] := {61} tii[28,19] := {62} tii[28,20] := {38} tii[28,21] := {56} tii[28,22] := {78} tii[28,23] := {57} tii[28,24] := {80} tii[28,25] := {44} tii[28,26] := {47, 76} tii[28,27] := {74} tii[28,28] := {75} tii[28,29] := {29} tii[28,30] := {49} tii[28,31] := {87} tii[28,32] := {52} tii[28,33] := {88} tii[28,34] := {85} tii[28,35] := {86} tii[28,36] := {77} tii[28,37] := {92} tii[28,38] := {79} tii[28,39] := {93} tii[28,40] := {95} tii[28,41] := {96} tii[28,42] := {97} tii[28,43] := {0} tii[28,44] := {5} tii[28,45] := {12} tii[28,46] := {13} tii[28,47] := {10} tii[28,48] := {1, 72} tii[28,49] := {24} tii[28,50] := {8} tii[28,51] := {39} tii[28,52] := {20} tii[28,53] := {41} tii[28,54] := {21} tii[28,55] := {11} tii[28,56] := {31} tii[28,57] := {26} tii[28,58] := {34} tii[28,59] := {27} tii[28,60] := {40} tii[28,61] := {42} tii[28,62] := {59} tii[28,63] := {18} tii[28,64] := {33} tii[28,65] := {36} tii[28,66] := {19} tii[28,67] := {48} tii[28,68] := {32} tii[28,69] := {51} tii[28,70] := {35} tii[28,71] := {50} tii[28,72] := {53} tii[28,73] := {14, 73} tii[28,74] := {71} tii[28,75] := {64} tii[28,76] := {67} tii[28,77] := {66} tii[28,78] := {69} tii[28,79] := {37, 70} tii[28,80] := {81} tii[28,81] := {89} tii[28,82] := {6, 58} tii[28,83] := {15, 43} tii[28,84] := {22, 54} cell#3 , |C| = 15 special orbit = [9, 1, 1, 1, 1, 1] special rep = [[], [5, 1, 1]] , dim = 15 cell rep = phi[[],[5, 1, 1]] TII depth = 1 TII multiplicity polynomial = 15*X TII subcells: tii[30,1] := {10} tii[30,2] := {3} tii[30,3] := {9} tii[30,4] := {4} tii[30,5] := {0} tii[30,6] := {6} tii[30,7] := {1} tii[30,8] := {11} tii[30,9] := {5} tii[30,10] := {2} tii[30,11] := {12} tii[30,12] := {7} tii[30,13] := {13} tii[30,14] := {8} tii[30,15] := {14} cell#4 , |C| = 15 special orbit = [9, 1, 1, 1, 1, 1] special rep = [[], [5, 1, 1]] , dim = 15 cell rep = phi[[],[5, 1, 1]] TII depth = 1 TII multiplicity polynomial = 15*X TII subcells: tii[30,1] := {10} tii[30,2] := {13} tii[30,3] := {11} tii[30,4] := {14} tii[30,5] := {8} tii[30,6] := {6} tii[30,7] := {9} tii[30,8] := {3} tii[30,9] := {5} tii[30,10] := {2} tii[30,11] := {12} tii[30,12] := {7} tii[30,13] := {4} tii[30,14] := {1} tii[30,15] := {0} cell#5 , |C| = 15 special orbit = [9, 1, 1, 1, 1, 1] special rep = [[], [5, 1, 1]] , dim = 15 cell rep = phi[[],[5, 1, 1]] TII depth = 1 TII multiplicity polynomial = 15*X TII subcells: tii[30,1] := {8} tii[30,2] := {11} tii[30,3] := {9} tii[30,4] := {12} tii[30,5] := {6} tii[30,6] := {4} tii[30,7] := {7} tii[30,8] := {1} tii[30,9] := {3} tii[30,10] := {0} tii[30,11] := {14} tii[30,12] := {13} tii[30,13] := {10} tii[30,14] := {5} tii[30,15] := {2} cell#6 , |C| = 105 special orbit = [7, 3, 1, 1, 1, 1] special rep = [[1], [4, 1, 1]] , dim = 70 cell rep = phi[[],[4, 2, 1]]+phi[[1],[4, 1, 1]] TII depth = 2 TII multiplicity polynomial = 35*X^2+35*X TII subcells: tii[25,1] := {77, 96} tii[25,2] := {39, 68} tii[25,3] := {31, 71} tii[25,4] := {90, 102} tii[25,5] := {29, 55} tii[25,6] := {75, 95} tii[25,7] := {20, 63} tii[25,8] := {86, 101} tii[25,9] := {49, 73} tii[25,10] := {42, 78} tii[25,11] := {61, 87} tii[25,12] := {62, 91} tii[25,13] := {18} tii[25,14] := {5} tii[25,15] := {60, 85} tii[25,16] := {43, 69} tii[25,17] := {13} tii[25,18] := {33} tii[25,19] := {35} tii[25,20] := {58, 84} tii[25,21] := {1} tii[25,22] := {70, 94} tii[25,23] := {21, 51} tii[25,24] := {4} tii[25,25] := {15} tii[25,26] := {16} tii[25,27] := {52, 83} tii[25,28] := {14} tii[25,29] := {32} tii[25,30] := {34} tii[25,31] := {53} tii[25,32] := {54} tii[25,33] := {74} tii[25,34] := {0} tii[25,35] := {2} tii[25,36] := {11, 37} tii[25,37] := {7} tii[25,38] := {8} tii[25,39] := {41, 72} tii[25,40] := {6} tii[25,41] := {24} tii[25,42] := {25} tii[25,43] := {45} tii[25,44] := {47} tii[25,45] := {76, 104} tii[25,46] := {67} tii[25,47] := {19} tii[25,48] := {44} tii[25,49] := {46} tii[25,50] := {64} tii[25,51] := {65} tii[25,52] := {50, 98} tii[25,53] := {81} tii[25,54] := {79} tii[25,55] := {80} tii[25,56] := {38, 100} tii[25,57] := {92} tii[25,58] := {99} tii[25,59] := {26, 57} tii[25,60] := {59, 103} tii[25,61] := {9, 36} tii[25,62] := {40, 97} tii[25,63] := {17, 56} tii[25,64] := {22, 88} tii[25,65] := {3, 28} tii[25,66] := {30, 89} tii[25,67] := {10, 48} tii[25,68] := {12, 82} tii[25,69] := {27, 66} tii[25,70] := {23, 93} cell#7 , |C| = 105 special orbit = [7, 3, 1, 1, 1, 1] special rep = [[1], [4, 1, 1]] , dim = 70 cell rep = phi[[],[4, 2, 1]]+phi[[1],[4, 1, 1]] TII depth = 2 TII multiplicity polynomial = 35*X^2+35*X TII subcells: tii[25,1] := {24, 95} tii[25,2] := {29, 94} tii[25,3] := {53, 81} tii[25,4] := {37, 100} tii[25,5] := {17, 86} tii[25,6] := {25, 103} tii[25,7] := {43, 69} tii[25,8] := {11, 101} tii[25,9] := {7, 93} tii[25,10] := {32, 54} tii[25,11] := {2, 88} tii[25,12] := {42, 68} tii[25,13] := {15} tii[25,14] := {28} tii[25,15] := {12, 89} tii[25,16] := {5, 80} tii[25,17] := {40} tii[25,18] := {55} tii[25,19] := {59} tii[25,20] := {13, 99} tii[25,21] := {38} tii[25,22] := {4, 96} tii[25,23] := {16, 87} tii[25,24] := {50} tii[25,25] := {65} tii[25,26] := {66} tii[25,27] := {1, 90} tii[25,28] := {41} tii[25,29] := {56} tii[25,30] := {60} tii[25,31] := {70} tii[25,32] := {71} tii[25,33] := {84} tii[25,34] := {26} tii[25,35] := {39} tii[25,36] := {6, 77} tii[25,37] := {51} tii[25,38] := {52} tii[25,39] := {0, 79} tii[25,40] := {31} tii[25,41] := {44} tii[25,42] := {46} tii[25,43] := {58} tii[25,44] := {62} tii[25,45] := {27, 104} tii[25,46] := {75} tii[25,47] := {18} tii[25,48] := {33} tii[25,49] := {34} tii[25,50] := {45} tii[25,51] := {47} tii[25,52] := {9, 97} tii[25,53] := {64} tii[25,54] := {57} tii[25,55] := {61} tii[25,56] := {30, 83} tii[25,57] := {74} tii[25,58] := {82} tii[25,59] := {21, 72} tii[25,60] := {14, 102} tii[25,61] := {35, 78} tii[25,62] := {8, 98} tii[25,63] := {48, 73} tii[25,64] := {19, 92} tii[25,65] := {22, 67} tii[25,66] := {3, 91} tii[25,67] := {36, 63} tii[25,68] := {10, 85} tii[25,69] := {23, 49} tii[25,70] := {20, 76} cell#8 , |C| = 63 special orbit = [7, 3, 3, 1] special rep = [[1], [4, 2]] , dim = 63 cell rep = phi[[1],[4, 2]] TII depth = 3 TII multiplicity polynomial = 63*X TII subcells: tii[27,1] := {62} tii[27,2] := {60} tii[27,3] := {45} tii[27,4] := {30} tii[27,5] := {22} tii[27,6] := {58} tii[27,7] := {5} tii[27,8] := {44} tii[27,9] := {42} tii[27,10] := {61} tii[27,11] := {38} tii[27,12] := {49} tii[27,13] := {8} tii[27,14] := {59} tii[27,15] := {53} tii[27,16] := {41} tii[27,17] := {51} tii[27,18] := {52} tii[27,19] := {50} tii[27,20] := {57} tii[27,21] := {6} tii[27,22] := {36} tii[27,23] := {46} tii[27,24] := {47} tii[27,25] := {16} tii[27,26] := {26} tii[27,27] := {28} tii[27,28] := {17} tii[27,29] := {7} tii[27,30] := {37} tii[27,31] := {55} tii[27,32] := {9} tii[27,33] := {29} tii[27,34] := {39} tii[27,35] := {40} tii[27,36] := {15} tii[27,37] := {25} tii[27,38] := {27} tii[27,39] := {10} tii[27,40] := {12} tii[27,41] := {20} tii[27,42] := {24} tii[27,43] := {23} tii[27,44] := {32} tii[27,45] := {33} tii[27,46] := {18} tii[27,47] := {19} tii[27,48] := {56} tii[27,49] := {31} tii[27,50] := {11} tii[27,51] := {13} tii[27,52] := {21} tii[27,53] := {54} tii[27,54] := {35} tii[27,55] := {2} tii[27,56] := {48} tii[27,57] := {4} tii[27,58] := {34} tii[27,59] := {0} tii[27,60] := {14} tii[27,61] := {3} tii[27,62] := {43} tii[27,63] := {1} cell#9 , |C| = 140 special orbit = [5, 5, 3, 1] special rep = [[2], [3, 2]] , dim = 105 cell rep = phi[[1],[3, 3]]+phi[[2],[3, 2]] TII depth = 3 TII multiplicity polynomial = 35*X^2+70*X TII subcells: tii[22,1] := {129, 139} tii[22,2] := {136} tii[22,3] := {12, 80} tii[22,4] := {54} tii[22,5] := {90, 130} tii[22,6] := {44} tii[22,7] := {26, 102} tii[22,8] := {28, 96} tii[22,9] := {107, 135} tii[22,10] := {82} tii[22,11] := {84} tii[22,12] := {75} tii[22,13] := {104} tii[22,14] := {106} tii[22,15] := {45, 119} tii[22,16] := {120, 138} tii[22,17] := {95} tii[22,18] := {81} tii[22,19] := {83} tii[22,20] := {69, 121} tii[22,21] := {91, 131} tii[22,22] := {103} tii[22,23] := {92, 132} tii[22,24] := {105} tii[22,25] := {109} tii[22,26] := {122} tii[22,27] := {124} tii[22,28] := {2, 38} tii[22,29] := {25} tii[22,30] := {3, 61} tii[22,31] := {13, 74} tii[22,32] := {57} tii[22,33] := {59} tii[22,34] := {18} tii[22,35] := {86} tii[22,36] := {29} tii[22,37] := {88} tii[22,38] := {31} tii[22,39] := {36} tii[22,40] := {37} tii[22,41] := {27, 94} tii[22,42] := {20} tii[22,43] := {64} tii[22,44] := {48, 111} tii[22,45] := {22} tii[22,46] := {67} tii[22,47] := {51, 114} tii[22,48] := {76} tii[22,49] := {77} tii[22,50] := {101} tii[22,51] := {14, 85} tii[22,52] := {33} tii[22,53] := {47} tii[22,54] := {50} tii[22,55] := {58} tii[22,56] := {60} tii[22,57] := {46, 110} tii[22,58] := {62} tii[22,59] := {70, 123} tii[22,60] := {87} tii[22,61] := {40} tii[22,62] := {65} tii[22,63] := {71, 125} tii[22,64] := {89} tii[22,65] := {42} tii[22,66] := {49, 113} tii[22,67] := {98} tii[22,68] := {52, 116} tii[22,69] := {100} tii[22,70] := {73, 127} tii[22,71] := {118} tii[22,72] := {63} tii[22,73] := {66} tii[22,74] := {112} tii[22,75] := {115} tii[22,76] := {108, 137} tii[22,77] := {126} tii[22,78] := {133} tii[22,79] := {8} tii[22,80] := {15} tii[22,81] := {16} tii[22,82] := {4} tii[22,83] := {5} tii[22,84] := {11} tii[22,85] := {39} tii[22,86] := {41} tii[22,87] := {9} tii[22,88] := {30, 97} tii[22,89] := {10} tii[22,90] := {32, 99} tii[22,91] := {1, 43} tii[22,92] := {53, 117} tii[22,93] := {19} tii[22,94] := {34} tii[22,95] := {72, 128} tii[22,96] := {21} tii[22,97] := {23} tii[22,98] := {6, 68} tii[22,99] := {35} tii[22,100] := {93, 134} tii[22,101] := {56} tii[22,102] := {17, 78} tii[22,103] := {79} tii[22,104] := {0, 24} tii[22,105] := {7, 55} cell#10 , |C| = 63 special orbit = [7, 3, 3, 1] special rep = [[1], [4, 2]] , dim = 63 cell rep = phi[[1],[4, 2]] TII depth = 3 TII multiplicity polynomial = 63*X TII subcells: tii[27,1] := {62} tii[27,2] := {61} tii[27,3] := {59} tii[27,4] := {10} tii[27,5] := {7} tii[27,6] := {56} tii[27,7] := {9} tii[27,8] := {47} tii[27,9] := {18} tii[27,10] := {60} tii[27,11] := {14} tii[27,12] := {24} tii[27,13] := {15} tii[27,14] := {58} tii[27,15] := {53} tii[27,16] := {31} tii[27,17] := {42} tii[27,18] := {44} tii[27,19] := {25} tii[27,20] := {57} tii[27,21] := {26} tii[27,22] := {30} tii[27,23] := {41} tii[27,24] := {43} tii[27,25] := {37} tii[27,26] := {48} tii[27,27] := {49} tii[27,28] := {5} tii[27,29] := {2} tii[27,30] := {13} tii[27,31] := {54} tii[27,32] := {3} tii[27,33] := {20} tii[27,34] := {32} tii[27,35] := {34} tii[27,36] := {12} tii[27,37] := {22} tii[27,38] := {23} tii[27,39] := {16} tii[27,40] := {17} tii[27,41] := {29} tii[27,42] := {8} tii[27,43] := {21} tii[27,44] := {33} tii[27,45] := {35} tii[27,46] := {27} tii[27,47] := {28} tii[27,48] := {52} tii[27,49] := {40} tii[27,50] := {38} tii[27,51] := {39} tii[27,52] := {50} tii[27,53] := {51} tii[27,54] := {55} tii[27,55] := {0} tii[27,56] := {45} tii[27,57] := {1} tii[27,58] := {36} tii[27,59] := {4} tii[27,60] := {6} tii[27,61] := {11} tii[27,62] := {46} tii[27,63] := {19} cell#11 , |C| = 105 special orbit = [5, 3, 3, 3] special rep = [[1, 1], [3, 2]] , dim = 105 cell rep = phi[[1, 1],[3, 2]] TII depth = 4 TII multiplicity polynomial = 105*X TII subcells: tii[19,1] := {54} tii[19,2] := {72} tii[19,3] := {71} tii[19,4] := {62} tii[19,5] := {88} tii[19,6] := {87} tii[19,7] := {97} tii[19,8] := {90} tii[19,9] := {98} tii[19,10] := {100} tii[19,11] := {102} tii[19,12] := {103} tii[19,13] := {104} tii[19,14] := {1} tii[19,15] := {8} tii[19,16] := {26} tii[19,17] := {3} tii[19,18] := {39} tii[19,19] := {14} tii[19,20] := {46} tii[19,21] := {7} tii[19,22] := {15} tii[19,23] := {17} tii[19,24] := {24} tii[19,25] := {61} tii[19,26] := {40} tii[19,27] := {77} tii[19,28] := {42} tii[19,29] := {82} tii[19,30] := {80} tii[19,31] := {84} tii[19,32] := {6} tii[19,33] := {56} tii[19,34] := {25} tii[19,35] := {13} tii[19,36] := {27} tii[19,37] := {29} tii[19,38] := {76} tii[19,39] := {21} tii[19,40] := {38} tii[19,41] := {91} tii[19,42] := {33} tii[19,43] := {57} tii[19,44] := {93} tii[19,45] := {35} tii[19,46] := {58} tii[19,47] := {92} tii[19,48] := {79} tii[19,49] := {47} tii[19,50] := {94} tii[19,51] := {83} tii[19,52] := {49} tii[19,53] := {67} tii[19,54] := {69} tii[19,55] := {55} tii[19,56] := {73} tii[19,57] := {74} tii[19,58] := {99} tii[19,59] := {78} tii[19,60] := {101} tii[19,61] := {81} tii[19,62] := {95} tii[19,63] := {96} tii[19,64] := {0} tii[19,65] := {4} tii[19,66] := {9} tii[19,67] := {10} tii[19,68] := {16} tii[19,69] := {18} tii[19,70] := {32} tii[19,71] := {12} tii[19,72] := {22} tii[19,73] := {23} tii[19,74] := {34} tii[19,75] := {28} tii[19,76] := {64} tii[19,77] := {36} tii[19,78] := {30} tii[19,79] := {66} tii[19,80] := {31} tii[19,81] := {52} tii[19,82] := {53} tii[19,83] := {45} tii[19,84] := {48} tii[19,85] := {50} tii[19,86] := {59} tii[19,87] := {68} tii[19,88] := {70} tii[19,89] := {41} tii[19,90] := {43} tii[19,91] := {60} tii[19,92] := {44} tii[19,93] := {63} tii[19,94] := {65} tii[19,95] := {75} tii[19,96] := {51} tii[19,97] := {85} tii[19,98] := {86} tii[19,99] := {89} tii[19,100] := {2} tii[19,101] := {20} tii[19,102] := {5} tii[19,103] := {11} tii[19,104] := {37} tii[19,105] := {19} cell#12 , |C| = 20 special orbit = [7, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [4, 1, 1, 1]] , dim = 20 cell rep = phi[[],[4, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 20*X TII subcells: tii[24,1] := {18} tii[24,2] := {12} tii[24,3] := {17} tii[24,4] := {9} tii[24,5] := {15} tii[24,6] := {19} tii[24,7] := {3} tii[24,8] := {7} tii[24,9] := {16} tii[24,10] := {8} tii[24,11] := {13} tii[24,12] := {10} tii[24,13] := {14} tii[24,14] := {11} tii[24,15] := {4} tii[24,16] := {6} tii[24,17] := {5} tii[24,18] := {2} tii[24,19] := {1} tii[24,20] := {0} cell#13 , |C| = 147 special orbit = [5, 5, 1, 1, 1, 1] special rep = [[2], [3, 1, 1]] , dim = 126 cell rep = phi[[],[3, 3, 1]]+phi[[2],[3, 1, 1]] TII depth = 4 TII multiplicity polynomial = 21*X^2+105*X TII subcells: tii[20,1] := {42, 86} tii[20,2] := {109} tii[20,3] := {63, 106} tii[20,4] := {26, 69} tii[20,5] := {123} tii[20,6] := {85, 120} tii[20,7] := {132} tii[20,8] := {65, 105} tii[20,9] := {138} tii[20,10] := {6} tii[20,11] := {44} tii[20,12] := {45} tii[20,13] := {11, 48} tii[20,14] := {73} tii[20,15] := {78} tii[20,16] := {21} tii[20,17] := {25, 68} tii[20,18] := {10, 47} tii[20,19] := {66} tii[20,20] := {67} tii[20,21] := {8} tii[20,22] := {28} tii[20,23] := {96} tii[20,24] := {33} tii[20,25] := {99} tii[20,26] := {24, 64} tii[20,27] := {89} tii[20,28] := {91} tii[20,29] := {71} tii[20,30] := {113} tii[20,31] := {76} tii[20,32] := {116} tii[20,33] := {126} tii[20,34] := {128} tii[20,35] := {137} tii[20,36] := {41} tii[20,37] := {88} tii[20,38] := {90} tii[20,39] := {46, 92} tii[20,40] := {23} tii[20,41] := {112} tii[20,42] := {50} tii[20,43] := {115} tii[20,44] := {55} tii[20,45] := {43, 87} tii[20,46] := {9} tii[20,47] := {107} tii[20,48] := {108} tii[20,49] := {29} tii[20,50] := {94} tii[20,51] := {125} tii[20,52] := {34} tii[20,53] := {97} tii[20,54] := {127} tii[20,55] := {53} tii[20,56] := {134} tii[20,57] := {58} tii[20,58] := {136} tii[20,59] := {83} tii[20,60] := {141} tii[20,61] := {121} tii[20,62] := {122} tii[20,63] := {133} tii[20,64] := {111} tii[20,65] := {135} tii[20,66] := {114} tii[20,67] := {95} tii[20,68] := {139} tii[20,69] := {98} tii[20,70] := {140} tii[20,71] := {40, 129} tii[20,72] := {119} tii[20,73] := {144} tii[20,74] := {142} tii[20,75] := {143} tii[20,76] := {131} tii[20,77] := {145} tii[20,78] := {146} tii[20,79] := {0} tii[20,80] := {15} tii[20,81] := {18} tii[20,82] := {2} tii[20,83] := {27} tii[20,84] := {14} tii[20,85] := {32} tii[20,86] := {17} tii[20,87] := {31} tii[20,88] := {36} tii[20,89] := {62} tii[20,90] := {1} tii[20,91] := {49} tii[20,92] := {13} tii[20,93] := {54} tii[20,94] := {16} tii[20,95] := {52} tii[20,96] := {30} tii[20,97] := {57} tii[20,98] := {35} tii[20,99] := {19, 59} tii[20,100] := {61} tii[20,101] := {82} tii[20,102] := {51} tii[20,103] := {56} tii[20,104] := {7, 101} tii[20,105] := {100} tii[20,106] := {81} tii[20,107] := {93} tii[20,108] := {70} tii[20,109] := {75} tii[20,110] := {74} tii[20,111] := {79} tii[20,112] := {37, 80} tii[20,113] := {103} tii[20,114] := {72} tii[20,115] := {77} tii[20,116] := {22, 118} tii[20,117] := {20, 60} tii[20,118] := {117} tii[20,119] := {102} tii[20,120] := {12, 104} tii[20,121] := {110} tii[20,122] := {130} tii[20,123] := {124} tii[20,124] := {4, 39} tii[20,125] := {5, 38} tii[20,126] := {3, 84} cell#14 , |C| = 20 special orbit = [7, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [4, 1, 1, 1]] , dim = 20 cell rep = phi[[],[4, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 20*X TII subcells: tii[24,1] := {11} tii[24,2] := {4} tii[24,3] := {10} tii[24,4] := {3} tii[24,5] := {6} tii[24,6] := {12} tii[24,7] := {0} tii[24,8] := {2} tii[24,9] := {5} tii[24,10] := {1} tii[24,11] := {16} tii[24,12] := {15} tii[24,13] := {18} tii[24,14] := {19} tii[24,15] := {8} tii[24,16] := {14} tii[24,17] := {17} tii[24,18] := {7} tii[24,19] := {13} tii[24,20] := {9} cell#15 , |C| = 105 special orbit = [5, 3, 1, 1, 1, 1, 1, 1] special rep = [[1], [3, 1, 1, 1]] , dim = 70 cell rep = phi[[],[3, 2, 1, 1]]+phi[[1],[3, 1, 1, 1]] TII depth = 2 TII multiplicity polynomial = 35*X^2+35*X TII subcells: tii[16,1] := {21, 90} tii[16,2] := {44, 70} tii[16,3] := {14, 98} tii[16,4] := {37, 62} tii[16,5] := {7, 89} tii[16,6] := {48, 74} tii[16,7] := {8, 102} tii[16,8] := {26, 49} tii[16,9] := {4, 97} tii[16,10] := {1, 92} tii[16,11] := {36, 61} tii[16,12] := {47, 73} tii[16,13] := {31} tii[16,14] := {13, 81} tii[16,15] := {43} tii[16,16] := {56} tii[16,17] := {58} tii[16,18] := {3, 80} tii[16,19] := {32} tii[16,20] := {45} tii[16,21] := {46} tii[16,22] := {57} tii[16,23] := {59} tii[16,24] := {72} tii[16,25] := {0, 83} tii[16,26] := {25} tii[16,27] := {38} tii[16,28] := {40} tii[16,29] := {51} tii[16,30] := {53} tii[16,31] := {19, 99} tii[16,32] := {68} tii[16,33] := {64} tii[16,34] := {66} tii[16,35] := {35, 88} tii[16,36] := {78} tii[16,37] := {85} tii[16,38] := {16} tii[16,39] := {28} tii[16,40] := {29} tii[16,41] := {39} tii[16,42] := {41} tii[16,43] := {11, 103} tii[16,44] := {55} tii[16,45] := {50} tii[16,46] := {52} tii[16,47] := {24, 76} tii[16,48] := {5, 101} tii[16,49] := {67} tii[16,50] := {9, 104} tii[16,51] := {75} tii[16,52] := {63} tii[16,53] := {65} tii[16,54] := {34, 87} tii[16,55] := {77} tii[16,56] := {23, 94} tii[16,57] := {84} tii[16,58] := {93} tii[16,59] := {22, 71} tii[16,60] := {10, 91} tii[16,61] := {33, 60} tii[16,62] := {17, 82} tii[16,63] := {2, 96} tii[16,64] := {30, 54} tii[16,65] := {6, 100} tii[16,66] := {27, 79} tii[16,67] := {12, 95} tii[16,68] := {20, 42} tii[16,69] := {18, 69} tii[16,70] := {15, 86} cell#16 , |C| = 105 special orbit = [7, 3, 1, 1, 1, 1] special rep = [[1], [4, 1, 1]] , dim = 70 cell rep = phi[[],[4, 2, 1]]+phi[[1],[4, 1, 1]] TII depth = 2 TII multiplicity polynomial = 35*X^2+35*X TII subcells: tii[25,1] := {94, 95} tii[25,2] := {92, 93} tii[25,3] := {75, 76} tii[25,4] := {84, 100} tii[25,5] := {80, 81} tii[25,6] := {71, 103} tii[25,7] := {53, 54} tii[25,8] := {52, 101} tii[25,9] := {66, 91} tii[25,10] := {29, 30} tii[25,11] := {47, 85} tii[25,12] := {13, 51} tii[25,13] := {25} tii[25,14] := {38} tii[25,15] := {86, 87} tii[25,16] := {73, 74} tii[25,17] := {23} tii[25,18] := {40} tii[25,19] := {43} tii[25,20] := {50, 99} tii[25,21] := {62} tii[25,22] := {28, 96} tii[25,23] := {82, 83} tii[25,24] := {37} tii[25,25] := {55} tii[25,26] := {56} tii[25,27] := {12, 88} tii[25,28] := {24} tii[25,29] := {41} tii[25,30] := {44} tii[25,31] := {63} tii[25,32] := {64} tii[25,33] := {79} tii[25,34] := {39} tii[25,35] := {17} tii[25,36] := {67, 68} tii[25,37] := {31} tii[25,38] := {32} tii[25,39] := {26, 72} tii[25,40] := {10} tii[25,41] := {18} tii[25,42] := {20} tii[25,43] := {42} tii[25,44] := {45} tii[25,45] := {33, 104} tii[25,46] := {65} tii[25,47] := {2} tii[25,48] := {6} tii[25,49] := {8} tii[25,50] := {19} tii[25,51] := {21} tii[25,52] := {27, 97} tii[25,53] := {46} tii[25,54] := {7} tii[25,55] := {9} tii[25,56] := {5, 77} tii[25,57] := {22} tii[25,58] := {36} tii[25,59] := {57, 58} tii[25,60] := {14, 102} tii[25,61] := {69, 70} tii[25,62] := {4, 98} tii[25,63] := {59, 60} tii[25,64] := {0, 90} tii[25,65] := {48, 49} tii[25,66] := {11, 89} tii[25,67] := {34, 35} tii[25,68] := {3, 78} tii[25,69] := {15, 16} tii[25,70] := {1, 61} cell#17 , |C| = 112 special orbit = [5, 3, 3, 1, 1, 1] special rep = [[1], [3, 2, 1]] , dim = 112 cell rep = phi[[1],[3, 2, 1]] TII depth = 3 TII multiplicity polynomial = 112*X TII subcells: tii[18,1] := {100} tii[18,2] := {54} tii[18,3] := {107} tii[18,4] := {108} tii[18,5] := {90} tii[18,6] := {91} tii[18,7] := {38} tii[18,8] := {110} tii[18,9] := {59} tii[18,10] := {60} tii[18,11] := {106} tii[18,12] := {81} tii[18,13] := {49} tii[18,14] := {13} tii[18,15] := {75} tii[18,16] := {99} tii[18,17] := {70} tii[18,18] := {93} tii[18,19] := {72} tii[18,20] := {3} tii[18,21] := {92} tii[18,22] := {73} tii[18,23] := {48} tii[18,24] := {62} tii[18,25] := {65} tii[18,26] := {53} tii[18,27] := {89} tii[18,28] := {12} tii[18,29] := {20} tii[18,30] := {22} tii[18,31] := {88} tii[18,32] := {102} tii[18,33] := {103} tii[18,34] := {2} tii[18,35] := {69} tii[18,36] := {82} tii[18,37] := {84} tii[18,38] := {37} tii[18,39] := {101} tii[18,40] := {47} tii[18,41] := {7} tii[18,42] := {61} tii[18,43] := {14} tii[18,44] := {64} tii[18,45] := {15} tii[18,46] := {83} tii[18,47] := {85} tii[18,48] := {98} tii[18,49] := {17} tii[18,50] := {29} tii[18,51] := {31} tii[18,52] := {50} tii[18,53] := {51} tii[18,54] := {111} tii[18,55] := {71} tii[18,56] := {97} tii[18,57] := {28} tii[18,58] := {74} tii[18,59] := {27} tii[18,60] := {40} tii[18,61] := {43} tii[18,62] := {21} tii[18,63] := {23} tii[18,64] := {36} tii[18,65] := {26} tii[18,66] := {39} tii[18,67] := {42} tii[18,68] := {63} tii[18,69] := {8} tii[18,70] := {66} tii[18,71] := {9} tii[18,72] := {78} tii[18,73] := {79} tii[18,74] := {86} tii[18,75] := {19} tii[18,76] := {41} tii[18,77] := {44} tii[18,78] := {104} tii[18,79] := {34} tii[18,80] := {33} tii[18,81] := {67} tii[18,82] := {80} tii[18,83] := {4} tii[18,84] := {5} tii[18,85] := {94} tii[18,86] := {95} tii[18,87] := {11} tii[18,88] := {30} tii[18,89] := {32} tii[18,90] := {109} tii[18,91] := {25} tii[18,92] := {24} tii[18,93] := {76} tii[18,94] := {77} tii[18,95] := {52} tii[18,96] := {105} tii[18,97] := {68} tii[18,98] := {45} tii[18,99] := {46} tii[18,100] := {87} tii[18,101] := {16} tii[18,102] := {57} tii[18,103] := {58} tii[18,104] := {6} tii[18,105] := {35} tii[18,106] := {55} tii[18,107] := {1} tii[18,108] := {56} tii[18,109] := {96} tii[18,110] := {18} tii[18,111] := {0} tii[18,112] := {10} cell#18 , |C| = 147 special orbit = [5, 5, 1, 1, 1, 1] special rep = [[2], [3, 1, 1]] , dim = 126 cell rep = phi[[],[3, 3, 1]]+phi[[2],[3, 1, 1]] TII depth = 4 TII multiplicity polynomial = 21*X^2+105*X TII subcells: tii[20,1] := {64, 144} tii[20,2] := {130} tii[20,3] := {42, 137} tii[20,4] := {16, 107} tii[20,5] := {115} tii[20,6] := {23, 140} tii[20,7] := {94} tii[20,8] := {12, 131} tii[20,9] := {112} tii[20,10] := {30} tii[20,11] := {66} tii[20,12] := {69} tii[20,13] := {32, 126} tii[20,14] := {99} tii[20,15] := {102} tii[20,16] := {54} tii[20,17] := {43, 138} tii[20,18] := {8, 82} tii[20,19] := {90} tii[20,20] := {92} tii[20,21] := {81} tii[20,22] := {108} tii[20,23] := {117} tii[20,24] := {109} tii[20,25] := {120} tii[20,26] := {4, 95} tii[20,27] := {113} tii[20,28] := {114} tii[20,29] := {96} tii[20,30] := {132} tii[20,31] := {100} tii[20,32] := {134} tii[20,33] := {141} tii[20,34] := {142} tii[20,35] := {146} tii[20,36] := {31} tii[20,37] := {65} tii[20,38] := {68} tii[20,39] := {24, 125} tii[20,40] := {55} tii[20,41] := {97} tii[20,42] := {83} tii[20,43] := {101} tii[20,44] := {85} tii[20,45] := {6, 116} tii[20,46] := {33} tii[20,47] := {91} tii[20,48] := {93} tii[20,49] := {57} tii[20,50] := {72} tii[20,51] := {118} tii[20,52] := {59} tii[20,53] := {75} tii[20,54] := {121} tii[20,55] := {36} tii[20,56] := {133} tii[20,57] := {39} tii[20,58] := {135} tii[20,59] := {62} tii[20,60] := {143} tii[20,61] := {67} tii[20,62] := {70} tii[20,63] := {98} tii[20,64] := {46} tii[20,65] := {103} tii[20,66] := {50} tii[20,67] := {25} tii[20,68] := {119} tii[20,69] := {26} tii[20,70] := {122} tii[20,71] := {7, 123} tii[20,72] := {52} tii[20,73] := {136} tii[20,74] := {128} tii[20,75] := {129} tii[20,76] := {89} tii[20,77] := {139} tii[20,78] := {145} tii[20,79] := {21} tii[20,80] := {34} tii[20,81] := {37} tii[20,82] := {56} tii[20,83] := {44} tii[20,84] := {84} tii[20,85] := {48} tii[20,86] := {86} tii[20,87] := {58} tii[20,88] := {60} tii[20,89] := {88} tii[20,90] := {17} tii[20,91] := {71} tii[20,92] := {35} tii[20,93] := {74} tii[20,94] := {38} tii[20,95] := {73} tii[20,96] := {18} tii[20,97] := {76} tii[20,98] := {19} tii[20,99] := {29, 127} tii[20,100] := {40} tii[20,101] := {106} tii[20,102] := {9} tii[20,103] := {10} tii[20,104] := {2, 78} tii[20,105] := {124} tii[20,106] := {20} tii[20,107] := {28} tii[20,108] := {45} tii[20,109] := {49} tii[20,110] := {47} tii[20,111] := {51} tii[20,112] := {15, 110} tii[20,113] := {79} tii[20,114] := {13} tii[20,115] := {14} tii[20,116] := {3, 105} tii[20,117] := {11, 87} tii[20,118] := {104} tii[20,119] := {27} tii[20,120] := {1, 80} tii[20,121] := {41} tii[20,122] := {77} tii[20,123] := {63} tii[20,124] := {22, 111} tii[20,125] := {5, 61} tii[20,126] := {0, 53} cell#19 , |C| = 112 special orbit = [5, 3, 3, 1, 1, 1] special rep = [[1], [3, 2, 1]] , dim = 112 cell rep = phi[[1],[3, 2, 1]] TII depth = 3 TII multiplicity polynomial = 112*X TII subcells: tii[18,1] := {111} tii[18,2] := {110} tii[18,3] := {31} tii[18,4] := {108} tii[18,5] := {23} tii[18,6] := {89} tii[18,7] := {103} tii[18,8] := {105} tii[18,9] := {22} tii[18,10] := {90} tii[18,11] := {100} tii[18,12] := {104} tii[18,13] := {49} tii[18,14] := {37} tii[18,15] := {102} tii[18,16] := {18} tii[18,17] := {69} tii[18,18] := {109} tii[18,19] := {12} tii[18,20] := {55} tii[18,21] := {10} tii[18,22] := {71} tii[18,23] := {72} tii[18,24] := {92} tii[18,25] := {94} tii[18,26] := {7} tii[18,27] := {68} tii[18,28] := {73} tii[18,29] := {91} tii[18,30] := {93} tii[18,31] := {48} tii[18,32] := {19} tii[18,33] := {101} tii[18,34] := {36} tii[18,35] := {52} tii[18,36] := {75} tii[18,37] := {79} tii[18,38] := {13} tii[18,39] := {87} tii[18,40] := {35} tii[18,41] := {53} tii[18,42] := {57} tii[18,43] := {74} tii[18,44] := {61} tii[18,45] := {78} tii[18,46] := {40} tii[18,47] := {43} tii[18,48] := {65} tii[18,49] := {34} tii[18,50] := {56} tii[18,51] := {60} tii[18,52] := {39} tii[18,53] := {42} tii[18,54] := {88} tii[18,55] := {64} tii[18,56] := {95} tii[18,57] := {32} tii[18,58] := {5} tii[18,59] := {54} tii[18,60] := {76} tii[18,61] := {80} tii[18,62] := {59} tii[18,63] := {63} tii[18,64] := {84} tii[18,65] := {21} tii[18,66] := {38} tii[18,67] := {41} tii[18,68] := {24} tii[18,69] := {77} tii[18,70] := {26} tii[18,71] := {81} tii[18,72] := {6} tii[18,73] := {107} tii[18,74] := {45} tii[18,75] := {98} tii[18,76] := {14} tii[18,77] := {15} tii[18,78] := {50} tii[18,79] := {106} tii[18,80] := {3} tii[18,81] := {30} tii[18,82] := {47} tii[18,83] := {58} tii[18,84] := {62} tii[18,85] := {11} tii[18,86] := {97} tii[18,87] := {83} tii[18,88] := {25} tii[18,89] := {27} tii[18,90] := {70} tii[18,91] := {96} tii[18,92] := {9} tii[18,93] := {16} tii[18,94] := {85} tii[18,95] := {46} tii[18,96] := {51} tii[18,97] := {67} tii[18,98] := {17} tii[18,99] := {82} tii[18,100] := {86} tii[18,101] := {20} tii[18,102] := {2} tii[18,103] := {99} tii[18,104] := {28} tii[18,105] := {0} tii[18,106] := {8} tii[18,107] := {44} tii[18,108] := {66} tii[18,109] := {33} tii[18,110] := {1} tii[18,111] := {29} tii[18,112] := {4} cell#20 , |C| = 112 special orbit = [5, 3, 3, 1, 1, 1] special rep = [[1], [3, 2, 1]] , dim = 112 cell rep = phi[[1],[3, 2, 1]] TII depth = 3 TII multiplicity polynomial = 112*X TII subcells: tii[18,1] := {90} tii[18,2] := {77} tii[18,3] := {88} tii[18,4] := {100} tii[18,5] := {76} tii[18,6] := {102} tii[18,7] := {59} tii[18,8] := {106} tii[18,9] := {40} tii[18,10] := {78} tii[18,11] := {109} tii[18,12] := {89} tii[18,13] := {8} tii[18,14] := {5} tii[18,15] := {56} tii[18,16] := {73} tii[18,17] := {19} tii[18,18] := {75} tii[18,19] := {58} tii[18,20] := {12} tii[18,21] := {54} tii[18,22] := {92} tii[18,23] := {21} tii[18,24] := {44} tii[18,25] := {48} tii[18,26] := {41} tii[18,27] := {99} tii[18,28] := {23} tii[18,29] := {43} tii[18,30] := {47} tii[18,31] := {35} tii[18,32] := {74} tii[18,33] := {91} tii[18,34] := {4} tii[18,35] := {38} tii[18,36] := {61} tii[18,37] := {65} tii[18,38] := {24} tii[18,39] := {105} tii[18,40] := {57} tii[18,41] := {10} tii[18,42] := {79} tii[18,43] := {25} tii[18,44] := {81} tii[18,45] := {28} tii[18,46] := {93} tii[18,47] := {94} tii[18,48] := {103} tii[18,49] := {22} tii[18,50] := {42} tii[18,51] := {46} tii[18,52] := {62} tii[18,53] := {66} tii[18,54] := {111} tii[18,55] := {85} tii[18,56] := {101} tii[18,57] := {3} tii[18,58] := {36} tii[18,59] := {11} tii[18,60] := {26} tii[18,61] := {29} tii[18,62] := {14} tii[18,63] := {16} tii[18,64] := {34} tii[18,65] := {39} tii[18,66] := {60} tii[18,67] := {64} tii[18,68] := {80} tii[18,69] := {27} tii[18,70] := {82} tii[18,71] := {30} tii[18,72] := {37} tii[18,73] := {71} tii[18,74] := {96} tii[18,75] := {52} tii[18,76] := {63} tii[18,77] := {67} tii[18,78] := {107} tii[18,79] := {70} tii[18,80] := {32} tii[18,81] := {86} tii[18,82] := {97} tii[18,83] := {13} tii[18,84] := {15} tii[18,85] := {55} tii[18,86] := {84} tii[18,87] := {33} tii[18,88] := {45} tii[18,89] := {49} tii[18,90] := {110} tii[18,91] := {51} tii[18,92] := {17} tii[18,93] := {68} tii[18,94] := {95} tii[18,95] := {72} tii[18,96] := {108} tii[18,97] := {87} tii[18,98] := {31} tii[18,99] := {69} tii[18,100] := {98} tii[18,101] := {0} tii[18,102] := {20} tii[18,103] := {53} tii[18,104] := {1} tii[18,105] := {9} tii[18,106] := {50} tii[18,107] := {6} tii[18,108] := {83} tii[18,109] := {104} tii[18,110] := {18} tii[18,111] := {2} tii[18,112] := {7} cell#21 , |C| = 140 special orbit = [3, 3, 3, 3, 1, 1] special rep = [[1, 1], [2, 2, 1]] , dim = 105 cell rep = phi[[1],[2, 2, 2]]+phi[[1, 1],[2, 2, 1]] TII depth = 3 TII multiplicity polynomial = 35*X^2+70*X TII subcells: tii[10,1] := {58, 139} tii[10,2] := {84, 131} tii[10,3] := {78} tii[10,4] := {40, 137} tii[10,5] := {4, 103} tii[10,6] := {94} tii[10,7] := {47, 134} tii[10,8] := {109} tii[10,9] := {120} tii[10,10] := {121} tii[10,11] := {8, 119} tii[10,12] := {77} tii[10,13] := {66, 124} tii[10,14] := {16, 130} tii[10,15] := {93} tii[10,16] := {27, 135} tii[10,17] := {104} tii[10,18] := {29, 136} tii[10,19] := {106} tii[10,20] := {68} tii[10,21] := {70} tii[10,22] := {102} tii[10,23] := {112} tii[10,24] := {114} tii[10,25] := {96} tii[10,26] := {98} tii[10,27] := {110} tii[10,28] := {15} tii[10,29] := {2, 85} tii[10,30] := {26} tii[10,31] := {42} tii[10,32] := {44} tii[10,33] := {87} tii[10,34] := {89} tii[10,35] := {39} tii[10,36] := {9, 118} tii[10,37] := {59} tii[10,38] := {17, 125} tii[10,39] := {60} tii[10,40] := {19, 127} tii[10,41] := {105} tii[10,42] := {50} tii[10,43] := {67} tii[10,44] := {10, 113} tii[10,45] := {107} tii[10,46] := {53} tii[10,47] := {69} tii[10,48] := {11, 115} tii[10,49] := {91} tii[10,50] := {92} tii[10,51] := {21, 123} tii[10,52] := {63} tii[10,53] := {64} tii[10,54] := {80} tii[10,55] := {35, 129} tii[10,56] := {25} tii[10,57] := {41} tii[10,58] := {43} tii[10,59] := {18, 126} tii[10,60] := {86} tii[10,61] := {48} tii[10,62] := {20, 128} tii[10,63] := {88} tii[10,64] := {51} tii[10,65] := {32, 133} tii[10,66] := {73} tii[10,67] := {75} tii[10,68] := {33} tii[10,69] := {81} tii[10,70] := {34} tii[10,71] := {82} tii[10,72] := {45, 138} tii[10,73] := {55} tii[10,74] := {56} tii[10,75] := {95} tii[10,76] := {54, 116} tii[10,77] := {83} tii[10,78] := {71, 122} tii[10,79] := {28} tii[10,80] := {30} tii[10,81] := {46} tii[10,82] := {49} tii[10,83] := {5, 97} tii[10,84] := {52} tii[10,85] := {6, 99} tii[10,86] := {74} tii[10,87] := {76} tii[10,88] := {62} tii[10,89] := {12, 111} tii[10,90] := {1, 72} tii[10,91] := {14, 101} tii[10,92] := {22} tii[10,93] := {23} tii[10,94] := {31, 132} tii[10,95] := {3, 90} tii[10,96] := {79} tii[10,97] := {36} tii[10,98] := {37} tii[10,99] := {65} tii[10,100] := {24, 117} tii[10,101] := {7, 108} tii[10,102] := {61} tii[10,103] := {38, 100} tii[10,104] := {13} tii[10,105] := {0, 57} cell#22 , |C| = 112 special orbit = [5, 3, 3, 1, 1, 1] special rep = [[1], [3, 2, 1]] , dim = 112 cell rep = phi[[1],[3, 2, 1]] TII depth = 3 TII multiplicity polynomial = 112*X TII subcells: tii[18,1] := {100} tii[18,2] := {88} tii[18,3] := {54} tii[18,4] := {106} tii[18,5] := {63} tii[18,6] := {105} tii[18,7] := {73} tii[18,8] := {109} tii[18,9] := {26} tii[18,10] := {87} tii[18,11] := {111} tii[18,12] := {97} tii[18,13] := {14} tii[18,14] := {17} tii[18,15] := {79} tii[18,16] := {33} tii[18,17] := {24} tii[18,18] := {93} tii[18,19] := {45} tii[18,20] := {20} tii[18,21] := {18} tii[18,22] := {98} tii[18,23] := {44} tii[18,24] := {65} tii[18,25] := {67} tii[18,26] := {28} tii[18,27] := {104} tii[18,28] := {36} tii[18,29] := {57} tii[18,30] := {59} tii[18,31] := {42} tii[18,32] := {34} tii[18,33] := {102} tii[18,34] := {10} tii[18,35] := {62} tii[18,36] := {81} tii[18,37] := {83} tii[18,38] := {16} tii[18,39] := {108} tii[18,40] := {72} tii[18,41] := {19} tii[18,42] := {89} tii[18,43] := {37} tii[18,44] := {90} tii[18,45] := {39} tii[18,46] := {82} tii[18,47] := {84} tii[18,48] := {96} tii[18,49] := {35} tii[18,50] := {56} tii[18,51] := {58} tii[18,52] := {46} tii[18,53] := {49} tii[18,54] := {110} tii[18,55] := {69} tii[18,56] := {92} tii[18,57] := {6} tii[18,58] := {9} tii[18,59] := {27} tii[18,60] := {47} tii[18,61] := {50} tii[18,62] := {30} tii[18,63] := {32} tii[18,64] := {53} tii[18,65] := {55} tii[18,66] := {74} tii[18,67] := {75} tii[18,68] := {66} tii[18,69] := {38} tii[18,70] := {68} tii[18,71] := {40} tii[18,72] := {12} tii[18,73] := {85} tii[18,74] := {86} tii[18,75] := {61} tii[18,76] := {48} tii[18,77] := {51} tii[18,78] := {101} tii[18,79] := {77} tii[18,80] := {15} tii[18,81] := {71} tii[18,82] := {80} tii[18,83] := {21} tii[18,84] := {22} tii[18,85] := {23} tii[18,86] := {95} tii[18,87] := {41} tii[18,88] := {29} tii[18,89] := {31} tii[18,90] := {107} tii[18,91] := {60} tii[18,92] := {4} tii[18,93] := {43} tii[18,94] := {99} tii[18,95] := {52} tii[18,96] := {103} tii[18,97] := {64} tii[18,98] := {13} tii[18,99] := {76} tii[18,100] := {78} tii[18,101] := {2} tii[18,102] := {5} tii[18,103] := {70} tii[18,104] := {8} tii[18,105] := {0} tii[18,106] := {25} tii[18,107] := {11} tii[18,108] := {91} tii[18,109] := {94} tii[18,110] := {7} tii[18,111] := {3} tii[18,112] := {1} cell#23 , |C| = 20 special orbit = [7, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [4, 1, 1, 1]] , dim = 20 cell rep = phi[[],[4, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 20*X TII subcells: tii[24,1] := {15} tii[24,2] := {18} tii[24,3] := {16} tii[24,4] := {14} tii[24,5] := {11} tii[24,6] := {7} tii[24,7] := {10} tii[24,8] := {6} tii[24,9] := {3} tii[24,10] := {1} tii[24,11] := {19} tii[24,12] := {17} tii[24,13] := {13} tii[24,14] := {9} tii[24,15] := {12} tii[24,16] := {8} tii[24,17] := {5} tii[24,18] := {4} tii[24,19] := {2} tii[24,20] := {0} cell#24 , |C| = 105 special orbit = [5, 3, 1, 1, 1, 1, 1, 1] special rep = [[1], [3, 1, 1, 1]] , dim = 70 cell rep = phi[[],[3, 2, 1, 1]]+phi[[1],[3, 1, 1, 1]] TII depth = 2 TII multiplicity polynomial = 35*X^2+35*X TII subcells: tii[16,1] := {43, 93} tii[16,2] := {51, 92} tii[16,3] := {57, 98} tii[16,4] := {36, 83} tii[16,5] := {45, 103} tii[16,6] := {25, 90} tii[16,7] := {44, 101} tii[16,8] := {24, 71} tii[16,9] := {31, 104} tii[16,10] := {21, 100} tii[16,11] := {16, 81} tii[16,12] := {9, 88} tii[16,13] := {34} tii[16,14] := {30, 86} tii[16,15] := {50} tii[16,16] := {65} tii[16,17] := {67} tii[16,18] := {32, 97} tii[16,19] := {58} tii[16,20] := {73} tii[16,21] := {74} tii[16,22] := {66} tii[16,23] := {68} tii[16,24] := {79} tii[16,25] := {12, 95} tii[16,26] := {46} tii[16,27] := {60} tii[16,28] := {61} tii[16,29] := {53} tii[16,30] := {54} tii[16,31] := {29, 99} tii[16,32] := {69} tii[16,33] := {39} tii[16,34] := {41} tii[16,35] := {14, 85} tii[16,36] := {56} tii[16,37] := {64} tii[16,38] := {33} tii[16,39] := {48} tii[16,40] := {49} tii[16,41] := {38} tii[16,42] := {40} tii[16,43] := {19, 102} tii[16,44] := {55} tii[16,45] := {26} tii[16,46] := {27} tii[16,47] := {8, 76} tii[16,48] := {11, 96} tii[16,49] := {42} tii[16,50] := {7, 91} tii[16,51] := {52} tii[16,52] := {17} tii[16,53] := {18} tii[16,54] := {4, 80} tii[16,55] := {28} tii[16,56] := {2, 70} tii[16,57] := {37} tii[16,58] := {47} tii[16,59] := {22, 78} tii[16,60] := {20, 94} tii[16,61] := {35, 84} tii[16,62] := {13, 87} tii[16,63] := {6, 89} tii[16,64] := {23, 75} tii[16,65] := {3, 82} tii[16,66] := {10, 77} tii[16,67] := {1, 72} tii[16,68] := {15, 62} tii[16,69] := {5, 63} tii[16,70] := {0, 59} cell#25 , |C| = 105 special orbit = [7, 3, 1, 1, 1, 1] special rep = [[1], [4, 1, 1]] , dim = 70 cell rep = phi[[],[4, 2, 1]]+phi[[1],[4, 1, 1]] TII depth = 2 TII multiplicity polynomial = 35*X^2+35*X TII subcells: tii[25,1] := {46, 85} tii[25,2] := {34, 88} tii[25,3] := {62, 86} tii[25,4] := {30, 94} tii[25,5] := {22, 79} tii[25,6] := {18, 99} tii[25,7] := {50, 75} tii[25,8] := {9, 102} tii[25,9] := {13, 84} tii[25,10] := {37, 63} tii[25,11] := {6, 92} tii[25,12] := {32, 76} tii[25,13] := {10} tii[25,14] := {15} tii[25,15] := {31, 74} tii[25,16] := {19, 72} tii[25,17] := {25} tii[25,18] := {40} tii[25,19] := {43} tii[25,20] := {8, 93} tii[25,21] := {27} tii[25,22] := {3, 98} tii[25,23] := {26, 82} tii[25,24] := {36} tii[25,25] := {52} tii[25,26] := {55} tii[25,27] := {0, 95} tii[25,28] := {49} tii[25,29] := {64} tii[25,30] := {66} tii[25,31] := {77} tii[25,32] := {78} tii[25,33] := {89} tii[25,34] := {16} tii[25,35] := {24} tii[25,36] := {14, 71} tii[25,37] := {39} tii[25,38] := {42} tii[25,39] := {2, 87} tii[25,40] := {35} tii[25,41] := {51} tii[25,42] := {54} tii[25,43] := {65} tii[25,44] := {67} tii[25,45] := {21, 104} tii[25,46] := {81} tii[25,47] := {23} tii[25,48] := {38} tii[25,49] := {41} tii[25,50] := {53} tii[25,51] := {56} tii[25,52] := {17, 100} tii[25,53] := {70} tii[25,54] := {47} tii[25,55] := {48} tii[25,56] := {20, 91} tii[25,57] := {61} tii[25,58] := {73} tii[25,59] := {33, 60} tii[25,60] := {12, 103} tii[25,61] := {45, 69} tii[25,62] := {5, 101} tii[25,63] := {57, 80} tii[25,64] := {1, 96} tii[25,65] := {29, 59} tii[25,66] := {7, 97} tii[25,67] := {44, 68} tii[25,68] := {4, 90} tii[25,69] := {28, 58} tii[25,70] := {11, 83} cell#26 , |C| = 112 special orbit = [5, 3, 3, 1, 1, 1] special rep = [[1], [3, 2, 1]] , dim = 112 cell rep = phi[[1],[3, 2, 1]] TII depth = 3 TII multiplicity polynomial = 112*X TII subcells: tii[18,1] := {84} tii[18,2] := {74} tii[18,3] := {31} tii[18,4] := {96} tii[18,5] := {65} tii[18,6] := {94} tii[18,7] := {88} tii[18,8] := {103} tii[18,9] := {73} tii[18,10] := {99} tii[18,11] := {108} tii[18,12] := {106} tii[18,13] := {4} tii[18,14] := {5} tii[18,15] := {55} tii[18,16] := {17} tii[18,17] := {10} tii[18,18] := {72} tii[18,19] := {48} tii[18,20] := {12} tii[18,21] := {9} tii[18,22] := {81} tii[18,23] := {18} tii[18,24] := {34} tii[18,25] := {35} tii[18,26] := {40} tii[18,27] := {95} tii[18,28] := {24} tii[18,29] := {41} tii[18,30] := {43} tii[18,31] := {22} tii[18,32] := {19} tii[18,33] := {87} tii[18,34] := {25} tii[18,35] := {33} tii[18,36] := {50} tii[18,37] := {52} tii[18,38] := {57} tii[18,39] := {102} tii[18,40] := {47} tii[18,41] := {39} tii[18,42] := {66} tii[18,43] := {58} tii[18,44] := {68} tii[18,45] := {60} tii[18,46] := {82} tii[18,47] := {83} tii[18,48] := {97} tii[18,49] := {56} tii[18,50] := {75} tii[18,51] := {77} tii[18,52] := {89} tii[18,53] := {90} tii[18,54] := {111} tii[18,55] := {100} tii[18,56] := {110} tii[18,57] := {1} tii[18,58] := {3} tii[18,59] := {8} tii[18,60] := {20} tii[18,61] := {21} tii[18,62] := {13} tii[18,63] := {14} tii[18,64] := {29} tii[18,65] := {32} tii[18,66] := {49} tii[18,67] := {51} tii[18,68] := {67} tii[18,69] := {26} tii[18,70] := {69} tii[18,71] := {27} tii[18,72] := {23} tii[18,73] := {54} tii[18,74] := {86} tii[18,75] := {46} tii[18,76] := {59} tii[18,77] := {61} tii[18,78] := {105} tii[18,79] := {63} tii[18,80] := {28} tii[18,81] := {80} tii[18,82] := {93} tii[18,83] := {42} tii[18,84] := {44} tii[18,85] := {38} tii[18,86] := {71} tii[18,87] := {64} tii[18,88] := {76} tii[18,89] := {78} tii[18,90] := {109} tii[18,91] := {79} tii[18,92] := {45} tii[18,93] := {53} tii[18,94] := {85} tii[18,95] := {92} tii[18,96] := {104} tii[18,97] := {101} tii[18,98] := {62} tii[18,99] := {91} tii[18,100] := {107} tii[18,101] := {0} tii[18,102] := {11} tii[18,103] := {37} tii[18,104] := {2} tii[18,105] := {7} tii[18,106] := {36} tii[18,107] := {6} tii[18,108] := {70} tii[18,109] := {98} tii[18,110] := {16} tii[18,111] := {15} tii[18,112] := {30} cell#27 , |C| = 112 special orbit = [5, 3, 3, 1, 1, 1] special rep = [[1], [3, 2, 1]] , dim = 112 cell rep = phi[[1],[3, 2, 1]] TII depth = 3 TII multiplicity polynomial = 112*X TII subcells: tii[18,1] := {102} tii[18,2] := {111} tii[18,3] := {14} tii[18,4] := {88} tii[18,5] := {50} tii[18,6] := {49} tii[18,7] := {109} tii[18,8] := {77} tii[18,9] := {58} tii[18,10] := {106} tii[18,11] := {57} tii[18,12] := {96} tii[18,13] := {28} tii[18,14] := {72} tii[18,15] := {71} tii[18,16] := {6} tii[18,17] := {48} tii[18,18] := {90} tii[18,19] := {30} tii[18,20] := {91} tii[18,21] := {2} tii[18,22] := {29} tii[18,23] := {60} tii[18,24] := {80} tii[18,25] := {83} tii[18,26] := {20} tii[18,27] := {19} tii[18,28] := {103} tii[18,29] := {107} tii[18,30] := {108} tii[18,31] := {27} tii[18,32] := {7} tii[18,33] := {69} tii[18,34] := {70} tii[18,35] := {40} tii[18,36] := {61} tii[18,37] := {64} tii[18,38] := {37} tii[18,39] := {36} tii[18,40] := {23} tii[18,41] := {89} tii[18,42] := {42} tii[18,43] := {97} tii[18,44] := {44} tii[18,45] := {99} tii[18,46] := {63} tii[18,47] := {66} tii[18,48] := {79} tii[18,49] := {78} tii[18,50] := {92} tii[18,51] := {93} tii[18,52] := {73} tii[18,53] := {74} tii[18,54] := {38} tii[18,55] := {87} tii[18,56] := {86} tii[18,57] := {15} tii[18,58] := {0} tii[18,59] := {41} tii[18,60] := {62} tii[18,61] := {65} tii[18,62] := {82} tii[18,63] := {85} tii[18,64] := {95} tii[18,65] := {13} tii[18,66] := {24} tii[18,67] := {25} tii[18,68] := {43} tii[18,69] := {98} tii[18,70] := {45} tii[18,71] := {100} tii[18,72] := {8} tii[18,73] := {75} tii[18,74] := {59} tii[18,75] := {105} tii[18,76] := {31} tii[18,77] := {32} tii[18,78] := {9} tii[18,79] := {110} tii[18,80] := {10} tii[18,81] := {47} tii[18,82] := {26} tii[18,83] := {81} tii[18,84] := {84} tii[18,85] := {18} tii[18,86] := {53} tii[18,87] := {94} tii[18,88] := {51} tii[18,89] := {52} tii[18,90] := {21} tii[18,91] := {104} tii[18,92] := {22} tii[18,93] := {34} tii[18,94] := {33} tii[18,95] := {68} tii[18,96] := {11} tii[18,97] := {46} tii[18,98] := {39} tii[18,99] := {101} tii[18,100] := {67} tii[18,101] := {35} tii[18,102] := {3} tii[18,103] := {55} tii[18,104] := {56} tii[18,105] := {1} tii[18,106] := {17} tii[18,107] := {76} tii[18,108] := {16} tii[18,109] := {4} tii[18,110] := {5} tii[18,111] := {54} tii[18,112] := {12} cell#28 , |C| = 147 special orbit = [5, 3, 2, 2, 1, 1] special rep = [[1, 1], [3, 1, 1]] , dim = 126 cell rep = phi[[],[3, 2, 2]]+phi[[1, 1],[3, 1, 1]] TII depth = 4 TII multiplicity polynomial = 21*X^2+105*X TII subcells: tii[17,1] := {136, 144} tii[17,2] := {124, 145} tii[17,3] := {79, 125} tii[17,4] := {33} tii[17,5] := {21} tii[17,6] := {121, 137} tii[17,7] := {52} tii[17,8] := {102, 139} tii[17,9] := {37} tii[17,10] := {98, 123} tii[17,11] := {54} tii[17,12] := {83} tii[17,13] := {89} tii[17,14] := {80, 126} tii[17,15] := {56} tii[17,16] := {82} tii[17,17] := {88} tii[17,18] := {86} tii[17,19] := {92} tii[17,20] := {74} tii[17,21] := {122, 138} tii[17,22] := {22} tii[17,23] := {77} tii[17,24] := {105} tii[17,25] := {111} tii[17,26] := {57, 103} tii[17,27] := {36} tii[17,28] := {101} tii[17,29] := {58} tii[17,30] := {127} tii[17,31] := {62} tii[17,32] := {129} tii[17,33] := {61} tii[17,34] := {140} tii[17,35] := {65} tii[17,36] := {141} tii[17,37] := {146} tii[17,38] := {55} tii[17,39] := {81} tii[17,40] := {87} tii[17,41] := {85} tii[17,42] := {107} tii[17,43] := {91} tii[17,44] := {112} tii[17,45] := {133} tii[17,46] := {106} tii[17,47] := {110} tii[17,48] := {135} tii[17,49] := {0} tii[17,50] := {20} tii[17,51] := {1} tii[17,52] := {4} tii[17,53] := {5} tii[17,54] := {75, 100} tii[17,55] := {35} tii[17,56] := {2} tii[17,57] := {59} tii[17,58] := {7} tii[17,59] := {63} tii[17,60] := {9} tii[17,61] := {41} tii[17,62] := {14} tii[17,63] := {45} tii[17,64] := {17} tii[17,65] := {29} tii[17,66] := {31} tii[17,67] := {6} tii[17,68] := {78} tii[17,69] := {12} tii[17,70] := {104} tii[17,71] := {15} tii[17,72] := {109} tii[17,73] := {128} tii[17,74] := {23} tii[17,75] := {60} tii[17,76] := {130} tii[17,77] := {25} tii[17,78] := {64} tii[17,79] := {76, 117} tii[17,80] := {143} tii[17,81] := {47} tii[17,82] := {49} tii[17,83] := {39} tii[17,84] := {108} tii[17,85] := {43} tii[17,86] := {113} tii[17,87] := {67, 116} tii[17,88] := {69} tii[17,89] := {71} tii[17,90] := {134} tii[17,91] := {119} tii[17,92] := {3} tii[17,93] := {8} tii[17,94] := {10} tii[17,95] := {40} tii[17,96] := {13} tii[17,97] := {44} tii[17,98] := {16} tii[17,99] := {99, 132} tii[17,100] := {28} tii[17,101] := {30} tii[17,102] := {24} tii[17,103] := {84} tii[17,104] := {26} tii[17,105] := {90} tii[17,106] := {46, 94} tii[17,107] := {48} tii[17,108] := {50} tii[17,109] := {114, 142} tii[17,110] := {118} tii[17,111] := {97} tii[17,112] := {38} tii[17,113] := {42} tii[17,114] := {66, 115} tii[17,115] := {68} tii[17,116] := {70} tii[17,117] := {120} tii[17,118] := {11} tii[17,119] := {53, 95} tii[17,120] := {18} tii[17,121] := {34, 73} tii[17,122] := {93, 131} tii[17,123] := {27} tii[17,124] := {51, 96} tii[17,125] := {19} tii[17,126] := {32, 72} cell#29 , |C| = 105 special orbit = [5, 3, 1, 1, 1, 1, 1, 1] special rep = [[1], [3, 1, 1, 1]] , dim = 70 cell rep = phi[[],[3, 2, 1, 1]]+phi[[1],[3, 1, 1, 1]] TII depth = 2 TII multiplicity polynomial = 35*X^2+35*X TII subcells: tii[16,1] := {86, 87} tii[16,2] := {52, 53} tii[16,3] := {96, 97} tii[16,4] := {36, 37} tii[16,5] := {83, 84} tii[16,6] := {59, 60} tii[16,7] := {85, 102} tii[16,8] := {16, 17} tii[16,9] := {69, 95} tii[16,10] := {51, 91} tii[16,11] := {34, 35} tii[16,12] := {15, 58} tii[16,13] := {45} tii[16,14] := {72, 73} tii[16,15] := {23} tii[16,16] := {38} tii[16,17] := {40} tii[16,18] := {70, 71} tii[16,19] := {7} tii[16,20] := {18} tii[16,21] := {19} tii[16,22] := {39} tii[16,23] := {41} tii[16,24] := {64} tii[16,25] := {30, 77} tii[16,26] := {3} tii[16,27] := {8} tii[16,28] := {11} tii[16,29] := {25} tii[16,30] := {27} tii[16,31] := {98, 99} tii[16,32] := {50} tii[16,33] := {47} tii[16,34] := {48} tii[16,35] := {80, 81} tii[16,36] := {68} tii[16,37] := {82} tii[16,38] := {0} tii[16,39] := {1} tii[16,40] := {2} tii[16,41] := {10} tii[16,42] := {13} tii[16,43] := {88, 103} tii[16,44] := {29} tii[16,45] := {24} tii[16,46] := {26} tii[16,47] := {62, 63} tii[16,48] := {74, 101} tii[16,49] := {49} tii[16,50] := {57, 104} tii[16,51] := {67} tii[16,52] := {9} tii[16,53] := {12} tii[16,54] := {42, 79} tii[16,55] := {28} tii[16,56] := {22, 92} tii[16,57] := {46} tii[16,58] := {61} tii[16,59] := {54, 55} tii[16,60] := {89, 90} tii[16,61] := {31, 32} tii[16,62] := {75, 76} tii[16,63] := {56, 94} tii[16,64] := {20, 21} tii[16,65] := {33, 100} tii[16,66] := {65, 66} tii[16,67] := {14, 93} tii[16,68] := {4, 5} tii[16,69] := {43, 44} tii[16,70] := {6, 78} cell#30 , |C| = 105 special orbit = [4, 4, 3, 1, 1, 1] special rep = [[2], [2, 2, 1]] , dim = 105 cell rep = phi[[2],[2, 2, 1]] TII depth = 3 TII multiplicity polynomial = 105*X TII subcells: tii[13,1] := {85} tii[13,2] := {67} tii[13,3] := {93} tii[13,4] := {84} tii[13,5] := {99} tii[13,6] := {102} tii[13,7] := {15} tii[13,8] := {29} tii[13,9] := {18} tii[13,10] := {19} tii[13,11] := {53} tii[13,12] := {39} tii[13,13] := {41} tii[13,14] := {60} tii[13,15] := {44} tii[13,16] := {61} tii[13,17] := {63} tii[13,18] := {34} tii[13,19] := {36} tii[13,20] := {45} tii[13,21] := {54} tii[13,22] := {56} tii[13,23] := {73} tii[13,24] := {51} tii[13,25] := {52} tii[13,26] := {59} tii[13,27] := {38} tii[13,28] := {74} tii[13,29] := {68} tii[13,30] := {40} tii[13,31] := {76} tii[13,32] := {70} tii[13,33] := {81} tii[13,34] := {82} tii[13,35] := {92} tii[13,36] := {72} tii[13,37] := {86} tii[13,38] := {88} tii[13,39] := {94} tii[13,40] := {95} tii[13,41] := {100} tii[13,42] := {104} tii[13,43] := {8} tii[13,44] := {9} tii[13,45] := {22} tii[13,46] := {3} tii[13,47] := {27} tii[13,48] := {5} tii[13,49] := {30} tii[13,50] := {31} tii[13,51] := {49} tii[13,52] := {35} tii[13,53] := {37} tii[13,54] := {10} tii[13,55] := {21} tii[13,56] := {55} tii[13,57] := {12} tii[13,58] := {25} tii[13,59] := {57} tii[13,60] := {69} tii[13,61] := {11} tii[13,62] := {46} tii[13,63] := {71} tii[13,64] := {13} tii[13,65] := {47} tii[13,66] := {83} tii[13,67] := {66} tii[13,68] := {28} tii[13,69] := {75} tii[13,70] := {77} tii[13,71] := {79} tii[13,72] := {91} tii[13,73] := {48} tii[13,74] := {98} tii[13,75] := {20} tii[13,76] := {24} tii[13,77] := {23} tii[13,78] := {62} tii[13,79] := {26} tii[13,80] := {64} tii[13,81] := {43} tii[13,82] := {80} tii[13,83] := {87} tii[13,84] := {89} tii[13,85] := {58} tii[13,86] := {90} tii[13,87] := {65} tii[13,88] := {97} tii[13,89] := {101} tii[13,90] := {78} tii[13,91] := {96} tii[13,92] := {103} tii[13,93] := {0} tii[13,94] := {1} tii[13,95] := {2} tii[13,96] := {4} tii[13,97] := {6} tii[13,98] := {7} tii[13,99] := {14} tii[13,100] := {17} tii[13,101] := {42} tii[13,102] := {16} tii[13,103] := {33} tii[13,104] := {32} tii[13,105] := {50} cell#31 , |C| = 84 special orbit = [4, 4, 1, 1, 1, 1, 1, 1] special rep = [[2], [2, 1, 1, 1]] , dim = 84 cell rep = phi[[2],[2, 1, 1, 1]] TII depth = 5 TII multiplicity polynomial = 84*X TII subcells: tii[11,1] := {47} tii[11,2] := {57} tii[11,3] := {65} tii[11,4] := {46} tii[11,5] := {56} tii[11,6] := {64} tii[11,7] := {16} tii[11,8] := {17} tii[11,9] := {36} tii[11,10] := {38} tii[11,11] := {30} tii[11,12] := {32} tii[11,13] := {20} tii[11,14] := {50} tii[11,15] := {23} tii[11,16] := {52} tii[11,17] := {60} tii[11,18] := {63} tii[11,19] := {71} tii[11,20] := {44} tii[11,21] := {45} tii[11,22] := {35} tii[11,23] := {58} tii[11,24] := {37} tii[11,25] := {61} tii[11,26] := {21} tii[11,27] := {67} tii[11,28] := {24} tii[11,29] := {69} tii[11,30] := {41} tii[11,31] := {77} tii[11,32] := {74} tii[11,33] := {75} tii[11,34] := {55} tii[11,35] := {80} tii[11,36] := {82} tii[11,37] := {29} tii[11,38] := {31} tii[11,39] := {19} tii[11,40] := {49} tii[11,41] := {22} tii[11,42] := {51} tii[11,43] := {7} tii[11,44] := {59} tii[11,45] := {11} tii[11,46] := {62} tii[11,47] := {25} tii[11,48] := {70} tii[11,49] := {2} tii[11,50] := {66} tii[11,51] := {3} tii[11,52] := {68} tii[11,53] := {43} tii[11,54] := {14} tii[11,55] := {76} tii[11,56] := {18} tii[11,57] := {79} tii[11,58] := {72} tii[11,59] := {73} tii[11,60] := {54} tii[11,61] := {78} tii[11,62] := {42} tii[11,63] := {81} tii[11,64] := {83} tii[11,65] := {6} tii[11,66] := {10} tii[11,67] := {9} tii[11,68] := {13} tii[11,69] := {27} tii[11,70] := {8} tii[11,71] := {12} tii[11,72] := {40} tii[11,73] := {26} tii[11,74] := {34} tii[11,75] := {0} tii[11,76] := {1} tii[11,77] := {53} tii[11,78] := {4} tii[11,79] := {5} tii[11,80] := {48} tii[11,81] := {15} tii[11,82] := {39} tii[11,83] := {33} tii[11,84] := {28} cell#32 , |C| = 63 special orbit = [3, 3, 3, 1, 1, 1, 1, 1] special rep = [[1], [2, 2, 1, 1]] , dim = 63 cell rep = phi[[1],[2, 2, 1, 1]] TII depth = 3 TII multiplicity polynomial = 63*X TII subcells: tii[9,1] := {44} tii[9,2] := {13} tii[9,3] := {53} tii[9,4] := {57} tii[9,5] := {22} tii[9,6] := {58} tii[9,7] := {19} tii[9,8] := {61} tii[9,9] := {62} tii[9,10] := {9} tii[9,11] := {8} tii[9,12] := {14} tii[9,13] := {25} tii[9,14] := {27} tii[9,15] := {11} tii[9,16] := {23} tii[9,17] := {36} tii[9,18] := {38} tii[9,19] := {24} tii[9,20] := {26} tii[9,21] := {39} tii[9,22] := {51} tii[9,23] := {33} tii[9,24] := {45} tii[9,25] := {46} tii[9,26] := {35} tii[9,27] := {37} tii[9,28] := {47} tii[9,29] := {30} tii[9,30] := {31} tii[9,31] := {10} tii[9,32] := {56} tii[9,33] := {42} tii[9,34] := {50} tii[9,35] := {60} tii[9,36] := {59} tii[9,37] := {16} tii[9,38] := {18} tii[9,39] := {29} tii[9,40] := {15} tii[9,41] := {17} tii[9,42] := {40} tii[9,43] := {3} tii[9,44] := {28} tii[9,45] := {34} tii[9,46] := {20} tii[9,47] := {21} tii[9,48] := {6} tii[9,49] := {7} tii[9,50] := {48} tii[9,51] := {32} tii[9,52] := {41} tii[9,53] := {43} tii[9,54] := {2} tii[9,55] := {49} tii[9,56] := {12} tii[9,57] := {54} tii[9,58] := {5} tii[9,59] := {52} tii[9,60] := {55} tii[9,61] := {4} tii[9,62] := {1} tii[9,63] := {0} cell#33 , |C| = 63 special orbit = [3, 3, 3, 1, 1, 1, 1, 1] special rep = [[1], [2, 2, 1, 1]] , dim = 63 cell rep = phi[[1],[2, 2, 1, 1]] TII depth = 3 TII multiplicity polynomial = 63*X TII subcells: tii[9,1] := {28} tii[9,2] := {17} tii[9,3] := {36} tii[9,4] := {44} tii[9,5] := {27} tii[9,6] := {45} tii[9,7] := {35} tii[9,8] := {51} tii[9,9] := {56} tii[9,10] := {1} tii[9,11] := {9} tii[9,12] := {3} tii[9,13] := {11} tii[9,14] := {12} tii[9,15] := {26} tii[9,16] := {8} tii[9,17] := {19} tii[9,18] := {21} tii[9,19] := {30} tii[9,20] := {32} tii[9,21] := {42} tii[9,22] := {53} tii[9,23] := {16} tii[9,24] := {29} tii[9,25] := {31} tii[9,26] := {38} tii[9,27] := {40} tii[9,28] := {49} tii[9,29] := {46} tii[9,30] := {47} tii[9,31] := {25} tii[9,32] := {59} tii[9,33] := {54} tii[9,34] := {57} tii[9,35] := {60} tii[9,36] := {62} tii[9,37] := {5} tii[9,38] := {6} tii[9,39] := {14} tii[9,40] := {20} tii[9,41] := {22} tii[9,42] := {24} tii[9,43] := {7} tii[9,44] := {34} tii[9,45] := {43} tii[9,46] := {37} tii[9,47] := {39} tii[9,48] := {15} tii[9,49] := {13} tii[9,50] := {33} tii[9,51] := {48} tii[9,52] := {52} tii[9,53] := {50} tii[9,54] := {10} tii[9,55] := {58} tii[9,56] := {23} tii[9,57] := {41} tii[9,58] := {18} tii[9,59] := {55} tii[9,60] := {61} tii[9,61] := {0} tii[9,62] := {2} tii[9,63] := {4} cell#34 , |C| = 15 special orbit = [5, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [3, 1, 1, 1, 1]] , dim = 15 cell rep = phi[[],[3, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 15*X TII subcells: tii[15,1] := {12} tii[15,2] := {9} tii[15,3] := {5} tii[15,4] := {2} tii[15,5] := {0} tii[15,6] := {13} tii[15,7] := {11} tii[15,8] := {14} tii[15,9] := {8} tii[15,10] := {10} tii[15,11] := {7} tii[15,12] := {4} tii[15,13] := {6} tii[15,14] := {3} tii[15,15] := {1} cell#35 , |C| = 49 special orbit = [3, 3, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [2, 1, 1, 1, 1]] , dim = 35 cell rep = phi[[],[2, 2, 1, 1, 1]]+phi[[1],[2, 1, 1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 14*X^2+21*X TII subcells: tii[6,1] := {18, 41} tii[6,2] := {14, 45} tii[6,3] := {10, 47} tii[6,4] := {8, 48} tii[6,5] := {23} tii[6,6] := {30} tii[6,7] := {31} tii[6,8] := {24} tii[6,9] := {25} tii[6,10] := {32} tii[6,11] := {20} tii[6,12] := {21} tii[6,13] := {9, 40} tii[6,14] := {28} tii[6,15] := {34} tii[6,16] := {15} tii[6,17] := {16} tii[6,18] := {7, 44} tii[6,19] := {22} tii[6,20] := {4, 42} tii[6,21] := {27} tii[6,22] := {33} tii[6,23] := {11} tii[6,24] := {12} tii[6,25] := {5, 46} tii[6,26] := {17} tii[6,27] := {2, 43} tii[6,28] := {19} tii[6,29] := {1, 39} tii[6,30] := {26} tii[6,31] := {29} tii[6,32] := {13, 37} tii[6,33] := {6, 36} tii[6,34] := {3, 38} tii[6,35] := {0, 35} cell#36 , |C| = 140 special orbit = [3, 3, 3, 3, 1, 1] special rep = [[1, 1], [2, 2, 1]] , dim = 105 cell rep = phi[[1],[2, 2, 2]]+phi[[1, 1],[2, 2, 1]] TII depth = 3 TII multiplicity polynomial = 35*X^2+70*X TII subcells: tii[10,1] := {112, 138} tii[10,2] := {136, 137} tii[10,3] := {28} tii[10,4] := {92, 129} tii[10,5] := {20, 69} tii[10,6] := {46} tii[10,7] := {113, 114} tii[10,8] := {68} tii[10,9] := {79} tii[10,10] := {83} tii[10,11] := {34, 91} tii[10,12] := {70} tii[10,13] := {127, 128} tii[10,14] := {50, 111} tii[10,15] := {89} tii[10,16] := {72, 120} tii[10,17] := {99} tii[10,18] := {73, 123} tii[10,19] := {104} tii[10,20] := {103} tii[10,21] := {108} tii[10,22] := {110} tii[10,23] := {119} tii[10,24] := {122} tii[10,25] := {133} tii[10,26] := {134} tii[10,27] := {139} tii[10,28] := {1} tii[10,29] := {11, 47} tii[10,30] := {3} tii[10,31] := {8} tii[10,32] := {9} tii[10,33] := {40} tii[10,34] := {43} tii[10,35] := {7} tii[10,36] := {33, 90} tii[10,37] := {16} tii[10,38] := {51, 100} tii[10,39] := {17} tii[10,40] := {53, 105} tii[10,41] := {59} tii[10,42] := {82} tii[10,43] := {24} tii[10,44] := {35, 80} tii[10,45] := {62} tii[10,46] := {86} tii[10,47] := {25} tii[10,48] := {36, 84} tii[10,49] := {44} tii[10,50] := {45} tii[10,51] := {55, 96} tii[10,52] := {101} tii[10,53] := {106} tii[10,54] := {125} tii[10,55] := {93, 94} tii[10,56] := {15} tii[10,57] := {29} tii[10,58] := {30} tii[10,59] := {52, 102} tii[10,60] := {81} tii[10,61] := {38} tii[10,62] := {54, 107} tii[10,63] := {85} tii[10,64] := {41} tii[10,65] := {75, 118} tii[10,66] := {64} tii[10,67] := {66} tii[10,68] := {58} tii[10,69] := {121} tii[10,70] := {61} tii[10,71] := {124} tii[10,72] := {95, 132} tii[10,73] := {87} tii[10,74] := {88} tii[10,75] := {135} tii[10,76] := {115, 116} tii[10,77] := {126} tii[10,78] := {130, 131} tii[10,79] := {4} tii[10,80] := {5} tii[10,81] := {10} tii[10,82] := {13} tii[10,83] := {21, 60} tii[10,84] := {14} tii[10,85] := {22, 63} tii[10,86] := {26} tii[10,87] := {27} tii[10,88] := {18} tii[10,89] := {37, 78} tii[10,90] := {6, 31} tii[10,91] := {56, 57} tii[10,92] := {39} tii[10,93] := {42} tii[10,94] := {74, 117} tii[10,95] := {12, 48} tii[10,96] := {32} tii[10,97] := {65} tii[10,98] := {67} tii[10,99] := {109} tii[10,100] := {76, 77} tii[10,101] := {23, 71} tii[10,102] := {49} tii[10,103] := {97, 98} tii[10,104] := {0} tii[10,105] := {2, 19} cell#37 , |C| = 105 special orbit = [5, 3, 1, 1, 1, 1, 1, 1] special rep = [[1], [3, 1, 1, 1]] , dim = 70 cell rep = phi[[],[3, 2, 1, 1]]+phi[[1],[3, 1, 1, 1]] TII depth = 2 TII multiplicity polynomial = 35*X^2+35*X TII subcells: tii[16,1] := {70, 86} tii[16,2] := {57, 88} tii[16,3] := {54, 96} tii[16,4] := {41, 75} tii[16,5] := {38, 101} tii[16,6] := {30, 85} tii[16,7] := {37, 90} tii[16,8] := {29, 58} tii[16,9] := {24, 98} tii[16,10] := {14, 89} tii[16,11] := {18, 73} tii[16,12] := {11, 59} tii[16,13] := {23} tii[16,14] := {55, 74} tii[16,15] := {27} tii[16,16] := {43} tii[16,17] := {47} tii[16,18] := {25, 95} tii[16,19] := {40} tii[16,20] := {60} tii[16,21] := {62} tii[16,22] := {77} tii[16,23] := {78} tii[16,24] := {91} tii[16,25] := {8, 76} tii[16,26] := {28} tii[16,27] := {42} tii[16,28] := {46} tii[16,29] := {61} tii[16,30] := {63} tii[16,31] := {26, 104} tii[16,32] := {80} tii[16,33] := {45} tii[16,34] := {49} tii[16,35] := {22, 97} tii[16,36] := {67} tii[16,37] := {81} tii[16,38] := {17} tii[16,39] := {31} tii[16,40] := {33} tii[16,41] := {44} tii[16,42] := {48} tii[16,43] := {15, 103} tii[16,44] := {66} tii[16,45] := {32} tii[16,46] := {34} tii[16,47] := {12, 87} tii[16,48] := {9, 100} tii[16,49] := {52} tii[16,50] := {5, 94} tii[16,51] := {68} tii[16,52] := {19} tii[16,53] := {20} tii[16,54] := {6, 83} tii[16,55] := {36} tii[16,56] := {3, 71} tii[16,57] := {53} tii[16,58] := {69} tii[16,59] := {39, 65} tii[16,60] := {16, 102} tii[16,61] := {50, 79} tii[16,62] := {10, 99} tii[16,63] := {4, 93} tii[16,64] := {35, 64} tii[16,65] := {2, 84} tii[16,66] := {13, 92} tii[16,67] := {0, 72} tii[16,68] := {21, 51} tii[16,69] := {7, 82} tii[16,70] := {1, 56} cell#38 , |C| = 63 special orbit = [3, 3, 3, 1, 1, 1, 1, 1] special rep = [[1], [2, 2, 1, 1]] , dim = 63 cell rep = phi[[1],[2, 2, 1, 1]] TII depth = 3 TII multiplicity polynomial = 63*X TII subcells: tii[9,1] := {62} tii[9,2] := {30} tii[9,3] := {60} tii[9,4] := {57} tii[9,5] := {18} tii[9,6] := {53} tii[9,7] := {10} tii[9,8] := {46} tii[9,9] := {54} tii[9,10] := {42} tii[9,11] := {19} tii[9,12] := {52} tii[9,13] := {58} tii[9,14] := {59} tii[9,15] := {4} tii[9,16] := {41} tii[9,17] := {47} tii[9,18] := {49} tii[9,19] := {36} tii[9,20] := {38} tii[9,21] := {45} tii[9,22] := {51} tii[9,23] := {29} tii[9,24] := {35} tii[9,25] := {37} tii[9,26] := {23} tii[9,27] := {25} tii[9,28] := {32} tii[9,29] := {15} tii[9,30] := {16} tii[9,31] := {5} tii[9,32] := {39} tii[9,33] := {21} tii[9,34] := {17} tii[9,35] := {44} tii[9,36] := {33} tii[9,37] := {48} tii[9,38] := {50} tii[9,39] := {56} tii[9,40] := {24} tii[9,41] := {26} tii[9,42] := {61} tii[9,43] := {12} tii[9,44] := {34} tii[9,45] := {28} tii[9,46] := {7} tii[9,47] := {8} tii[9,48] := {2} tii[9,49] := {20} tii[9,50] := {55} tii[9,51] := {13} tii[9,52] := {9} tii[9,53] := {40} tii[9,54] := {1} tii[9,55] := {14} tii[9,56] := {11} tii[9,57] := {43} tii[9,58] := {3} tii[9,59] := {27} tii[9,60] := {22} tii[9,61] := {31} tii[9,62] := {6} tii[9,63] := {0} cell#39 , |C| = 20 special orbit = [7, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [4, 1, 1, 1]] , dim = 20 cell rep = phi[[],[4, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 20*X TII subcells: tii[24,1] := {14} tii[24,2] := {18} tii[24,3] := {15} tii[24,4] := {13} tii[24,5] := {9} tii[24,6] := {5} tii[24,7] := {8} tii[24,8] := {4} tii[24,9] := {1} tii[24,10] := {0} tii[24,11] := {19} tii[24,12] := {17} tii[24,13] := {12} tii[24,14] := {16} tii[24,15] := {11} tii[24,16] := {7} tii[24,17] := {10} tii[24,18] := {2} tii[24,19] := {6} tii[24,20] := {3} cell#40 , |C| = 105 special orbit = [5, 3, 1, 1, 1, 1, 1, 1] special rep = [[1], [3, 1, 1, 1]] , dim = 70 cell rep = phi[[],[3, 2, 1, 1]]+phi[[1],[3, 1, 1, 1]] TII depth = 2 TII multiplicity polynomial = 35*X^2+35*X TII subcells: tii[16,1] := {13, 64} tii[16,2] := {34, 59} tii[16,3] := {20, 74} tii[16,4] := {45, 70} tii[16,5] := {11, 83} tii[16,6] := {57, 81} tii[16,7] := {12, 80} tii[16,8] := {33, 58} tii[16,9] := {4, 90} tii[16,10] := {1, 97} tii[16,11] := {44, 69} tii[16,12] := {42, 82} tii[16,13] := {8} tii[16,14] := {6, 54} tii[16,15] := {14} tii[16,16] := {25} tii[16,17] := {26} tii[16,18] := {5, 71} tii[16,19] := {22} tii[16,20] := {37} tii[16,21] := {39} tii[16,22] := {48} tii[16,23] := {51} tii[16,24] := {67} tii[16,25] := {0, 91} tii[16,26] := {32} tii[16,27] := {46} tii[16,28] := {49} tii[16,29] := {61} tii[16,30] := {63} tii[16,31] := {27, 96} tii[16,32] := {76} tii[16,33] := {72} tii[16,34] := {73} tii[16,35] := {43, 94} tii[16,36] := {86} tii[16,37] := {92} tii[16,38] := {21} tii[16,39] := {36} tii[16,40] := {38} tii[16,41] := {47} tii[16,42] := {50} tii[16,43] := {16, 98} tii[16,44] := {66} tii[16,45] := {60} tii[16,46] := {62} tii[16,47] := {31, 85} tii[16,48] := {9, 102} tii[16,49] := {75} tii[16,50] := {15, 104} tii[16,51] := {84} tii[16,52] := {55} tii[16,53] := {56} tii[16,54] := {30, 95} tii[16,55] := {68} tii[16,56] := {19, 100} tii[16,57] := {79} tii[16,58] := {89} tii[16,59] := {18, 41} tii[16,60] := {17, 88} tii[16,61] := {29, 53} tii[16,62] := {24, 78} tii[16,63] := {2, 101} tii[16,64] := {40, 65} tii[16,65] := {7, 103} tii[16,66] := {35, 87} tii[16,67] := {3, 99} tii[16,68] := {28, 52} tii[16,69] := {23, 77} tii[16,70] := {10, 93} cell#41 , |C| = 63 special orbit = [3, 3, 3, 1, 1, 1, 1, 1] special rep = [[1], [2, 2, 1, 1]] , dim = 63 cell rep = phi[[1],[2, 2, 1, 1]] TII depth = 3 TII multiplicity polynomial = 63*X TII subcells: tii[9,1] := {42} tii[9,2] := {30} tii[9,3] := {51} tii[9,4] := {56} tii[9,5] := {19} tii[9,6] := {41} tii[9,7] := {11} tii[9,8] := {50} tii[9,9] := {57} tii[9,10] := {5} tii[9,11] := {20} tii[9,12] := {10} tii[9,13] := {22} tii[9,14] := {25} tii[9,15] := {6} tii[9,16] := {18} tii[9,17] := {31} tii[9,18] := {34} tii[9,19] := {43} tii[9,20] := {44} tii[9,21] := {52} tii[9,22] := {61} tii[9,23] := {9} tii[9,24] := {21} tii[9,25] := {24} tii[9,26] := {32} tii[9,27] := {35} tii[9,28] := {46} tii[9,29] := {23} tii[9,30] := {26} tii[9,31] := {7} tii[9,32] := {58} tii[9,33] := {39} tii[9,34] := {48} tii[9,35] := {62} tii[9,36] := {59} tii[9,37] := {12} tii[9,38] := {14} tii[9,39] := {28} tii[9,40] := {33} tii[9,41] := {36} tii[9,42] := {38} tii[9,43] := {17} tii[9,44] := {47} tii[9,45] := {54} tii[9,46] := {13} tii[9,47] := {15} tii[9,48] := {3} tii[9,49] := {27} tii[9,50] := {45} tii[9,51] := {29} tii[9,52] := {40} tii[9,53] := {60} tii[9,54] := {1} tii[9,55] := {49} tii[9,56] := {16} tii[9,57] := {37} tii[9,58] := {4} tii[9,59] := {53} tii[9,60] := {55} tii[9,61] := {2} tii[9,62] := {8} tii[9,63] := {0} cell#42 , |C| = 105 special orbit = [5, 3, 1, 1, 1, 1, 1, 1] special rep = [[1], [3, 1, 1, 1]] , dim = 70 cell rep = phi[[],[3, 2, 1, 1]]+phi[[1],[3, 1, 1, 1]] TII depth = 2 TII multiplicity polynomial = 35*X^2+35*X TII subcells: tii[16,1] := {74, 98} tii[16,2] := {61, 101} tii[16,3] := {82, 94} tii[16,4] := {38, 85} tii[16,5] := {59, 100} tii[16,6] := {60, 97} tii[16,7] := {57, 78} tii[16,8] := {19, 62} tii[16,9] := {33, 96} tii[16,10] := {16, 76} tii[16,11] := {37, 80} tii[16,12] := {27, 63} tii[16,13] := {11} tii[16,14] := {51, 83} tii[16,15] := {17} tii[16,16] := {40} tii[16,17] := {43} tii[16,18] := {35, 84} tii[16,19] := {36} tii[16,20] := {64} tii[16,21] := {67} tii[16,22] := {87} tii[16,23] := {89} tii[16,24] := {102} tii[16,25] := {6, 50} tii[16,26] := {18} tii[16,27] := {39} tii[16,28] := {42} tii[16,29] := {66} tii[16,30] := {69} tii[16,31] := {48, 95} tii[16,32] := {91} tii[16,33] := {86} tii[16,34] := {88} tii[16,35] := {49, 81} tii[16,36] := {103} tii[16,37] := {104} tii[16,38] := {7} tii[16,39] := {20} tii[16,40] := {21} tii[16,41] := {41} tii[16,42] := {44} tii[16,43] := {23, 79} tii[16,44] := {72} tii[16,45] := {65} tii[16,46] := {68} tii[16,47] := {26, 56} tii[16,48] := {9, 55} tii[16,49] := {92} tii[16,50] := {15, 31} tii[16,51] := {99} tii[16,52] := {53} tii[16,53] := {54} tii[16,54] := {13, 46} tii[16,55] := {77} tii[16,56] := {3, 25} tii[16,57] := {93} tii[16,58] := {73} tii[16,59] := {29, 71} tii[16,60] := {24, 75} tii[16,61] := {45, 90} tii[16,62] := {34, 52} tii[16,63] := {1, 30} tii[16,64] := {22, 70} tii[16,65] := {5, 14} tii[16,66] := {28, 58} tii[16,67] := {2, 4} tii[16,68] := {8, 47} tii[16,69] := {12, 32} tii[16,70] := {0, 10} cell#43 , |C| = 63 special orbit = [3, 3, 3, 1, 1, 1, 1, 1] special rep = [[1], [2, 2, 1, 1]] , dim = 63 cell rep = phi[[1],[2, 2, 1, 1]] TII depth = 3 TII multiplicity polynomial = 63*X TII subcells: tii[9,1] := {40} tii[9,2] := {52} tii[9,3] := {53} tii[9,4] := {59} tii[9,5] := {44} tii[9,6] := {45} tii[9,7] := {27} tii[9,8] := {55} tii[9,9] := {43} tii[9,10] := {3} tii[9,11] := {39} tii[9,12] := {8} tii[9,13] := {15} tii[9,14] := {16} tii[9,15] := {14} tii[9,16] := {19} tii[9,17] := {28} tii[9,18] := {30} tii[9,19] := {46} tii[9,20] := {47} tii[9,21] := {57} tii[9,22] := {62} tii[9,23] := {11} tii[9,24] := {20} tii[9,25] := {22} tii[9,26] := {36} tii[9,27] := {37} tii[9,28] := {51} tii[9,29] := {21} tii[9,30] := {23} tii[9,31] := {17} tii[9,32] := {61} tii[9,33] := {38} tii[9,34] := {50} tii[9,35] := {56} tii[9,36] := {49} tii[9,37] := {4} tii[9,38] := {5} tii[9,39] := {13} tii[9,40] := {29} tii[9,41] := {31} tii[9,42] := {26} tii[9,43] := {25} tii[9,44] := {48} tii[9,45] := {54} tii[9,46] := {9} tii[9,47] := {10} tii[9,48] := {6} tii[9,49] := {41} tii[9,50] := {42} tii[9,51] := {24} tii[9,52] := {35} tii[9,53] := {60} tii[9,54] := {2} tii[9,55] := {18} tii[9,56] := {32} tii[9,57] := {33} tii[9,58] := {7} tii[9,59] := {58} tii[9,60] := {34} tii[9,61] := {1} tii[9,62] := {12} tii[9,63] := {0} cell#44 , |C| = 98 special orbit = [3, 3, 2, 2, 1, 1, 1, 1] special rep = [[1, 1], [2, 1, 1, 1]] , dim = 84 cell rep = phi[[],[2, 2, 2, 1]]+phi[[1, 1],[2, 1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 14*X^2+70*X TII subcells: tii[7,1] := {36, 65} tii[7,2] := {51, 78} tii[7,3] := {64, 88} tii[7,4] := {6} tii[7,5] := {22, 52} tii[7,6] := {12} tii[7,7] := {24} tii[7,8] := {27} tii[7,9] := {26} tii[7,10] := {29} tii[7,11] := {50, 77} tii[7,12] := {21} tii[7,13] := {38} tii[7,14] := {41} tii[7,15] := {40} tii[7,16] := {55} tii[7,17] := {43} tii[7,18] := {59} tii[7,19] := {74} tii[7,20] := {54} tii[7,21] := {58} tii[7,22] := {73} tii[7,23] := {35} tii[7,24] := {53} tii[7,25] := {57} tii[7,26] := {56} tii[7,27] := {68} tii[7,28] := {60} tii[7,29] := {71} tii[7,30] := {86} tii[7,31] := {81} tii[7,32] := {67} tii[7,33] := {83} tii[7,34] := {70} tii[7,35] := {49, 97} tii[7,36] := {85} tii[7,37] := {93} tii[7,38] := {95} tii[7,39] := {80} tii[7,40] := {82} tii[7,41] := {92} tii[7,42] := {96} tii[7,43] := {0} tii[7,44] := {1} tii[7,45] := {2} tii[7,46] := {15} tii[7,47] := {3} tii[7,48] := {17} tii[7,49] := {4} tii[7,50] := {9} tii[7,51] := {10} tii[7,52] := {7} tii[7,53] := {39} tii[7,54] := {8} tii[7,55] := {42} tii[7,56] := {19} tii[7,57] := {20} tii[7,58] := {18, 45} tii[7,59] := {62} tii[7,60] := {48} tii[7,61] := {66} tii[7,62] := {14} tii[7,63] := {69} tii[7,64] := {16} tii[7,65] := {34, 91} tii[7,66] := {30, 61} tii[7,67] := {31} tii[7,68] := {32} tii[7,69] := {84} tii[7,70] := {89} tii[7,71] := {23, 87} tii[7,72] := {63} tii[7,73] := {79} tii[7,74] := {25} tii[7,75] := {28} tii[7,76] := {44, 72} tii[7,77] := {46} tii[7,78] := {47} tii[7,79] := {37, 94} tii[7,80] := {75} tii[7,81] := {90} tii[7,82] := {5} tii[7,83] := {11, 33} tii[7,84] := {13, 76} cell#45 , |C| = 15 special orbit = [5, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [3, 1, 1, 1, 1]] , dim = 15 cell rep = phi[[],[3, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 15*X TII subcells: tii[15,1] := {11} tii[15,2] := {7} tii[15,3] := {3} tii[15,4] := {1} tii[15,5] := {0} tii[15,6] := {12} tii[15,7] := {10} tii[15,8] := {14} tii[15,9] := {5} tii[15,10] := {9} tii[15,11] := {13} tii[15,12] := {2} tii[15,13] := {4} tii[15,14] := {8} tii[15,15] := {6} cell#46 , |C| = 15 special orbit = [5, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [3, 1, 1, 1, 1]] , dim = 15 cell rep = phi[[],[3, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 15*X TII subcells: tii[15,1] := {12} tii[15,2] := {14} tii[15,3] := {11} tii[15,4] := {9} tii[15,5] := {6} tii[15,6] := {13} tii[15,7] := {10} tii[15,8] := {8} tii[15,9] := {7} tii[15,10] := {5} tii[15,11] := {3} tii[15,12] := {4} tii[15,13] := {2} tii[15,14] := {1} tii[15,15] := {0} cell#47 , |C| = 98 special orbit = [3, 3, 2, 2, 1, 1, 1, 1] special rep = [[1, 1], [2, 1, 1, 1]] , dim = 84 cell rep = phi[[],[2, 2, 2, 1]]+phi[[1, 1],[2, 1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 14*X^2+70*X TII subcells: tii[7,1] := {81, 82} tii[7,2] := {88, 89} tii[7,3] := {77, 94} tii[7,4] := {20} tii[7,5] := {64, 65} tii[7,6] := {31} tii[7,7] := {37} tii[7,8] := {40} tii[7,9] := {39} tii[7,10] := {42} tii[7,11] := {61, 91} tii[7,12] := {45} tii[7,13] := {55} tii[7,14] := {57} tii[7,15] := {24} tii[7,16] := {74} tii[7,17] := {27} tii[7,18] := {75} tii[7,19] := {87} tii[7,20] := {38} tii[7,21] := {41} tii[7,22] := {59} tii[7,23] := {54} tii[7,24] := {66} tii[7,25] := {68} tii[7,26] := {13} tii[7,27] := {83} tii[7,28] := {15} tii[7,29] := {84} tii[7,30] := {92} tii[7,31] := {67} tii[7,32] := {22} tii[7,33] := {69} tii[7,34] := {25} tii[7,35] := {62, 97} tii[7,36] := {43} tii[7,37] := {85} tii[7,38] := {90} tii[7,39] := {33} tii[7,40] := {34} tii[7,41] := {52} tii[7,42] := {63} tii[7,43] := {0} tii[7,44] := {3} tii[7,45] := {4} tii[7,46] := {23} tii[7,47] := {5} tii[7,48] := {26} tii[7,49] := {7} tii[7,50] := {16} tii[7,51] := {18} tii[7,52] := {12} tii[7,53] := {56} tii[7,54] := {14} tii[7,55] := {58} tii[7,56] := {28} tii[7,57] := {29} tii[7,58] := {50, 51} tii[7,59] := {76} tii[7,60] := {60} tii[7,61] := {48} tii[7,62] := {6} tii[7,63] := {49} tii[7,64] := {8} tii[7,65] := {46, 96} tii[7,66] := {70, 71} tii[7,67] := {17} tii[7,68] := {19} tii[7,69] := {72} tii[7,70] := {80} tii[7,71] := {32, 93} tii[7,72] := {44} tii[7,73] := {73} tii[7,74] := {1} tii[7,75] := {2} tii[7,76] := {78, 79} tii[7,77] := {9} tii[7,78] := {10} tii[7,79] := {47, 95} tii[7,80] := {30} tii[7,81] := {53} tii[7,82] := {11} tii[7,83] := {35, 36} tii[7,84] := {21, 86} cell#48 , |C| = 49 special orbit = [3, 3, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [2, 1, 1, 1, 1]] , dim = 35 cell rep = phi[[],[2, 2, 1, 1, 1]]+phi[[1],[2, 1, 1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 14*X^2+21*X TII subcells: tii[6,1] := {13, 25} tii[6,2] := {18, 31} tii[6,3] := {12, 38} tii[6,4] := {8, 32} tii[6,5] := {7} tii[6,6] := {14} tii[6,7] := {16} tii[6,8] := {20} tii[6,9] := {22} tii[6,10] := {30} tii[6,11] := {27} tii[6,12] := {28} tii[6,13] := {11, 42} tii[6,14] := {35} tii[6,15] := {39} tii[6,16] := {19} tii[6,17] := {21} tii[6,18] := {6, 45} tii[6,19] := {29} tii[6,20] := {5, 48} tii[6,21] := {33} tii[6,22] := {40} tii[6,23] := {15} tii[6,24] := {17} tii[6,25] := {4, 43} tii[6,26] := {24} tii[6,27] := {2, 47} tii[6,28] := {26} tii[6,29] := {1, 44} tii[6,30] := {34} tii[6,31] := {41} tii[6,32] := {10, 23} tii[6,33] := {9, 36} tii[6,34] := {3, 46} tii[6,35] := {0, 37} cell#49 , |C| = 49 special orbit = [3, 3, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [2, 1, 1, 1, 1]] , dim = 35 cell rep = phi[[],[2, 2, 1, 1, 1]]+phi[[1],[2, 1, 1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 14*X^2+21*X TII subcells: tii[6,1] := {35, 36} tii[6,2] := {26, 42} tii[6,3] := {16, 39} tii[6,4] := {8, 43} tii[6,5] := {15} tii[6,6] := {20} tii[6,7] := {22} tii[6,8] := {31} tii[6,9] := {32} tii[6,10] := {40} tii[6,11] := {21} tii[6,12] := {23} tii[6,13] := {17, 47} tii[6,14] := {33} tii[6,15] := {37} tii[6,16] := {11} tii[6,17] := {12} tii[6,18] := {9, 46} tii[6,19] := {24} tii[6,20] := {5, 41} tii[6,21] := {29} tii[6,22] := {25} tii[6,23] := {6} tii[6,24] := {7} tii[6,25] := {4, 48} tii[6,26] := {13} tii[6,27] := {2, 45} tii[6,28] := {18} tii[6,29] := {1, 38} tii[6,30] := {14} tii[6,31] := {19} tii[6,32] := {27, 28} tii[6,33] := {10, 44} tii[6,34] := {3, 34} tii[6,35] := {0, 30} cell#50 , |C| = 15 special orbit = [5, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [3, 1, 1, 1, 1]] , dim = 15 cell rep = phi[[],[3, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 15*X TII subcells: tii[15,1] := {8} tii[15,2] := {12} tii[15,3] := {7} tii[15,4] := {3} tii[15,5] := {0} tii[15,6] := {14} tii[15,7] := {13} tii[15,8] := {11} tii[15,9] := {10} tii[15,10] := {6} tii[15,11] := {9} tii[15,12] := {5} tii[15,13] := {1} tii[15,14] := {4} tii[15,15] := {2} cell#51 , |C| = 49 special orbit = [3, 3, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [2, 1, 1, 1, 1]] , dim = 35 cell rep = phi[[],[2, 2, 1, 1, 1]]+phi[[1],[2, 1, 1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 14*X^2+21*X TII subcells: tii[6,1] := {8, 21} tii[6,2] := {14, 29} tii[6,3] := {20, 37} tii[6,4] := {19, 30} tii[6,5] := {2} tii[6,6] := {9} tii[6,7] := {10} tii[6,8] := {15} tii[6,9] := {16} tii[6,10] := {24} tii[6,11] := {22} tii[6,12] := {23} tii[6,13] := {7, 41} tii[6,14] := {33} tii[6,15] := {39} tii[6,16] := {31} tii[6,17] := {32} tii[6,18] := {13, 45} tii[6,19] := {43} tii[6,20] := {11, 38} tii[6,21] := {46} tii[6,22] := {48} tii[6,23] := {26} tii[6,24] := {27} tii[6,25] := {12, 42} tii[6,26] := {36} tii[6,27] := {6, 34} tii[6,28] := {44} tii[6,29] := {1, 25} tii[6,30] := {47} tii[6,31] := {40} tii[6,32] := {4, 17} tii[6,33] := {3, 35} tii[6,34] := {5, 28} tii[6,35] := {0, 18} cell#52 , |C| = 6 special orbit = [3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [2, 1, 1, 1, 1, 1]] , dim = 6 cell rep = phi[[],[2, 1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 6*X TII subcells: tii[5,1] := {5} tii[5,2] := {4} tii[5,3] := {3} tii[5,4] := {2} tii[5,5] := {1} tii[5,6] := {0} cell#53 , |C| = 21 special orbit = [2, 2, 2, 2, 1, 1, 1, 1, 1, 1] special rep = [[1, 1], [1, 1, 1, 1, 1]] , dim = 21 cell rep = phi[[1, 1],[1, 1, 1, 1, 1]] TII depth = 2 TII multiplicity polynomial = 21*X TII subcells: tii[3,1] := {4} tii[3,2] := {5} tii[3,3] := {6} tii[3,4] := {7} tii[3,5] := {11} tii[3,6] := {9} tii[3,7] := {10} tii[3,8] := {15} tii[3,9] := {17} tii[3,10] := {12} tii[3,11] := {13} tii[3,12] := {16} tii[3,13] := {18} tii[3,14] := {20} tii[3,15] := {0} tii[3,16] := {1} tii[3,17] := {2} tii[3,18] := {3} tii[3,19] := {8} tii[3,20] := {14} tii[3,21] := {19} cell#54 , |C| = 6 special orbit = [3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [2, 1, 1, 1, 1, 1]] , dim = 6 cell rep = phi[[],[2, 1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 6*X TII subcells: tii[5,1] := {3} tii[5,2] := {5} tii[5,3] := {4} tii[5,4] := {2} tii[5,5] := {1} tii[5,6] := {0} cell#55 , |C| = 7 special orbit = [2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [1, 1, 1, 1, 1, 1]] , dim = 7 cell rep = phi[[1],[1, 1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 7*X TII subcells: tii[2,1] := {0} tii[2,2] := {1} tii[2,3] := {2} tii[2,4] := {3} tii[2,5] := {5} tii[2,6] := {4} tii[2,7] := {6} cell#56 , |C| = 6 special orbit = [3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [2, 1, 1, 1, 1, 1]] , dim = 6 cell rep = phi[[],[2, 1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 6*X TII subcells: tii[5,1] := {0} tii[5,2] := {1} tii[5,3] := {5} tii[5,4] := {2} tii[5,5] := {4} tii[5,6] := {3} cell#57 , |C| = 1 special orbit = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [1, 1, 1, 1, 1, 1, 1]] , dim = 1 cell rep = phi[[],[1, 1, 1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = X TII subcells: tii[1,1] := {0}