TII subcells for the PSO(10,6) x Spin(12,4) block of PSO16 # cell#0 , |C| = 7 special orbit = [13, 1, 1, 1] special rep = [[], [7, 1]] , dim = 7 cell rep = phi[[],[7, 1]] TII depth = 1 TII multiplicity polynomial = 7*X TII subcells: tii[58,1] := {0} tii[58,2] := {2} tii[58,3] := {1} tii[58,4] := {3} tii[58,5] := {4} tii[58,6] := {5} tii[58,7] := {6} cell#1 , |C| = 68 special orbit = [11, 3, 1, 1] special rep = [[1], [6, 1]] , dim = 48 cell rep = phi[[],[6, 2]]+phi[[1],[6, 1]] TII depth = 3 TII multiplicity polynomial = 20*X^2+28*X TII subcells: tii[56,1] := {13, 62} tii[56,2] := {10, 67} tii[56,3] := {24, 66} tii[56,4] := {34, 64} tii[56,5] := {48, 63} tii[56,6] := {0} tii[56,7] := {7, 55} tii[56,8] := {1} tii[56,9] := {2, 54} tii[56,10] := {3} tii[56,11] := {6, 47} tii[56,12] := {8} tii[56,13] := {12, 40} tii[56,14] := {14} tii[56,15] := {22} tii[56,16] := {23} tii[56,17] := {5} tii[56,18] := {11} tii[56,19] := {4, 61} tii[56,20] := {9, 53} tii[56,21] := {16} tii[56,22] := {15, 46} tii[56,23] := {20} tii[56,24] := {29} tii[56,25] := {30} tii[56,26] := {18} tii[56,27] := {25} tii[56,28] := {17, 60} tii[56,29] := {21, 52} tii[56,30] := {27} tii[56,31] := {36} tii[56,32] := {37} tii[56,33] := {31} tii[56,34] := {28, 59} tii[56,35] := {35} tii[56,36] := {42} tii[56,37] := {43} tii[56,38] := {41} tii[56,39] := {49} tii[56,40] := {50} tii[56,41] := {56} tii[56,42] := {57} tii[56,43] := {65} tii[56,44] := {19, 32} tii[56,45] := {26, 38} tii[56,46] := {33, 45} tii[56,47] := {39, 51} tii[56,48] := {44, 58} cell#2 , |C| = 21 special orbit = [11, 1, 1, 1, 1, 1] special rep = [[], [6, 1, 1]] , dim = 21 cell rep = phi[[],[6, 1, 1]] TII depth = 1 TII multiplicity polynomial = 21*X TII subcells: tii[55,1] := {4} tii[55,2] := {1} tii[55,3] := {3} tii[55,4] := {7} tii[55,5] := {10} tii[55,6] := {0} tii[55,7] := {2} tii[55,8] := {5} tii[55,9] := {8} tii[55,10] := {6} tii[55,11] := {9} tii[55,12] := {11} tii[55,13] := {12} tii[55,14] := {15} tii[55,15] := {17} tii[55,16] := {14} tii[55,17] := {13} tii[55,18] := {16} tii[55,19] := {18} tii[55,20] := {19} tii[55,21] := {20} cell#3 , |C| = 112 special orbit = [9, 3, 3, 1] special rep = [[1], [5, 2]] , dim = 112 cell rep = phi[[1],[5, 2]] TII depth = 4 TII multiplicity polynomial = 112*X TII subcells: tii[52,1] := {37} tii[52,2] := {79} tii[52,3] := {105} tii[52,4] := {111} tii[52,5] := {2} tii[52,6] := {13} tii[52,7] := {12} tii[52,8] := {34} tii[52,9] := {33} tii[52,10] := {67} tii[52,11] := {66} tii[52,12] := {7} tii[52,13] := {24} tii[52,14] := {25} tii[52,15] := {9} tii[52,16] := {51} tii[52,17] := {14} tii[52,18] := {19} tii[52,19] := {50} tii[52,20] := {82} tii[52,21] := {81} tii[52,22] := {22} tii[52,23] := {29} tii[52,24] := {46} tii[52,25] := {48} tii[52,26] := {38} tii[52,27] := {64} tii[52,28] := {65} tii[52,29] := {49} tii[52,30] := {92} tii[52,31] := {52} tii[52,32] := {91} tii[52,33] := {59} tii[52,34] := {74} tii[52,35] := {77} tii[52,36] := {80} tii[52,37] := {100} tii[52,38] := {101} tii[52,39] := {86} tii[52,40] := {96} tii[52,41] := {98} tii[52,42] := {106} tii[52,43] := {108} tii[52,44] := {109} tii[52,45] := {0} tii[52,46] := {1} tii[52,47] := {4} tii[52,48] := {3} tii[52,49] := {8} tii[52,50] := {5} tii[52,51] := {6} tii[52,52] := {10} tii[52,53] := {11} tii[52,54] := {17} tii[52,55] := {30} tii[52,56] := {31} tii[52,57] := {18} tii[52,58] := {20} tii[52,59] := {21} tii[52,60] := {28} tii[52,61] := {45} tii[52,62] := {47} tii[52,63] := {43} tii[52,64] := {60} tii[52,65] := {62} tii[52,66] := {75} tii[52,67] := {78} tii[52,68] := {85} tii[52,69] := {15} tii[52,70] := {23} tii[52,71] := {32} tii[52,72] := {36} tii[52,73] := {35} tii[52,74] := {44} tii[52,75] := {61} tii[52,76] := {63} tii[52,77] := {58} tii[52,78] := {73} tii[52,79] := {76} tii[52,80] := {88} tii[52,81] := {90} tii[52,82] := {41} tii[52,83] := {95} tii[52,84] := {53} tii[52,85] := {72} tii[52,86] := {87} tii[52,87] := {89} tii[52,88] := {97} tii[52,89] := {99} tii[52,90] := {70} tii[52,91] := {102} tii[52,92] := {103} tii[52,93] := {104} tii[52,94] := {107} tii[52,95] := {93} tii[52,96] := {110} tii[52,97] := {16} tii[52,98] := {26} tii[52,99] := {27} tii[52,100] := {39} tii[52,101] := {40} tii[52,102] := {54} tii[52,103] := {55} tii[52,104] := {42} tii[52,105] := {57} tii[52,106] := {56} tii[52,107] := {69} tii[52,108] := {68} tii[52,109] := {71} tii[52,110] := {84} tii[52,111] := {83} tii[52,112] := {94} cell#4 , |C| = 21 special orbit = [11, 1, 1, 1, 1, 1] special rep = [[], [6, 1, 1]] , dim = 21 cell rep = phi[[],[6, 1, 1]] TII depth = 1 TII multiplicity polynomial = 21*X TII subcells: tii[55,1] := {7} tii[55,2] := {9} tii[55,3] := {8} tii[55,4] := {12} tii[55,5] := {15} tii[55,6] := {3} tii[55,7] := {2} tii[55,8] := {6} tii[55,9] := {11} tii[55,10] := {0} tii[55,11] := {1} tii[55,12] := {4} tii[55,13] := {5} tii[55,14] := {10} tii[55,15] := {14} tii[55,16] := {19} tii[55,17] := {17} tii[55,18] := {13} tii[55,19] := {16} tii[55,20] := {18} tii[55,21] := {20} cell#5 , |C| = 21 special orbit = [11, 1, 1, 1, 1, 1] special rep = [[], [6, 1, 1]] , dim = 21 cell rep = phi[[],[6, 1, 1]] TII depth = 1 TII multiplicity polynomial = 21*X TII subcells: tii[55,1] := {1} tii[55,2] := {7} tii[55,3] := {12} tii[55,4] := {16} tii[55,5] := {18} tii[55,6] := {0} tii[55,7] := {6} tii[55,8] := {11} tii[55,9] := {15} tii[55,10] := {4} tii[55,11] := {9} tii[55,12] := {13} tii[55,13] := {3} tii[55,14] := {8} tii[55,15] := {2} tii[55,16] := {20} tii[55,17] := {19} tii[55,18] := {17} tii[55,19] := {14} tii[55,20] := {10} tii[55,21] := {5} cell#6 , |C| = 184 special orbit = [9, 3, 1, 1, 1, 1] special rep = [[1], [5, 1, 1]] , dim = 120 cell rep = phi[[],[5, 2, 1]]+phi[[1],[5, 1, 1]] TII depth = 3 TII multiplicity polynomial = 64*X^2+56*X TII subcells: tii[50,1] := {6, 123} tii[50,2] := {20, 121} tii[50,3] := {41, 117} tii[50,4] := {77, 111} tii[50,5] := {14, 141} tii[50,6] := {35, 137} tii[50,7] := {5, 154} tii[50,8] := {56, 133} tii[50,9] := {12, 165} tii[50,10] := {92, 127} tii[50,11] := {18, 173} tii[50,12] := {49, 153} tii[50,13] := {74, 148} tii[50,14] := {34, 164} tii[50,15] := {109, 143} tii[50,16] := {45, 172} tii[50,17] := {90, 163} tii[50,18] := {126, 157} tii[50,19] := {73, 171} tii[50,20] := {142, 170} tii[50,21] := {2} tii[50,22] := {7} tii[50,23] := {1, 107} tii[50,24] := {11} tii[50,25] := {4, 89} tii[50,26] := {9, 72} tii[50,27] := {16} tii[50,28] := {32} tii[50,29] := {33} tii[50,30] := {0, 138} tii[50,31] := {15} tii[50,32] := {3, 150} tii[50,33] := {22} tii[50,34] := {13, 106} tii[50,35] := {8, 160} tii[50,36] := {19, 88} tii[50,37] := {28} tii[50,38] := {47} tii[50,39] := {48} tii[50,40] := {10, 134} tii[50,41] := {36} tii[50,42] := {17, 145} tii[50,43] := {29, 104} tii[50,44] := {43} tii[50,45] := {62} tii[50,46] := {64} tii[50,47] := {27, 128} tii[50,48] := {58} tii[50,49] := {79} tii[50,50] := {81} tii[50,51] := {96} tii[50,52] := {99} tii[50,53] := {120} tii[50,54] := {24} tii[50,55] := {37} tii[50,56] := {23, 124} tii[50,57] := {44} tii[50,58] := {31, 105} tii[50,59] := {63} tii[50,60] := {65} tii[50,61] := {21, 149} tii[50,62] := {50} tii[50,63] := {46, 122} tii[50,64] := {30, 159} tii[50,65] := {59} tii[50,66] := {80} tii[50,67] := {82} tii[50,68] := {42, 144} tii[50,69] := {75} tii[50,70] := {94} tii[50,71] := {97} tii[50,72] := {113} tii[50,73] := {115} tii[50,74] := {39, 183} tii[50,75] := {136} tii[50,76] := {66} tii[50,77] := {76} tii[50,78] := {60, 139} tii[50,79] := {95} tii[50,80] := {98} tii[50,81] := {57, 158} tii[50,82] := {91} tii[50,83] := {112} tii[50,84] := {114} tii[50,85] := {130} tii[50,86] := {132} tii[50,87] := {70, 182} tii[50,88] := {152} tii[50,89] := {108} tii[50,90] := {129} tii[50,91] := {131} tii[50,92] := {146} tii[50,93] := {147} tii[50,94] := {100, 181} tii[50,95] := {166} tii[50,96] := {161} tii[50,97] := {162} tii[50,98] := {125, 180} tii[50,99] := {174} tii[50,100] := {179} tii[50,101] := {26, 52} tii[50,102] := {25, 178} tii[50,103] := {40, 69} tii[50,104] := {38, 169} tii[50,105] := {53, 85} tii[50,106] := {51, 156} tii[50,107] := {67, 102} tii[50,108] := {61, 140} tii[50,109] := {55, 86} tii[50,110] := {54, 177} tii[50,111] := {71, 103} tii[50,112] := {68, 168} tii[50,113] := {83, 118} tii[50,114] := {78, 155} tii[50,115] := {87, 119} tii[50,116] := {84, 176} tii[50,117] := {101, 135} tii[50,118] := {93, 167} tii[50,119] := {116, 151} tii[50,120] := {110, 175} cell#7 , |C| = 35 special orbit = [9, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [5, 1, 1, 1]] , dim = 35 cell rep = phi[[],[5, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 35*X TII subcells: tii[49,1] := {8} tii[49,2] := {3} tii[49,3] := {7} tii[49,4] := {14} tii[49,5] := {2} tii[49,6] := {6} tii[49,7] := {10} tii[49,8] := {12} tii[49,9] := {17} tii[49,10] := {22} tii[49,11] := {0} tii[49,12] := {1} tii[49,13] := {4} tii[49,14] := {5} tii[49,15] := {9} tii[49,16] := {15} tii[49,17] := {11} tii[49,18] := {16} tii[49,19] := {21} tii[49,20] := {26} tii[49,21] := {20} tii[49,22] := {19} tii[49,23] := {25} tii[49,24] := {29} tii[49,25] := {31} tii[49,26] := {13} tii[49,27] := {18} tii[49,28] := {23} tii[49,29] := {27} tii[49,30] := {24} tii[49,31] := {28} tii[49,32] := {30} tii[49,33] := {32} tii[49,34] := {33} tii[49,35] := {34} cell#8 , |C| = 184 special orbit = [9, 3, 1, 1, 1, 1] special rep = [[1], [5, 1, 1]] , dim = 120 cell rep = phi[[],[5, 2, 1]]+phi[[1],[5, 1, 1]] TII depth = 3 TII multiplicity polynomial = 64*X^2+56*X TII subcells: tii[50,1] := {30, 163} tii[50,2] := {22, 174} tii[50,3] := {60, 169} tii[50,4] := {119, 166} tii[50,5] := {54, 140} tii[50,6] := {7, 155} tii[50,7] := {68, 116} tii[50,8] := {34, 150} tii[50,9] := {55, 108} tii[50,10] := {92, 143} tii[50,11] := {76, 80} tii[50,12] := {21, 162} tii[50,13] := {59, 170} tii[50,14] := {14, 139} tii[50,15] := {118, 165} tii[50,16] := {28, 132} tii[50,17] := {89, 176} tii[50,18] := {142, 177} tii[50,19] := {79, 161} tii[50,20] := {164, 181} tii[50,21] := {0} tii[50,22] := {2} tii[50,23] := {15, 141} tii[50,24] := {9} tii[50,25] := {5, 135} tii[50,26] := {13, 106} tii[50,27] := {18} tii[50,28] := {40} tii[50,29] := {42} tii[50,30] := {43, 88} tii[50,31] := {11} tii[50,32] := {31, 78} tii[50,33] := {24} tii[50,34] := {10, 158} tii[50,35] := {49, 53} tii[50,36] := {20, 133} tii[50,37] := {36} tii[50,38] := {65} tii[50,39] := {67} tii[50,40] := {16, 87} tii[50,41] := {45} tii[50,42] := {29, 77} tii[50,43] := {38, 157} tii[50,44] := {63} tii[50,45] := {95} tii[50,46] := {98} tii[50,47] := {52, 86} tii[50,48] := {91} tii[50,49] := {121} tii[50,50] := {124} tii[50,51] := {146} tii[50,52] := {149} tii[50,53] := {173} tii[50,54] := {3} tii[50,55] := {8} tii[50,56] := {1, 134} tii[50,57] := {17} tii[50,58] := {6, 105} tii[50,59] := {39} tii[50,60] := {41} tii[50,61] := {4, 115} tii[50,62] := {23} tii[50,63] := {19, 131} tii[50,64] := {12, 107} tii[50,65] := {35} tii[50,66] := {64} tii[50,67] := {66} tii[50,68] := {27, 114} tii[50,69] := {61} tii[50,70] := {93} tii[50,71] := {96} tii[50,72] := {122} tii[50,73] := {125} tii[50,74] := {47, 112} tii[50,75] := {154} tii[50,76] := {44} tii[50,77] := {62} tii[50,78] := {37, 156} tii[50,79] := {94} tii[50,80] := {97} tii[50,81] := {51, 138} tii[50,82] := {90} tii[50,83] := {120} tii[50,84] := {123} tii[50,85] := {145} tii[50,86] := {148} tii[50,87] := {57, 102} tii[50,88] := {172} tii[50,89] := {117} tii[50,90] := {144} tii[50,91] := {147} tii[50,92] := {167} tii[50,93] := {168} tii[50,94] := {111, 153} tii[50,95] := {180} tii[50,96] := {178} tii[50,97] := {179} tii[50,98] := {159, 175} tii[50,99] := {182} tii[50,100] := {183} tii[50,101] := {33, 72} tii[50,102] := {25, 84} tii[50,103] := {50, 103} tii[50,104] := {46, 58} tii[50,105] := {75, 129} tii[50,106] := {73, 83} tii[50,107] := {100, 152} tii[50,108] := {85, 110} tii[50,109] := {26, 71} tii[50,110] := {32, 70} tii[50,111] := {48, 101} tii[50,112] := {56, 104} tii[50,113] := {69, 127} tii[50,114] := {81, 113} tii[50,115] := {74, 128} tii[50,116] := {82, 130} tii[50,117] := {99, 151} tii[50,118] := {109, 137} tii[50,119] := {126, 171} tii[50,120] := {136, 160} cell#9 , |C| = 280 special orbit = [7, 3, 3, 1, 1, 1] special rep = [[1], [4, 2, 1]] , dim = 280 cell rep = phi[[1],[4, 2, 1]] TII depth = 4 TII multiplicity polynomial = 280*X TII subcells: tii[41,1] := {45} tii[41,2] := {154} tii[41,3] := {230} tii[41,4] := {206} tii[41,5] := {77} tii[41,6] := {221} tii[41,7] := {59} tii[41,8] := {194} tii[41,9] := {209} tii[41,10] := {134} tii[41,11] := {252} tii[41,12] := {114} tii[41,13] := {254} tii[41,14] := {226} tii[41,15] := {130} tii[41,16] := {258} tii[41,17] := {208} tii[41,18] := {266} tii[41,19] := {115} tii[41,20] := {248} tii[41,21] := {273} tii[41,22] := {274} tii[41,23] := {257} tii[41,24] := {277} tii[41,25] := {2} tii[41,26] := {11} tii[41,27] := {10} tii[41,28] := {52} tii[41,29] := {51} tii[41,30] := {166} tii[41,31] := {6} tii[41,32] := {24} tii[41,33] := {188} tii[41,34] := {26} tii[41,35] := {129} tii[41,36] := {9} tii[41,37] := {33} tii[41,38] := {174} tii[41,39] := {97} tii[41,40] := {82} tii[41,41] := {113} tii[41,42] := {12} tii[41,43] := {80} tii[41,44] := {18} tii[41,45] := {39} tii[41,46] := {41} tii[41,47] := {201} tii[41,48] := {47} tii[41,49] := {58} tii[41,50] := {117} tii[41,51] := {210} tii[41,52] := {119} tii[41,53] := {164} tii[41,54] := {133} tii[41,55] := {46} tii[41,56] := {60} tii[41,57] := {99} tii[41,58] := {104} tii[41,59] := {229} tii[41,60] := {172} tii[41,61] := {156} tii[41,62] := {175} tii[41,63] := {181} tii[41,64] := {14} tii[41,65] := {170} tii[41,66] := {22} tii[41,67] := {48} tii[41,68] := {50} tii[41,69] := {153} tii[41,70] := {122} tii[41,71] := {120} tii[41,72] := {27} tii[41,73] := {36} tii[41,74] := {66} tii[41,75] := {70} tii[41,76] := {232} tii[41,77] := {93} tii[41,78] := {42} tii[41,79] := {79} tii[41,80] := {157} tii[41,81] := {78} tii[41,82] := {159} tii[41,83] := {204} tii[41,84] := {193} tii[41,85] := {37} tii[41,86] := {238} tii[41,87] := {173} tii[41,88] := {63} tii[41,89] := {94} tii[41,90] := {137} tii[41,91] := {101} tii[41,92] := {143} tii[41,93] := {106} tii[41,94] := {251} tii[41,95] := {49} tii[41,96] := {96} tii[41,97] := {207} tii[41,98] := {196} tii[41,99] := {136} tii[41,100] := {211} tii[41,101] := {142} tii[41,102] := {216} tii[41,103] := {179} tii[41,104] := {185} tii[41,105] := {225} tii[41,106] := {116} tii[41,107] := {235} tii[41,108] := {197} tii[41,109] := {199} tii[41,110] := {131} tii[41,111] := {177} tii[41,112] := {183} tii[41,113] := {265} tii[41,114] := {237} tii[41,115] := {171} tii[41,116] := {228} tii[41,117] := {212} tii[41,118] := {239} tii[41,119] := {217} tii[41,120] := {242} tii[41,121] := {241} tii[41,122] := {244} tii[41,123] := {161} tii[41,124] := {263} tii[41,125] := {250} tii[41,126] := {259} tii[41,127] := {261} tii[41,128] := {270} tii[41,129] := {271} tii[41,130] := {249} tii[41,131] := {276} tii[41,132] := {279} tii[41,133] := {0} tii[41,134] := {1} tii[41,135] := {92} tii[41,136] := {3} tii[41,137] := {76} tii[41,138] := {4} tii[41,139] := {5} tii[41,140] := {8} tii[41,141] := {20} tii[41,142] := {21} tii[41,143] := {90} tii[41,144] := {17} tii[41,145] := {38} tii[41,146] := {40} tii[41,147] := {67} tii[41,148] := {71} tii[41,149] := {91} tii[41,150] := {23} tii[41,151] := {152} tii[41,152] := {13} tii[41,153] := {35} tii[41,154] := {19} tii[41,155] := {65} tii[41,156] := {69} tii[41,157] := {127} tii[41,158] := {25} tii[41,159] := {61} tii[41,160] := {34} tii[41,161] := {98} tii[41,162] := {64} tii[41,163] := {103} tii[41,164] := {68} tii[41,165] := {138} tii[41,166] := {102} tii[41,167] := {144} tii[41,168] := {107} tii[41,169] := {73} tii[41,170] := {31} tii[41,171] := {192} tii[41,172] := {128} tii[41,173] := {95} tii[41,174] := {135} tii[41,175] := {141} tii[41,176] := {178} tii[41,177] := {139} tii[41,178] := {184} tii[41,179] := {145} tii[41,180] := {84} tii[41,181] := {149} tii[41,182] := {165} tii[41,183] := {224} tii[41,184] := {83} tii[41,185] := {213} tii[41,186] := {218} tii[41,187] := {155} tii[41,188] := {202} tii[41,189] := {200} tii[41,190] := {247} tii[41,191] := {256} tii[41,192] := {28} tii[41,193] := {168} tii[41,194] := {62} tii[41,195] := {100} tii[41,196] := {105} tii[41,197] := {140} tii[41,198] := {146} tii[41,199] := {111} tii[41,200] := {56} tii[41,201] := {169} tii[41,202] := {132} tii[41,203] := {176} tii[41,204] := {182} tii[41,205] := {180} tii[41,206] := {214} tii[41,207] := {186} tii[41,208] := {219} tii[41,209] := {124} tii[41,210] := {191} tii[41,211] := {150} tii[41,212] := {75} tii[41,213] := {205} tii[41,214] := {123} tii[41,215] := {246} tii[41,216] := {240} tii[41,217] := {243} tii[41,218] := {87} tii[41,219] := {195} tii[41,220] := {233} tii[41,221] := {231} tii[41,222] := {264} tii[41,223] := {190} tii[41,224] := {109} tii[41,225] := {121} tii[41,226] := {269} tii[41,227] := {215} tii[41,228] := {220} tii[41,229] := {223} tii[41,230] := {236} tii[41,231] := {160} tii[41,232] := {260} tii[41,233] := {262} tii[41,234] := {227} tii[41,235] := {255} tii[41,236] := {253} tii[41,237] := {245} tii[41,238] := {187} tii[41,239] := {272} tii[41,240] := {198} tii[41,241] := {275} tii[41,242] := {267} tii[41,243] := {268} tii[41,244] := {278} tii[41,245] := {7} tii[41,246] := {43} tii[41,247] := {15} tii[41,248] := {16} tii[41,249] := {74} tii[41,250] := {29} tii[41,251] := {30} tii[41,252] := {89} tii[41,253] := {32} tii[41,254] := {110} tii[41,255] := {44} tii[41,256] := {54} tii[41,257] := {148} tii[41,258] := {72} tii[41,259] := {55} tii[41,260] := {112} tii[41,261] := {53} tii[41,262] := {81} tii[41,263] := {126} tii[41,264] := {189} tii[41,265] := {108} tii[41,266] := {85} tii[41,267] := {118} tii[41,268] := {163} tii[41,269] := {57} tii[41,270] := {151} tii[41,271] := {86} tii[41,272] := {88} tii[41,273] := {167} tii[41,274] := {222} tii[41,275] := {125} tii[41,276] := {147} tii[41,277] := {158} tii[41,278] := {203} tii[41,279] := {162} tii[41,280] := {234} cell#10 , |C| = 35 special orbit = [9, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [5, 1, 1, 1]] , dim = 35 cell rep = phi[[],[5, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 35*X TII subcells: tii[49,1] := {7} tii[49,2] := {19} tii[49,3] := {26} tii[49,4] := {32} tii[49,5] := {6} tii[49,6] := {18} tii[49,7] := {25} tii[49,8] := {11} tii[49,9] := {20} tii[49,10] := {8} tii[49,11] := {0} tii[49,12] := {5} tii[49,13] := {17} tii[49,14] := {2} tii[49,15] := {10} tii[49,16] := {1} tii[49,17] := {4} tii[49,18] := {16} tii[49,19] := {9} tii[49,20] := {15} tii[49,21] := {34} tii[49,22] := {33} tii[49,23] := {31} tii[49,24] := {22} tii[49,25] := {13} tii[49,26] := {30} tii[49,27] := {24} tii[49,28] := {14} tii[49,29] := {3} tii[49,30] := {29} tii[49,31] := {23} tii[49,32] := {12} tii[49,33] := {28} tii[49,34] := {21} tii[49,35] := {27} cell#11 , |C| = 250 special orbit = [7, 3, 1, 1, 1, 1, 1, 1] special rep = [[1], [4, 1, 1, 1]] , dim = 160 cell rep = phi[[],[4, 2, 1, 1]]+phi[[1],[4, 1, 1, 1]] TII depth = 2 TII multiplicity polynomial = 90*X^2+70*X TII subcells: tii[39,1] := {7, 121} tii[39,2] := {23, 117} tii[39,3] := {63, 108} tii[39,4] := {16, 146} tii[39,5] := {40, 141} tii[39,6] := {6, 170} tii[39,7] := {83, 131} tii[39,8] := {13, 192} tii[39,9] := {59, 169} tii[39,10] := {105, 158} tii[39,11] := {39, 190} tii[39,12] := {128, 188} tii[39,13] := {30, 154} tii[39,14] := {60, 171} tii[39,15] := {15, 183} tii[39,16] := {106, 159} tii[39,17] := {26, 209} tii[39,18] := {10, 153} tii[39,19] := {80, 198} tii[39,20] := {129, 191} tii[39,21] := {58, 216} tii[39,22] := {21, 182} tii[39,23] := {36, 161} tii[39,24] := {156, 214} tii[39,25] := {102, 210} tii[39,26] := {157, 217} tii[39,27] := {79, 229} tii[39,28] := {75, 208} tii[39,29] := {189, 233} tii[39,30] := {215, 241} tii[39,31] := {2} tii[39,32] := {8} tii[39,33] := {1, 98} tii[39,34] := {5, 74} tii[39,35] := {12} tii[39,36] := {28} tii[39,37] := {29} tii[39,38] := {17} tii[39,39] := {0, 142} tii[39,40] := {14, 97} tii[39,41] := {4, 162} tii[39,42] := {25} tii[39,43] := {46} tii[39,44] := {47} tii[39,45] := {11, 132} tii[39,46] := {42} tii[39,47] := {65} tii[39,48] := {67} tii[39,49] := {88} tii[39,50] := {91} tii[39,51] := {120} tii[39,52] := {31} tii[39,53] := {3, 125} tii[39,54] := {43} tii[39,55] := {27, 122} tii[39,56] := {9, 152} tii[39,57] := {66} tii[39,58] := {68} tii[39,59] := {20, 133} tii[39,60] := {24, 160} tii[39,61] := {61} tii[39,62] := {86} tii[39,63] := {89} tii[39,64] := {111} tii[39,65] := {114} tii[39,66] := {33, 227} tii[39,67] := {145} tii[39,68] := {35, 151} tii[39,69] := {81} tii[39,70] := {109} tii[39,71] := {112} tii[39,72] := {135} tii[39,73] := {138} tii[39,74] := {69, 224} tii[39,75] := {173} tii[39,76] := {164} tii[39,77] := {167} tii[39,78] := {103, 221} tii[39,79] := {200} tii[39,80] := {218} tii[39,81] := {48} tii[39,82] := {62} tii[39,83] := {44, 147} tii[39,84] := {87} tii[39,85] := {90} tii[39,86] := {41, 193} tii[39,87] := {82} tii[39,88] := {110} tii[39,89] := {113} tii[39,90] := {136} tii[39,91] := {139} tii[39,92] := {52, 232} tii[39,93] := {174} tii[39,94] := {54, 181} tii[39,95] := {104} tii[39,96] := {134} tii[39,97] := {137} tii[39,98] := {165} tii[39,99] := {168} tii[39,100] := {92, 239} tii[39,101] := {38, 213} tii[39,102] := {201} tii[39,103] := {194} tii[39,104] := {196} tii[39,105] := {126, 237} tii[39,106] := {57, 206} tii[39,107] := {222} tii[39,108] := {77, 176} tii[39,109] := {234} tii[39,110] := {127} tii[39,111] := {163} tii[39,112] := {166} tii[39,113] := {195} tii[39,114] := {197} tii[39,115] := {115, 243} tii[39,116] := {223} tii[39,117] := {219} tii[39,118] := {220} tii[39,119] := {155, 245} tii[39,120] := {101, 231} tii[39,121] := {238} tii[39,122] := {124, 226} tii[39,123] := {244} tii[39,124] := {235} tii[39,125] := {236} tii[39,126] := {187, 247} tii[39,127] := {246} tii[39,128] := {180, 242} tii[39,129] := {248} tii[39,130] := {249} tii[39,131] := {19, 51} tii[39,132] := {18, 207} tii[39,133] := {34, 72} tii[39,134] := {32, 178} tii[39,135] := {49, 95} tii[39,136] := {45, 149} tii[39,137] := {22, 186} tii[39,138] := {53, 96} tii[39,139] := {37, 179} tii[39,140] := {50, 205} tii[39,141] := {70, 118} tii[39,142] := {55, 148} tii[39,143] := {64, 175} tii[39,144] := {56, 185} tii[39,145] := {93, 143} tii[39,146] := {76, 177} tii[39,147] := {84, 202} tii[39,148] := {99, 184} tii[39,149] := {73, 119} tii[39,150] := {71, 228} tii[39,151] := {94, 144} tii[39,152] := {85, 203} tii[39,153] := {78, 212} tii[39,154] := {116, 172} tii[39,155] := {100, 204} tii[39,156] := {107, 225} tii[39,157] := {123, 211} tii[39,158] := {140, 199} tii[39,159] := {130, 240} tii[39,160] := {150, 230} cell#12 , |C| = 35 special orbit = [9, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [5, 1, 1, 1]] , dim = 35 cell rep = phi[[],[5, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 35*X TII subcells: tii[49,1] := {0} tii[49,2] := {1} tii[49,3] := {3} tii[49,4] := {7} tii[49,5] := {4} tii[49,6] := {8} tii[49,7] := {13} tii[49,8] := {14} tii[49,9] := {22} tii[49,10] := {28} tii[49,11] := {2} tii[49,12] := {6} tii[49,13] := {11} tii[49,14] := {12} tii[49,15] := {17} tii[49,16] := {24} tii[49,17] := {5} tii[49,18] := {10} tii[49,19] := {16} tii[49,20] := {9} tii[49,21] := {15} tii[49,22] := {23} tii[49,23] := {29} tii[49,24] := {32} tii[49,25] := {34} tii[49,26] := {21} tii[49,27] := {27} tii[49,28] := {31} tii[49,29] := {33} tii[49,30] := {20} tii[49,31] := {26} tii[49,32] := {30} tii[49,33] := {19} tii[49,34] := {25} tii[49,35] := {18} cell#13 , |C| = 35 special orbit = [7, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [4, 1, 1, 1, 1]] , dim = 35 cell rep = phi[[],[4, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 35*X TII subcells: tii[38,1] := {0} tii[38,2] := {1} tii[38,3] := {3} tii[38,4] := {5} tii[38,5] := {9} tii[38,6] := {18} tii[38,7] := {2} tii[38,8] := {7} tii[38,9] := {12} tii[38,10] := {6} tii[38,11] := {4} tii[38,12] := {8} tii[38,13] := {17} tii[38,14] := {11} tii[38,15] := {16} tii[38,16] := {10} tii[38,17] := {20} tii[38,18] := {27} tii[38,19] := {34} tii[38,20] := {15} tii[38,21] := {24} tii[38,22] := {30} tii[38,23] := {14} tii[38,24] := {22} tii[38,25] := {13} tii[38,26] := {19} tii[38,27] := {26} tii[38,28] := {33} tii[38,29] := {23} tii[38,30] := {29} tii[38,31] := {21} tii[38,32] := {25} tii[38,33] := {32} tii[38,34] := {28} tii[38,35] := {31}